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Deformation of a compliant wall in a turbulent
channel flow
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Interaction of a compliant wall with a turbulent channel flow is investigated
experimentally by simultaneously measuring the time-resolved, three-dimensional
(3D) flow field and the two-dimensional (2D) surface deformation. The optical
set-up integrates tomographic particle image velocimetry to measure the flow with
Mach–Zehnder interferometry to map the deformation. The Reynolds number is
Reτ = 2300, and the Young’s modulus of the wall is 0.93 MPa, resulting in a ratio of
shear speed to the centreline velocity (U0) of 6.8. The wavenumber–frequency spectra
of deformation show the surface motions consist of a non-advected low-frequency
component and advected modes, some travelling downstream at approximately U0 and
others at ∼0.72U0. The r.m.s. values of the advected and non-advected modes are
0.04 µm (0.004δν) and 0.2 µm (0.02δν), respectively, much smaller than the wall unit
(δν), hence they do not affect the flow. Trends in the wall dynamics are elucidated by
correlating the deformation with flow variables, including the 3D pressure distribution
calculated by spatially integrating the material acceleration. Predictions by the Chase
[J. Acoust. Soc. Am., vol. 89 (6), pp. 2589–2596] linear model are also calculated
and compared to the measured trends. The spatial deformation–pressure correlations
peak at y/h≈ 0.12 (h is half channel height), the elevation of Reynolds shear stress
maximum in the log-layer. Streamwise lagging of the deformation behind the pressure
is caused in part by phase lag of the pressure with decreasing distance from the wall,
and in part by material damping. Positive deformations (bumps) caused by negative
pressure fluctuations are preferentially associated with ejections involving spanwise
vortices located downstream and quasi-streamwise vortices with spanwise offset.
Results of conditional correlations are consistent with the presence of hairpin-like
structures. The negative deformations (dimples) are preferentially associated with
positive pressure fluctuations at the transition between an upstream sweep to a
downstream ejection.

Key words: turbulent boundary layers, turbulent flows

1. Introduction
The interactions between compliant surfaces and laminar or turbulent boundary

layers have been the subject of numerous investigations over the past 60 years owing
to their presumed effects on laminar to turbulent transition, skin friction, as well as

† Email address for correspondence: katz@jhu.edu

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

29
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

http://orcid.org/0000-0001-9067-2473
mailto:katz@jhu.edu
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2017.299&domain=pdf
https://doi.org/10.1017/jfm.2017.299


346 C. Zhang, J. Wang, W. Blake and J. Katz

noise and vibrations (Bushnell, Hefner & Ash 1977; Riley, Gad-el-Hak & Metcalfe
1988; Gad-el-Hak 1998, 2002). Early studies were stimulated by Kramer (1957,
1962), who reported considerable drag reduction by coating a model with a compliant
surface mimicking the skin of dolphins. Subsequent experimental investigations
showed mixed results, namely some observed drag reduction (e.g. Fisher & Blick
1966; Blick & Walters 1968; Choi et al. 1997), but others did not (e.g. Harris &
Lissaman 1969; McMichael, Klebanoff & Mease 1980). In efforts aimed at explaining
the mechanisms involved, the theoretical works of Benjamin (1960, 1963) and Landahl
(1962) suggested that by selecting the flexibility and internal damping of the material,
the compliant surface could delay the transition from laminar to turbulent flow. The
choice of material properties was critical because the wall compliance could also
allow other instability modes to grow and trigger transition.

Many subsequent studies investigated the effect of a compliant surface on boundary
layer transition. For example, the theoretical analysis of Carpenter & Garrad (1985,
1986) divided the flow instability into two categories, namely Tollmien–Schlichting
(TS) type instabilities resembling those occurring over a rigid plate, and flow-induced
surface instabilities (FISI). The TS waves were stabilized by the wall compliance and
destabilized by material damping. The FISI, on the other hand, were destabilized by
wall compliance and stabilized by material damping. Lee, Fisher & Schwarz (1995)
studied the effect of a compliant surface on the stability of the Blasius boundary layer
in a wind tunnel. They confirmed that at low Reynolds numbers, when the amplitudes
of FISI were small, the wall compliance reduced the growth rate of unstable TS waves.
Wang, Yeo & Khoo (2006) reached the same conclusion based on direct numerical
simulation (DNS). Another research direction focused at the interactions between the
compliant surface and fully developed turbulent boundary layers. For soft materials,
experimental studies revealed the formation of the so-called static-divergence wave
(Hansen & Hunston 1974; Hansen et al. 1980; Hansen & Hunston 1983; Gad-el-Hak,
Blackwelder & Riley 1984). The crests of these waves were aligned in the spanwise
direction, and they exhibited low phase speeds (∼0.05U0) and high amplitudes of
the order of the coating thickness. They appeared when the free-stream velocity was
several times larger than the shear wave speed of the compliant coating, ct. Formation
of such waves usually increased the drag, presumably due to an increase in surface
roughness (Hansen & Hunston 1974; Gad-el-Hak et al. 1984). In the absence of static-
divergence waves at speeds lower than the onset level, the tools available to Gad-el-
Hak et al. (1984) could not detect measurable surface deformation or changes to the
mean velocity profile.

The wall deformation detection techniques have improved over the years. Starting
with point measurements, Gad-el-Hak et al. (1984), Gad-el-Hak (1986) and Hess,
Peattie & Schwarz (1993) achieved resolutions of approximately 20 µm and 2 µm,
respectively. They illuminated the compliant surface with a laser beam and recorded
the displacement of the light scattered from the interface using magnified imaging.
In recent years, the introduction of a laser Doppler vibrometer (LDV) allowed
point measurement of surface motion at a nanometre precision (e.g. Castellini,
Martarelli & Tomasini 2006; Tabatabai et al. 2013). Two-dimensional distributions
of compliant surface deformations were measured first by Lee, Fisher & Schwarz
(1993a,b) using holographic interferometry. They achieved a sub-micron precision,
but having to record the interferograms on films, the data was not time-resolved.
Yet, they captured 3D small-amplitude deformation patterns that were different
from the static-divergence waves. Since the previous experimental studies did not
involve simultaneous measurements of flow field and deformation, interactions
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Deformation of a compliant wall in a turbulent channel flow 347

could only be inferred based on integrated statistics of mean flow, skin friction
and turbulence parameters. To address this challenge, in Zhang, Miorini & Katz
(2015), we introduced a system capable of measuring the time-resolved 3D flow and
2D deformation simultaneously. It was used for obtaining the data presented in this
paper, and discussed in detail in the following sections.

Over the past two decades, numerical simulations of interactions of a boundary
layer with modelled surface compliance have taken a leading role as a research tool
(e.g. Endo & Himeno 2002; Xu, Rempfer & Lumley 2003; Kim & Choi 2014; Luhar,
Sharma & McKeon 2015). DNS of a turbulent channel flow (Reτ =uτh/ν=150, where
uτ is the friction velocity, h is the channel half-height and ν is the liquid kinematic
viscosity) over a soft compliant wall modelled as an array of springs and dampers by
Endo & Himeno (2002) showed a moderate reduction (2.7 %) of the average drag. A
subsequent investigation by Xu et al. (2003) at Reτ = 137, which modelled the wall
in a similar manner, found little change in the averaged skin friction. Simulations
by Kim & Choi (2014) at Reτ = 138 concluded that for a soft wall, large-amplitude
quasi-2D surface waves form and travel downstream at a phase speed of less than
40 % of the centreline velocity. Their amplitude and shape were consistent with those
of the static-divergence waves, but their celerity was higher. For stiffer walls, their
deformation patterns became more complex, and travelled at 72 % of the centreline
velocity. In both cases, there was no drag reduction. Luhar et al. (2015) used a
reduced-order model based on the resolvent analysis introduced by McKeon &
Sharma (2010) for the flow and modelled the compliant wall effect using a boundary
with complex admittance. They showed that an unphysical negative material damping
was required for the compliant surface to interact favourably in terms of Reynolds
stress distributions with the near-wall motions. Positive damping was only effective
for modes representing very-large-scale motions. In parallel, substantial effort was
invested in modelling, computing and measuring the response of compliant walls
to pressure and shear perturbations (e.g. Duncan, Waxman & Tulin 1985; Duncan
1986; Ko & Schloemer 1989; Chase 1991). These studies focused on the material
dynamics, and did not involve flow simulations. Yet, they provided considerable
insight on effects of layer thickness and material properties, such as the Young and
shear moduli as well as the so-called loss tangent, on the response of the wall
to prescribed forcing. The Helmholtz-equation-based analysis by Chase (1991) was
particularly relevant to the present study, and was instrumental for elucidating many
of the observations. Hence, it is summarized briefly in appendix A.

As a general observation, the mechanisms dominating the compliant wall–flow
interactions in high-Reynolds-number turbulent boundary layers have not been
elucidated yet. The experimental studies could not resolve them, and even the most
recent computational investigations replaced the wall with simplified models. To
advance the state of knowledge, in Zhang et al. (2015), we integrated time-resolved
tomographic particle image velocimetry (TPIV) for measuring the flow (Elsinga et al.
2006; Scarano 2013) and Mach–Zehnder interferometry (MZI) (e.g. Hecht 2002) for
mapping the corresponding 2D distribution of compliant wall deformation. Section 2
briefly describes the experimental set-up, measurement procedures and uncertainties.
For the present analysis, we also calculated the 3D pressure distribution by spatially
integrating the material acceleration (Liu & Katz 2006, 2008, 2013; Joshi, Liu &
Katz 2014). A brief summary of the GPU-based procedure is provided in appendix B.
Other approaches for calculating the pressure based on solutions to the Poisson
equation were presented in, for example, Baur & Köngeter (1999), Gurka et al.
(1999), Koschatzky et al. (2011), Ghaemi, Ragni & Scarano (2012), de Kat & van
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Oudheusden (2012) and Ghaemi & Scarano (2013), and compared by Charonko et al.
(2010). Utilizing these techniques, our objective is to investigate how the flow and
pressure fields affect the surface deformation in a channel flow at moderately high
Reynolds number. The current wall is stiffer than those previously tested in studies
attempting to reduce the wall friction, resulting in surface deformations that do not
involve static-divergence waves.

Section 3 presents the main findings of this paper. First, the dynamics of pressure
and surface deformation are characterized in the frequency domain and by examining
their wavenumber–frequency spectra. Based on the results, the deformation is divided
into advected and non-advected modes, and most of the subsequent analysis focuses
on the latter. Conditional sampling and correlations involving the distributions of
deformation, pressure, as well as velocity and vorticity components are used for
identifying key flow phenomena affecting the advected modes. This conditional
analysis identifies flow structures associated with positive (bumps) and negative
(dimples) surface deformations. It also shows that dominant flow features affecting
the deformation reside in the log-layer. Causes for phase lag between, for example,
pressure and deformation peaks are elucidated based on the material properties
and spatial characteristics of near-wall turbulence. Concluding remarks along
with conceptual models identifying the dominant flow structures and their spatial
relationship with the deformation fields are summarized in § 4.

2. Facility, experimental set-up and measurement procedures
2.1. Test facility

The experiments have been performed in an acrylic channel extended from the
optically index-matched facility at Johns Hopkins University. Detailed descriptions of
this channel are documented in several previous publications (Hong, Katz & Schultz
2011; Hong et al. 2012; Talapatra & Katz 2012, 2013; Joshi et al. 2014; Zhang
et al. 2015). Figure 1 is a sketch of the relevant parts of the channel extension
drawn not to scale. Its overall internal dimensions are 3300 × 50.8 × 203.2 mm3

in the streamwise, x, wall-normal, y, and spanwise, z, directions, respectively.
The corresponding instantaneous velocity components are denoted as u, v and w,
respectively. Upstream of the channel, a settling chamber containing honeycombs and
screens followed by a nozzle with area ratio of 4 : 1 is used for controlling/reducing
the inflow turbulence level. Pressure taps on both sides of the nozzle are also used for
monitoring the mean speed. On the downstream side, a mild diffuser with expansion
angle of less than 7◦ links the channel with the main loop. The channel has four
removable windows spanning its entire width, two on the top and two on the bottom,
for installing walls with different shapes, roughness, and material properties. In
the present investigation, the compliant wall is installed in the bottom downstream
window, while the other three windows are mounted with rigid acrylic plates.

The wall consists of a homogeneous layer of transparent polydimethylsiloxane
(PDMS) with thickness of l0 =16 mm attached to a 9 mm thick acrylic wall. This
silicon rubber layer is 1250 mm long in the x-direction, and it spans the entire width
of the channel (203.2 mm). The leading edge of this layer is located 1900 mm (75h)
downstream of the channel entrance, where h (= 25.4 mm) is the channel half-height.
The detailed procedures for moulding this compliant layer directly on the acrylic
base in a special vacuum chamber with polished flat acrylic walls are described in
Zhang et al. (2015). The mechanical properties of the PDMS have been measured by
a Rheometrics Solids Analyzer (RSA II) using another moulded sample of the same
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1900 (from channel inlet) 330 (to channel outlet)

Flow

1250

1010

16

9
Rigid wall,

acrylic

Compliant surface,
PDMS

50.8

203.2

(Cross-section)

x, streamwise

y, wall-normal Sample volume

FIGURE 1. Schematic of the test section and location of the sample volume (drawn not
to scale). All dimensions are in mm.

material, curing temperature and base-to-curing agent ratio. The frequency-averaged
(0.1–12 Hz) storage modulus, E′, is 0.93 MPa and the loss modulus, E′′, is 0.07 MPa.
The density of the PDMS, ρc, is 1.03× 103 kg m−3. The Poisson’s ratio, σ , has not
been measured, but based on Mark (1999), it is expected to be 0.5. The resulting
shear modulus, estimated using G = E′/2(1 + σ) is 0.31 MPa, and the shear wave
speed calculated from ct= (G/ρc)

1/2 is 17 m s−1. The magnitude of ct is significantly
higher than the channel centreline velocity during the present experiments (2.5 m s−1),
implying that this material falls in the ‘stiff wall’ category. Hence, large-amplitude
static-divergence waves are not expected to develop.

The working fluid in the channel is an aqueous solution of sodium iodide (NaI, 62 %
by weight). The fluid density, ρ, and kinematic viscosity, ν, are 1.8 × 103 kg m−3

and 1.1 × 10−6 m2 s−1, respectively, and its refractive index, nNaI , is 1.493. This
refractive index is very close to that of the acrylic, which minimize light reflection
at the rigid channel wall. However, it is also different from that of the compliant
material (nPDMS = 1.413), which is crucial for measuring surface deformation using
interferometry. In the present experiments, the channel centreline velocity, U0, is
2.5 m s−1, and the friction velocity, uτ , determined from a linear fit of the total shear
stress profile, is 0.102 m s−1 (Zhang et al. 2015). The resulting viscous length scale,
δν = ν/uτ , is 11 µm, and the corresponding time scale, τν = ν/u2

τ , is 105.7 µs. The
friction Reynolds number, Reτ , is 2300. Following the usual convention, a superscript
+ is used to denote quantities normalized by uτ and τν .

2.2. Velocity and pressure measurements
The experimental set-up for the integrated time-resolved TPIV and MZI measurements
is illustrated in figure 2. Detailed descriptions of this system and data analysis
procedures, especially those involving MZI, are provided in Zhang et al. (2015). This
section describes the main components briefly. Background on TPIV can be found in,
for example, Elsinga et al. (2006) and Scarano (2013), and applications in boundary
layers and channel flows are discussed in, for example, Schröder et al. (2008, 2011),
Atkinson et al. (2011) and Schäfer et al. (2011). The present 30 × 10 × 10 mm3

(2778 × 926 × 929δ3
ν ) sample volume in the x, y and z directions, respectively, is

located 1010 mm (39.8h) downstream of the leading edge of the compliant wall and
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FIGURE 2. Optical set-up for the combined tomographic PIV and MZI system. Reprinted
with permission from Springer.

2910 mm (114.6h) from the entrance of the channel. These length scales allow the
flow to develop to nearly a fully developed state before reaching the sample volume,
consistent with criteria provided by Antonia & Luxton (1971), and in agreement
with measurements performed in the same channel over a rough wall by Hong et al.
(2011). However, the channel is not sufficiently long to reach a ‘fully developed’
state based on the mean velocity measurements of Monty (2005). Furthermore, as
discussed in Dean (1978), Monty (2005) and Hong et al. (2011), the 4 : 1 aspect
ratio of the cross-section is not sufficient for establishing a 2D channel flow free
of side effects. The flow field is illuminated at 6 kHz using a Photonics model
DM60-527 Nd:YLF laser. The beam is expanded into a thick slab, and mirror M1
with back-polished surface, which serves as a beam splitter, directs 99.9 % of the light
to the sample volume. Mirror M3 located under the channel reflects the majority of
the laser energy back to the sample volume to increase the illumination intensity. The
6 kHz images are recorded at a resolution of 1200 × 600 pixel by four high-speed
cameras (pco.dimax) located on both sides of the channel at the same elevation as the
sample volume. Recording images through an air–acrylic interface at large angle of
incidence causes undesired optical distortions, such as astigmatism. The astigmatism is
minimized when the lens axis is perpendicular to the interface, achieved by attaching
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acrylic prisms to the channel wall. The cameras are inclined relative to the lenses by
the Scheimpflug angles to maintain all the sample volume in focus.

The flow is seeded with silver-coated hollow glass spheres. The mean particle
diameter, dp, is 13 µm (d+p = 1.2), and its density, ρp, is 1.6 × 103 kg m−3. The
corresponding particle relaxation time τs = d2

pρp/(18ρν) is 7.6 µs, and the Stokes
number, τs/τν , is 7.2 × 10−2. Thus, except for elevations that are comparable to or
smaller than dp, where the scale of characteristic flow features is of the same order
as the particle diameter, the particles are expected to follow the turbulent channel
flow. The two-step calibration procedure has been performed before reconstructing
3D particle positions. Following procedures described in Scarano (2013), in the
first step, a 2D target plate made from perforated metal sheet is placed inside
the channel and translated in the z-direction over the entire width of the sample
volume (10 mm). Images of this target plate are used to generate a ‘coarse’ mapping
function, for projecting the coordinates in the 3D space to the 2D camera planes. In
the second step, this mapping function is refined by volume self-calibration (Wieneke
2008) using actual particle images. The resulting disparity maps show 0.1 voxel
uncertainty in locating the particle positions (Zhang et al. 2015). Subsequently, the
instantaneous particle intensity distributions in 3D space are reconstructed using the
simultaneous multiplicative algebraic reconstruction technique (SMART, Atkinson &
Soria 2009) for the first five iterations, and then the CSMART algorithms (private
communication with LaVision) for the last two iterations. The reconstructed volume
consists of 1380× 638× 611 voxels, in which a single voxel has a size of 18.8 µm
(1.7δν). The particle displacements are calculated using multi-pass direct volumetric
cross-correlations between two successive frames. The size of the interrogation
volume in the final pass is 483 voxels (0.9053 mm3, 82.3δν). Using a 75 % overlap
between adjacent windows, we obtain 115 × 53 × 51 vectors per realization with
a vector spacing of l = 0.226 mm (l+ = 20.6). This TPIV data analysis procedure
is performed using LaVision DaVis 8.1 software package. In later discussions, the
vorticity components, as well as the velocity gradient tensor are calculated from
the velocity field using second-order central differencing. To identify vortices, the
distributions of λ2 are also computed, which is the intermediate eigenvalue of S2

+Ω2,
where S and Ω are the symmetric and anti-symmetric parts of the velocity gradient
tensor (Jeong & Hussain 1995).

The uncertainty of TPIV has been studied in several previous publications using
different methods. For example, Elsinga et al. (2006) generate synthetic particle
images using the flow field of a vortex ring. They demonstrate displacement
uncertainty of 0.1 and 0.16 voxel for the in-plane and out-of-plane components,
respectively. Worth, Nickels & Swaminathan (2010) generate synthetic particle images
using DNS data of isotropic turbulence. Their mean displacement uncertainty is 0.2
and 0.3 voxel for the in-plane and out-of-plane components, respectively. Atkinson
et al. (2011) compare TPIV and hot-wire anemometry in a turbulent boundary layer.
A large bias error (∼1.5 voxel) occurs in the near-wall region (y+ = 15), where the
velocity gradients are high. Their overall displacement uncertainty is approximately
εu1t= 0.6 voxels, where εu is the velocity uncertainty, and 1t the time delay between
exposures. Following Moffat (1988), εu is estimated from the r.m.s. values of the
fluctuating velocity divergence, 〈(∂u′i/∂xi)

2
〉

1/2
= (3/2)1/2εu/l, where l is the vector

spacing, 〈 〉 represents an ensemble average, ′ indicates fluctuating quantiles and
repeating indices indicates summation. The same approach is utilized in the present
study, resulting in a 0.3 voxel displacement uncertainty, corresponding to a velocity
uncertainty of 0.036 m s−1, or 1.4 % of U0. The uncertainty in ensemble-averaged
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velocity, estimated by dividing εu by the square root of the number of measurements,
is two orders of magnitude smaller.

A brief summary of the GPU-based procedures for using the time-resolved 3D
velocity field to calculate the pressure distribution is provided in appendix B. The
material acceleration is calculated utilizing a Lagrangian method proposed by Liu &
Katz (2006), and expanded in Liu & Katz (2013). However, unlike the previous work
that is based on planar measurements, the present analysis is based on 3D data. The
instantaneous pressure distribution is subsequently calculated by spatially integrating
the material acceleration. The viscous term is neglected since the ratio between the
viscous term and material acceleration is of the order of 10−5 based on the present
TPIV data, in agreement with observations by van Oudheusden et al. (2007) and
Ghaemi et al. (2012), the latter for boundary layers. The integration is performed
by extending the virtual-boundary omni-directional integration method (Liu & Katz
2013) to three dimensions. This pressure calculation algorithm is validated using
DNS results for a channel flow available in the Johns Hopkins Turbulence Databases
(Perlman, Burns & Li 2007; Li et al. 2008; Graham et al. 2016) by comparing the
reconstructed 3D pressure with the known values available from the simulation. The
r.m.s. value of the relative integration error (only) is 0.46 %, a negligible effect in
comparison to that caused by errors in material acceleration. Similar to procedures
used for estimating εu, the uncertainty in material acceleration is estimated from
the r.m.s. value of its curl, ∇ × (Du′i/Dt). Provided that the viscous terms in the
Navier–Stokes equation can be neglected, ∇ × (Du′i/Dt) should be equal to zero.
Assuming isotropy, ε(Du′i/Dt)/l ≈ 〈(∇ × (Du′i/Dt))2〉1/2, where ε represents the
uncertainty. Using the present data, the estimated uncertainty in material acceleration
is 32 m s−2, which is approximately 45 % of the spatially averaged r.m.s. value of
Du′i/Dt. Since the pressure is integrated from its gradient and averaged over multiple
integration directions, the relationship between ε(p) and ε(∇p) can be estimated as
ε(p) ≈ ε(∇p)Nl/(NM)1/2 ≈ ρNl/(NM)1/2ε(Du′i/Dt), where N is the number of grid
points along one integration path and M is the number of integration paths. The
values of N and M depend on the location of the sample point, but vary by 10 %
across the sample volume. Using the current parallel line omni-directional integration
procedure, the spatially averaged values for N and M are 33 and 10 242, respectively.
Substituting these values in the equation for ε(p), the corresponding uncertainty in
instantaneous pressure is 0.7 Pa, which is less than 2 % of the spatially averaged
r.m.s. value of pressure fluctuations. This analysis does not fully account for the
effect of limited spatial resolution very near the wall.

Since the pressure is integrated from its gradient, an undetermined reference
pressure is needed as an integration constant. Following Joshi et al. (2014), we
use the spatially averaged pressure over the entire sample volume, pref (t), for each
instantaneous realization. Hence, the pressure field discussed in the rest of the paper,
p (x, y, z, t), represents the deviation of the pressure at a specific point from the
spatially averaged value. Due to the finite size of the sample volume, p (x, y, z, t)
effectively represents a spatially high-pass filtered pressure, and the resulting spectra
do not account for the time dependence of the spatially averaged pressure. Similar
issues are also encountered when solving the pressure Poisson equation to determine
the pressure, which requires a Dirichlet-type boundary condition for some of the
boundaries. Several recent studies have used the Bernoulli equation for a boundary
located away from the wall (e.g. de Kat & van Oudheusden 2012; Ghaemi & Scarano
2013). For application in boundary layer flow, Ghaemi et al. (2012) examine the effect
of the elevation of the Dirichlet boundary, showing that the calculated wall pressure
does not differ substantially when this boundary is located above 0.2h.
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2.3. Surface deformation measurements
The 2D surface deformation is measured using Mach–Zehnder interferometry (MZI,
Hecht 2002). The optical components are integrated into the TPIV system, as
illustrated in the front view of figure 2. Mirrors M1 and M3, which are located
on top and under the channel, respectively, and are polished on both sides, allow
transmission of 0.1 % of the laser energy through them. The light transmitted through
M1 serves as reference beam, and the light passing through the channel and M3 is
the object beam. As the latter propagating through the transparent compliant surface,
the surface deformation alters the optical path length of the light, affecting its phase
distribution. The fringe patterns generated as the two beams interfere are recorded by
a fifth high-speed camera (pco.dimax) at 3000 f.p.s. using 1584× 1024 pixel arrays.
The fringe spacing, S, is approximately 34 pixels (374 µm or 34δν). A total of 7838
frames have been recorded, corresponding to a duration of 2.6 s (2.5 × 104τν). For
the combined system, the field of view (FOV) is 17.4 × 11.3 mm2 (1611 × 1046δ2

ν )
in the x and z directions, respectively. The size of this sample area is matched
with the corresponding dimensions of the TPIV volume. A sample original fringe
pattern is provided in figure 3(a,b), with the latter zooming on a small area indicated
in figure 3(a) by a dashed rectangular box. In a separate series of experiments,
which involve only deformation measurements and are aimed at observing larger
scale wall surface features, the FOV of MZI system is expanded to 90 × 54 mm2

(8182× 4909δ2
ν ), resulting in a 25 times increase in sample area. The optical set-up

is illustrated in figure 4. Here, the object beam is expanded and collimated by a pair
of concave (L1) and convex (L2) lenses, and then propagates through the channel.
The corresponding image size is increased to 2016 × 1200 pixels and the sampling
rate reduces to 2000 f.p.s. The fringe spacing is approximately 11 pixels (498 µm or
45δν). Total of 5255 frames have been recorded, corresponding to a duration of 2.6 s
(2.5× 104τν).

Details about the data processing procedures, including validations using synthetic
images, are provided in Zhang et al. (2015), and only summarized briefly in this
paper. The surface shape is calculated from the phase distribution of the object
wave. The three analysis steps include: (i) fringe enhancement, (ii) phase evaluation,
and (iii) phase unwrapping. The intensity distribution of the interferogram can be
expressed as

I(x, z, t)=C1(x, z, t)+C2(x, z, t) cos[ϕ0(x, z)+ δ(x, z, t)], (2.1)

where C1 is the sum of the intensities of the object and reference waves, and C2 is
twice the product of the amplitudes of the two waves. The phase of fringes contains
two terms. The first, ϕ0, is presumed to be stationary and accounts for the shape
of the wavefront, including effects of window shapes, unperturbed compliant surface
thickness, distortion by lenses, etc. The second term, δ, is the time-dependent phase
difference between the two waves resulting from changes to the thickness of the wall,
d(x, z, t). It satisfies

δ(x, z, t)=
2π

Λ
(nPDMS − nNal) d(x, z, t), (2.2)

where Λ is the laser wavelength, 527 nm in the present measurements. As is
evident from figure 3(a), the original interferograms are quite noisy due to laser
non-uniformity and distortions. Hence, a series of enhancement procedures have been
developed and implemented to homogenize the fringe amplitude by filtering out
spatial features that are larger or smaller than the fringe spacing. This process results
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FIGURE 3. (a,b) Sample instantaneous image of raw MZI fringe pattern, (c,d) the same
image after correlation-based enhancement, and (e) the corresponding linearly detrended
distribution of deformation, with vertical scales exaggerated. (a,c) Entire field of view.
(b,d) Zooms on the small area indicated by dashed lines. The enclosed area in the zoomed
views shows a correlation mask.

in C1 = 0 and C2 = 1. The enhancement procedure involves two steps. In the first,
the instantaneous intensity in every pixel is normalized based on the maximum and
minimum intensities for that pixel over a time interval of length 1T = 312τν . This
choice for 1T is long enough to obtain converged image statistics, but short enough
to account for temporal variations in, for example, laser intensity. In the second
enhancement step, the iso-phase intensities are homogenized and bandpass filtered by
calculating the spatial autocorrelation of the image in a small interrogation window
centred at the pixel of interest. The resulting autocorrelation map is considered as
a template of the local fringe pattern, which preserves the fringe shape, but loses
the phase information since the autocorrelation always peaks at the centre. The lost
phase is recovered by cross-correlating the autocorrelation with the original image,
which provides the local filtered intensity. The choice of window size for calculating
the (auto- and cross-) correlations has a strong impact on the enhancement error.
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FIGURE 4. Optical set-up for the extended field-of-view MZI system.

To minimize the error, the analysis described in Zhang et al. (2015) shows that in
a direction perpendicular to the iso-phase lines, the window width should span an
integer multiple of the local fringe spacing. This requirement is achieved by utilizing a
mask, which is indicated in figure 3(b,d). The shapes of the left and right boundaries
follow the local fringe iso-phase lines, and their distances are equal to one fringe cycle.
Calibrations using synthetic data also show that the window height should be smaller
than (SR)1/2, where R is the local radius of curvature of the fringes. For the present
fringe spacing, this requirement is achieved by reducing the height of the window
to 20 pixels. To reduce the processing time, instead of performing this analysis for
every pixel, the cross-correlation values from one calculation is used to update a
5 × 5 pixels region located in the centre of the interrogation window. Uncertainty
analysis indicates that the impact of repeating the correlations for every 25 pixels
is negligible. The enhanced interferogram is shown in figure 3(c,d). Evidently, the
background intensity variations are removed, and the fringe intensities are normalized
to the range [−1, 1].

Several techniques are available to extract phase distributions from interferograms.
A widely adopted approach is the so-called ‘Fourier transform’ method (Ichioka &
Inuiya 1972; Takeda, Ina & Kobayashi 1982). Although easy to implement, this
method is prone to errors near the edge of the interferogram due to spectral leakage.
Improved methods aimed at addressing this problem (e.g. Bone, Bachor & Sandeman
1986; Roddier & Roddier 1987) are typically based on extending the image beyond
its original boundary by various extrapolation methods. They reduce the errors near
boundaries, but do not eliminate them completely. Consequently, we opt to use a
different approach which does not involve a Fourier transform. Taking advantage
of the uniform fringe intensity provided by the correlation-based filtering, the phase
distribution can be directly evaluated using an arccosine function. The phase ambiguity
introduced by arccosine can be readily removed if the sign of the actual phase slope
along a certain direction is known by, for example, imposing a slope that is larger
than that at any point in the sample area. In the present setting it is simply achieved
by tilting the reference beam relative to the object beam by a ‘large’ angle (∼0.08◦).
This is the reason that the fringes in figure 3 are aligned approximately in the
spanwise direction. They are also slightly curved, mostly due to the optical distortion
associated with the channel walls.
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The corrected phases are still ‘wrapped’, with values varying between 0 and 2π, and
need to be unwrapped temporally and spatially. Temporal unwrapping is performed on
the intensity time series of a fixed pixel located at the centre of the image using a 1D
unwrapping algorithm (Itoh 1982). It identifies and removes 2π phase discontinuities
along this time series. The resulting phase at this location is used as the starting value
for the spatial unwrapping of each interferogram. The spatial 2D phase unwrapping
is achieved by spatially integrating the phase gradient. This integration should be
path-independent if the wrapped phase map is free from residues. These residues can
be identified by performing the closed-loop integral/summation of the wrapped phase
gradient for every 2 × 2 pixels over the entire image (Ghiglia, Mastin & Romero
1987; Goldstein, Zebker & Werner 1988). For the combined TPIV/MZI data, the
phase map has very small (negligible) residues. Hence, a straightforward integration
is performed to unwrap the phase, first along columns and then across rows. In the
large FOV MZI experiments, the extended FOV reveals local imperfections on the
compliant surface not visible in the previous test. They appear in a few spots as
tightly packed and sometimes discontinuous fringes. Hence, the Goldstein’s algorithm
(Goldstein et al. 1988; Ghiglia & Pritt 1998) is utilized to filter the impact of these
points out for the large FOV dataset. This algorithm first connects nearby residues
of different signs with straight lines, and then generates integration paths that do not
cross those lines.

Time-averaging of the unwrapped phase distributions is used to determine the
stationary term ϕ0(x, z) in (2.1). Its distribution is subtracted from the instantaneous
data, leaving only δ(x, z, t). The surface deformation is then calculated using (2.2).
Figure 3(e) shows the instantaneous deformation calculated from the interferogram
presented in figure 3(c) and normalized with ρu2

τ l0/E′. The deformation is spatially
linearly detrended to remove displacements larger than the current FOV, and highlight
the local spatial variations. Extensive synthetic validations have been performed
using fringes generated from known deformation fields (Zhang et al. 2015). The
effect of background noise has been accounted for by adding a noisy background
extracted from experimental data. The results indicate the fringe spacing, its radius of
curvature, as well as its spatial gradient, |∂S/∂x|, have the strongest impacts on the
errors. Specifically, the error increases for decreasing |SR| and increasing |∂S/∂x|. For
fringes similar to the present experimental data, the r.m.s. value of the measurement
uncertainty determined from these validations is ∼0.01 µm (Zhang et al. 2015).
As discussed later, although the amplitude of the total deformations (∼100 µm)
is much larger than the current uncertainty, the amplitude of the high-pass filtered
deformations which are advected with the flow, is approximately 0.1 µm, only one
order of magnitude larger than the estimated uncertainty.

A sample instantaneous realization of the combined TPIV/MZI data is shown in
figure 5. The bottom wavy contour surface shows the deformation of the compliant
wall high-pass filtered at ωh/U0 = 4.3, where ω is the frequency in radians per
second. As discussed later, this cutoff frequency enables us to focus on advected
phenomena. The amplitude of the surface motion is exaggerated for clarity. The 3D
vectors in the x–y plane represent the velocity fluctuations, and only alternate vectors
are shown in the streamwise direction. The colour contours indicate distribution of
wall-normal velocity. The 3D blob represents iso-surfaces of λ2/(U0/h)2=−6.2, which
indicate the location of vortex structures (Jeong & Hussain 1995). In this sample, the
deformation peak and trough appear to be associated with the wall-normal velocity
and predominantly strong vortices. Classification of these structures is the primary
objective of this paper. A sample instantaneous realization of the large FOV high-pass
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FIGURE 5. A sample instantaneous realization of the flow field and detrended and
high-pass filtered surface deformation. Colour contour in the x–y plane shows the
distribution of v′. The 3D blobs are iso-surfaces of λ2/(U0/h)2 =−6.2. For clarity only
alternate vectors are shown in the streamwise direction.
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FIGURE 6. A sample instantaneous realization of the large field-of-view detrended and
high-pass filtered (at ωh/U0 = 1.6) deformation.

filtered (at ωh/U0 = 1.6) deformation is shown in figure 6. Here, the deformation
pattern appears to be largely aligned in the spanwise direction, with a streamwise
wavelength of approximately 1.9h. The movies indicate that this pattern is advected
at approximately the centreline velocity (see supplementary movie 1 available on
https://doi.org/10.1017/jfm.2017.299). A small circular region located at (x/h = 39.3,
z/h=−0.2) contains a local surface defect on the compliant wall.

3. Results
3.1. Mean velocity and Reynolds stresses profiles

Profiles of the mean velocity and Reynolds stresses are presented in figure 7. The
statistics are calculated from 17 689 velocity fields acquired over a duration of 2.95 s
(2.8× 104τν). The spatially averaged integral time scale τ =∫Ru,u ds, where Ru,u(s) is
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FIGURE 7. (a) The mean velocity profile measured using ‘standard’ TPIV, sum-of-
correlation and single-pixel ensemble correlation. The results are compared with the
log-law profile: U+ = (1/κ) ln y+ + B, (κ = 0.41; B = 5.2) and U+ = y+. (b) Profiles of
Reynolds stresses calculated using the ‘standard’ TPIV data, and r.m.s. values of pressure
fluctuations calculated using omni-directional integration.

the autocorrelation function of the streamwise velocity, is 0.0115 s. As a result, data
acquisition time corresponds to 257τ . The spatially averaged mean velocity profile
(figure 7a) is compared with the log-law profile: U+= (1/κ) ln y++B, where κ = 0.41
and B = 5.2, as well as with U+ = y+ in the viscous sublayer (Pope 2000). The
wall-normal distance is normalized using h, indicated in the bottom axis, and using δν
shown in the top axis. This velocity profile calculated from the ‘standard’ TPIV shows
a clear log-law region, but it is erroneous, as expected, in the buffer layer, where a
vector spacing of l+= 20.6 is too coarse. Two related techniques are utilized to extract
the near-wall velocity. The first one is the sum-of-correlation method (Meinhart,
Wereley & Santiago 2000), which determines the mean velocity at each location
from an ensemble-averaged correlation map for small interrogation windows. To
enhance the particle image concentrations, in the present calculation, the 3D particle
distributions are projected onto 2D images by assigning the maximum intensity
along the spanwise direction to each pixel. The ensemble-averaged distribution
of correlations is calculated for an 8 × 8 pixels interrogation window with 75 %
overlap. An alternative approach is the ‘single-pixel ensemble correlation’ (Westerweel,
Geelhoed & Lindken 2004; Scharnowski, Hain & Kahler 2012; Soria & Willert 2012),
which is equivalent to reducing the interrogation window down to one pixel. These
calculations are also performed using the above-mentioned 2D projected images.
Results of both techniques are also included in figure 7(a). Evidently, they extend
the velocity profile down to the buffer layer, but deviate from the expected linear
velocity profile for y+ <∼ 2. This deviation is not surprising considering that the
particle diameter is approximately 1.2δν .

The Reynolds stresses profiles, 〈u′u′〉/u2
τ , 〈v

′v′〉/u2
τ , 〈w

′w′〉/u2
τ , −〈u

′v′〉/u2
τ , and

prms/ρu2
τ are presented in figure 7(b). The distribution of 〈u′u′〉/u2

τ peaks near the wall,
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considering that the buffer layer is not resolved, followed by a plateau extending to
y/h∼ 0.1(y+ ∼ 230). Both have been observed before in experiments and simulations
(e.g. Hutchins & Marusic 2007a; Mathis, Hutchins & Marusic 2009; Hultmark, Bailey
& Smits 2010; Marusic, Mathis & Hutchins 2010; Mathis, Hutchins & Marusic 2011;
Hultmark 2012; Schultz & Flack 2013; Bernardini, Pirozzoli & Orlandi 2014; Lee
& Moser 2015). The height of the plateau is also consistent with those of Schultz
& Flack (2013) for similar Reτ . By inspecting the energy spectra of the streamwise
velocity at various elevations, Hutchins & Marusic (2007a) associate the plateau with
energy contributed by large-scale log-layer motions. They also demonstrate that these
large-scale structures modulate the amplitude of the near-wall streamwise velocity
fluctuations, a phenomenon relevant to the present investigation. The Reynolds shear
stress −〈u′v′〉/uτ peaks around y/h ∼ 0.12(y+ ∼ 280). As shown in Zhang et al.
(2015), we estimate the wall stress by extrapolating the total shear stress, namely
the sum of the viscous and Reynolds stresses, to the wall. The result is used for
normalizing all the present ensemble-averaged variables, and agrees with the mean
velocity profile (figure 7a). The elevation of the Reynolds stress peak is slightly
higher than those found in Hoyas & Jiménez (2006) and Schultz & Flack (2013) at
similar Reynolds numbers (Reτ = 2000). It is presumably associated with the size of
the TPIV interrogation volume of 82.3δν , which attenuates the small-scale fluctuations
near the wall (Hong et al. 2011; Talapatra & Katz 2013). The values of prms/ρu2

τ

decrease with elevation, consistent with those reported in Tsuji et al. (2007) and
Joshi et al. (2014) for boundary layers at similar Reynolds numbers. DNS results for
channel flow at Reτ = 1020 by Abe, Matsuo & Kawamura (2005) show a similar
trend with elevation, but their magnitudes are lower by approximately 50 %. An
increase in pressure fluctuations with increasing Reynolds number has been observed
experimentally (Tsuji et al. 2007) and in simulated data (Lozano-Durán & Jiménez
2014).

3.2. Spectra of pressure and deformation

The spatial power spectral density (PSD) of pressure, Epp(kx), normalized by τ 2
wν/uτ ,

at two elevations are presented in figure 8. Here, kx = 2π/λx is the streamwise
wavenumber. For the current analysis, we opt to present directly measured spatial
spectra because, as noted before, by setting the spatially averaged instantaneous
pressure to zero, the pressure signal is spatially high-pass filtered. Hence, it is also
expected to attenuate a not readily determined part of the frequency spectrum. The
spectra are calculated using FFT without windowing using all the instantaneous
realizations over the entire spanwise range, and then spatially and ensemble-averaged.
The results are normalized with inner scaling and compared with the measured
PSD of pressure calculated from planar PIV data (Joshi et al. 2014) in the same
facility, but for a developing boundary layer. The axes normalized with outer
scaling are added for comparison, based on the present experimental conditions.
The present results are also compared to the PSD of DNS-based wall pressure data
of Abe et al. (2005) for channel flow. At low wavenumbers, the present results agree
with those of Joshi et al. (2014) for the same elevation. However, they deviate at high
wavenumbers, with the present values being lower, presumably owing to differences in
the dimensionless spatial resolution. In Joshi et al. (2014), the interrogation window
size is 35.8δν versus 82.3δν for the present data. Furthermore, the 75 % overlap
utilized in the TPIV analysis also causes aliasing at high wavenumbers (Foucaut,
Carlier & Stanislas 2004; Schrijer & Scarano 2008). The present PSD is higher
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FIGURE 8. The present power spectral density of pressure compared with previous
experimental and DNS results.

than that of Abe et al. (2005), presumably due to differences in Reynolds number,
consistent with trends shown by them.

The PSD of the deformation, Edd(ω), normalized by h(ρu2
τ l0/E′)2/U0, calculated

from the small FOV data is shown in figure 9(a). The spectrum is calculated for each
surface node for the entire duration of the measurement, and then spatially averaged.
As is evident, the surface motions involve a broad range of time scales, with an
r.m.s. value of 42 µm. Part of the motions are associated with channel vibrations,
whose length scales are presumably much larger than the FOV. Hence, they displace
or tilt the entire FOV. Bi-directional linear detrending of instantaneous realization
filters these motions out, as done for the rest of this paper. The PSD of the detrended
deformation is shown in figure 9(b). The corresponding r.m.s. value is 0.2 µm
(0.02δν). Hence, the present detrended deformations are not expected to have a
significant impact on the flow structure in the boundary layer, resulting in a ‘one-way
coupling’, where the flow affects the wall, but not vice versa. After detrending, the
spectrum has two troughs, at ωh/U0 ∼ 1.6 and ∼4.3. i.e. it can be roughly divided
into three frequency bands: (i) f < 25 Hz or ωh/U0 < 1.6, (ii) 25 Hz< f < 67 Hz and
(iii) f > 67 Hz or ωh/U0 > 4.3, as indicated by two vertical lines. A visual inspection
of the temporally filtered deformation for each of these bands (see supplementary
movies 2–4) indicates that only deformations in the highest frequency band are
dominated by downstream-travelling surface patterns. The dominant motions in the
first and second bands seem to propagate in all directions, and sometimes behave like
standing waves. It should be noted that these waves have much lower amplitude and
they occur at much lower velocity (relative to the ct) than the static-divergence wave
reported in Hansen & Hunston (1974, 1983) and Gad-el-Hak et al. (1984). The PSD
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FIGURE 9. Power spectral density of the normalized deformation (a) before spatial
detrending and (b) after spatial detrending. Reprinted with permission from Springer.

of the detrended deformation for the large FOV is presented in figure 10. The
corresponding r.m.s. value is 0.18 µm, still much smaller than the wall unit, and are
not expected to have a significant effect on the flow structure. The location of trough
at ωh/U0≈ 1.6–1.8 is consistent with that shown in figure 9(b), but ωh/U0= 1.8 also
corresponds to a deformation with wavelength equal to the length of the sample area
(90 mm) travelling at a velocity of 2.5 m s−1, the centreline velocity. The peaks at
ωh/U0 < 1.8 correspond to non-advected phenomena, and do not have a consistent
direction of propagation. In subsequent analysis, most of our attention focuses on the
advected phenomena. The large FOV spectrum does not have a trough at ωh/U0∼ 4.3,
confirming that the dip in figure 9(b) is caused by detrending.

To elucidate the shape of the spectrum for ωh/U0 > 1.8, one can analyse the
response of a compliant layer to pressure perturbations. Chase (1991) introduces a
classical model for the response of a viscoelastic layer under prescribed pressure
and wall shear stress fluctuations. Because of its significance to the present study,
the model is summarized in appendix A. Briefly, this 2D model involves streamwise
and wall-normal small-amplitude deformations in a domain with thickness of l0
unbounded in the x-direction. Using Helmholtz decomposition, the displacement and
stresses of the compliant layer are solved for a viscoelastic material. The material
damping is accounted for by allowing complex longitudinal and shear wave speeds in
the Navier equation. The prescribed pressure, shear as well as fluid loading serve as
boundary conditions. As shown in appendix A, for the present range of frequencies,
wavenumbers, material properties, and magnitude of pressure fluctuations relative
to those of shear stresses (Tsuji et al. 2007, 2012), the impact of pressure on the
shape of the wall is higher by orders of magnitudes than that of shear stresses.
Hence, the present analysis focuses on the effect of pressure. Figure 11 shows the
normalized wavenumber–frequency spectrum of wall deformation predicted by the
Chase (1991) model for sinusoidal pressure excitation with equal amplitude (=ρu2

τ ) at
all wavenumbers and frequencies. Both the frequency and wavenumber are normalized
using two different variables, with those involving l0 and ct being associated with
the model directly, and those involving h and U0 being added in order to relate the
results to the flow conditions. The peak response occurs at kxl0 ≈ 2π/3. At higher
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Measurements
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FIGURE 10. Power spectral density of the large field-of-view detrended deformation. The
lines show predictions of the Chase (1991) model for flat pressure spectra with phase
speeds of 0.72U0 (dash-dot line) and U0 (dashed line), as well as the measured pressure
spectra at y/h= 0.03 for a phase speed of 0.72U0 (thick line).
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FIGURE 11. The amplitude of deformation (normalized by ρu2
τ l0/E′) in response to

pressure perturbation amplitude of ρu2
τ , as predicted by the Chase (1991) model. The

inclined lines correspond to the specified advection speeds. The vertical and horizontal
dotted lines represent kxl0 = 2π/3 and ωl0/ct = 1.45, respectively.
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wavenumbers, i.e. to the right of the vertical dotted line, the surface response peaks
when the pressure phase speed is slightly lower than ct. The latter is highlighted
by the inclined dash-dot line. Evidently, since the present centreline velocity, which
is indicated by a dash line, is much lower than ct, the interactions between the
compliant wall and the flow are substantially weaker than the peak values.

For ωl0/ct < 1.45, the surface response over the entire domain has a broad peak
centred at kxl0 ≈ 2π/3. For the current study, the peak wavelength, 3l0, is equal to
1.89h. Hence, this wavelength is covered by the large FOV, but not by the small FOV,
as highlighted in figure 11. Consequently, the deformation features dominating the
large FOV data (figure 6) have a wavelength of ∼1.9h, which cannot be observed in
the small FOV. The vertically aligned spectral peak at low frequencies (ωl0/ct < 1.45)
indicates that the wavenumber corresponding to the spectral peak is only a function of
l0, and does not depend on the phase speed of the pressure perturbation. Consequently,
within this spectral domain, one can readily tailor the surface response to flow
excitation by varying the compliant layer thickness. This statement is relevant to
cases involving stiff compliant material, where the shear speed is significantly higher
than the flow speed. At low wavenumbers (kxl0 < 2π/3), the surface response is high
at a frequency of ωl0/ct ≈ 1.45, i.e. slightly below π/2, as indicated by a horizontal
dotted line. This frequency corresponds to two roundtrips across the compliant layer
at a phase speed of ct. For the present experimental conditions, advected phenomena
in the relevant frequency range have a very short wavelength. Hence, the present
conditions do not fall in the relevant frequency–wavenumber bandwidth to excite
these modes.

For flow features propagating at the centreline velocity or similar values (U0
and 0.72U0 are shown in figure 11), the intersection of the phase speed with the
wavenumber–frequency spectrum provides a prediction for the frequency spectrum.
This prediction assumes that the amplitude of pressure perturbations does not vary
with frequency. The resulting spectra are presented as the flat Epp lines in figure 10
for pressure excitation with advection speeds of 0.72U0 and U0, and amplitude
of 1.3ρu2

τ . This amplitude is selected to match that of the measured Edd. As is
evident, the shapes of the predicted and measured deformation spectra appear to
agree for frequencies falling in the 1<ωh/U0 < 12 range. The frequency of the peak
response at ωh/U0 ≈ 4, is better predicted when U0 is used as the advection speed.
The analysis can be repeated for frequency- (or wavenumber-)dependent pressure
amplitude using the measured pressure spectrum (figure 8). The result, which is
also presented in figure 10 and labelled as ‘measured Epp’ is based on the pressure
spectrum, including amplitude, at y/h= 0.03 (y+ = 70). This spectrum has a similar
shape as the others, but values are lower, and the peak location agrees with that
corresponding to an advection speed of 0.72U0. It appears that the Chase (1991)
model predicts the response of the present ‘stiff’ compliant wall to advected pressure
excitation. Conversely, below ωh/U0 ≈ 1, the model and measured spectra diverge,
presumably, since this range is dominated by features that are not advected with
the flow, as the deformation movies show (supplementary movie 2). They might be
associated with, for example, resonances or reflected waves associated with the finite
boundaries of the compliant wall.

The measured streamwise wavenumber–frequency spectra of detrended deformation,
Edd(kx,ω), normalized by [h(ρu2

τ l0/E′)]2/U0 for the small and large FOV are presented
in figure 12(a,b), respectively. They are calculated separately for each spanwise
location using FFT in the streamwise and time directions. The resulting spectra are
then spanwise-averaged. The small FOV data, which is presented on linear scales,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

29
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.299


364 C. Zhang, J. Wang, W. Blake and J. Katz

60

90
(a) (b)

30

0

2

5

10

20

50

1–6.6

–6.3

–6.0–6.3

–6.6

–3.6 –4.5
–5.4

–5.7

–5.4

–5.1

–4.8

–6.3

–5.4

–4.5

–3.6

–2.7

30 60 90 2 2 10 20 50 100

FIGURE 12. The measured wavenumber–frequency spectra of detrended deformation,
with contours indicating the values of log10{Edd(kx, ω)U0/[h(ρu2

τ l0/E′)]2}. (a) Small
field-of-view data on linear axes, with an incremental increase between contour lines
of 0.15. (b) Large field-of-view data on logarithmic axes, with an incremental increase
between contour lines of 0.3. The inclined solid and dashed lines represent advection
speeds of 0.72U0 and U0, respectively. The vertical lines in each figure show the
wavenumber of the corresponding field of view.

has two inclined bands representing two advection modes of different speeds, which
are presumably associated with flow structures located at different elevations in the
boundary layer. In subsequent discussions, we refer to them as a ‘slow mode’, with
an advection speed of 0.72U0, and a ‘fast mode’ with speed of U0. The choices of
pressure advection speeds in figure 11 are based on these modes. The fast mode band
extends to higher frequencies and wavenumbers than the slow mode. The simulation
of Kim & Choi (2014) also show a preferred advection speed of 0.72U0, for stiff
compliant surfaces, consistent with the present slow mode, but do not show a fast
mode. At low frequencies, i.e., ωh/U0 < 4.3, the spectral contours are largely aligned
in the horizontal direction, indicating that this range is dominated by non-advected
features with nearly zero phase speed. Such bands have also been observed in the
DNS results of Kim & Choi (2014), which they attribute to resonances of the spring
and damper system that they utilize to model the compliant wall.

The kx-ω spectrum for the large FOV (figure 12b) is presented in logarithmic scale
to highlight the low-frequency/wavenumber range. Here, at low wavenumber/frequency,
the advection band is dominated by the fast mode, which is marked by a white dashed
line. At high frequencies, the peak appears to tilt towards lower phase speeds, which
falls between the fast and slow modes, the latter being marked by a solid white
line. The differences between figure 12(a,b) for overlapping wavenumber ranges, in
particular the lack of a distinct slow mode in the latter, can be attributed to the
scale of the low-pass filtering and detrending. For a given frequency, large scales
are attenuated more than small ones with decreasing filter size. Consequently, the
fast mode is attenuated more than the slow mode in the detrended small FOV data,
making the latter more visible. This effect has been verified by detrending the large
FOV data at the small FOV scales. Results (not shown) confirm that the slow mode
becomes more noticeable. Figure 12(b) also shows that energy corresponding to
the fast mode extends to scales that are larger than the small FOV (kxh < 9.4),
consistent with the visual observations of large-scale deformation features moving at
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FIGURE 13. (a–c) Wavenumber–frequency spectra of pressure at (a) y/h= 0.35, (b) y/h=
0.12 and (c) y/h= 0.05. (d–f ) Pressure–deformation wavenumber–frequency cross-spectra
at (d) y/h = 0.35, (e) y/h = 0.12 and ( f ) y/h = 0.05. The dashed lines, solid
lines and dotted lines correspond to phase speeds of U0, 0.72U0 and the local mean
velocity, respectively. The vertical lines in each figure show the wavenumber of the
corresponding field of view. The grey scales on (a–c) and (d–f ) indicate the values of
log10{Epp(kx, ω)U0/[h(ρu2

τ )]
2
} and log10{Epd(kx, ω)U0/[h2(ρu2

τ )(ρu2
τ l0/E′)]}, respectively.

the centreline velocity (e.g. figure 6). With increasing FOV, the measurements should
cover advected features that have frequencies falling below ωh/U0 ∼ 4.3. Indeed,
figure 12(b) shows that part of the energy at ωh/U0 < 4.3 corresponds to advected
modes at low wavenumbers, where the spectral peak is located, but a substantial
fraction is not. These features cannot be seen in the detrended small FOV surface
shape, leaving only non-advected features at frequencies falling below ωh/U0 ∼ 4.3
(67 Hz), and creating the spectral dip at this frequency in figure 9(b).

In subsequent discussions, we correlate the flow structure and pressure field to the
surface deformation. Considering that for the small FOV experiment, which provides
the relevant data, frequencies corresponding to ωh/U0 < 4.3 do not contain advected
modes. In the analysis that follows, the pressure and deformation are high-pass filtered
at ωh/U0=4.3. Intuitively, correlating the flow with the surface shape has to start with
the pressure field. Hence, the pressure kx − ω spectra, Epp(kx, ω) at three elevations,
namely y/h= 0.35, 0.12 and 0.05, are presented in figure 13(a–c), respectively. They
are calculated separately for each spanwise location, and then spatially averaged.
The corresponding pressure–deformation cross kx − ω spectra, Epd(kx, ω), aimed at
identifying pressure modes that affect the deformation, are presented in figure 13(d–f ).
They show the amplitude of the Fourier transform of the cross-correlation between
deformation and pressure at the specified elevation. Each plot shows the centreline
velocity (or the fast mode) as a dashed line, the slow mode, 0.72U0, as a solid line,
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and the local mean velocity as a dotted line. All the pressure spectra show elevated
energy at low wavenumber over a broad frequency range. This artefact is a direct
result of setting the spatially averaged pressure over the entire sample volume to
zero in the present analysis. In reality, this unavailable reference pressure varies in
time, and zeroing it introduces a low wavenumber jitter. To partially resolve this
problem, Ghaemi & Scarano (2013) use the Bernoulli equation to obtain a boundary
condition away from the wall. Using this approach to estimate the reference pressure
(e.g. on the upper surface) or frequency low-pass filtering of the signal decreases
the magnitude of this band (not shown). This band has no significant effect on the
present analysis, and we opt not to manipulate the signals further. At all elevations, the
pressure spectra contain clear advection bands at speeds that decrease with elevation,
and do not differ substantially from the corresponding mean velocity. This advection
band is not as distinct at the lowest elevation (figure 13c), but is still evident. The
pressure–deformation cross-spectra in figures 13(d–f ) also show clear advection bands
at all elevations, with a phase speed that decreases with elevation. For the pressure at
y/h= 0.12 and 0.05, the phase speeds do not differ significantly from the slow mode
or the local mean velocity. As for the pressure at y/h= 0.35, the advection band is
largely concentrated in the low-frequency/wavenumber range, and the advection speed
appears to span between the slow mode and the local mean velocity. With increasing
frequency, the band tilts more towards the local mean velocity. A comparison between
figures 13(a) and 13(d) suggests that the compliant wall is preferentially affected by
the large-scale pressure features. With decreasing distance from the wall, the range
of scales affecting the wall deformation expands. Assuming that the strength of
eddies increases with their size, but their influences decrease with distance from their
centre (the latter being clearly true for vortices), the expanding influence band with
decreasing distance from the wall should be expected. These findings are consistent
with findings of previous wall pressure fluctuations claiming that the observed scale
dependence of the advection speeds is associated with the location of eddies in the
boundary layer, with the smaller ones being preferentially located closer to the wall
(e.g. Willmarth & Wooldridge 1962; Bull 1967; Blake 1970; Wills 1970; Dinkelacker
et al. 1977; Choi & Moin 1990; Jeon et al. 1999; Ghaemi & Scarano 2013; Salze
et al. 2015).

3.3. Conditional correlations between deformation and flow variables
This section examines the relations between deformation and flow structure based on
spatial correlations between the surface shape and flow variables (pressure, velocity,
vorticity, etc.), as well as between pressure and other flow variables. The spatial
conditional correlation between two functions, f (x, y, z, t) and g(x, y, z, t), is defined
as

Rf ,g(1x, 1y, 1z)|f>σf

=
〈 f (x0, y0, z0, t)g(x0 +1x, y0 +1y, z0 +1z, t)〉| f (x0, y0, z0, t) > σf

σf (x0, y0, z0)σg(x0 +1x, y0 +1y, z0 +1z)
(3.1)

the parameters involved are specified in the subscript, σf and σg are the r.m.s.
values of f and g. In all cases, the correlations are calculated based on fluctuating
components of each variable, but there is no need to subtract mean values for pressure
and deformation because both are high-pass filtered. To highlight phenomena, in many
of the correlations, we impose a condition of, for example, a deformation larger or
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FIGURE 14. Conditional correlations between the detrended and high-pass filtered (at
ωh/U0 = 4.3) deformation at (0, 0) and pressure, based on (a,b) strong positive
deformation (d> σd) and (c,d) strong negative deformation (d<−σd). The y–z planes in
(b,d) correspond to 1x/h= 0.1, which is marked by dashed lines in (a,c). The position
of peak value is indicated by a +.

smaller than its r.m.s. value, i.e. d(x0, y0, z0) > σd or d(x0, y0, z0) <−σd, respectively.
The condition is indicated in the definition of the variable. In such cases, the r.m.s.
values of f and g are still calculated from the original un-conditioned data. In
correlations that do not involve any conditions, Rf ,g is used instead.

Distributions of deformation–pressure conditional correlations based on large
positive (d > σd) event, Rd,p|d>σd, for the (1x,1y, 1z = 0) and (1x = 0.1h, 1y, 1z)
planes are presented in figure 14(a,b), respectively. Results conditioned on d < −σd
events, Rd,p|d<−σd, are shown in figure 14(c,d), respectively. In all cases, the
correlations are calculated for all surface points and then spatially averaged. As
is evident, for positive deformation (bump), the negative correlation peak is located at
1x/h ≈ 0.1 and 1y/h ≈ 0.12, i.e. the deformation lags behind the negative pressure
influencing it most by ∼0.1h in the streamwise direction. A second positive correlation
peak with lower magnitude is located upstream, representing a high-pressure region.
The streamwise separation between the positive and negative correlation peaks is
approximately 0.25h, suggesting that the length scale of the pressure field relevant to
the deformation is approximately 0.5h. The mean velocity at 1y/h = 0.12, 0.77U0,
is close to that of the deformation phase speed of the slow mode, 0.72U0. It appears
that structures affecting the wall deformation are located in the log-layer, at nearly
the same elevation of the Reynolds shear stress peak (figure 7b), and slightly above
the plateau in streamwise velocity fluctuations. The resolution of present velocity
and pressure measurements is too coarse for probing the buffer layer. However, the
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FIGURE 15. The loss tangent of PDMS based on the current measurement and several
other sources.

resolution of deformation measurements is sufficient for identifying structures as
small as 0.015h. Yet, the wavenumber–frequency spectra of deformations (figure 12a)
indicate that they are dominated by phenomena having characteristic length scale
larger than 0.13h(290δν). Eddies with such scales are likely to reside in the log
and/or outer layer, and are less likely to be located in the buffer layer. The y–z
distribution of correlation in figure 14(b) is presented in a plane (1x = 0.1h) that
coincides with the streamwise peak in figure 14(a). The y–z correlation peak is
located at the same elevation as that in the perpendicular plane and centred around
1z=0. The distributions corresponding to negative deformation (figure 14c,d) appear
to be quite similar to those associated with positive deformation, with the same
streamwise offsets. However, since d <−σd, a negative correlation indicates positive
pressure. Furthermore, the elevation of the correlation peak is slightly higher, which
is located at 1y/h≈ 0.14.

The next discussion is aimed at explaining the streamwise offset between pressure
and deformation. It involves both the effect of damping by the compliant wall,
as well as the structure of the pressure field in the boundary layer. Starting with
the damping effect, one can use the Chase (1991) model to estimate phase lag. It
requires knowledge of the viscoelastic properties of the compliant material, which are
characterized by using complex moduli, i.e., E′ + iE′′, (e.g. Fung 1965; Ferry 1970),
with E′ being the storage modulus, and E′′ the loss modulus. The key parameter is the
frequency-dependent loss tangent, ζ = E′′/E′. As shown in figure 15, the loss tangent
of the PDMS utilized in the present study has only been measured in a low-frequency
range (0.1–12 Hz), using the only instrument available to us. Data from several other
sources (Fitzgerald & Fitzgerald 1998; Conte & Jardret 2002; Kulik et al. 2009;
Du et al. 2013; Rubino & Loppolo 2016) are compiled in the same plot in order
to extend the frequency to conditions that are relevant for the present study. The
shaded area in figure 15 covers the range of results of a series of measurements
performed by Kulik et al. (2009) for samples of various sizes. It appears that various
results collapse below 10 Hz, but are scattered over a broad range above 67 Hz.
To estimate the damping-induced phase lag, we start with ζ = 0.3, but repeat the
calculation for other values as well. The streamwise offset between wall pressure and
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FIGURE 16. The streamwise offset between deformation and pressure correlation peak
predicted by the Chase (1991) model: (a) values of 1xζ/λ for pressure perturbations with
the specified wavelengths and advection speeds, and (b) values of 1xζ/h as functions of
wavenumber and frequency for ζ = 0.3.

surface deformation based on the Chase (1991) model, 1xζ , is shown in figure 16.
Figure 16(a) demonstrates the effect of ζ for pressure waves with wavelengths of
λ/h = 0.5, 1.0 and 2.0h and advection speeds of 0.72U0 (lines) and U0 (symbols).
As is evident, the values 1xζ/λ nearly collapse for the relevant range of phase
speeds, i.e. 1xζ/λ is only weakly dependent on the frequency. The magnitude of
1xζ/λ increases with increasing ζ , an expected trend because the associated increase
in relaxation time (Ferry 1970). The weak effect of frequency is demonstrated in
figure 16(b), which shows the distribution of 1xζ/h for a fixed loss tangent of 0.3.
Clearly, the contour lines are nearly vertical for the relevant range, indicating that
varying the phase speed while keeping the wavelength constant has little effect on
1xζ . Based on figure 14, choosing λ = 0.5h, the model predicts a spatial offset of
0.024h, roughly 24 % of the observed value. Using higher (but reasonable) values
for ζ , for example, ζ = 0.4, would increase 1xζ to 0.03h, i.e. it still explains only
a fraction of the measured offset. The rest must be related to the structure of the
pressure field in the boundary layer.

The structure of the pressure field in the channel flow can be inferred from two-
point correlation of pressure, Rp,p, which is plotted in figure 17 for a reference point
located at y0/h= 0.12. Consistent with many previous results (e.g. Kim 1989; Tsuji
et al. 2007; Ghaemi & Scarano 2013; Joshi et al. 2014), the correlation contours are
inclined at a rather large angle relative to the mean flow. Using the locus of points
along which the correlation value has the slowest decay (white line), the estimated
inclination angle around y0/h= 0.12 is 68◦. A linear extrapolation of this line to y= 0
suggests that the wall pressure lags by 0.048h behind the field pressure at y0/h= 0.12.
A more accurate approach involves calculation of the distribution of pressure phase in
the wavenumber–frequency cross-spectra of pressure at two different elevations,

Cp,p(kx, ω; y) =
[∫

p(x, y, z0, t)e−ikxxe−iωt dx dt
]∗

×

[∫
p(x, y0 = 0.12h, z0, t)e−ikxxe−iωt dx dt

]
. (3.2)

Here, ∗ denotes complex conjugate. The magnitude of the complex Cp,p quantifies
the level of correlation between the two signals. Its argument is the phase difference,
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FIGURE 17. Distribution of two-point correlation of pressure (Rp,p) for a reference point
located at (0, 0.12h, 0).

1Φ(y) = Φ0.12h − Φ, between pressure at y0/h = 0.12 and other elevations, as a
function of kx, ω and y. Taking into account the fact that different modes are
not equally correlated, the characteristic streamwise offset is estimated from the
|Cp,p|-weighted average of 1Φ/kx over the entire spectrum. The procedure is
performed separately for each spanwise location and then averaged. The resulting
profile of 1xp,p = 1Φ/kx is presented in figure 18. Evidently, the wall pressure
lags by 0.077h behind the pressure at y/h = 0.12. This value is higher than the
result obtained from extrapolating the two-point correlations, because the magnitude
of Rp,p is dominated by local events, where the correlations are high. Hence, it is
biased towards small-scale structures. Conversely, the spectral-based weighted-average
value of 1xp,p favours highly correlated events across two elevations, namely
large-scale structures as the distribution of |Cp,p| demonstrates (not shown). This
bias is consistent with the scales dominating the pressure–deformation cross-spectrum
shown in figure 13(e), justifying the use of the spectral-based 1xp,p to estimate
the streamwise offset. Figure 19 compares the measured streamwise offset (grey
horizontal line) to the distribution of 1xζ (for ζ = 0.3) and to the combined effect
of material damping and structure of the pressure field, i.e. 1xζ + 1xp,p. The latter
is provided for two values of ζ to show that its value does not have a significant
effect on the conclusions. As is evident, the combined effect agrees with the observed
lag for the relevant frequency range 4.3 < ωh/U0 < 40, shown in figure 13(e). The
phase lag between pressure and deformation appears to be caused in part (∼24 %) by
material damping, but for the most part by hydrodynamic phase lag between pressure
in the log-layer, where the correlation peaks, and the wall pressure.

Correlations between surface deformation and flow velocity and/or vorticity
distributions have been used in efforts aimed at identifying coherent flow structures
associated with the wall shape. Here again, trends associated with large positive (d>
σd) and large negative (d<−σd) deformations are displayed and discussed separately.
The conditional correlations between wall deformation and three components of
the velocity in selected planes are presented in figures 20 and 21. In these plots,
the deformation is high-pass filtered at ωh/U0 = 4.3, but the velocity is not, to
account for effects of structures larger than FOV (further discussion follows). The
analysis is performed for all planes and then spatially averaged. In addition to
correlations, figures 20 and 21 also show the conditionally averaged projection
of streamlines onto the x–y and y–z planes, respectively, calculated from the
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FIGURE 18. Profile of the average streamwise offset between the pressure at y0/h =
0.12 and that at other elevations. The values are calculated from the amplitude-weighted
argument of pressure–pressure cross-spectrum.
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FIGURE 19. A comparison of the measured streamwise offset of the deformation–pressure
correlation peak to that caused by damping only, and the combined effects of
hydrodynamic phase lag and material damping. The latter is provided for two values of
loss tangent.

corresponding velocity components. The y–z planes in figure 21 are presented at two
streamwise locations, 1x/h= 0, where the deformation is measured, and 1x/h= 0.1,
which is selected based on the peak of deformation–pressure correlations. In general,
all the correlations associated with dimples are higher than those corresponding to
bumps. Out of the velocity components, v′ has the strongest correlation with the wall
shape, followed by u′ and w′. For positive deformations, the streamlines and signs of
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FIGURE 20. Conditional deformation–velocity correlations at (1x,1y,1z=0) for positive
(a,c) and negative (b,d) deformations: (a) Rd,u|d>σd, (b) Rd,u|d<−σd, (c) Rd,v|d>σd and
(d) Rd,v|d<−σd. The streamlines show the corresponding conditionally averaged flow fields.

correlations in figure 20(a,c) appear like a swirling flow with preferentially negative
ω′z centred at 1x/h≈ 0.1 and 1y/h≈ 0.11, very close to the peak of Rd,p|d>σd in
figure 14(a). Above the deformation, where the correlation values are high, there
is a steep ejection-like flow (Q2, with u′ < 0 and v′ > 0). In the correlation maps
involving spanwise velocity (figure 21a,c) the magnitudes are quite low. Based on
the streamlines in figure 21(a), and the signs of Rd,v|d>σd in figure 20(c), the flow
direction above the deformation peak (1x/h = 0) is consistent with ‘anti-splatting’,
i.e. a flow converging from both spanwise directions and turning upward. Although
the signs of Rd,w|d>σd at 1x/h = 0 and 1x/h = 0.1 are similar, the vertical velocity
at the latter is nearly zero.

For negative deformations, both the streamlines and distribution of correlation
in figure 20(b,d) show a sweeping flow (Q4, with u′ > 0 and v′ < 0) above the
deformation, and a transition between an upstream sweeping flow and a downstream
ejection at 1x/h≈ 0.1. The zero-crossing of Rd,v|d<−σd at 1x/h≈ 0.1 coincides with
the streamwise plane of maximum deformation–pressure correlation. The y–z plane
distribution of Rd,w|d<−σd and streamlines at 1x/h = 0 (figure 21b) show a splatting
flow impinging on the surface and turning outward in the spanwise direction. As
shown in figure 22, the magnitude of the Rd,u|d>σd and Rd,u|d<−σd peaks increase
significantly if the conditional correlations are calculated based on high-pass filtered
velocity at ωh/U0 = 4.3, similar to what is done for the deformation. The same
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FIGURE 21. Conditional deformation–spanwise velocity correlations for positive (Rd,w|d>σd,
a,c) and negative (Rd,w|d<−σd, b,d) deformations: (a,b) 1x=0, bottom row; (c,d) 1x=0.1h.
The streamlines show the corresponding conditionally averaged flow fields.

increase occurs for correlations involving the other velocity components (not shown).
For d>σd, the dominant phenomenon in the region of peak correlation and above the
deformation is an ejection. For d<−σd, the flow direction reverses to a sweep over
the same area. Apart from the higher correlation magnitudes, the only appreciable
effect of filtering in the spatial distributions is a shift of Rd,u|d>σd slightly upstream
and away from the wall.

Given the connections established between deformation and pressure as well as
between deformation and velocity, the ‘loop’ is closed by showing the distributions
of conditional pressure–velocity (unfiltered) correlation in figure 23. They are based
on the pressure measured at y0/h = 0.12, where 1x = 1y = 0, and we follow
the same procedures described for the deformation–velocity correlations, including
spatial averaging over all planes, and calculation of the projection of conditionally
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FIGURE 22. Distributions of conditional deformation–streamwise velocity correlations for
high-pass filtered velocity at ωh/U0 = 4.3: (a) Rd,u|d>σd and (b) Rd,u|d<−σd.

averaged streamlines. This elevation is selected in view of the deformation–pressure
correlations. To facilitate comparisons with figure 20, panels (a,c) show results for
p<−σp, and panels (b,d) correspond to p>σp. The wall-normal velocity component
has the strongest correlation with pressure, in agreement with trends reported in Joshi
et al. (2014), and consistent with trends of the deformation–velocity correlations.
Although the shapes of streamlines differ, in part due to the elevation of the pressure
conditioning point, the main flow feature in figure 23 for p < −σp (distributions of
Rp,u|p<−σp and Rp,v|p<−σp and corresponding streamlines) is a large-scale swirl, similar
to that observed for d>σd in figure 20, with the streamwise shift noted. In the same
manner, the primary phenomenon for p > σp is a saddle point with the flow above
it resembling a sweep-ejection transition, consistent with the trends observed for
d <−σd. It should be noted that formation of a pressure maximum at the sweep to
ejection transition has been observed in several prior studies, e.g. Kim (1983, 1989),
Kobashi & Ichijo (1986), Ghaemi & Scarano (2013), Joshi et al. (2014), and Naka
et al. (2015).

There are a few more notable trends. First, for all velocity components, the
correlation peaks associated with p > σp are higher than those of p < −σp, also
in agreement with corresponding deformation–velocity correlations. Second, the
magnitude of the Rp,u|p<−σp (figure 23a) peak is stronger under the ‘vortex’ than that
above it, presumably since the horizontal velocity in regions located close to the wall
is constructively influenced by the ‘image vortex’ on the other side of the surface.
Third, the distribution of Rp,w|p<−σp (figure 23e) depicts an anti-splatting flow, but
the magnitudes are low, and that of Rp,w|p>σp (figure 23f ) appears like a splatting
flow, with correlation magnitudes that are twice as high. The main difference between
deformation–velocity and pressure–velocity correlations is the height of the peak. In
the deformation–velocity correlations (figure 20), the centre of the swirl for d > σd

is located at 1y/h ∼ 0.11, whereas the swirl centre for p < −σp and the saddle
point at the centre of the p > σp plot shift upward with the pressure conditioning
point. For example, figure 24 provides the pressure–wall-normal velocity correlation
and conditionally sampled streamlines for pressure measured at y/h = 0.2, showing
similar flow features shifted to a higher elevation, and an increasing distance between
positive and negative correlation peaks. The latter trend is expected due to increase in
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FIGURE 23. The pressure–velocity conditional correlations, based on the pressure at
y = 0.12h: (a) Rp,u|p<−σp, (b) Rp,u|p>σp, (c) Rp,v|p<−σp, (d) Rp,v|p>σp, (e) Rp,w|p<−σp and
( f ) Rp,w|p>σp. In (a–d) 1z= 0 and in (e, f ) 1x= 0.

the size of characteristic eddies with distance from the wall (Townsend 1976; Perry
& Chong 1982).

The conditional correlations between deformation and vorticity components have
been calculated in order to further characterize flow structures associated with the
deformation. Figure 25(a,b) show the deformation–spanwise vorticity correlations
conditioned on d > σd(Rd,ωz′ |d>σd) and d < −σd(Rd,ωz′ |d<−σd), respectively. The peak
of Rd,ωz′ |d>σd is located at 1x/h ≈ 0.1 and 1y/h ≈ 0.1, very close to the centre
of the spiral streamlines in figure 20(a,c) and the pressure–deformation correlation
peak (figure 14a). It is characterized by negative correlation values, suggesting that
the bump is located preferentially behind/upstream of a region of negative spanwise
vorticity fluctuation. To determine whether this vorticity is indeed associated with
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FIGURE 24. Distributions of pressure–wall-normal velocity conditional correlations on the
1z=0 plane, based on the pressure at (0,0.2h,0): (a) Rp,v|p<−σp; (b) Rp,v|p>σp. Streamlines
show the corresponding conditionally averaged flow field.
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FIGURE 25. (a,b) Conditional deformation–spanwise vorticity correlations and (c,d) corre-
sponding deformation-λ2 correlations: (a) Rd,ωz′ |d>σd, (b) Rd,ωz′ |d<−σd, (c) Rd,λ2|d>σd and (d)
Rd,λ2|d<−σd.

vortices, we also calculate the distribution of the conditional correlation between
deformation and λ2, which is a popular method for identifying vortices introduced
by Jeong & Hussain (1995). Results for d > σd, presented in figure 25(c), show
that 1x/h ≈ 0.1 is characterized by negative values of λ2, confirming the preferred
presence of a vortex. Distributions of Rd,ωz′ |d>σd in an x–z plane for 1y/h = 0.1
(figure 26a) indicate the correlation peaks near 1z= 0, but it has a broad spanwise
extent. Hence, the ejection regions above bumps are preferentially associated with
negative spanwise vortices located downstream of the positive deformation. For
negative deformations, figure 25(b) shows a region of preferentially positive ω′z, also
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FIGURE 26. Conditional deformation–spanwise vorticity correlations in an x–z plane
located at 1y/h= 0.1: (a) Rd,ωz′ |d>σd; (b) Rd,ωz′ |d<−σd.
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FIGURE 27. Conditional deformation–streamwise vorticity correlations in an x–z plane
located at 1y/h= 0.08: (a) Rd,ωx′ |d>σd; (b) Rd,ωx′ |d<−σd.

at 1x/h ≈ 0.1 and 1y/h ≈ 0.1. However, the corresponding values of Rd,λ2|d<−σd
at 1x/h ∼ 0.1, which are presented in figure 25(d), are negative. Hence, λ2 is
preferentially positive, i.e. the dimples are not associated with the presence of vortices,
consistent with the shape of streamlines presented (figure 20). This observation
indicates that the ω′z > 0 region at the sweep-ejection transition around 1x/h = 0.1
is associated with low vorticity magnitude. It is presumably caused by a decrease
in near-wall velocity gradients as the flow is slowing down under the influence of
adverse pressure gradients, culminating with separation/ejection. The spanwise extent
of this low-velocity-gradient region is broad, as demonstrated by the x–z distribution
of Rd,ωz′ |d<−σd presented in figure 26(b).

The conditional correlations between deformation and streamwise vorticity based
on large positive (Rd,ωx′ |d>σd) and negative (Rd,ωx′ |d<−σd) deformations are shown
in figure 27(a,b), respectively. Results are presented in an x–z plane located
at 1y/h = 0.08, which is the elevation where the correlation magnitudes peak.
Distributions in other nearby elevations have similar shapes (not shown). In both
cases, correlation extrema with low magnitudes are preferentially located in a different
spanwise plane relative to the deformation conditioning point. The two correlation
peaks with opposite signs at −0.1<1x/h<0.1 in figure 27(a) indicate that bumps are
preferentially developed in regions where the streamwise-vortex-induced wall-normal
velocity is positive (ejections). Further downstream, at 1x/h > 0.1, the correlation
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FIGURE 28. (a–c) Results of analysis conditioned on d(0, 0) > σd and
ω′x(0, 0.08h, 0.05h) > 0: (a) d–ω′x correlation in the 1z/h = 0.05 plane; (b) d–ω′z
correlation at 1z/h= 0; (c) iso-surfaces of ω′xh/U0=−0.17, = 0.25 and ω′zh/U0=−0.20,
along with the corresponding vortex lines; and (d) pressure–spanwise vorticity correlation
conditioned on p<−σp (at y= 0.12h, as indicated by a +) in the 1z= 0 plane.

extrema have opposite signs, consistent with a sweeping motion. As demonstrated
later, and consistent with the spanwise vortex at 1x/h ∼ 0.1 (figures 25a and 26a),
the bumps preferentially form under and upstream of the head of a hairpin vortex.

This relationship between ω′x, ω
′

z, and positive deformation is further investigated
by calculating the deformation–vorticity correlations, conditioned on both d(0, 0)>σd,
and ω′x(0, 0.08h, 0.05h) > 0. Results for d–ω′x correlation in the 1z/h= 0.05 plane is
presented in figure 28(a), and that for d–ω′z in the 1z/h = 0 plane in figure 28(b).
The vertical coordinates are expressed both in terms of 1y/h and y/h. The fact that
the d–ω′x correlation peaks at the conditioning point is not meaningful because the
positive values are imposed. However, figure 28(a) also shows an inclined layer of
elevated correlations extending from both sides of the peak having the familiar angle
of 15◦–20◦ (exact value depends on the criterion used) with the horizontal direction.
The same angle has been seen for Ru,u in many studies (e.g. Kim 1989; Liu, Adrian
& Hanratiy 2001; Hutchins & Marusic 2007b; Wu & Christensen 2010; Ghaemi &
Scarano 2013; Sillero, Jiménez & Moser 2014), and have been attributed to hairpin
vortices (Adrian, Meinhart & Tomkins 2000). Furthermore, figure 28(b) shows a
region of high correlation with negative spanwise vorticity downstream, above and
spanwise offset from the ω′x conditioning point. The elevation of this peak, y/h= 0.13,
falls within the broad minimum in figure 25(a) (both are conditioned on d>σd), but
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adding the offset ω′x constraint increases the d–ω′z correlation peak magnitude by
∼100 %. Hence, the elevated d–ω′x correlation appears to be a leg of a hairpin vortex,
and the d–ω′z correlation peak is the head of this vortex. Additional confirmation
can be obtained by plotting the conditionally averaged flow field under the same
conditions. Figure 28(c) shows iso-surfaces of ω′xh/U0 =−0.17 and 0.25, as well as
ω′zh/U0=−0.2 in different colours (overbar indicates conditionally averaged variable).
It confirms the preferred presence of an inclined quasi-streamwise vortex as well as
a counter-rotating (negative) vortex on the other side of the deformation, located at
a distance of 1z= 0.15h(1z+ = 350) from the conditioning point. It also shows the
region with high ω′zh/U0 at the head of the hairpin. Finally, figure 28(c) also shows
several conditionally averaged vortex lines originating from the vicinity of the vorticity
conditioning point, passing through the hairpin head, and turning back into the other
leg. Clearly, the positive deformation is located upstream of a negative spanwise vortex
and flanked by streamwise vortices of opposite signs, consistent with the features of a
hairpin-like structure. If the analysis is repeated by imposing ω′x(0, 0.08h,−0.05h)< 0,
the 3D depiction appears to be quite similar (not shown) except for a swap in the
size of the iso-surfaces of ω′xh/U0, corresponding to the location of the conditioning
point. The picture becomes complete by plotting the distribution of pressure–spanwise
vorticity correlation, conditioned on p(0, 0.12h, 0) < −σp in figure 28(d). It shows
that the pressure minimum is located in the same streamwise plane but slightly below
the negative spanwise vorticity peak, and falls within the broad deformation–pressure
correlation peak in figure 14(a). Hence, the pressure minimum preferentially causing
the bump upstream of the hairpin head is located slightly below the point of peak
spanwise vorticity. Such a vertical offset between the locations of pressure and
spanwise vorticity minima in a hairpin structure is consistent with trends reported by
Ghaemi & Scarano (2013). Their measurements focus on the y+ < 149 region, and
show a distance of 1z+ ≈ 80 between the hairpin legs, and the present observations
extend to higher elevation with the corresponding larger distance between legs.

For negative deformations, we have already established that there is no spanwise
vortex in front of dimples in the vicinity of the d–ω′z correlation peak (figure 25b,d).
The pressure maximum causing this dimple is preferentially associated with a
transition between sweep and ejection (figure 23b,d). The positive spanwise vorticity
fluctuation ahead of the dimple is located in the ejection region, where the averaged
vorticity is lower than the mean (negative) value. As illustrated in numerous papers,
for example, Kim (1983, 1989), Kobashi & Ichijo (1986), Chang, Piomelli & Blake
(1999), Ghaemi & Scarano (2013), Joshi et al. (2014) and Naka et al. (2015),
an inclined shear layer forms at the interface between an upstream sweep to a
downstream ejection. The vicinity of the origin of this layer is shown in figures 20(b)
and 23(b), and a more extended view is evident from the conditionally average
pressure distribution and streamlines presented in figure 29 for p(0, 0.02h, 0) > σp.
Inclination of this shear layer might be contributing to the (hydrodynamically induced)
streamwise phase lag between dimples and the positive pressure fluctuations at
y/h> 0.12, the location of peak correlation (figure 14c,d). In addition, the correlation
peaks at −0.1 < 1x/h < 0.1 in figure 27(b) indicate that dimples preferentially
form in regions with streamwise-vortex-induced downward sweeping flows. Such a
phenomenon is not necessarily associated with sweep-ejection transition. However, as
figure 27(b) shows, the deformation–streamwise vorticity correlation sign changes at
1x/h> 0.1. Such a change might occur, for example, at a sweep-ejection transition,
where the direction of velocity fluctuation changes abruptly.
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FIGURE 29. The conditionally averaged pressure distribution and streamlines, based on
p(0, 0.02h, 0) > σp.

4. Summary and concluding remarks

The effect of a turbulent channel flow on deformation of a compliant wall is
investigated experimentally using simultaneous time-resolved TPIV to measure the
3D flow and MZI to map the distribution of surface deformation. As summarized
in appendix B, the TPIV data is used for determining the pressure distributions by
calculating the spatial distribution of material acceleration and integrating it spatially.
In a separate experiment MZI alone is used for mapping the wall shape for a larger
FOV. The present PDMS wall could be characterized as ‘stiff’ because its shear
speed (17 m s−1) is much higher than the channel centreline velocity (2.5 m s−1).
Hence, after detrending and filtering out the channel vibrations, the amplitudes of
wall deformations are much smaller than the wall unit, resulting in one-way coupling
between the flow and the wall. Accordingly, the profiles of mean velocity and
Reynolds stresses are consistent with those of typical turbulent channel flows.

The surface dynamics consist of several components. The low-frequency (ωh/U0 <

1.6) part does not appear to travel with the flow. At higher frequencies, two
deformation advection speeds are prevalent. The ‘fast’ mode travels at U0, and
has a characteristic length scale of approximately 1.9h. This mode is larger than
the FOV of the combined TPIV/MZI experiment, and is only captured by the
MZI measurements with a large FOV. Based on the Chase (1991) model, which
is described in appendix A, a stiff compliant wall is most sensitive to pressure
perturbations with a wavelength of approximately three times the coating thickness.
In the present study, this length scale happens to corresponds to ∼1.9h, consistent
with measured wavelength of the fast mode. Hence, one could tune the compliant
surface response and match it with desired flow features by varying its thickness.
For the present conditions, the advected response of the wall to boundary layer
turbulent structures occurs at a ‘slow’ mode, which travels at 0.72U0 based on the
slope of the wavenumber–frequency spectra, and has a length scale approximately
0.5h. The spatial conditional correlations between deformation and pressure peak at
y/h∼0.12 (y+∼280) for bumps and ∼0.14 for dimples, where the mean flow velocity
(∼0.77U0) is only slightly higher than the speed of the slow mode. Hence, turbulent
structures at this elevation, which are located in the log-layer, and correspond to the
peak in Reynolds shear stress and the end of the plateau in the streamwise velocity
fluctuations, have dominant effects on the wall deformation. The 〈u′u′〉/uτ plateau
has been attributed to large-scale motions in the outer part of the boundary layer
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FIGURE 30. Conceptual models for the relationships between coherent flow structure and
wall deformation: (a) a bump formed between the legs of a hair pin vortex; (b) a dimple
forming at the transition between a sweep and an ejection; and (c) negative deformations
on the sweeping side of streamwise vortices.

(Marusic et al. 2010; Hultmark 2012). However, the pressure–deformation cross-
spectra show that the surface response to turbulent pressure fluctuations is broad, and
the range of scales involved expands to higher wavenumbers with decreasing distance
from the wall.

The spatial correlation peak shows a streamwise phase lag between deformation and
pressure at y/h∼ 0.12. For the present conditions, only a small fraction of this offset
(∼24 %) is attributed to the viscoelastic damping by the material, as predicted from
the Chase (1991) model. This contribution is weakly dependent on the material loss
tangent, and decreases slightly with increasing frequency. Most of the offset (∼76 %)
is associated with variations of pressure phase with elevations, namely a phase lag
of the near-wall pressure relative to that in the log-layer. This lag is evident both
in the spatial two-point correlation of pressure, which is inclined slightly, and the
corresponding cross-spectra. Both the material and hydrodynamic phase lags should be
accounted for while developing flow control strategies involving compliant surfaces. It
should be noted that phase lags between near-wall small-scale structures and log-layer
turbulence have been reported before based on velocity measurements (e.g. Mathis
et al. 2011; Ganapathisubramani et al. 2012).

A series of conditional correlations are used for identifying flow structures affecting
the formation of bumps and dimples on the surface. The spatial relationships between
the flow and deformation field are summarized in conceptual models shown in
figure 30. The bumps are preferentially situated in ejection regions upstream of
log-layer negative spanwise vortices, and pressure minima located slightly below
the vortex centre (figure 30a). When the conditional correlation includes streamwise
vorticity, the 3D flow phenomenon involved appears like a hairpin vortex, with the
bump being flanked by quasi-streamwise vortices, below and behind the hairpin head.
Conversely, the dimples are preferentially associated with pressure maxima developing
at the transition between sweep and ejection regions (figure 30b). The phase lag is
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attributed to the inclination of the shear layer at the sweep-ejection interface. Dimples
also form on the sweeping flow side of streamwise vortices (figure 30c).

Although the Chase (1991) model, as it is presently implemented (see appendix A),
is two-dimensional and has an infinite domain, using it has been instrumental for (i)
elucidating the frequency spectrum of the deformation, (ii) quantifying the contribution
of material damping on the deformation–pressure phase lag, (iii) highlighting the effect
of varying the wall thickness on the wavelength of peak response for stiff materials,
and the frequency of peak response at low wavenumbers, and (iv) showing that
for the present conditions, the effect of shear stresses is much smaller than that of
the pressure. Finally, the frequency–wavenumber spectrum obtained from this model
provides insightful guidance in selecting flow and compliant wall parameters for
future research. For example, to increase the wall response to pressure fluctuations,
one has to match the shear speed of the wall with that of either the mean flow
speed or with the velocity at an elevation where the turbulence parameters have the
highest correlation with the wall deformation. Conversely, to explain and elucidate
for non-advected parts of the measured deformation, one would have to account for
the three dimensionality of stress/strain field within the compliant wall, including the
effects of its finite boundaries.
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Appendix A. The Chase (1991) model

This appendix summarizes our implementation of the Chase (1991) classical model
of the response of a viscoelastic layer to fluctuating pressure and wall shear stresses,
because of its significance to interpretation of the present data. The geometry of
the infinitely large compliant layer is two-dimensional, with only streamwise and
wall-normal deformation components, denoted as dx(x, y, t) and dy(x, y, t), respectively.
In the rest of this paper we use d= dy(x, y= 0, t) to describe the surface deformation.
The prescribed 1D pressure and shear waves at the interface with the fluid are
p0 exp[i(kx−ωt)] and τ0 exp[i(kx−ωt)], respectively, where p0 and τ0 represent small
wave amplitudes. The material behaviour is modelled using the Navier equation for
an elastic material (Landau & Lifshitz 1970):

ρc
∂2d
∂t2
=

E
2(1+ σ)

∇
2d+

E
2(1+ σ)(1− 2σ)

∇(∇ · d), (A 1)

where d = dxi+ dyj is the displacement vector (boldface denotes a vector), ρc is the
material density, σ is the Poisson’s ratio and E is the Young’s modulus. Viscoelasticity
is accounted for by replacing E with a complex modulus Ẽ=E′+ iE′′, introducing the
loss tangent, ζ = E′′/E′. The wall deformation is solved by expressing the d in terms
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of a scalar potential, ϕ, and a vector potential, ψ , using the Helmholtz decomposition,

dx =
∂ϕ

∂x
+
∂ψ

∂y
; dy =

∂ϕ

∂y
−
∂ψ

∂x
. (A 2a,b)

Substituting (A 2) into (A 1), one can show that both ϕ and ψ are solutions of the
wave equation with complex wave speeds, cl and ct, respectively. Their relations to
the material properties are

cl =

√
E(1− σ)

ρ(1+ σ)(1− 2σ)

ct =

√
E

2ρ(1+ σ)
.


(A 3)

The solutions to the wave equations are

ϕ(x, y, t)= ϕ̂(y)ei(kx−ωt)

ψ(x, y, t)= ψ̂(y)ei(kx−ωt),

}
(A 4)

with amplitudes

ϕ̂(y)= al sinh[Kl(y+ l0)] + bl cosh[Kl(y+ l0)]

ψ̂(y)= at sinh[Kt(y+ l0)] + bt cosh[Kt(y+ l0)].

}
(A 5)

Here, Kl = (k2
− ω2/c2

l )
1/2 and Kt = (k2

− ω2/c2
t )

1/2. The four unknown constants, al,
bl, at and bt, are determined based on the boundary conditions. At the interface with
the fluid (y= 0), the normal and shear stresses, σyy and σxy, are

σyy(y= 0)= [−p0 + iω dy(y= 0)z+]ei(kx−ωt)

σxy(y= 0)= τ0ei(kx−ωt),

}
(A 6)

where z+ is the acoustic impedance of the liquid, which accounts for the fluid loading.
Assuming that the bottom surface is rigid, dx(x,−l0, t)= dy(x,−l0, t)= 0. A MATLAB
code has been written to calculate the amplitudes of pressure and shear-induced
deformations. To validate that the model is implemented correctly, we have repeated
all calculations discussed in Chase (1991), and compared them to those provided in
the original plots, including cases with non-rigid bottom boundary conditions. The
results agree to the precision possible by digitizing the original plots. Subsequently,
the MATLAB code has been used to calculate the wavenumber–frequency spectrum
provided in figure 11 for pressure perturbation. The corresponding response to shear
only has also been calculated. The wavenumber–frequency distribution of the ratio
between pressure-induced and shear-induced deformation in response to excitation
with the same amplitude (p0 = τ0) is presented in figure 31. Clearly, the compliant
surface is much more sensitive to the pressure perturbations in the wavenumber and
frequency ranges relevant to the present study. Hence, the effect of shear stresses on
the surface deformation is neglected.
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FIGURE 31. The ratio between deformation amplitudes in response to pressure and shear
perturbations of equal amplitudes, as predicted by the Chase (1991) model.

Appendix B. Calculation of pressure field
The instantaneous pressure field is spatially integrated from its gradient, ∇p =
−ρ(Du/Dt− ν∇2u), using the measured velocity distributions to calculate the material
acceleration (Du/Dt). Although calculated to determine its magnitude/influence, the
viscous diffusion term is neglected since it is typically several orders of magnitude
smaller than the instantaneous material acceleration. The pressure reconstruction
involves two steps, i.e. calculation of material acceleration and pressure integration.
As discussed in Liu & Katz (2013) and de Kat & van Oudheusden (2010), the material
acceleration at time tn is calculated from five consecutive 3D particle distributions
In−2, In−1, In, In+1, In+2 recorded at times tn−2, tn−1, tn, tn+1, tn+2, respectively, which
are separated by a constant time interval 1t. The positions of a group of particles
located around xn at tn, in frames recorded at tn−1 and tn+1 are calculated, using TPIV,
from the corresponding displacement vectors, Dn,n−1(xn) and Dn,n+1(xn). Using the
same initial instant and location, as defined by the first subscript, and calculating the
displacements both forward and backward in time assure that the procedure follows
the motion of the same particle group. In other words, the interrogation volume
at tn remains at xn for both calculations, and displaced to xn + Dn,n−1 at tn−1 and
to xn + Dn,n+1 at tn+1. The velocity of this particle group at tn is estimated using
second-order central differencing, namely un ≈ [Dn,n+1(xn) − Dn,n−1(xn)]/(21t). The
corresponding material acceleration is estimated from

Du/Dt(xn, tn)≈ [un+1(xn +Dn,n+1, tn+1)− un−1(xn +Dn,n−1, tn−1)]/(21t). (B 1)

Since the particle displacement between exposures involves a fraction of the vector
spacing, the velocity at xn + Dn,n−1 and xn + Dn,n+1 is obtained using tri-cubic
interpolation of values calculated at the regular TPIV grid points.
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To spatially integrate the material acceleration, we have developed a GPU-based 3D
virtual-boundary omni-directional integration method, extending the 2D procedures
described in Liu & Katz (2013). To minimize effects of errors occurring along
certain integration path, the pressure at every point is determined based on spatial
integration from the boundaries in all directions, and averaging results obtained for
all paths. To prevent directional bias, the integration starts from uniformly distributed
points on the surface of a sphere surrounding the sample volume, and proceeds along
parallel lines in all directions, from one surface grid point to all the others. A similar
integration procedure is described in Liu, Moreto & Siddle-Mitchell (2016). To obtain
the pressure on the boundary for the initial iteration, we start at a certain point and
integrate the pressure gradients (acceleration) over the surface. Subsequently, the
surface values are updated based on the results of 3D omni-directional integration.
The corrected values are used in the next iteration, and the process is repeated,
typically requiring two iterations to achieve converged values. Further reduction in
errors can be achieved by avoiding (circumventing) regions where the acceleration
errors are particularly high. These regions can be readily identified based on local
closed-loop integration of material acceleration. Due to the large number of integration
paths involved, the omni-directional integration procedure is implemented on a Tesla
K40c GPU board. It reduces the processing time of one instantaneous realization
from approximately 6 h on a quad-core personal computer to approximately 2 min.

An alternative approach for calculating the pressure is based on solving the pressure
Poisson equation, which requires the estimation of the second-order derivative of the
velocity, along with proper combination of Neumann and/or Dirichlet-type boundary
conditions (e.g. Baur & Köngeter 1999; Gurka et al. 1999; Koschatzky et al. 2011;
Ghaemi et al. 2012; de Kat & van Oudheusden 2012; Ghaemi & Scarano 2013).
Different approaches for calculating pressure have been compared by Charonko et al.
(2010) and reviewed by van Oudheusden (2013). Comparisons based on synthetic data
have shown that in regions located away from the planes where the Dirichlet boundary
conditions are imposed, results obtained from both approaches are essentially identical.
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