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Abstract

We investigate the phased evolution and variation of the South Asian monsoon and resulting
weathering intensity and physical erosion in the Himalaya–Karakoram Mountains since late
Pliocene time (c. 3.4Ma) using a comprehensive approach. Neodymium and strontium isotopic
compositions and single-grain zircon U–Pb age spectra reveal the sources of the deposits in the
east Arabian Sea, and show a combination of sources from the Himalaya and the Karakoram–
Kohistan–Ladakh Mountains, with sediments from the Indian Peninsula such as the Deccan
Traps or Craton. We interpret shifts in the sediment sources to have been forced by sea-level
changes that correlate with South Asian monsoon rainfall variation since late Pliocene time.
We collected 908 samples from the International Ocean Discovery Program Hole U1456A,
which was drilled in the east Arabian Sea. Time series of hematite content and grain size of
the sediments were examined downcore. We found South Asian monsoon precipitation and
weathering intensity experienced three phases from late Pliocene time. Lower monsoon
precipitation, with a lower variability and strong weathering intensity, occurred during
3.4–2.4Ma; an increased andmore variable South Asianmonsoon rainfall, along with strength-
ened but fluctuating weathering intensity, occurred at 1.8–1.1 Ma; and a reduced rainfall with
lower South Asian monsoon precipitation variability and moderate weathering intensity
marked the period 1.1–0.1Ma.Maximum entropy spectral analysis andwavelet transform show
that there were orbital-dominated cycles of periods c. 100 and c. 41 ka in these proxy-based time
series. We propose that the monsoon, sea level, global temperature and insolation together
forced the weathering and erosion in SW Asia.

1. Introduction

Physical erosion, climate change and tectonic deformation (rock uplift) in the Himalaya–
Karakoram Mountains in SW Asia interplayed during the Cenozoic Era. The dominant forcing
process may have varied over different timescales, but has not yet been determined (Thiede et al.
2004, 2005; Thiede & Ehlers, 2013; Clift, 2017; Schildgen et al. 2018). SW Asia, which has expe-
rienced rapid tectonic uplift of mountain ranges, is an ideal place to investigate these intertwined
processes. Strong surface erosion and rapid basin filling during the Cenozoic Era were thought to
be closely associatedwith large-scalemountain uplift and the origin and evolution of themonsoon
(Molnar et al. 1993; Boos & Kuang, 2010; Clift et al. 2014; Botsyun et al. 2019; Valdes et al. 2019).
In 2015, the International Ocean Discovery Program (IODP) Expedition 355 drilled two deep-sea
cores in the Laxmi Basin in the east Arabian Sea in order to understand the interaction between
Earth-surface processes and the evolution of the South Asian (summer) monsoon (SASM)
(Pandey et al. 2015, 2016a, b). Previous studies have demonstrated that SASM variations during
late Cenozoic time played a key role in controlling surface erosion and exhumation at a tectonic
timescale in mountain ranges in SW Asia (e.g. Thiede et al. 2004, 2005; Clift et al. 2008; Clift &
VanLaningham, 2010; Clift, 2017). IODP Expedition 355 cores can therefore provide more
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evidence for understanding the interactions between tectonic uplift,
monsoon evolution and physcial erosion in Asia.

Regarding the SASM evolution, early palaeo-oceanographic
investigations suggested that intense upwelling, which is presently
linked to the monsoon, began at c. 8.0 Ma in the Arabian Sea
(Kroon et al. 1991; Prell et al. 1992), although more recently this
appears to have begun after c. 13Ma (Gupta et al. 2015; Betzler et al.
2016) or even earlier (Huber & Goldner, 2012; Roe et al. 2016).
These proxy records and modelling studies indicate strengthened
wind velocity rather than an increase in monsoon precipitation,
which is very important in modulating environment in SW Asia
(Clift, 2017). Limited onshore work also supports an earlier,
Palaeogene onset to the monsoon in East Asia (Licht et al. 2014;
Lu et al. 2018). At a millennial timescale, it is well documented that
the strengthened SASM intensity and increasing monsoon precipi-
tation determined rates of surface erosion and deposition in river
deltas such as the Indus River (Goodbred & Kuehl, 2000; Clift
et al. 2008, 2014, 2019).Moreover, enhancedmonsoon precipitation
has generally intensified surface erosion and led to increased sedi-
mentation rates in the marginal seas around South Asia (Colin
et al. 1999; Thiede et al. 2004, 2005; Blöthe et al. 2014; Clift et al.
2014). Sediments eroded by glaciers were then reworked to the ocean
and resulted in a higher sediment accumulation rate when the
summer monsoon rainfall was strong during interglacial times
(Molnar, 2001; Jonell et al. 2017). On a large spatial scale, the gla-
cial–interglacial climate alternationsmight have strengthenedphysi-
cal erosion under imbalanced conditions of runoff, vegetation and
flooding (Zhang et al. 2001; Lu et al. 2004, 2015); however, the quan-
titative evaluation and specific forcing mechanism of weathering
intensity, surface erosion and sediment production since late
Pliocene time needs to be investigated (Thiede et al. 2004, 2005;
Thiede & Ehlers, 2013; Schildgen et al. 2018).

The large difference in elevation between the western Himalaya,
Karakoram and associatedmountain ranges and the deep-sea basins
of the Arabian Sea and Bay of Bengal makes South Asia ideal for
investigating climate–tectonic–erosion interactions, under the forc-
ing of the SASM precipitation variations, during the late Cenozoic
Era. The deep-sea cores drilled during IODPExpedition 355 provide
a good opportunity to examine these relationships and forcing
mechanisms over a number of glacial–interglacial cycles and the
longer (tectonic) timescale (Li et al. 2018, 2019; Yu et al. 2019;
Clift et al. 2019). Samples were collected from IODP Hole
U1456A in this study. This core recovered a length of 365.25 m
and has been dated by biostratigraphic and magnetostratigraphic
methods (Pandey et al. 2016a, b). Over 908 samples were obtained
covering the late Pliocene (c. 3.4 Ma) to late Pleistocene (c. 0.1 Ma)
period; each sample spans on average 3.6 ka. Multiple proxies
including grain size distribution, hematite content, uranium (U)
and lead (Pb) dating of zircon, and bulk sediment neodymium
(Nd) and strontium (Sr) isotopes are described in order to recon-
struct and examine the relationship between erosion and monsoon
rainfall since late Pliocene time at the tectonic timescale and glacial–
interglacial alternations, and to isolate the associated forcingmecha-
nism. Our study also allows us to investigate the interplay between
climatic change, surface erosion and tectonic deformation.

2. Materials and methods

2.a. Sampling and dating Hole U1456A

IODP Hole U1456A (latitude, 16° 37.2855 0 N; longitude,
68° 50.3272 0 E; water depth, 3639.23 m; cored interval, 426.60 m;

recovered length, 365.25 m; Fig. 1a) lies offshore the western margin
of India, c. 475 km from the Indian coast and c. 820 km from the
modern mouth of the Indus River. Based on earlier provenance
work, the latter is presumed to be the primary source of sediment
in the drilling site, with lesser input from rivers such as the Tapti
and Narmada that originate from the Indian Peninsula (Clift
et al. 2019) (Fig. 1a; see Discussion). The studied deposits are pre-
dominantly composed of sand, silt and clay, interpreted as turbidites
interbedded with biogenic carbonate (nannofossil ooze or chalk,
nannofossil-rich clay or claystone) and hemipelagic muds (Fig. 2;
Pandey et al. 2016b). A relative reduction in siliciclastic sediment
content occurred at c. 100 m below the seafloor (mbsf) (Fig. 2),
which might represent a time of reduced Indus discharge. However,
this could equally reflect higher sea levels sequestering sediment on
the shelf, avulsion of the fan depositional lobes away from the Laxmi
Basin into the Arabian Basin, or a bloom in biogenic productivity
offshore western India, diluting the clastic flux (Pandey et al.
2016b). The 365.25 m core was subsequently sampled at an interval
of 40 cm, resulting in 908 samples obtained for grain size distribu-
tion and diffuse reflectance spectroscope (DRS) analyses. Eight sam-
ples were picked from interglacial-era deposits, four samples were
selected from glacial sediment on the basis of stable oxygen isotope
analysis for Sr and Nd isotopic analyses, and eight samples were col-
lected throughout Hole U1456A for detrital zircon U–Pb dating
analysis (Fig. 2).

A high-resolution age model for this depositional sequence was
constructed by linear interpolation between 23 independent age
control points; these ages were obtained from biostratigraphy
and magnetostratigraphic constraints (Pandey et al. 2016a, b),
resulting in a precise timescale (Table 1, Fig. 2). The time series
has an average time resolution of 3.6 ka, which is large enough
to investigate the glacial–interglacial variations of monsoon,
surface erosion and sediment sources. Samples used for Sr–Nd iso-
topic composition analysis and zircon dating are listed in Table 2.

2.b. Hematite content estimated by diffuse reflectance
spectroscopy

Hematite is derived from ferrihydrite through dehydration and
crystallization during weathering of iron-containing minerals
and rocks (Deaton & Balsam, 1991), and is preferentially preserved
under a warm and dry climate with oxidizing conditions. Chemical
weathering and iron oxide formation were controlled by both tem-
perature and precipitation. Because temperature remains relatively
stable in subtropical SWAsia, variations of hematite contents were
expected to be regulated mostly by precipitation changes over a
temperature threshold (Ji et al. 2002; Ji, 2004; Long et al. 2011).
Hematite content can therefore be regarded as an indicator of
warm and dry climate in SW Asia.

DRS is a rapid, precise and well-established method for measur-
ing the hematite content of sediments and/or soils, and is commonly
used in both qualitative and quantitative analyses of deep-sea sedi-
ments, mineral dust deposits and soils. The obtained spectra are
especially sensitive to Fe oxides and oxyhydroxides in soils and
sediments (Deaton & Balsam, 1991; Ji et al. 2002), and the detection
limit can be as low as 0.01 wt% (Balsam & Deaton, 1996). As a pri-
mary Fe oxide, hematite exhibits peaks at 565 or 575 nm in the vis-
ible (400–700 nm) diffuse reflectance spectra, which have been used
as the typical spectra for determining absolute concentration of
hematite (Deaton & Balsam, 1991; Ji et al. 2002).

The determination of hematite using DRS is mainly based on
first and/or second derivatives of the reflectance spectrum
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(Deaton & Balsam, 1991; Scheinost, 1998). However, many studies
noticed that sample reflectance can be affected by other admixed
minerals (referred to as the ‘matrix effect’), which impeded the
quantitative estimate of Fe oxides. Ji et al. (2002) introduced a cal-
ibration technique based on a series of experiments where a batch of
natural samples from Hole U1456A were processed by totally
removing iron oxides before adding hematite to a known concentra-
tion. A transfer function can be derived using a linear regression for
determining hematite content. This method has proven to be effec-
tive in removing the matrix effect and has been used to obtain more
precise concentrations of hematite in South China Sea sediments

(Zhang et al. 2007), providing important information on regional
climate change.

Here we apply thismethod to sediments fromHoleU1456A. The
sample preparation, analysis and data processing were performed at
Nanjing University. All the dried samples were first ground in an
agate mortar to a particle diameter of less than 30 μm. We selected
19 samples for the calibration. For these calibration samples, iron
oxides were removed by citrate–bicarbonate–dithionite (CBD)
reagent (Mehra& Jackson, 1960) and the resulting residues provided
a natural matrix material. Subsequently, known quantities of pig-
ment-grade hematite were added to the matrix material to produce

Fig. 1. Watershed of Indus River, sediment sources, IODP Expedition 355 Hole U1456A and Indus channel system at Laxmi Basin, east Arabian Sea. (a) Shaded relief of South Asia
with tectonics blocks in Indian Peninsula (revised from Pandey et al. 2015, fig. F1). Red dots indicate previous IODP drilled sites, and yellow dots represent the IODP 355 drilled
sites. (b) Tectonic blocks within the Indus River drainage basin, based on IGMA5000 (Ren, 2013) and Yin (2006). (c) Indus channel system from global bathymetry data (revised from
Mishra et al. 2016, fig. 1b). (d) Bathymetry map of the study area showing submarine channels (revised from Mishra et al. 2016, fig. 2a).

866 H Lu et al.

https://doi.org/10.1017/S0016756820000291 Published online by Cambridge University Press

https://doi.org/10.1017/S0016756820000291


calibration standards. The hematite pigment used was standard
Pfizer R1599 (Ji et al. 2002).

Reflectance spectra were analysed for 19 calibration samples
and 908 actual samples from Site U1456A using a Perkin–Elmer
Lambda 900 spectrophotometer (Perkin-Elmer Corporation,
Norwalk, CT) with a diffuse reflectance attachment from 400 to
700 nm at 2 nm intervals. Reflectance data were processed to
obtain percent reflectance in standard colour bands (Judd &
Wyszecki, 1975), that is: violet, 400–450 nm; blue, 450–490 nm;
green, 490–560 nm; yellow, 560–590 nm; orange, 590–630 nm;
and red, 630–700 nm. Percent reflectance in the standard colour
bands was calculated by dividing the percentage of reflectance in
each colour band accordingly. Total reflectance of a sample or
brightness was calculated by summing the reflectance value of a
sample from 400 to 700 nm. For the calibration samples, a multiple
linear regression model was built using the Statistical Product and
Service Solutions (SPSS) program (http://www.ndtimes.com.cn/
news/162.html) to relate independent variables (percent reflec-
tance (%) in standard colour bands) to dependent variables
(the known component values (wt%) of added hematite). The
transfer function is defined: hematite (wt%) = 4.203 – [0.271 ×
green (%)]þ [0.167 × orange (%)] (coefficient of determination,
R2 = 0.886). When we plot estimated hematite contents against

the actual iron oxide concentration mixed into the calibration
samples (Fig. 3), R2 is 0.95 with a root mean square of error
(RMSE) of 0.0301, where hematite concentration is within the
range 0–0.25 wt%. The transfer function is therefore robust in pro-
viding reliable estimates of hematite in our sediments.

2.c. Zircon U–Pb dating and Sr–Nd isotopic composition
analysis

Zircon U–Pb dating and Sr–Nd isotopic compositions are
regarded as two of the best approaches for determining sediment
provenance (Chen et al. 2007; Clift et al. 2008; Zhang et al. 2016,
2018). Because there are large differences in typical zircon U–Pb
ages as well as in Sr–Nd isotopic compositions (DeCelles et al.
2000; Clift et al. 2002, 2019; Alizai et al. 2011) in tectonic blocks
in South Asia, we can distinguish between the different sources in
the eastern Arabian Sea deposits using these methods. We
selected eight samples for zircon dating and 12 samples for
Sr–Nd isotopic composition at Nanjing University. However,
Sr isotopic composition is liable to change as a result of fractiona-
tion during chemical weathering (Derry & France-Lanord, 1996),

Fig. 2. Lithology and age controls of IODP Hole U1456A. Locations of samples for zir-
con and Sr–Nd analyses are represented by yellow and green dots, respectively (see
Tables 1 and 2).

Table 1. Age control points from the biostratigraphy and palaeomagnetic
stratigraphy data from Hole U1456A deposit sequence in east Arabian Sea
(Pandey et al. 2016a, b)

Depth (m) Age (Ma)

Fossils

Globigerinoides ruber pink 7.42 0.12

Emiliania huxleyi 28.60 0.29

Pseudoemiliania lacunose 37.56 0.44

Globorotalia tosaensis 75.04 0.61

Coiling change Pulleniatina 97.92 0.80

Reticulofenestra asanoi 99.24 0.91

reentrance Gephyrocapsa spp. > 4 μm 112.12 1.04

Reticulofenestra asanoi 119.19 1.14

Gephyrocapsa spp. >5.5 μm 146.37 1.24

Neogloboquadrina acostaensis 303.91 1.58

Calcidiscus macintyrei 329.365 1.60

Gephyrocapsa spp. > 5.5 μm 329.14 1.62

Gephyrocapsa spp. > 4 μm 330.67 1.73

Discoaster brouweri 342.90 1.93

Discoaster pentaradiatus 345.84 2.39

Discoaster surculus 353.06 2.49

Sphaeroidinellopsis seminulina 417.21 3.375

Magnetostratigraphy

C1n(o) 87.01 0.781

C1r.1n(y) 105.03 0.988

C1r.1n(o) 117.02 1.072

C1r.2n(y) 152.84 1.173

C1r.2n(o) 158.22 1.185

C2n(y) 309.64 1.778
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and shows some dependency on grain size (Meyer et al. 2011).
Nd isotopes are stable during erosion and chemical weathering
(Goldstein et al. 1984), but are known to be moderately

dependent on grain size variations in the Indus Basin (Jonell et al.
2018).

2.c.1. Zircon U–Pb dating
For each sample, standard water and magnetic separations were
first used to extract heavy and non-magnetic minerals, from
which more than 200 zircon grains were randomly picked using
a microscope to ensure statistical adequacy (Andersen, 2005;
Zhang et al. 2016, 2018). The zircon grains were then mounted
in epoxy resin and polished for dating. All pre-treatments were
performed by the same individual to make any artificial preference
bias uniform.

The samples were measured using an Agilent 7700× inductively
coupled plasma mass spectrometer (ICP-MS) with a New Wave
193-nm laser ablation system at Nanjing University. The laser
beam diameter was 30 μmwith a 10Hz repetition rate (Zhang et al.
2016, 2018). Zircon 91500 was used as an external standard for iso-
topic fractionation correction, while NIST 610 (Pearce et al. 1997)
was used as the standard for normalizing unknown U, Th and Pb
content. Glitter 4.4.2 was used to process the raw ICP-MS data.
Common Pb was corrected following the methods of Andersen
(2002). We accept zircon ages that follow Andersen (2002), that
is: (1) individual zircon discordance values are< 15%, which agrees
with the concordant ages from published data of potential sources;
and (2) 206Pb/238U ages (or 207Pb/206Pb ages for older grains) for
zircon grains are < 1000 Ma. Most of the zircon samples measured
in this study do not have the 110 minimum particles required by
Vermeesch (2004), because at the fine grain size of these samples
there were not enough particles large enough to date. We use the
data as an approximate estimate of the sediment sources.

2.c.2. Sr–Nd isotopic composition analysis
The samples (c. 2 g) were first dissolved in 0.5 mol L–1 acetic acids
for 24 hours followed by 5% hydrogen peroxide for 24 hours to
remove carbonates and organic matter, respectively. The remain-
ing silicate fractions (c. 0.1 g) were digested in a mixture of HNO3

and HF for 36 hours in tightly closed teflon vials at 115°C (Zhang
et al. 2015). The digested solution was then loaded into ion-
exchange columns to separate Sr and Nd elements using Sr-Spec,
Ln-Spec andTru-Spec resins (Aciego et al. 2009). The determination
of Sr and Nd isotopes were performed by a Neptune plus multi-
collector ICP-MS at Nanjing University.

The instrumental mass biases for Sr and Nd isotopes were
corrected by normalizing the 86Sr/88Sr ratio to 0.1194 and the
146Nd/144Nd ratio to 0.7219, respectively. The Sr standard
SRM987 and Nd standard JMCNd2O3 were periodically measured
to check the reproducibility and accuracy of isotopic analyses with
mean 87Sr/86Sr ratio of 0.710239 ± 42 (2σ, n= 10) and mean
143Nd/144Nd ratio of 0.512099 ± 15 (2σ, n= 15), respectively.
The standard material BCR-2 was used to verify the chemical pro-
cedure. Measurements of 10 replicates yielded a mean 87Sr/86Sr
value of 0.705018 ± 20 (2σ, n= 10) and a mean 143Nd/144Nd value
of 0.512626 ± 15 (2σ, n= 10). Epsilon Nd (εNd) values were calcu-
lated using chondritic values of 143Nd/144Nd= 0.512638.

3. Results

The results of zircon U-Pb ages (Fig. 4), DRS, hematite content
estimation and grain size (Figs 5–7), as well as Sr–Nd isotopic com-
position (Table 3, Fig. 8), are presented. The distributions of zircon
U–Pb ages for all the samples are similar through time, with most
ages distributed between 0–200 Ma and 300–1000 Ma (Fig. 4).

Fig. 3. Comparison between iron oxide content in the prepared samples with the pre-
dicted iron oxide content calculated according to the transfer function.

Table 2. Samples analysed for Sr–Nd isotopic composition and zircon particle
dating

Depth (m) Age (Ma)

Sr–Nd isotopic analysis

5H-5W-35/45 39.41 0.4186

6H-1W-25/35 42.76 0.4440

6H-2W-83/93 44.9 0.4602

7H-1W-140/150 53.45 0.5329

8H-5W-109/119 68.66 0.6408

13H-1W-85/85 109.86 0.9539

13H-3W-100/110 113.1 0.9796

14H-2W-80/90 120.86 1.0379

14H-5W-0/10 124.21 1.0629

15H-1W-65/75 128.76 1.0979

15H-5W-7/13 132.9 1.1290

17F-1W-20/30 139.56 1.1642

Zircon dating

6H-5W 49 0.49

7H-5W 59 0.56

8H-2W 64 0.6

9H-5W 78 0.71

10H-5W 87 0.78

13H-3W 114 0.98

17F-1W 140 1.16

33F-1W 214 1.39
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Fig. 4. Kernel density estimates for U–Pb zircon age distributions of samples from U1456A (orange) in this study and potential sources (see online Supplementary Table S1,
available at http://journals.cambridge.org/geo), comparedwith samples from previous studies (violet) including Indus Rivermouth (Clift et al. 2008), IODP 355 (Clift et al. 2019) and
Indus Submarine Canyon (Li et al. 2018). Peak ages are shown at the top (Ma).
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εNd values range between −12.8 and −8.7 and 86Sr/87Sr varies
between 0.727230 and 0.713162 (Table 3, Fig. 8). Grain size is
highly variable over the range 5.9–190.8 μm, with an average mean
value of 36.0 μm (Fig. 5) (Liu et al. 2018). The hematite content
varied over 0.00–0.59% with an average of 0.27% (Fig. 5), and
was coupled with grain size over glacial–interglacial cycles and
the longer timescale, in particular during c. 1.8–1.1 Ma (Fig. 6).
Both hematite content and grain size show a three-step evolution,
comprising phases of 3.4–2.4 Ma, 1.8–1.1 Ma and 1.1–0.1 Ma
(Figs 5–7).

4. Discussion

4.a. Provenance of deposits and implication for erosion

The identification of NW–SE-aligned deep-sea channel systems in
Laxmi Basin supports the idea that most deposits in the basin were
supplied from the Indus drainage basin (Fig. 1c) (Mishra et al.
2016; Pandey et al. 2016a; Clift et al. 2019; Yu et al. 2019). Five
main tectonic blocks – Greater Himalaya, Tethyan Himalaya,
Lesser Himalaya, Karakoram and Karakoram–Kohistan–Ladakh
(KKL) (Fig. 1b) – characterize sediment composition in the
Indus River drainage basin. Each block has a different provenance
proxy character. The zircon age distribution and Sr–Nd isotopic
composition of these blocks are presented in Figures 4, 8 and 9.
The Himalayan blocks (including the Greater Himalaya, Tethyan

Himalaya and Lesser Himalaya) have much more radiogenic εNd
and 87Sr/86Sr values, and older zircon ages (mainly > 300 Ma,
with 520–600, 800–1000, c. 1600–1800 and c. 2500 Ma peaks
for Himalaya sedimentary and metamorphic rocks and c. 290,
c. 450 and c. 800 Ma for Himalayan granites; Fig. 4). In contrast,
the KKL, which is located within the Eurasian Plate, has less radio-
genic εNd and 87Sr/86Sr values and younger zircon ages, mostly
< 200 Ma (Figs 4, 8). The zircon age distribution of Hole
U1456A sediments is characterized by peaks of < 200, c. 450,
c. 800, 1600–1800 and c. 2500, suggesting mixed sediment sources
from at least two end-members from both the KKL and the
Greater, Tethyan and Lesser Himalaya (Figs 4, 9). The εNd and
87Sr/86Sr values of sediments at Hole U1456A fall roughly in the
middle between the bedrocks of the Himalaya (mainly the
Greater and TethyanHimalaya) and the KKL (Fig. 8), in agreement
with our interpretations for the zircon data (Figs 4, 9).

The other potential sediment sources for deposits in Laxmi
Basin were the Indian Peninsula (including the Deccan Traps,
Vindhyan Group and the Peninsular Craton; Fig. 1a) and eolian
dust from the Arabian Peninsula. However, we argue that these
sources were not the major contributions to sediments in Laxmi
Basin for the following reasons.

First, some of the zircon age peaks (c. 1150 Ma in the Vindhyan
Group and > 3000 Ma in the Peninsular Craton; Fig. 4) of
the tectonic blocks in the Indian Peninsula are not prominent

Fig. 5. (a) Grain size, (b) hematite content and (c) DRS variations from Hole U1456A deposit sequence since late Pliocene time (c. 3.4 Ma).
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in sediments at Hole U1456A, precluding their major contri-
bution to the Laxmi Basin. The Deccan Traps are characterized
by c. 65 Ma zircon ages (Fig. 4) and have much lower radio-
genic εNd and 87Sr/86Sr values than Hole U1456A sediments
(Fig. 8). The Deccan Traps are not a major provenance
candidate for the sands at Hole U1456A, but could have
supplied some of the finer-grained material (Clift et al.
2019; Yu et al. 2019). Arabian dust has similar zircon age dis-
tributions to Hole U1456A deposits (Fig. 4), but is character-
ized by a wide range of 87Sr/86Sr values and less radiogenic
εNd values, meaning it is dissimilar to the U1456A deposits
(Figs 8, 9).

Second, no active deep-sea channel system has yet been identified
along the western margin of the Indian Peninsula (Fig. 1c, d;
Mishra et al. 2016), suggesting that the rivers from the Indian
Peninsula do not transport large volumes of coarse-grained

sediments as far as the Laxmi Basin. This is probably because
the extremely broad shelf on the western continental margin
of the Indian Peninsula buffers river-transported sediments
(Fig. 1a), although deposition of fine-grained sediment from
hypopycnal plumes is still possible.

Third, the Tapti and Narmada rivers draining the Indian Peninsula
contribute more sediments to the Arabian Sea than the Indus
River at present (Khim et al. 2019), but the reduction of the
Indus River contribution could be caused by human activity such
as building dams along the Indus River (Mahar & Zaigham,
2014). The damming is quite recent and had no impact on the
sediment input to the Arabian Sea in the geological past.

The abovementioned points suggest that the sediments at Hole
U1456A were mainly derived by erosion from the Himalaya–
KarakoramMountains via the Indus River. There were contributions

Fig. 6. (a) Grain size and (b) hematite content for Hole U1456A deposit sequence, and (c) global ice volume and temperature (Lisiecki & Raymo, 2005) during 1.8–1.1 Ma.
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from the Arabian Peninsula and the Indian Peninsula, but these were
not the dominant sources (Figs 4, 8).

4.b. Changes of sediment provenance during glacial–
interglacial cycles

The surface sediments eroded from the Himalaya–Karakoram
Mountains could not be instantaneously deposited in the deep
Arabian Sea because of the long-distance transport from source
to sink, during which sediment recycling and mixing would
occur. It is possible that most of the sediments were stored on
the continental shelf for a long time and that the fan deposits

must therefore have lagged the erosion processes onshore
(Covault et al. 2013). In the Holocene Indus canyon, the lag time
for fine-grained Holocene sediment between the canyon and the
river mouth was < 10 ka (Li et al. 2018). Holocene sediments in
Indus Canyon isotopically resemble deposits in the Indus River
mouth since c. 8 ka. However, fine sediment only reached the
canyon and not the upper fan during the Holocene period,
and would be expected to be redeposited when sea level fell
during the following glaciations, possibly after c. 100 ka. In
addition, sand in the canyon is not similar to that from the river
mouth in terms of zircon U–Pb ages, suggesting that sand is
stored near the river mouth and is only reworked into the fan

Fig. 7. (a) Grain size, (b) hematite content, (c) global ice volume and temperature (Lisiecki & Raymo, 2005), (d) Nd and (e) Sr isotopic composition variations for Hole U1456A
deposition sequence during 1.1–0.3 Ma.

872 H Lu et al.

https://doi.org/10.1017/S0016756820000291 Published online by Cambridge University Press

https://doi.org/10.1017/S0016756820000291


during sea-level lowstands, potentially on timescales of 100 ka
(Li et al. 2019).

The other recycling scenario is one in which turbidite flow was
episodic and transport of sediments was accompanied by mixing
older and younger deposits. However, the turbidite events in
the Indus deep-sea fan are estimated to have occurred every
c. 5–10 ka during the past 100 ka (Bourget et al. 2013). The tur-
bidite events in the sub-basin analysed by Bourget et al. (2013)
occurred much less frequently than those of glacial–interglacial
alternations (100–400 ka), although coring suggests that much
of the upper fan has been inactive since 11 ka (Prins et al.
2000). More frequent turbidites on the lower fan, such as those
dated by Bourget et al. (2013), cannot be sourced from the
Indus Canyon or River. Sediment recycling and mixing processes
could have resulted in mixed sediment spanning glacial or inter-
glacial phases.

Our results show small source shifts at the glacial–interglacial
alternations, demonstrated by the Nd–Sr isotopic composition
(Table 3, Fig. 7). The range of compositions lies within those noted

by Yu et al. (2019), and closer to the interglacial end-member com-
position of the Indus River noted by Li et al. (2018). Given that no
major tectonic deformation occurred over such short periods, and
no drainage system reorganization occurred (Clift, 2017), the
variations may not be interpreted by tectonic forcing. A possible
reason for the changing sediment sources may be the migration
of the maximummonsoon rainfall belt, associated with global tem-
perature and the glacial–interglacial cycles, and documented to
have forced a shift in sediment source since the Last Glacial
Maximum (Clift et al. 2008). The samples with the most negative
εNd values are interpreted to be dominated by erosion from the
Himalayan ranges. This probably occurred during interglacial
periods when the monsoon rainfall is focused in the Lesser
Himalaya, so that relatively less sediment is derived from the
KKL region (Fig. 1a). During glacial times it seems erosion is more
dominated by the Karakoram; εNd values are higher in this case,
which may be caused by the monsoon rainfall belt and the migra-
tions of westerlies (Clift et al. 2019), but further investigation is
required.

Table 3. Sr–Nd isotopic compositions of samples from Hole U1456A

Sample no. Sample label Age (Ma) 143Nd/144Nd ±2σ εNda 87Sr/86Sr ±2σ

1 5H-5W-35/45 0.4186 0.512120 3 −10.1 0.716648 7

2 6H-1W-25/35 0.4440 0.512068 3 −11.1 0.716569 6

3 6H-2W-83/93 0.4602 0.511984 4 −12.8 0.724076 7

4 7H-1W-140/150 0.5329 0.512175 7 −9.0 0.715093 7

5 8H-5W-109/119 0.6408 0.512158 5 −9.4 0.713926 8

6 13H-1W-85/85 0.9539 0.512046 4 −11.6 0.720125 8

7 13H-3W-100/110 0.9796 0.512102 6 −10.5 0.715555 6

8 14H-2W-80/90 1.0379 0.512163 8 −9.3 0.712736 8

9 14H-5W-0/10 1.0629 0.512192 8 −8.7 0.711788 7

10 15H-1W-65/75 1.0979 0.512194 9 −8.7 0.713162 7

11 15H-5W-7/13 1.1290 0.512028 8 −11.9 0.727230 7

12 17F-1W-20/30 1.1642 0.512023 7 −12.0 0.721257 9

a εNd values calculated using chondritic values of 143Nd/144Nd= 0.512638; εNd= [(143Nd/144Nd−0.512638) /0.512638] × 10000.

Fig. 8. Sr–Nd isotopic composition of selected samples from Hole U1456A (white stars) and potential sediment sources in SW Asia.

South Asian monsoon and weathering in Himalaya–Karakoram Mountains 873

https://doi.org/10.1017/S0016756820000291 Published online by Cambridge University Press

https://doi.org/10.1017/S0016756820000291


4.c. SASM precipitation variations at tectonic timescales from
late Pliocene time

The SASM variation at glacial–interglacial timescales has been
well documented (Prell & Kutzbach, 1987; Clemens & Oglesby,
1992; Gupta et al. 2005; Clemens et al. 2010). Insolation, global
ice volume (global temperature), sea level and Southern
Hemisphere atmospheric circulation have been hypothesized to
force monsoon variations. However, the debate concerning mon-
soon variations in terms of both timing and intensity continues.
At longer timescales (longer than orbital timescales), the relation-
ship between climate, erosion and tectonics is not clear because of
a lack of high-resolution records of these processes. Here, we use
hematite content and grain size as indicators of regional aridity
and deep-sea depositional environment (Figs 5–7) that were asso-
ciated with the SASM at the orbital timescale. Hematite (α-Fe2O3)
favours a dry and warm climate (Ji, 2004). Moreover, sediment
particles transported from the Indus River might be expected
to be coarser grained during times of greater runoff, although this
is stored near the river mouth and does not reach the deep sea
during the interglacial highstands (Li et al. 2019). However, sedi-
ment budgets for the last deglacial period indicate that the vast
majority of sediments reaching the ocean were stored in delta
and shelf clinoforms (Clift & Giosan, 2014). This implies that
the large-scale redeposition into deeper water occurred during
sea-level lowstands when the climate was cold (Prins et al.
2000). The Holocene carbonate drape found over much of the
upper fan (Kolla et al. 1981) was consistent with this and indi-
cated that sedimentation on the deep-sea fan, including the

Laxmi Basin, is at least partly controlled by sea level. It is well
established that global temperature, sea level and monsoon pre-
cipitation vary synchronously with glacial–interglacial cycles in
South Asia (Wang et al. 2017), and that sea level and monsoon
precipitation also co-vary with glacial–interglacial alternation.
In this case, the hematite content and grain size indicated varia-
tions in sea level and depositional environment, and therefore
changes in the SASM.

It is apparent that the SASM experienced three distinct phases
since late Pliocene time (c. 3.4 Ma), associated with the glacial–
interglacial alternations based on our grain size and hematite
records (Figs 5–7). A phase with low monsoon precipitation
and medium variation in monsoon amplitude occurred during
c. 3.4–2.4 Ma, followed by increased precipitation and amplitude
variation at 1.8–1.1 Ma, and finally reduced precipitation and
amplitude variation during 1.1–0.1 Ma. Hematite content has
also undergone three phases (Fig. 5): sediment high in hematite
was deposited during 3.4–2.4 Ma, intermediate in hematite dur-
ing c. 1.8–1.1 Ma and low in hematite during 1.1–0.1 Ma.

4.d. Variations in SASM precipitation, weathering and surface
erosion

We undertook spectral and cross-spectral analyses of the hema-
tite content and grain-size time series (Fig. 10). The cycles of peri-
ods c. 100 and c. 41 ka, dominated by sea level and insolation,
were evident and exceeded 90% confidence levels, showing that
the weathering intensity and stream flow transporting the sedi-
ments varied with these orbital frequencies. In the frequency
domain, anti-phase variations of the grain size and hematite con-
tent provide some clues concerning the forcing mechanism for
changes in sea level, the SASM and surface erosion. We suggest
that the co-variations in hematite content and grain-size changes
may have been controlled by sea-level changes since late Pliocene
time, and that sea-level changes were closely associated with
the SASM intensity at tectonic and orbital timescales; these
proxy indicators therefore describe the long-term evolution of
the SASM (Figs 5–7).

Our multi-technique analyses of sediment proxies from Hole
U1456A show varying sea level, SASM precipitation and weather-
ing intensity in SW Asia over orbital-dominated cycles (Fig. 10).
The co-variations between the weathering intensity and sea level
provide direct evidence that sea level and associated monsoon
circulation controlled the environmental variation over glacial–
interglacial alternations.

5. Conclusions

On the basis of our new data, the evolution of the SASM precipi-
tation and weathering intensity in the Himalaya–Karakoram
Mountains can be divided into three phases since late Pliocene
time. Weak summer monsoon precipitation with small amplitude
fluctuations and enhanced formation of hematite occurred during
c. 3.4–2.4Ma; increased monsoon rainfall, with greater variation in
amplitude as shown by variability in hematite content, occurred
during 1.8–1.1 Ma; and average monsoon rainfall decreased and
experienced small variations in amplitude, as tracked by hematite
formation, during 1.1–0.1 Ma. We interpret our results to indicate
that sea level and weathering intensity co-varied with the glacial–
interglacial alternations since late Pliocene time, in particular at
1.8–1.1 Ma, in SW Asia. Variations of hematite content and grain
size were originally determined by weathering intensity, monsoon

Fig. 9. Multidimensional scaling map based on calculated Kolmogorov–Smirnov test
between U–Pb age spectra, showing samples of U1456A in this study compared with
samples from previous studies, including Indus River mouth (Clift et al. 2008), IODP
Expedition 355 (Clift et al. 2019) and Indus Submarine Canyon (Li et al. 2018).
Samples and sources with similar U–Pb age distributions are plotted closer together.
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rainfall and runoff velocity, and were modulated by changes in sea
level and ocean environment. Our findings demonstrate the inter-
play between monsoon precipitation, mountain weathering and
surface erosion over tectonic and glacial–interglacial timescales
in SW Asia.
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