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1. Introduction

Let X be an n-dimensional Fano manifold, that is, a smooth projective variety X over

the complex number field C such that the anti-canonical divisor −K X is ample. It is an

interesting question whether X admits Kähler–Einstein metrics or not. In 1987, Tian [45]

gave a sufficient condition for the problem; if the alpha invariant α(X) of X is strictly

bigger than n/(n+ 1), then X admits Kähler–Einstein metrics. For the definition of α(X)
in this article, we use Demailly’s algebraic interpretation [13] (see also [34, 49, 51]).

Definition 1.1 [13, 45]. Let X be a Q-Fano variety, that is, a normal complex projective

variety with at most log terminal singularities and the anti-canonical divisor −K X ample

Q-Cartier. The alpha invariant α(X) of X is defined by the supremum of positive rational

numbers α such that the pair (X, αD) is log canonical for any effective Q-divisor D with

D ∼Q −K X .

Example 1.2 (See [12, Lemma 5.1] for example.). We know the equality α(Pn) = 1/(n+ 1).

On the other hand, it has been known that a Fano manifold X admits Kähler–Einstein

metrics if and only if X is K-polystable by the works [2, 17–19, 35, 36, 44, 47] and [5–7, 48].

In this article, we focus on the conditions K-stability and K-semistability ; K-stability

is stronger than K-polystability and K-polystability is stronger than K-semistability.
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Odaka and Sano [40, Theorem 1.4] (see also its generalizations [4, 14, 21]) proved a variant

of Tian’s theorem; if an n-dimensional Q-Fano variety X satisfies that α(X) > n/(n+ 1)
(respectively α(X) > n/(n+ 1)), then X is K-stable (respectively K-semistable). Thus,

from Odaka–Sano’s theorem, it has been known the K-semistability of n-dimensional

Fano manifolds X with α(X) = n/(n+ 1). However, it has not been known until now the

K-stability of those X . The main result in this article is to prove the K-stability of those

X with n > 2 (see [40, Conjecture 5.1]). Note that, if n = 1, then X ' P1, α(P1) = 1/2,

and P1 is not K-stable but K-semistable.

Theorem 1.3 (Main Theorem). If an n-dimensional Fano manifold X satisfies that

α(X) > n/(n+ 1) and n > 2, then X is K-stable. In particular, X admits Kähler–Einstein

metrics and the holomorphic automorphism group Aut(X) of X is a finite group.

We note that there are many examples of n-dimensional Fano manifolds X with α(X) =
n/(n+ 1).

Example 1.4. Let X be an n-dimensional Fano manifold.

(1) [41, §3], [9, Theorem 1.7] If n = 2, then α(X) = 2/3 if and only if ((−K X )
·2) = 4 or

X is a smooth cubic surface admitting an Eckardt point.

(2) [8, Theorem 1.3], [10, Corollary 4.10], [16, Theorem 0.2] If X is a hypersurface

of degree n+ 1 in Pn+1, then α(X) > n/(n+ 1) holds. Moreover, α(X) = n/(n+ 1)
holds if X contains an (n− 1)-dimensional cone.

From Theorem 1.3 and Example 1.4(2), we immediately get the following corollary:

Corollary 1.5. Let X be an arbitrary smooth hypersurface in Pn+1 of degree n+ 1, where

n is a positive integer with n > 2. Then X is a K-stable n-dimensional Fano manifold. In

particular, X admits Kähler–Einstein metrics.

Remark 1.6. (1) The examples in Corollary 1.5 are new in general. When the

hypersurface is general or of certain special type or admits some finite symmetry,

it was already known that the hypersurface admits Kähler–Einstein metrics. See

[45, Theorem 4.1], [49, Theorem 2.5], [38, Theorem 6.1], [46, Main Theorem], [42,

Theorem 2], [1, Proposition 3.1], [11, Theore 1.4] and [15, Example 4.1].

(2) In Theorem 1.3, we assume that X is smooth. In fact, we crucially use the

smoothness of X in order to prove the theorem. See Theorem 4.1 and Example 4.2.

For the proof of Theorem 1.3, we use a valuative criterion for K-stability and

K-semistability of Q-Fano varieties [23, 30] (see also [29]). If an n-dimensional Fano

manifold X satisfies that α(X) = n/(n+ 1), n > 2 and X is not K-stable, then there

exists a dreamy prime divisor F over X with β(F) = 0 (see § 2 in detail). By viewing the

F in detail, we can show that X must be isomorphic to Pn (see §§ 3 and 4 in detail). This

gives a contradiction since α(X) = n/(n+ 1) and n > 2.
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In this article, we work over the category of algebraic schemes over the complex number

field C. For the theory of minimal model program, we refer the readers to the book [26]; for

the theory of toric geometry, we refer the readers to the book [24]. We do not distinguish

line bundles (or more generally Q-line bundles) and Cartier divisors (or more generally

Q-Cartier Q-divisors) if there is no confusion.

2. K-stability

We quickly recall the notion of K-stability and K-semistability. We remark that there are

many equivalent definitions of K-(semi)stability.

Definition 2.1 (See [18, 33, 39, 43, 47, 50]). Let X be an n-dimensional Q-Fano variety.

(1) A test configuration (X ,L)/P1 of X consists of the following data:

• a normal projective variety X together with a surjection q : X → P1;

• a q-ample Q-line bundle L on X ;

• an action Gm y (X ,L) such that the morphism q is Gm-equivariant with respect

to the natural multiplicative action Gm y P1 and there exists a Gm-equivariant

isomorphism

(X ,L)|X \X0 '

(
X × (P1

\ {0}), p∗1(−K X )
)
,

where Gm is the multiplicative group, X0 is the scheme-theoretic fiber of q at

0 ∈ P1 and p1 : X × (P1
\ {0})→ X is the first projection morphism.

A test configuration (X ,L)/P1 is said to be trivial if (X ,L)/P1 is Gm-equivariantly

isomorphic to (X ×P1, p∗1(−K X )) with the trivial Gm-action, where p1 : X ×P1
→

X is the first projection morphism.

(2) Let (X ,L)/P1 be a test configuration of X . The Donaldson–Futaki invariant

DF(X ,L) of (X ,L)/P1 is defined by:

DF(X ,L) :=
1

(n+ 1)((−K X )·n)

(
n(L·n+1)+ (n+ 1)(L·n · KX /P1)

)
,

where KX /P1 := KX − q∗KP1 .

(3) X is said to be K-stable (respectively K-semistable) if DF(X ,L) > 0 (respectively

DF(X ,L) > 0) holds for any nontrivial test configuration (X ,L)/P1 of X .

We recall a following valuative criterion for K-(semi)stability of Q-Fano varieties

[23, 30].

Definition 2.2 [23, Definitions 1.1 and 1.3]. Let X be an n-dimensional Q-Fano variety and

let F be a prime divisor over X , that is, there exists a projective birational morphism

σ : Y → X with Y normal such that F is a prime divisor on Y . (The divisor F is not

necessarily Q-Cartier on Y .)
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(1) For any x ∈ R>0, we define

volX (−K X − x F) := volY
(
σ ∗(−K X )− x F

)
:= lim

k→∞
−kK X : Cartier

dimC H0(Y, σ ∗(−kK X )− kx F)
kn/n!

,

where H0(Y, σ ∗(−kK X )− kx F) is the sub C-vector space of H0(Y, σ ∗(−kK X )) =

H0(X,−kK X ) consisting of the sections vanishing at the generic point of F
at least kx times. (The space does not depend on the choice of σ as a

subspace of H0(X,−kK X ).) By [27, 28], the limit exists. Moreover, the function

volX (−K X − x F) is a continuous and non-increasing function on x ∈ [0,+∞).

(2) We set the pseudo-effective threshold τ(F) of −K X with respect to F as

τ(F) := sup{τ ∈ R>0 | volX (−K X − τ F) > 0}.

We note that τ(F) ∈ R>0 holds. Moreover, by [3, Theorem A], the function

volX (−K X − x F) is C1 on x ∈ [0, τ (F)).

(3) We set the log discrepancy AX (F) of X with respect to F as AX (F) := 1+
ordF (KY/X ).

(4) We set

β(F) := AX (F)((−K X )
·n)−

∫
∞

0
volX (−K X − x F) dx .

(5) F is said to be dreamy if the graded C-algebra⊕
k, j∈Z>0

H0(Y, σ ∗(−kk0 K X )− j F)

is finitely generated for some (hence, for any) k0 ∈ Z>0 with −k0 K X Cartier.

We remark that all the above definitions do not depend on the choice of the morphism

σ : Y → X . More precisely, those are defined from only the divisorial valuation on the

function field of X given by F .

The following theorem is essential in order to prove Theorem 1.3.

Theorem 2.3 (See [23, Corollary 1.5 and Theorem 1.6] and [30, Theorem 3.6]). Let X be

a Q-Fano variety. Then X is K-stable (respectively K-semistable) if and only if β(F) > 0
(respectively β(F) > 0) holds for any dreamy prime divisor F over X .

3. Dreamy prime divisors

In this section, we see some properties of dreamy prime divisors in order to prove

Theorem 1.3.

The following lemma is a consequence of the results [25, Theorem 4.2], [32, Theorem

4.26], [22, § 2], [23, Claim 6] and [21, Claim 3.4].
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Lemma 3.1. Let X be an n-dimensional Q-Fano variety and let F be a dreamy prime

divisor over X .

(1) We have τ(F) ∈ Q>0. We can define the restricted volume (in the sense of [20])

Q(x) := −
1
n

d
dx

volX (−K X − x F)

and the function Q(x) is continuous, R>0-valued for any x ∈ (0, τ (F)). Moreover,

we can uniquely extend the values Q(0), Q(τ (F)) ∈ Q>0 continuously. Furthermore,

Q(x)1/(n−1) is a concave function on x ∈ [0, τ (F)].

(2) There exists a projective birational morphism σ : Y → X with Y normal such that

F ⊂ Y is a prime divisor on Y and −F is a σ -ample Q-Cartier divisor on Y . The

morphism σ is unique. (Of course, volX (−K X − x F) = volY (σ ∗(−K X )− x F) holds

for any x ∈ [0, τ (F)].) In particular, if F is an exceptional divisor over X , then the

exceptional set of σ is equal to F in Y .

(3) Set

ε(F) := max{ε ∈ R>0 | σ
∗(−K X )− εF is nef},

where σ is as in (2). Then we have ε(F) ∈ (0, τ (F)] ∩Q, and

Q(x) =
(
(σ ∗(−K X )− x F)·n−1

· F
)

holds for any x ∈ [0, ε(F)]. Moreover, there exists a projective morphism π : Y → Z
with π∗OY = OZ and an ample Q-Cartier Q-divisor HZ on Z such that π∗HZ ∼Q
σ ∗(−K X )− ε(F)F holds. The π and HZ are unique. (We remark that the Q-Cartier

divisor F on Y is π-ample.)

Proof. Let ψ : Ỹ → X be a log resolution with F ⊂ Ỹ . By [25, Theorem 4.2], there exists

a sequence of rational numbers

0 = τ0 < τ1 < · · · < τm = τ(F)

(in particular, τ(F) ∈ Q>0 holds) and a mutually distinct birational contraction maps

φi : Ỹ 99K Yi

for 1 6 i 6 m such that

• for any x ∈ (τi−1, τi ), the birational map φi is the ample model of ψ∗(−K X )− x F ; and

• for any x ∈ [τi−1, τi ], the birational map φi is the semiample model of ψ∗(−K X )− x F .

(2) Set Y := Y1. The ample model of ψ∗(−K X ) is the X itself. Thus there exists

a projective birational morphism σ : Y → X . Since σ ∗(−K X )− x F is ample for any

x ∈ (0, τ1), the divisor −F on Y is a σ -ample Q-Cartier divisor. Thus we have proved

(2). (The uniqueness of σ is trivial.)

(3) The Q-divisor σ ∗(−K X )− τ1 F is semiample but not ample. Thus τ1 = ε(F) and

there exists a morphism π : Y → Z and a Q-Cartier Q-divisor HZ on Z which satisfy the

condition in (3) and they are unique. Thus we have proved (3).
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(1) We already know by [3, Theorem A] the existence of the function Q(x) and is

continuous on x ∈ (0, τ (F)) (see Definition 2.2(2)). Note that

volX (−K X − x F) =
(
((φi )∗(ψ

∗(−K X )− x F))·n
)

for any x ∈ [τi−1, τi ] (see [25, Remark 2.4(i)]). Thus we have

Q(x) =
(
((φi )∗(ψ

∗(−K X )− x F))·n−1
· (φi )∗F

)
.

In particular, Q(x) > 0 holds for any x ∈ (0, τ (F)) and we can naturally define the values

Q(0), Q(τ (F)) ∈ Q>0.

Take any 0 < ε � 1 with ε ∈ Q. Let us take an arbitrary complete flag

Y ⊃ Z1 ⊃ · · · ⊃ Zn = {point}

in the sense of [32] with Z1 = F . Consider the Okounkov body 1Z•(σ
∗(−K X )− εF)

⊂ Rn
>0 of σ ∗(−K X )− εF with respect to Z• in the sense of [32]. Since σ ∗(−K X )− εF is

ample, by [32, Theorem 4.26], Q(x)/(n− 1)! is equal to the restricted volume of

{(ν1, . . . , νn) ∈ 1Z•(σ
∗(−K X )− εF) | ν1 = x − ε}

for any x ∈ [ε, τ (F)). Since1Z•(σ
∗(−K X )− εF) is a convex body, Q(x)1/(n−1) is a concave

function on x ∈ [ε, τ (F)) by the Brunn–Minkowski theorem. Thus we have proved (1).

The following two propositions are important in this article.

Proposition 3.2. Let X be an n-dimensional Q-Fano variety and let F be a dreamy prime

divisor over X . Let σ : Y → X be as in Lemma 3.1(2). Assume that

n
n+ 1

τ(F)((−K X )
·n) 6

∫ τ(F)

0
volY (σ ∗(−K X )− x F) dx .

Then we have the following:

(1) The above inequality is actually an equality.

(2) τ(F) = ε(F) holds, where ε(F) is as in Lemma 3.1(3).

(3) σ(F) is a point p ∈ X .

Proof. The proof is similar to the one in [21, Theorem 3.2]. Since

volY (σ ∗(−K X )− x F) = n
∫ τ(F)

x
Q(y) dy,

we have ∫ τ(F)

0
volY (σ ∗(−K X )− x F) dx = n

∫ τ(F)

0
yQ(y) dy

and

((−K X )
·n) = n

∫ τ(F)

0
Q(y) dy.

Set

b :=

∫ τ(F)
0 yQ(y) dy∫ τ(F)
0 Q(y) dy

.

From the assumption, we have b ∈ [(n/(n+ 1))τ (F), τ (F)). By Lemma 3.1(1) (concavity

of Q(x)1/(n−1)), we have the following:
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• Q(x) > Q(b)(x/b)n−1 holds for any x ∈ [0, b];

• Q(x) 6 Q(b)(x/b)n−1 holds for any x ∈ [b, τ (F)].

Thus we get

0 =
∫ τ(F)−b

−b
yQ(y+ b) dy 6

∫ τ(F)−b

−b
yQ(b)

(y+ b)n−1

bn−1 dy

=
Q(b)τ (F)n

bn−1

(
τ(F)
n+ 1

−
b
n

)
.

This implies that b 6 (n/(n+ 1))τ (F). Therefore, we have b = (n/(n+ 1))τ (F) and

Q(x) = Q(b)(x/b)n−1 holds for any x ∈ [0, τ (F)]. By Lemma 3.1(3),

Q(x) =
n−1∑
i=0

(
n− 1

i

)
x i
(
σ ∗(−K X )

·n−1−i
· (−F)·i · F

)
holds for any x ∈ [0, ε(F)]. Set c := dim σ(F).

Claim 3.3. We have c = 0, that is, σ maps F to a point p ∈ X .

Proof of Claim 3.3. We may assume that n > 2. Since

0 = (σ ∗(−K X )
·n−1
· F) = ((−K X )

·n−1
· σ∗F),

we have c 6 n− 2, that is, F is exceptional over X . Take any ε′ ∈ (0, ε(F))∩Q and take a

sufficiently divisible k ∈ Z>0 such that both −kK X and σ ∗(−kK X )− kε′F are very ample

Cartier divisors. Take A1, . . . , Ac ∈ |− kK X | and A′1, . . . , A′n−2−c ∈ |σ
∗(−kK X )− kε′F |

generally. By Bertini’s theorem, S := σ ∗A1 ∩ · · · ∩ σ
∗Ac ∩ A′1 ∩ · · · ∩ A′n−2−c is a normal

surface and C := F |S is a nonzero effective Q-Cartier divisor on S such that C is

contracted by the birational morphism σ |S : S→ σ(S). By the Hodge index theorem,

we have

0 > (C ·2)S = kn−2
(
σ ∗(−K X )

·c
· (σ ∗(−K X )− ε

′F)·n−2−c
· (−F)·2

)
.

If c > 1, then the right-hand side of the above inequality must be equal to zero. Thus we

get c = 0.

We have

Q(x) = xn−1((−F)·n−1
· F),

volY (σ ∗(−K X )− x F) = ((−K X )
·n)− xn((−F)·n−1

· F)

for any x ∈ [0, τ (F)]. Hence we have the equality ε(F) = τ(F) by [31, Lemma 10].

Remark 3.4. Odaka and Sano showed in [40, § 5] that, if an n-dimensional Fano manifold

X satisfies that α(X) = n/(n+ 1) and X is not K-stable, then any destabilizing flag ideal

has zero-dimensional support. The assertion in Proposition 3.2(3) looks similar to their

observation. In fact, they conjectured in [40, Conjecture 5.1] that X might be isomorphic

to Pn under the assumption from the observation.
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Proposition 3.5. Let X be an n-dimensional Q-Fano variety and F be a dreamy prime

divisor over X . Let σ : Y → X , π : Y → Z and ε(F) ∈ Q>0 be as in Lemma 3.1. Assume

that AX (F) > (n/(n+ 1))τ (F) and β(F) 6 0. Then we have the following:

(1) AX (F) = n, τ(F) = ε(F) = n+ 1 holds. Moreover, σ(F) is a point p ∈ X .

(2) dim Z = n− 1 and π |F : F → Z is an isomorphism. Moreover, any fiber of π is

one-dimensional and a general fiber l of π is isomorphic to P1 and (F · l) = 1 holds.

Proof. Take an ample Q-Cartier Q-divisor HZ on Z as in Lemma 3.1(3). Since

0 > AX (F)((−K X )
·n)−

∫ τ(F)

0
volY (σ ∗(−K X )− x F) dx

>
n

n+ 1
τ(F)((−K X )

·n)−

∫ τ(F)

0
volY (σ ∗(−K X )− x F) dx,

we have AX (F) = (n/(n+ 1))τ (F) = (n/(n+ 1))ε(F) and σ maps F to a point p ∈ X by

Proposition 3.2. Since

π∗HZ ∼Q σ
∗(−K X )− τ(F)F

is not big and

(π∗H ·n−1
Z · F) = ε(F)n−1((−F)·n−1

· F) > 0,

we have dim Z = n− 1. Moreover, any curve in F intersects F negatively since −F is

σ -ample. Thus the morphism π |F : F → Z is a finite morphism. Hence any fiber of π

is one-dimensional since F is Q-Cartier. Let l ⊂ Y be a general fiber of π . The set of

singular points of Y is at most (n− 2)-dimensional. Thus Y is smooth and F is Cartier

around a neighborhood of l ⊂ Y . Note that

−(KY + F) = σ ∗(−K X )−
n

n+ 1
ε(F)F,

π∗HZ ∼Q −KY −

(
1+

1
n+ 1

ε(F)
)

F.

In particular, −(KY + F) is ample. Hence l ' P1, (−KY · l) = 2 and (F · l) = 1. In

particular, the morphism π |F : F → Z is an isomorphism since it is finite and birational

with Z normal. Moreover, we have

0 = (π∗HZ · l) = 2−
(

1+
1

n+ 1
ε(F)

)
.

This implies that ε(F) = τ(F) = n+ 1 and AX (F) = n.

4. A characterization of the projective space

In this section, we give a characterization of the projective space and prove Theorem 1.3.

Theorem 4.1. Let X be an n-dimensional Fano manifold and F be a dreamy prime divisor

over X . Assume that AX (F) > (n/(n+ 1))τ (F) and β(F) 6 0. Then X is isomorphic

to Pn.
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Proof. We apply Proposition 3.5; σ maps F to a point p ∈ X and AX (F) = n. Note that

the point p ∈ X is a smooth point. Thus F is given by the ordinary blowup (see [26,

Corollary 2.31(2) and Lemma 2.45]). Thus the morphism σ is given by the ordinary

blowup along the point p ∈ X by the uniqueness of σ (see Lemma 3.1(2)). In particular,

Y is smooth and F ' Pn−1 with NF/Y ' OPn−1(−1). Since −KY and F are π -ample

Cartier divisors, any fiber of π is one-dimensional and a general fiber l of π satisfies that

l ' P1 and (F · l) = 1, any fiber of π is scheme-theoretically isomorphic to P1 and F is a

section of π . In particular, Y ' PZ (π∗OY (F)) holds. Let us consider the π∗ of the exact

sequence

0→ OY → OY (F)→ NF/Y → 0.

Then we get Y ' PPn−1(O⊕O(−1)). In particular, we have X ' Pn .

We remark that Theorem 4.1 is not true if X is not smooth. See the following example.

Example 4.2. Fix a lattice N := Z⊕2 and set NR := N ⊗ZR. Let us consider the complete

fan Σ in NR such that

{(1, 0), (0, 1), (−1, 0), (−2,−3)}

is the set of the generators of the one-dimensional cones in Σ . Let Y be the projective

toric surface associated to the fan Σ . Let F ⊂ Y be the torus invariant curve associated

to the cone R>0(−1, 0) ∈ Σ . Then there exists a projective toric birational morphism

σ : Y → P(1, 2, 3) such that σ maps F to a point, where P(1, 2, 3) is the weighted

projective plane with the weights 1, 2, 3. Set X := P(1, 2, 3). We can check that

AX (F) = 2. On the other hand, there is a projective toric contraction morphism

π : Y → P1 such that σ ∗(−K X )− 3F ∼Q,P1 0. Thus we have ε(F) = τ(F) = 3. Moreover,

we get

β(F) = 2 · 6−
∫ 3

0

(
6−

2
3

x2
)

dx = 0.

Of course, X 6' P2, α(X) = 1/6(< 2/3) by [12, Lemma 5.1], and X is not K-semistable

by [22, Lemma 9.2].

Proof of Theorem 1.3. Assume that X is not K-stable. By Theorem 2.3, there exists a

dreamy prime divisor F over X such that β(F) 6 0. By [21, Lemma 3.3], we have the

inequality AX (F) > (n/(n+ 1))τ (F). Thus we get X ' Pn by Theorem 4.1. This gives a

contradiction since α(X) > n/(n+ 1) and n > 2 (see Example 1.2). Thus X is K-stable.

The remaining assertions are proved from [5–7, 48] and [37] (see also [40, § 1]).

Remark 4.3. The author expects that Theorem 1.3 holds for Q-Fano varieties even if

Theorem 4.1 does not hold.
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