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Magnetofluidic-based controlled droplet
breakup: effect of non-uniform force field
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We report the breakup dynamics of a magnetically active (ferrofluid) droplet in a T-shaped
Lab on a Chip (LOC) device under the modulation of a non-uniform magnetic field.
We adhere to high-speed imaging modalities for the experimental quantification of the
droplet splitting phenomenon, while the underlying phenomenon is supported by the
numerical results in a qualitative manner as well. On reaching the T-junction divergence,
the droplet engulfs the intersection fully and eventually deforms into the dumbbell-shaped
form, making its bulges move towards the branches of the junction. We observe that the
asymmetric distribution of the magnetic force lines, acting over the T-junction divergence,
induces an accelerating motion to the left of the moving bulge (since the magnet is placed
adjacent to the left branch). We show that the non-uniform force field gradient allows the
formation of a hump-like structure inside the left moving bulge, which triggers the onset of
augmented convection in its flow field. We reveal that this augmented internal convection
developed in the left moving volume/bulge, on becoming coupled to the various involved
time scales of the flow field, leads to the asymmetric splitting of the droplet into two sister
droplets. Our analysis establishes that, at the critical strength of the applied forcing, as
realized by the critical magnetic Bond number, the flow time scale becomes minimum
at the left branch of the channel, leading to the formation of larger sized sister droplets
therein. Inferences of the present analysis, which demonstrates a plausible means of
independently controlling the size of the sister droplet by manoeuvring the applied force
field gradient, will provide a potential solution for rapid droplet splitting, which typically
finds significant importance in point-of-care diagnostics.
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1. Introduction

Droplet-based microfluidics has gained widespread attention among researchers for the
past two decades, owing to its capability of precise control of minute volumes (Manga
1996; Adamson et al. 2006; Baroud, Gallaire & Dangla 2010; Vladisavljević et al. 2013;
Nozaki et al. 2021). Important to mention here is that the paradigm of droplet-based
microfluidics has shown significant technical and research potential specifically due to
its suitability in point-of-care diagnostics (Shamloo & Hassani-Gangaraj 2020), drug
delivery (Yue et al. 2020), analysing and screening of bio/chemical reaction products
(Zheng & Ismagilov 2005) and many more related areas (Moon et al. 2010; Santos et al.
2016; Madadelahi, Ghazimirsaeed & Shamloo 2019). Researchers have explored several
aspects of droplet behaviour such as droplet generation, breakup (Link et al. 2004; Jullien
et al. 2009; Leshansky & Pismen 2009; Leshansky et al. 2012; Hoang et al. 2013) and
merging/coalescence (Christopher et al. 2009), in various microfluidic devices such as
a T-junction, flow-focusing junction and co-flowing junction, to name a few. Note that
the breakup of a mother droplet into two sister droplets in a simple passive microfluidic
device such as a T-junction, has significant engineering implications. Researchers have
shown that the size of the sister droplets being generated in a T-junction can be passively
controlled by adjusting the length of the downstream channel (Link et al. 2004). However,
for situations in which there exist geometric limitations, the suitability of a passive breakup
methodology of droplets is highly restrained. This limitation, in particular, has led to the
paradigm of the active droplet breakup mechanism, whereby external field modulated
forcing such as electric (Xi et al. 2016), magnetic (Tan & Nguyen 2011), acoustic (Schmid
& Franke 2013), temperature (Yesiloz, Boybay & Ren 2017) and optic (Marchand et al.
2012) are used for manoeuvring the fluid flow field.

It may be mentioned here that, in comparison with other fields, utilization of a magnetic
field for controlling the droplet breakup phenomenon has some serious advantageous
features. The magnetic field does not induce any changes in the flow field such as pH,
ionic concentration and surface charge. The magnetofluidic-based droplet manipulation is
usually realized with the help of a smart fluid, known as a ferrofluid. A ferrofluid is a
colloidal suspension of ferro/ferri magnetic particles in a non-magnetic carrier medium
(Rosensweig 1984; Odenbach 2002). It is worth adding here that a ferrofluid exhibits
a superparamagnetic nature i.e. on application of a magnetic field, its magnetization is
comparable to any ferromagnetic particles, whereas, on removal of the applied field, the
ferrofluid flow field does not display any net hysteresis (Rosensweig 1984). Ferrofluids
have been successfully used in many engineering applications such as separation
(Hejazian, Li & Nguyen 2015), heat transfer augmentation (Shyam et al. 2019), mixing
(Zhu & Nguyen 2012; Kitenbergs et al. 2015), droplet generation (Tan et al. 2010), breakup
(Bijarchi & Shafii 2020; Bijarchi et al. 2021) and many more (Rinaldi et al. 2005; Cunha
et al. 2020). Although breakup of droplet in a T-junction has been widely explored,
studies pertaining to ferrofluid droplet breakup under the modulation of a magnetic field
are sparse. On closer scrutiny of the available literature, it is found that researchers
have investigated the implication of a uniform magnetic field for the ferrofluid droplet
splitting phenomenon (Wu et al. 2013, 2014; Li et al. 2016; Ma et al. 2017). It has been
shown both numerically and experimentally that, under the modulation of a uniform
magnetic field, the splitting phenomenon is mostly symmetric. Also, from the reported
analysis in this paradigm, it is apparent that the application of a uniform magnetic field
brings in sufficient control on the size of the sister droplets generated from the mother
droplet.
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Albeit several underlying issues of the implication of a uniform magnetic field for
the splitting of the ferrofluid droplet, is well explored (Wu et al. 2013, 2014; Li et al.
2016; Ma et al. 2017), research endeavours with an emphasis on exploring the implication
of the non-uniformity of the magnetic field distribution for the overall droplet breakup
phenomenon are sparse. It may be mentioned here that a uniform magnetic field is a
mathematical assumption, while in a realistic physical scenario, a certain amount of
non-uniformity is bound to exist pertaining to magnetic field driven fluidic applications. A
few researchers, however, have explored the role of non-uniformity of the applied magnetic
field in the overall size of the sister droplets generated in the process and have discussed the
asymmetric splitting phenomenon attributed to the onset of the involved forcing gradient
(Aboutalebi et al. 2018; Roodan et al. 2020; Bijarchi et al. 2021).

It is worth mentioning here that the literature exploring the effect of inequality of the
force field gradient on the underlying breakup dynamics in the purview of droplet train
flow are sparse. Due to the non-uniform distribution of magnetic flux density, the sister
droplets moving downstream of the left/right branch of the T-junction after the breakup
phenomenon will possess different flow time scales. The imbalance of this flow time
scale in the branches is expected to affect the overall droplet splitting phenomenon and
may result in generation of sister droplets of unequal sizes. The non-uniform force field
alterations in droplet splitting/breakup are expected to be more fascinating in the presence
of droplet train flow, attributed primarily to the imbalance between the involved flow time
scales. This time scale aspect of the droplet splitting phenomenon, albeit interesting from
a fluid dynamics point of view and of huge practical relevance in different applications,
has not been studied in the literature to date.

In the present investigation, we present a novel way of controlling the droplet breakup
phenomenon in a T-junction divergence of an Lab on a Chip (LOC) device, under the
modulation of a non-uniform magnetic field. Droplets are generated in a T-junction of
the LOC device, following which they are split in another T-junction divergence, located
further downstream. A magnet is placed adjacent to the left branch of the T-junction
divergence, thereby inducing a high magnetic flux gradient in the vicinity of the left
divergence (of the T-junction). The main proposition of the present work is to establish
a non-uniform distribution of the magnetic field over the T-junction divergence of the
LOC device, which, in turn, will bring in an asymmetric distribution of the flow time
scale of the sister droplets moving through the left and right divergences, respectively. As
established through this analysis, judicious control of the flow time scale by altering the
applied forcing offers controllability to independently manoeuvre the sister droplet size.

In what follows, we divide this study into four sections. In the first section, we explore
the droplet breakup phenomenon in the presence of a non-uniform magnetic field. In this
section, we discuss the droplet splitting phenomenon under the modulation of an external
force field obtained from both experimental investigations and numerical simulations. In
the second section, we numerically explore the internal hydrodynamics of an isolated
droplet during splitting under the modulation of a non-uniform magnetic forcing. In
the subsequent section, we experimentally investigate the morphological evolution of
the droplet splitting characteristics. In the final section of this article, we attempt to
develop a physical understanding of the typical droplet breakup behaviour by exploiting
the various involved time scales. It may be mentioned here that the prime motivation of
the numerical simulations is to establish the proof of concept of the hypothesis and also to
have a qualitative understanding of the flow field in the presence of spatially non-uniform
magnetic forcing.

944 A51-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

50
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.504


S. Shyam, B. Dhapola and P.K. Mondal

2. Materials and methods

2.1. Experimental methods
In the present study, we use a ferrofluid solution as the dispersed phase, while silicon oil
is used as the continuous phase. We employ a co-precipitation method for the preparation
of the ferrofluid solution. The prepared dispersed phase, i.e. the ferrofluid solution, is
composed of de-ionized water as the carrier phase, while iron-oxide nanoparticles form the
suspended phase. Interested readers are referred to our recent articles where the preparation
of the ferrofluid solution has been discussed (Shyam et al. 2020a,c; Shyam, Mondal
& Mehta 2020b, 2021). Figure 1 depicts the characterization of the prepared ferrofluid
sample. The ferrofluid solution, having a saturation magnetization (Ms) of around 10
500 A m−1, exhibits superparamagnetic characteristics, as can be observed from the M–H
curve of figure 1, where M is magnetization and H is magnetic field intensity. It may be
mentioned here that the experimental M–H curve is measured using a vibrating sample
magnetometer (VSM). Also, as witnessed in figure 1, the M–H curve could be accurately
predicted following Langevin’s theory. As per the Langevin’s theory, the magnetization
M of ferrofluids could be accurately modelled using the following relations:

M = MsL(∝) H
|H | , (2.1)

L(∝) = coth ∝ − 1
∝ , (2.2)

∝ =μ0MdVpH
KbT

, (2.3)

where Ms, L(∝), μ0, Md, Vp, Kb, T are the saturation magnetization, Langevin function,
permeability of vacuum, domain magnetization, volume of the magnetic core, Boltzmann
constant and temperature, respectively. Important to mention here that the saturation
magnetization is given by Ms = βMd (where β is the volume fraction). A very good match
between the data predicted by VSM and Langevin’s modelling approach, justifying the
superparamagnetic behaviour of the ferrofluid solution (see figure 1). We show, in the left
and right insets of figure 1, the sizes of the suspended nanoparticles and the variation of
the zeta potential of the ferrofluid solution, respectively. Note that the ferrofluid solution
has a zeta potential of around −53 mV, signifying an electrostatically stable solution (Xu
2002).

The density and viscosity of the ferrofluid solution are calculated to be around
1050 kg m−3 and 0.00106 Pa s, respectively. While the volume fraction of the iron
nanoparticles in the ferrofluid solution was around 3 %. As already mentioned, we
use silicon oil (make: Sigma-Aldrich) as the continuous phase in the present study.
Accordingly, the density and viscosity of silicon oil are found to be around 930 kg m−3

and 0.3 Pa s. The interfacial tension between silicon oil and ferrofluid, as measured
by tensiometer (Make: Kyowa), is found to be around 0.012 N m−1. Note that the
iron-oxide nanoparticles particles are coated with surfactant (lauric acid for the present
case) essentially to avoid any agglomeration, which is not unlikely to occur due to the
interparticle interactions (Rosensweig 1984; Odenbach 2002; Shyam et al. 2019). The
presence of surfactant in the ferrofluid solution lowers its static contact angle on a rigid
substrate, as can be clearly observed from figure 2(a).

The LOC-based device, consisting of a T-shaped fluidic channel, is fabricated by using a
soft lithographic technique (Whitesides & Stroock 2001). The schematic representation of
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Figure 1. Plot depicts the magnetization curve of the prepared ferrofluid sample measured experimentally
and also calculated using the Langevin function. The prepared ferrofluid sample exhibits no hysteresis and is
superparamagnetic in nature. Left inset illustrates the size distribution of the suspended magnetic nanoparticles
in the ferrofluid sample. The average particle size was found to be around 13 nm. Right inset shows the
electrostatic potential characteristics of the ferrofluid solution.

the microfluidic device is shown in figure 2(b). The microfluidic passage has a square
cross-section of around 100 µm as width. The fabricated device has three sections:
a droplet generation junction (T-junction), a straight microchannel and a T-junction
divergence (in which the droplet splitting takes place). The continuous phase (silicon oil)
and the dispersed phase (ferrofluid) are injected from the two inlets leading to droplet
formation at the T-junction (i.e. droplet generation junction). The generated droplet,
henceforth referred to as the mother droplet, then flows through the straight microchannel
and further breaks down into smaller droplets (henceforth, these droplets will be referred
to as sister droplets) at the T-junction divergence, as can be seen from figure 2(b). A
neodymium iron boron magnet (NdFeB) is placed adjacent to the left branch (of the
T-junction divergence) for the induction of the non-uniform magnetic field. The presence
of the uneven magnetic field gradient ensures asymmetric droplet splitting, as can be
observed from figure 2(b).

We use a Gaussmeter (Make: SES instruments) for the measurement of the magnetic
flux density. The experiments are conducted in an inverted microscope (Make: Leica), a
schematic of which is shown in figure 2(c). We employ high-speed imaging for recording
of the droplet splitting phenomenon. We capture images of resolution 1920 × 1280 pixels2

at a frame rate of 1000 f.p.s. The recorded images are further post-processed in the
Matlab® platform by using an in-house developed code. Interested readers are referred
to one of our previous works wherein the involved steps of the image processing have been
discussed at length (Shyam et al. 2020b).

2.2. Numerical analysis

2.2.1. System description
We also make an effort to investigate the droplet splitting event numerically, essentially
to understand the several intricate physical aspects involved with the underlying
phenomenon. Although the experimental flow dynamics pertains to that of a droplet train
flow scenario, through the numerical simulations, the dynamics of an isolated droplet in
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Figure 2. (a) Contact angle of a typical ferrofluid droplet in a glass and polydimethylsiloxane (PDMS)
substrate. Ferrofluid droplet has a contact angle(θ) of 44◦ and 60◦ on a glass and PDMS substrate, respectively.
(b) Schematic representation of the working mechanism of the proposed microfluidic platform for controlled
droplet splitting. Droplets, on being generated in a T-junction, break down in a T-junction divergence under
the influence of a non-uniform magnetic field, leading to asymmetric splitting. The sequence of operation in
the presence and absence of a magnetic field is schematically represented. (c) Graphical representation of the
inverted microscope in which the experiments are carried out. (d) Schematic of the numerically simulated
two-dimensional computational domain.

an immiscible liquid medium is explored. This particular exercise saves computational
time significantly. Moreover, the prime intention of carrying out numerical simulation
is to explore the isolated droplet breakup dynamics in the presence of a non-uniform
magnetic field; as such, the inferences can be extrapolated to the present experimental
scenario without compromising the flow physics of interest. In figure 2(d), we show a
schematic of the computational domain consisting of a symmetric T-junction divergence
and an isolated droplet surrounded by the continuous liquid. The isolated dispersed
phase is driven forward by the continuous liquid. The droplet experiences breakage at
the T-junction divergence. Downstream of the T-junction (left branch), the non-uniform
magnetic field is applied, as can be observed from figure 2(d). The physical properties of
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the dispersed (denoted by suffix d) and continuous (denoted by suffix c) fluids are density,
ρd, ρc; the viscosity, ηd, ηc; the magnetic permeability, μd, μc.

To explore the role of the relaxation times on the underlying splitting phenomenon,
we have also as performed an order of magnitude analysis of the Neel (τN) and Brownian
relaxation (τB) time scales incurred by the ferrofluid flow pertaining to the present analysis.
The Brownian and Neel relaxation times are expressed as (Rosensweig 1984; Rinaldi et al.
2005)

τB = 3ηVh/kT; τN = τ0 e(KVP/kT), (2.4a,b)

where η,Vh, k, T, τ0, K, VP are the dynamic viscosity, hydrodynamic particle diameter,
Boltzmann constant, temperature, Larmor frequency, anisotropy constant and volume of
the magnetic particle, respectively. It may be mentioned here that the Brownian relaxation
(τB) time scale denotes the time required for the whole particle to rotate and align the
magnetic moment m along the applied field H . Whereas the Neel relaxation (τN) time
scale denotes the time period for the magnetic moment m inside the particle to align with
H , due to flipping of the atomic spin without any physical particle rotation.

Considering the particle hydrodynamic diameter of around 13 nm (see inset of figure 1),
we found τB ∼ 10−7. Similarly, pertaining to the Neel relaxation time scale, it may be
mentioned here that an anisotropic constant is dependent on the size of the particles
(Rinaldi et al. 2005). In line with seminal works reported in the literature, for the present
study, where water-based ferrofluid is used, we assume τ0 ∼ 10−9, K = 2.4 × 104 J m−3

and a surfactant layer of around 2 nm (Rosensweig 1984, 1987; Mao et al. 2011; Dalvi,
van der Meer & Shahi 2022), following which we found τN ∼ 10−8. Thus, we find for
the present analysis τN � τB, which ensures the relaxation mechanism is intrinsic in
nature, i.e. mostly dominated by Neel relaxation, giving the particles superparamagnetic
behaviour (Rosensweig 1984). This superparamagnetic behaviour of the particles also
ensures that no lag exists between the magnetization vector and the magnetic field vector,
the underlining M and H vectors are collinear in nature. As such, the magnetization
considered is the equilibrium magnetization and any non-equilibrium effect is beyond the
scope of the present numerical simulations (Ilg, Kröger & Hess 2005).

2.2.2. Phase-field formalism
We employ the diffused interface-based phase-field method for simulating the flow
dynamics of the immiscible two-phase flow systems considered in this study. It may be
mentioned here that the modelling framework of the phase-field method is obtained by
the minimization of the total energy of the system and is thermodynamically consistent
(Cahn & Hilliard 1958). The phase-field method has been successfully used by several
researchers to study the interfacial dynamics of a multi-fluid system in the presence of
an external force field (Mondal et al. 2013, 2015; Gorthi, Mondal & Biswas 2017). The
thermodynamics of a two-fluid flow system can be described by the Ginzburg–Landau
free energy functional F(φ), which is expressed as (Jacqmin 2000)

F(φ) =
∫

∀

{
f (φ)+ 1

2
γ ε|∇φ|

}
d∀, (2.5)

where ∀, spans over the whole fluid domain, γ , and ε are the interfacial tension and the
interface thickness, respectively. The first term in (2.5) denotes the bulk free energy of the
binary fluid system, while the second term signifies the interfacial free energy due to the
presence of an interface separating the two fluids. The interaction between these two parts
of the energy constructs the static equilibrium configuration of the interface. It is important
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to mention here that f (φ) models the immiscible aspect of fluid components in the chosen
system. The bulk free energy density ( f (φ)) mathematically is a double-well function and
can be expressed as, f (φ) = γ (φ2 − 1)2/4ε. It may be mentioned there that f (φ), achieves
its minima in two stable phases i.e. the dispersed phase (φ = −1) and the continuous
phase (φ = 1). It is also worth mentioning here that, although numerous double-well
functions exist, pertaining to phase-field modelling, the symmetric double-well function,
as mentioned above, is the most used one and has been considered in many seminal works
as well (Jacqmin 1999, 2000; Badalassi, Ceniceros & Banerjee 2003; Yue, Zhou & Feng
2010).

The minimization of the free energy of the system (F(φ)) along with the mass
conservation of the respective phases, leads to the well-known Cahn–Hilliard equation.
Moreover, the minimization of the free energy of the system also leads to the addition of a
volumetric force term in the Navier–Stokes equation, as will be discussed in § 2.2.4. The
spatio-temporal evolution of φ depends on the Cahn–Hilliard equation as given by (Cahn
& Hilliard 1958, 1959; Badalassi et al. 2003)

∂φ

∂t
+ u · ∇φ = ∇ · (Mφ∇G), (2.6)

where Mφ and G denote the interfacial mobility factor and chemical potential, respectively.
Note that Mφ determines the relaxation time of the interface and the time scale of the
Cahn–Hilliard diffusion. The value of Mφ should be chosen in such a way that the interface
maintains a constant thickness and does not cause any mass loss. The chemical potential
(G) is basically the variational derivative of the free energy functional with respect to the
order parameter(φ) (Badalassi et al. 2003)

G = δF/δφ = ∂f /∂φ − γ ε∇2φ

= γ [(φ3 − φ)− ε2∇2φ]/ε.
(2.7)

It may also be mentioned that in the phase-field framework, any generic property, ξ may
be expressed in terms of the order parameter (φ), as follows (Badalassi et al. 2003):

ξ = 1 − φ

2
ξc + 1 + φ

2
ξd. (2.8)

2.2.3. Modelling of magnetic field distribution
We calculate the magnetic field acting on the flow domain by solving the Maxwell
equations as given by (Griffiths 2017)

∇ · B = 0, (2.9)

∇ × H = 0, (2.10)

where B is the magnetic flux density and H is the intensity of the magnetic field. Also, we
shall mention here that the magnetic stress tensor can be expressed in the following form
(Rosensweig 1984; Strek 2008):

F m = ∇ · T m, (2.11)

T m =
(
μHH − μ0

2
H2I

)
, (2.12)

where T m is the magnetic stress tensor, μ represents the permeability of the flow domain,
which can be evaluated using the phase-field order parameter φ, I denotes the identity
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operator and H2 = |H |2. Moreover, the magnetization M , the magnetic field intensity
H and the magnetic flux density B are related using the following constitutive relations
(Jansons 1983):

M = χH , (2.13)

B = μ0(H + M) = μ0(1 + χ)H , (2.14)

where μ0, χ are the permeability of vacuum and magnetic susceptibility, respectively.
Since the magnetic field is irrotational (i.e. ∇ × H = 0), it can be expressed in terms
of scaler potential, H = −∇ψ . Using these expressions in the Gauss law leads to the
following equation:

∇ · (μ∇ψ) = 0. (2.15)

In the present numerical simulations, the magnetic field H is solved using the above (2.12).
The solution of (2.15) further helps in solving the magnetic force as given by (2.11)

2.2.4. Coupling of phase field and magnetohydrodynamics
We solve the continuity, the Cahn–Hilliard and Navier–Stokes equations to obtain the
pressure and velocity field of the two-liquid flow system, which are expressed as (Batchelor
1970; Jacqmin 1999, 2000; DasGupta, Mondal & Chakraborty 2014; Mondal et al. 2015)

∇ · u = 0, (2.16)

ρ

[
∂u
∂t

+ ∇ · (u · u)
]

= −∇P + ∇ · [η∇u + (∇u)T ] + G∇φ + F m. (2.17)

The momentum transport equation [(2.17)] couples the phase-field formalism with
magnetohydrodynamics. Here, G∇φ, is the phase-field-dependent interfacial tension
force, F m is the magnetic body force as denoted by (2.11). The boundary conditions
considered in the flow domain for the simulations are as follows: fully developed velocity
is applied at the inlet. Non-viscous, pressure constraint outflow condition is maintained
at the outlet; in other words, the pressure at the outlet is fixed to zero. i.e. P = 0. For the
magnetic field simulations, the magnetic insulation boundary condition, i.e. n · B = 0, is
applied at the surrounding air domain.

2.2.5. Normalization of the governing equations
In the present section, the aforementioned governing equations are non-dimensionalized
to attain a profound understanding. The width (l) of the microchannel is considered as
the characteristics length scale of the flow. The following set of dimensionless variables is
defined for normalization of the governing equations:

u∗ = ul2

Q
, t∗ = tQ

L3 , P∗ = Pt4

ρcQ2 , ρ∗ = ρ

ρc
, η∗ = η

ηc
, μ∗

= μ

μc
, ∇∗ = l∇, H∗ = H

H0
, (2.18)

where Q, μ and P denote the flow rate, relative permeability and pressure, respectively.
Using the above set of non-dimensionalized variables, the governing transport equations
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i.e. Cahn–Hilliard–Navier–Stokes equations along with the continuity reduce to (Bai et al.
2017)

∂φ

∂t∗
+ u∗ · ∇∗φ = 3

2
√

2

1
Pe

∇∗2[φ(φ2 − 1)− Cn2∇∗2φ], (2.19)

∇∗ · u∗ = 0, (2.20)

ρ∗
[
∂u∗

∂t∗
+ ∇∗ · (u∗ · u∗)

]
= −∇∗P∗ + 1

Re
∇∗ · [η∇∗u + (∇∗u)T ]

+ 3

2
√

2

1
CnCaRe

[φ(φ2−1)−Cn2∇∗2φ]∇∗φ+ Bom

Ca
∇ · T∗

m.

(2.21)

Thus the present problem of two-liquid flow systems is characterized by the following set
of dimensionless parameters:

Re = ρcQ
Lηc

, Cn = ε

L
, Ca = ηQ

L2γ
, Pe = εQ

MφLγ
. Bom = μ0χ lH2

0
γ

. (2.22)

The Reynolds number Re, which interprets the relative significance of the inertia force
to the viscous force; the Cahn number Cn, is the ratio of interface thickness to the
characteristics length; the capillary number, Ca, is the ratio of the viscous force to the
interfacial force; the interface Péclet number Pe, is the ratio of the advection of the
order parameter (φ) to its diffusion. This interface Péclet number, specific to phase-field
modelling, is defined to determine the relative strength of advection over the diffusion of
the fluid components at the interfacial region. The magnetic Bond number, Bom, is the
ratio of the magnetic force to surface tension force (χ is the magnetic susceptibility). It is
worth mentioning here that, for the present analysis, the order of several non-dimensional
numbers are considered as, Re ∼ O(10−3), Ca ∼ O(10−2), Cn ∼ O(10−2), Pe ∼ O(102)
(Kunti et al. 2018; Mondal & Chaudhry 2018). The non-dimensional forms of the fluid
properties are given as (Badalassi et al. 2003)

ρ∗ = 1 − φ

2
+ 1 + φ

2
ρr, (2.23)

η∗ = 1 − φ

2
+ 1 + φ

2
ηr, (2.24)

μ∗ = 1 − φ

2
+ 1 + φ

2
μr. (2.25)

Note that ρ∗, η∗, μ∗ in (2.23)–(2.25) denotes the non-dimensionalized phase-averaged
density, viscosity and permeability respectively. Similarly, ρr, ηr, μr in (2.23)–(2.25)
indicate the ratio of the properties of the continuous phase to that of the dispersed
phase. For the present numerical study: ρ∗ ∼ O(100), η∗ ∼ O(10−2) and μ∗ ∼ O(101).
The unsteady governing transport equations together with the boundary conditions
in the present study are solved by using the finite element framework of COMSOL
Multiphysics®. In this method, the spatial terms of the governing transport equations
are initially discretized to obtain an ordinary differential equation in time, which is
then time marched to obtain evolution of the flow pattern. The PARDISO solver with
generalized-α scheme is used for time-stepping method. The Galerkin weighted residual
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Figure 3. (a) Temporal evolution of the non-dimensionalized width (W∗) of the droplet at the T-junction
divergence for different grid resolutions. Grid independence test justifies Cahn number independence test;
W∗ = w(t)/l, where w(t) and l denote the instantaneous width of the droplet and the width of the microchannel,
respectively. Left inset snapshots show a typically resolved interface of a droplet for the Cahn numbers, Cn =
0.01, Cn = 0.02 and Cn = 0.04. Right inset shows the comparison between the present numerical study and
(2.26).

method, blended with higher-order up-winding and stabilized with the capability of
handling cross-wind diffusion, has been deployed here for the discretization of the
convection–diffusion equations. The second-order interpolation function for velocity and
the first-order interpolation function for pressure are used for the calculation of gradients
within the integral terms under the framework of the weak formulation. The interpolation
function for pressure is one order lower than that used for velocity. In order to obtain the
velocity and pressure profiles for incompressible flows, the incremental pressure correction
scheme for the segregated predictor–corrector method is employed. A tolerance levels of
10−6 for mass divergence are specified for all the numerical simulations (Mondal et al.
2015).

2.2.6. Grid independence study and validation
Here, we show the grid independence test to ensure the correctness of the numerical results
presented in this analysis. In addition, to ensure a sharp interface limit, we also carry
out the Cahn number independence test. It may be mentioned here that, in our study, we
have chosen a grid size near the interface equal to the Cahn number (Cn). Thus, in the
context of the present analysis, grid independence will simultaneously indicate a Cahn
number independence and vice versa. Figure 3(inset) shows the temporal evolution of the
non-dimensionalized width (W∗) of the droplet as it breaks up in the T-junction divergence
of the LOC device, obtained for different values of grid resolution. As can be seen clearly
from figure 3(a), the numerical results become independent of mesh size below Cn <
0.02. Although, for Cn ∼ 0.01, a better resolution is obtained, considering the involved
computational cost vis-a-vis the gained accuracy, we choose Cn ∼ 0.02 for the present
study. Note that this particular value of the Cahn number, Cn ∼ O(10−2) ensures the sharp
interface limits as well (Yue et al. 2010).

We also compare in figure 3 (inset) our numerical results quantitatively with those
obtained from the analytical relation of Bretherton (Bretherton 1961). For low Reynolds
number flow i.e. Re � 1, the velocity of a droplet moving in a slender tube with a thin
film separating the droplet and the wall is given by (Bretherton 1961)

u∗ = 1 + 1.29Ca2/3. (2.26)
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We show in the inset of figure 3, an excellent agreement between our numerical results with
those obtained from (2.26). A closer match between the results, seen from figure 3(inset),
vouches for the correctness of the numerical modelling framework developed in this
study. Besides, in an effort to further establish the credibility of the proposed numerical
methodology, we have performed a separate set of benchmarking exercises pertaining
to droplet breakup by using our own experimental results. However, interested readers
are referred to the supplementary materials section of this article for this part, wherein
benchmarking of simulated results with our experimental results is presented.

3. Results and discussions

In this section, we explore the droplet breakup phenomenon and its consequences for
the alterations in the various hydrodynamical parameters of the flow field. As already
mentioned, the present investigation is carried out in the flow regimes whereby the viscous
and interfacial forces are dominant in comparison with the inertia forces. As such, the
study is divided into four parts. In the first part, we develop a physical understanding of
the ferrofluid droplet splitting mechanism in the presence of a non-uniform force field.
To this end, we make use of the high-speed imaging modalities and perform numerical
simulations for exploring the dynamical behaviour of the droplet under the modulation
of the spatially varying force field. In the second section, we numerically explore the
intricate flow physics involved with the droplet splitting dynamics. Subsequently, in the
third section, we experimentally explore the morphological evolution of the mother droplet
in the T-junction divergence of the LOC-device under the modulation of the non-uniform
magnetic forcing. Finally, in the last part of the study, we make an attempt to develop
a physical reasoning behind the characteristic behaviour of the sister droplets from the
perspective of the involved time scales.

3.1. Droplet breakup: qualitative dynamics
It may be mentioned here that, depending on the capillary number (Ca) and initial slug
length (l0), a droplet may split into two sister droplets in the T-junction divergence
following permanent obstruction or partial obstruction (Jullien et al. 2009; Leshansky &
Pismen 2009). Moreover, based on the initial slug length and Capillary number, the droplet
may not split at all (Jullien et al. 2009; Chen & Deng 2017). Pertaining to the permanent
obstruction case, the dispersed phase totally engulfs the T-junction divergence and blocks
the flow of continuous phase liquid. On the contrary, for the partial obstruction case, a
tunnel develops, which allows the motion of the continuous fluid over the dispersed phase.
Therefore, in the partial obstruction case, the droplet blocks the T-junction divergence
of the LOC-device incompletely. Henceforth, the word ‘droplet’ will refer to the mother
droplet.

It is worth mentioning here that, for the present study, the mother droplet splits into two
sister droplets following the permanent obstruction of the T-junction divergence, as can
be observed from the depicted images in figure 4. We show in figure 4 the spatio-temporal
evolution of the droplet splitting phenomenon in the absence of an external field. Note that
the droplet breaks in three typical stages: squeezing, transition and pinch-off (Ma et al.
2017). Initially, as the droplet (i.e. dispersed phase) enters into the T-junction divergence,
it tries to block the whole junction, as can be seen from figure 4(a). As the droplet
occupies the whole junction (t∗ = 0+), the upstream continuous phase flow gives rise
to the formation of a depression in the droplet, which further leads to the change in
the curvature of the neck (the circled region in t∗ = 0.5 in figure 4a). The depression
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Figure 4. Temporal evolution of the droplet splitting phenomenon observed using (a) experiments, and (b)
numerical simulations. The white-coloured arrows indicate the direction of the flow. Here, t∗ = t/tL represents
the non-dimensional time period of the droplet splitting phenomenon; t, tL represent the instantaneous time and
the droplet splitting time, respectively. The span of the droplet splitting time starts from the moment the droplet
fully enters the T-junction to the moment two dispersed sister droplets have been formed. The experiments are
carried out using at a magnification of × 10 at a capture speed of 1000 f.p.s.

is an effect of the squeezing pressure acting on the neck of the droplet (of the dispersed
phase). The squeezing pressure is the pressure that is developed in the upstream continuous
phase due to the permanent blockage of the T-Junction divergence by the dispersed
phase. Since no tunnel develops for the present case (i.e. permanent obstruction case),
the squeezing force becomes very large in comparison with the viscous force, thereby
dictating the overall dynamics in the squeezing stage. The squeezing stage is followed by
the transition stage. In the transition stage also, no tunnel formation is seen, and thus,
the splitting phenomenon is dictated by the balance between the interfacial tension force
and the squeezing force. Although the upstream pressure force (i.e. the squeezing force)
is dominant in both squeezing and transition stages, the temporal evolution of the rear
interface of the droplet is found to be different for the two individual cases, as will be
discussed in detail in the forthcoming sections. The transition zone is followed by the
pinch-off zone, in which the droplet gets fully detached, leading to the formation of two
sister droplets, as can be observed from figure 4(a). In the succeeding discussions, we will
demarcate all of these existing splitting zones appropriately.

To attain a detailed visualization to arrive at an in-depth understanding of the
experimental observation, we perform numerical simulations of the droplet splitting
phenomenon. The details of the numerical methodology adopted in this analysis are
already mentioned in § 2.2. As already mentioned, although the present experimental study
deals with a droplet train, the splitting dynamics of an isolated droplet is investigated
numerically. This particular exercise will give us qualitative insights into the droplet
breakup dynamics in the absence/presence of a non-uniform magnetic field. We show
in figure 4(b) the droplet splitting phenomenon in a T-junction simulated numerically. We
can clearly observe the presence of various droplet splitting stages such as the squeezing,
transition and pinch-off from figure 4(b). It is worth adding here that the similarity of the
underlying droplet splitting dynamics between experimental observation and numerical
results, observed from qualitative perspectives in figure 4(a) vis-à-vis figure 4(b) justifies
the credibility of our experimental methods.

We show in figure 5(a,b) the spatio-temporal evolution of the ferrofluid droplet splitting
phenomenon in the presence of a non-uniform magnetic field, obtained experimentally and
calculated from numerical simulations, respectively. The presence of all the intermediate
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Figure 5. Temporal evolution of the droplet splitting phenomenon in the presence of a non-uniform magnetic
field, observed using (a) experiment, (b) numerical simulations. The white-coloured arrows indicate the
direction of the flow. Here, t∗ = t/tL represents the non-dimensional time period of the droplet splitting
phenomena; t, tL represent the instantaneous time and the droplet splitting time, respectively. The span of
the droplet splitting time starts from the moment the droplet fully enters the T-junction to the moment two
dispersed sister droplets have been formed. The experiments are carried out using a higher magnification of
10X at a capture speed of 1000 frames per second.

stages of the splitting phenomenon, i.e. the squeezing stage, transition stage and the
necking stage, which are observed in figure 4 as well, can be clearly seen for the
present case (see figure 5). The behaviour of the droplet splitting in the presence of a
non-uniform magnetic field becomes similar to the case where no external force acts on
the droplet flow field. The only difference is the asymmetricity produced during the droplet
breakup process. Note that the asymmetricity developed in the droplet splitting process is
precisely due to the involved non-uniformity in the force field gradient induced due to the
applied field. Readers are referred to the supplementary materials section for a detailed
distribution of the magnetic field flux density in the fluid flow domain. We can clearly
observe from figure 5(a) that, as the ferrofluid droplet enters the T-junction divergence,
the upstream pressure forces the advancement of the dumbbell-shaped bulge in the left
and right branches. Note that, in the following discussion, we refer to these left/right
dumbbell-shaped bulges of the dispersed phase as the left/right moving bulge.

However, due to the non-uniform distribution of the applied magnetic flux density,
the advancement (of the dumbbell-shaped bulge) becomes more aligned towards the left
branch (asymmetricity is produced in the breakup phenomenon) in comparison with the
right branch (refer to t∗ = 0.5 and t∗ = 0.75 of figure 5a) of the T-junction divergence. In
particular, because of this reason, we observe in figure 5(a) the presence of unevenly sized
sister droplets being produced in the process. As such, the larger-sized sister droplet moves
in the left branch, while the smaller-sized sister droplet moves in the right branch, as can
be clearly observed from figure 5(a). We show the numerically simulated droplet splitting
phenomenon in figure 5(b). The asymmetric behaviour of the droplet breakup can easily be
observed from figure 5(b) as well. Quite notably, the numerically simulated stages of the
breakup phenomenon are in accordance with the experimental observations (see figure 5a),
further justifying the credibility of our experimental observation. Moreover, it may be
conjectured from figures 4 and 5 that, for a droplet split following permanent obstruction,
the characteristic behaviour of the breakup pattern remains the same irrespective of
whether a magnetic field is applied or not. The utilization of a non-uniform magnetic field
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gives rise to asymmetry in the droplet breakup phenomenon, leading to the generation of
two sister droplets of unequal sizes.

3.2. Droplet breakup phenomenon: numerical perspectives
As seen from the preceding discussion, the numerical results agreed well qualitatively with
the experimental observations. This endeavour provides us with the flexibility to delve
deep into the droplet splitting dynamics following numerical computations. We show in
figure 6(a,b) the velocity vectors inside the droplet flow field at different stages of splitting
for the various cases under investigation, i.e. in the absence/presence of a non-uniform
magnetic field. It may be mentioned here that t∗ = 0− denotes the stage of the droplet
before entering the T-junction divergence. It can be clearly observed that the centre of
the droplet, before fully impacting the T-junction divergence, attains a maximum velocity
(see t∗ = 0− of figure 6a). In the absence of any external force, we can clearly observe
that the droplet demonstrates two distinct velocity regimes when it impacts the T-junction
divergence at t∗ = 0+, as denoted by point A and point B in figure 6(a).

Here, point A identifies the position whereby the droplet remains in contact with the
upstream flow, point B on the other hand, denotes the position of the droplet which faces
the wall of the T-junction divergence. Note that point A demonstrates the maximum
velocity while point B depicts the region of minimum velocity. This is because the
upstream flow attempts to squeeze the droplet, thereby ensuring that point A exhibits
higher velocity. Similarly, as the droplet impacts the wall of the junction, a stagnation point
exists, as indicated by point B in figure 6(a). Subsequently, the droplet, after impacting
the T-junction divergence, stretches itself symmetrically in the left and right branches.
This stretching leads to the migration of the local maximum points, as given by points
C (refer t∗ = 0.25 of figure 6a). On the other hand, the position of the local minimum
(point B) remains the same due to the symmetric nature of the stretching phenomenon,
as can be observed from figure 6(a). It can also be observed that the magnitude of
the velocity inside the droplet decreases with the temporal progression of the splitting
phenomenon, as witnessed in figure 6(a). Having a closer look at figure 6(a) vis-à-vis
figure 6(b), it is observed that the internal hydrodynamic behaviour inside the droplet
under the influence of a non-uniform magnetic field is totally altered. The position of the
maximum and minimum velocities inside the droplet are represented by points D and E. It
can be clearly seen from figure 6(b) that the position of the local maximum and minimum
inside the droplet are altered when compared with the corresponding points pertaining
to the non-magnetic case (t∗ = 0+ of figure 6b). This altercation is due to the presence
of the non-uniform magnetic flux density. The presence of a high force field gradient in
the left branch ensures that the maximum (of velocity) is always aligned towards the left
branch. Consequently, due to low magnetic flux density, the minimum (of velocity) is
aligned towards the right branch, as can be clearly observed from figure 6(b). In particular,
a high force field gradient acting in the left branch induces more ferrofluid mass to flow
towards it, leading to the generation/development of large-sized sister droplets moving
on the left side (refer to figure 6b). Also, the location of the stagnation point is altered
due to the involved asymmetric stretching of the droplet (refer to point E of figure 6b).
Quite notably, the influence of a magnetic field leads to the migration of the localized
maximum and minimum to the left bulge (of the droplet), as can be seen at t∗ = 0.5 and
0.75, respectively, from figure 6(b). In figure 6(c), we show the zoomed-in view of the
droplet domain at t∗ = 0.75 for both the cases i.e. with/without magnet cases, essentially
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Figure 6. Temporal evolution of the droplet splitting phenomenon calculated numerically in the (a) absence
and (b) presence of a non-uniform magnetic field. The white-coloured arrows indicate the direction of the
flow. Here, t∗ = t/tL represents the non-dimensional time period of the droplet splitting phenomenon; t, tL
represent the instantaneous time and the droplet splitting time respectively. (c) Zoomed view of the droplet
splitting phenomenon at t∗ = 0.75 for I. with and II. without a magnet cases. The red-coloured arrow shows the
direction of the flow. III. The right-most figure shows the zoomed view of the red-coloured ellipse along with
the black-coloured arrows indicating the velocity vectors. (d) Experimental hump formation in the ferrofluid
flow domain in the presence of a static magnet. The zoomed-in view shows the chained cluster formation of
the magnetic nanoparticles in the hump-like structure. The yellow and red coloured dotted arrows indicate the
direction of the ferrofluids in zones I and II, respectively.

to draw clear distinctions between them. The presence of maxima and minima in the left
moving bulge (of the droplet) under the modulation of a magnetic field can be clearly
observed in figure 6(c-II). Note that the fluid facing the lower wall (i.e. the wall of the left
branch facing the magnet) has a low magnitude of velocity in comparison with the fluids
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facing the upper wall. As such, two clear distinct zones can be observed in the left moving
bulge (of the droplet) under the modulation of a non-uniform magnetic field.

To explore the implication of these typical zones, in figure 6(c-III) we plot a further
zoomed-in view of the left moving bulge of the dispersed phase (i.e. the droplet) under
modulation of a magnetic field (at t∗ = 0.75). We demarcate the fluid velocity magnitude
inside the left moving bulge into two zones i.e. zone I and zone II, respectively, as shown by
the pink coloured ellipse in figure 6(c-III). As is clearly visible, zone I, which is adjacent
to the lower wall, experiences a velocity of lower magnitude. On the contrary, zone II,
which is adjacent to the upper wall, experiences velocities of higher magnitude. Note
that the lower wall experiences a higher magnetic field flux density in comparison with
the upper wall. Therefore, it may be argued that, when the ferrofluid droplet reaches the
T-junction divergence, the magnetically susceptible fluid rushes towards the lower wall
in an attempt to approach the magnet. However, on reaching the high magnetic field flux
zone, the ferrofluids (inside the left bulge) motion is highly restrained. This restrained
motion of the fluid towards the magnet leads to the development of a ‘hump-like structure’
near the lower wall, as can be observed from figure 6(c-III). Due to the high magnetic
field gradient existing nearby the lower wall, the magnitude of the velocity is low inside
this hump-like structure, as can be clearly observed from figure 6(c-III). It may also be
mentioned here that, owing to the presence of the hump-like structure, the succeeding
ferrofluids (inside the left moving droplet volume) are forced towards the upper wall to
satisfy the mass conservation constraint, as can be observed in zone II from the right-most
snapshots of figure 6(c-III). Due to the relatively low force field gradient near the upper
wall, a high velocity magnitude is encountered near the upper wall, as can be clearly seen
from figure 6(c-III). Following this, it may be argued that the presence of the ‘hump-like
structure’ non-trivially ensures augmented convections inside the left-directed bulge of the
droplet, thereby endorsing its amplified velocity in comparison with the bulge advancing
in the right branch.

In the previous discussion, we have argued the presence of a ‘hump-like structure’
inside the left moving ferrofluid droplet under the modulation of a magnetic field. To
check the validity of this argument, we carried out a bright field visualization of the
ferrofluid flow field in a microchannel under the influence of a static magnet. We show
in figure 6(d), the ferrofluid flow field in the presence of a steady magnet placed near
the lower wall. The presence of a hump-like cluster, together with the formation of
nanoparticle agglomeration following a chain-like structure, can be clearly observed from
figure 6(d). This observation justifies our arguments for the enhanced flow convections in
the left moving bulge (see movie 4 for a clearer insight). We will show in the succeeding
sub-sections that this augmented velocity in the bulge (moving in the left branch) can be
significantly maneuvered in controlling the size of the generated droplet (sister droplet)
particularly, for the cases involving the droplet train.

As discussed in § 3.1, when a droplet splits into sister droplets following the permanent
obstruction, the balance among the upstream pressure force, magnetic force and the
interfacial tension force dictates the overall splitting/breakup phenomenon. Accordingly,
in order to have a comprehensive understanding on the competition of these three forces,
we show in figures 7 and 8, the detailed evolution of the pressure distribution and the
Laplace pressure drop across the rear droplet interface during the breakup phenomenon
with permanent obstruction. The discussion pertaining to this aspect follows the results
obtained from the numerical simulations performed in this analysis. It may be mentioned
here that, due to the upstream pressure, the curvature of the rear interface of the droplet
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Figure 7. Pressure and order parameter distribution along the symmetric axis of the T-junction around the
interface for the droplet in the (a) entering phase, (b) at the junction, (c) after entering the junction, in the
absence of any external force field; Pc = Pinside − Poutside, where Pc is the Laplace pressure, Pinside is the
pressure inside the droplet (dispersed phase), Poutside is the pressure inside the upstream continuous phase, φ
is the order parameter. Here, P̄ = P∗/Pinlet, P∗ is the instantaneous non-dimensionalized pressure and Pinlet is
the non-dimensionalized pressure at the inlet of the channel. Negative value indicates that the surface tension is
oriented upstream. The blue shaded area indicates the branched channel area. The inset indicates the respective
spatio-temporal location of the droplet.

undergoes a temporal change from a convex to a concave shape. Therefore, we represent
the entire phenomenon in figures 7 and 8, by depicting three typical stages i.e. when
the droplet rear interface is convex, flat and concave (see inset of individual figures
for the snapshot of the temporal instant). The order parameter distribution in figures 7
and 8 helps in identifying the rear interface as it varies between φ = −1 and φ = 1.
Accordingly, the pressure difference across the interface indicates the Laplace pressure
(Pc = Pinside − Poutside).

It may be mentioned here that, in the absence of an external force field, when the
droplet enters the T-junction, its motion becomes restrictive due to the presence of the
wall of the junction. As a consequence of this restricted motion, the droplet undergoes
deformation symmetrically. At this juncture, the rear interface of the droplet exhibits
a convex profile, as can be observed from the inset of figure 7(a). Due to this convex
profile, the capillary pressure, Pc(= Pinside − Poutside) 
 0, demonstrates a positive value
(see figure 7a). With the progression of temporal instances, the droplet leaves the main
channel fully and occupies the whole junction, and at this stage, the upstream pressure
forces the rear interface of the droplet to attain a flat profile (t∗ = 0, of figure 6a). It is
due to this flat profile that the capillary pressure assumes an almost negligible value i.e.
Pc(= Pinside − Poutside) ∼ 0, as can be observed from figure 7(b). The upstream pressure
further forces the neck of the droplet to attain a concave profile, thereby ensuring that
the capillary pressure attains a negative value i.e. Pc(= Pinside − Poutside) < 0, as can be
observed from figure 7(c). Note that the dynamical evolution of the pressure remains the
same qualitatively even in the presence of a non-uniform magnetic field, i.e. the rear
interface of the droplet evolves from the convex to the concave shape as observed from
figure 8(a–c). Up to this section, we correlate the insight gained from the numerical
simulations directly to the experimental scenarios. Following these inferences, which will
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Figure 8. Pressure and order parameter distribution along the symmetric axis of the T-junction around the
interface for the droplet in the (a) entering phase, (b) at the junction, (c) after entering the junction, in the
presence of a non-uniform external magnetic field; Pc = Pinside − Poutside, Pc is the Laplace pressure, Pinside is
the pressure inside the droplet (dispersed phase), Poutside is the pressure inside the upstream continuous phase,
φ is the order parameter. P̄ = P∗/Pinlet, P∗ is the instantaneous non-dimensionalized pressure and Pinlet is
the non-dimensionalized pressure at the inlet of the channel. Negative value indicates that surface tension is
oriented upstream. The blue shaded area indicates the branched channel area. The inset indicates the respective
spatio-temporal location of the droplet.

be used to support the experimental observations, we explore the dynamics of the droplet
breakup events focusing on experimental results in the succeeding sections.

3.3. Droplet breakup: evolution of the droplet morphology

3.3.1. Evolution of droplet width
We have seen from the previous discussion that, on application of a non-uniform
magnetic field, the ferrofluid droplet tends to get stretched in the direction of the applied
magnetic field. We have also observed from both experimental observations and numerical
simulation that the uneven stretching of interface results in an asymmetric splitting of the
droplet. In figure 9, we show the variation of the non-dimensional thickness (W∗ = w/l) of
the droplet (dispersed phase) as it breaks both in the presence and absence of a magnetic
field. It may be mentioned here that the underlying event of droplet splitting is mainly
governed by the intricate competition among the interfacial force, viscous force and the
magnetic force. Here, we introduce the magnetic Bond number (Bom), which is used to
represent the relative strength between the magnetic force and the surface tension force.
The time zero indicates the moment at which the dispersed phase entirely penetrates into
the T-Junction divergence. As such, the rear interface of the dispersed phase is almost
flat at t = 0. We demarcate, in figure 9, the various regimes of splitting encountered by
the droplet i.e. the squeezing regime, the transition regime and the pinch-off regime. The
demarcation of the various regimes is identified out following the characteristic slopes
exhibited by the deforming ferrofluid droplet in the T-junction divergence, as can be
observed from figure 9. It may be mentioned here that evolution of the neck thickness
of the droplet is such that, in the initial squeezing regime, a linear gradient is observed.
Important to mention here is that this linear variation of W∗ is attributed to the typical role
played by the two responsible forces i.e. the interfacial force and the upstream pressure
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Figure 9. Temporal evolution of the non-dimensionalized droplet width (W∗) in absence and presence of the
magnetic field. The circles indicate the case when Bom = 0, the squares indicate the case when Bom = 6.1. The
blue, black and red lines show the squeezing, transition and pinch-off regimes. The inset shows a schematic
of the width of a typical droplet breakup process under a permanent obstruction case. Here, W∗ = w(t)/l,
where w(t) and l denote the instantaneous width of the droplet and the width of the microchannel; R = 1,
Ca = ∼10−3, Re ∼ 10−3. The top inset shows the variation of the thinning rate 1 − W∗ when a magnetic field
is applied.

force, on the underlying phenomenon in this regime. Due to the limited deformation of the
rear interface of the droplet in the squeezing regime, the role played by the interfacial force
in the pertinent regime becomes miniscule. As a result, the rear interface of the droplet
moves primarily due to the squeezing force of the upstream flow, with limited to no role
played by the surface tension force. It is because of this force balance, a linear relationship
between W∗ vs t, can be observed during the squeezing regime as observed from figure 9.
This is followed by the transition regime, in which the interfacial tension force resists the
deformation of the rear interface. This resistance leads to a delay in the overall deformation
of the rear interface of the droplet. Consequently, we observe an exponential relationship
between W∗ and t, as witnessed in figure 9 (see regime B). The transition regime is
followed by the pinch off stage, in which the thinning rate is significantly amplified with
time.

The top inset of figure 9 shows the variation of the thinning rate, 1 − W∗ vs t∗,
for the case when a magnetic field is applied. As already mentioned, in the squeezing
regime, it can be observed that, 1 − W∗ ∼ t∗, and this is essentially due to the minimal
involvement of the interfacial tension force. While, for the transition regime, we observe,
1 − W∗ ∼ t∗3/7, where the scaling 3/7, agrees well with the theoretical solutions as
proposed by Leshansky and Pismen (Leshansky & Pismen 2009). Therefore, it can be
argued that the characteristic behaviour of the droplet splitting, even as observed in the
regime of permanent obstruction, is independent of the fact of whether a magnetic field
is applied or not. However, it can be clearly visualized from figure 9 that magnetic field
has a role to play in the overall lifetime of the droplet breakup phenomenon. This further
implies that, by specifically tuning the force field, we could effectively control the size
of the droplet. In the forthcoming sections, we comprehensively discuss effective ways in
which the size of the sister droplets can be controlled.

3.3.2. Effect of magnetic flux density
We show in figure 10, the variation of non-dimensionalized width (W∗) for the various
magnetic flux densities (for various Bom). It can be clearly observed from figure 10 that

944 A51-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

50
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.504


Magnetofluidic-based controlled droplet breakup

1.00

0.75

0.50

0.25

0 0.02 0.04 0.06 0.08 0.10 0.12

1
2

3

4

0.6

0.5

0.4
0 5 10 15

Bom

Bom = 0

Bom = 6.1

Bom = 7.5

Bom = 15.1

Bom = 0

Bom = 7.5

Bom = 6.1

Bom = 15

ll
∗

1 2

3 4

HL HL

HLHL

t (s)

W∗

Figure 10. Temporal evolution of the non-dimensionalized droplet width (W∗) for the various magnetic field
Bond numbers (Bom). Here, W∗ = w(t)/l, where w(t) and l denote the instantaneous width of the droplet and
the width of the microchannel. The right side inset shows the variation of the non-dimensionalized length (l∗l )
of the sister droplet flowing in the left branch of the microchannel, for the various magnetic field strengths. The
corresponding snapshots of the generated droplet are shown in the left-bottom inset marked by 1, 2, 3, 4. Here,
l∗l = l(t)/l0, where l(t) and l0 denotes the instantaneous length of the sister droplet and characteristic length of
the mother droplet; R = 1, Ca = ∼10−3, Re ∼ 10−3.

the characteristic variation of the droplet width is the same irrespective of the applied
magnetic field strength. Also, figure 10 demonstrates that the required time for splitting
of the ferrofluid droplet into the sister droplets is dependent on Bom. As such, it could be
observed from figure 10 that the droplet splitting time (t) varies in the following sequence:
Bom(= 0) < Bom(= 7.5) < Bom(= 6.1) < Bom(= 15.1). In the next sections, we explore
this particular aspect of the droplet splitting time as modulated by the magnetic flux density
in greater detail.

The top right inset of figure 10 shows the variation of non-dimensionalized length (l∗l )
of the sister droplet flowing in the left branch. It is important to mention that the magnet
is placed adjacent to the left branch of the T-junction divergence. Therefore, to explore
the role of magnetic field on the droplet splitting and, subsequently, on the change in the
length of the sister droplets, we focus our attention on l∗l . Note that l∗l > 0.5 ensures that
the length of the sister droplet moving to the left branch (l∗l ) is higher in comparison with
the length of the sister droplet moving to the right branch (l∗r ). In other words, it can also
be said that the application of a non-uniform magnetic field ensures that an increased fluid
volume moves to the left branch when compared with the volumes of fluid moving to the
right branch, precisely due to the existence of the high field gradient (in the left branch).
We can clearly observe from figure 10 (right-inset) that the curve exhibits a positive slope
and, on reaching a particular threshold value, it exhibits a negative slope. Note that, with
an initial increase in Bom, the change in length of the sister droplet in the left branch
(l∗l ) increases and on reaching a particular critical Bom, the length of the sister droplet
(l∗l ) decreases. Any increase in Bom beyond the critical value reduces the size of the sister
droplet moving in the left branch. The left-side inset (of figure 10) shows the corresponding
snapshots of the droplet splitting phenomenon for the different cases under investigation.
It can be clearly observed from the left-side inset of figure 10 that the length of the sister
droplet (l∗l ) is maximum for Bom = 7.5.
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Figure 11. Droplet splitting time (t∗) for the various magnetic Bond numbers (Bom). The red-coloured ellipse
indicates the flow ratio at which the ferrofluid droplet exhibits minimum splitting time. The inset shows the
variation of non-dimensionalized width (W∗) of the droplet for the various magnetic field intensities. Here,
Ca = ∼10−3, Re ∼ 10−3.

3.3.3. Effect of flow ratio (R)
In this subsection, we explore the effect of the dispersed phase flow rate on the droplet
splitting phenomenon. We have mentioned that, in the present study, the flow rate of
the dispersed phase is changed while that of the continuous flow is kept constant. This
particular exercise is carried out essentially to vary the length of the generated droplet
(equivalently the volume), keeping the continuous phase flow velocity constant. We
normalize the flow rate as the flow ratio, given as, R = Qc/Qd. Note that lower the value of
R, higher is the slug length of the dispersed phase (i.e. the droplet). We show in figure 11
the variation of the droplet breakup time for the various values of the flow ratio, R. We can
clearly see that on increasing the value of the flow ratio (R), the splitting time decreases,
and any increase in the flow ratio (R) beyond the critical value increases the splitting
time. Thus, it may be argued that there exists a particular ferrofluid slug length at which
the splitting time is minimum. For the present case, the droplet experiences a minimum
splitting time for R = 0.66. In the inset of figure 11, we show the variation of W∗ for the
different values of Bom obtained at R = 0.66. Although the characteristic behaviour of the
change in width of the droplet is similar, a clear distinction between the overall droplet
splitting time is evident for varying magnetic field strength (as reflected by the change in
Bom). The minimum splitting time can be observed for Bom = 7.5, as witnessed by the
inset of figure 11.

We show in figure 12, the length of the sister droplet (l∗l ) moving in the left branch after
the breakup phenomenon. Needless to mention here is that the influence of a non-uniform
magnetic field is significant in the left branch. As can be clearly observed from figure 12,
there exists a threshold magnetic field strength (precisely Bom = 7.5) and flow ratio (R)
at which l∗l is maximum. As can be observed from figure 12, any increase in the magnetic
field strength beyond the threshold value decreases the length of the sister droplet (l∗l ) that
is migrating in the left branch. The corresponding snapshots of the events pertaining to
sister droplet generation for the various cases under investigation can be observed from
the inset of figure 12. The consequence of this particular insight is significant, since by
tunning the strength of the magnetic field and the flow ratio, we could ensure the desired

944 A51-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

50
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.504


Magnetofluidic-based controlled droplet breakup

0.7

0.6

0.5

0.4

0.3
6 9 12 15

ll
∗

Bom

Maximum size

of sister droplet at Bom = 7.5

R = 0.66

R = 0.33

R = 1

Droplet break-up

Bom = 6.1 Bom = 15.1Bom = 7.5 Bom = 6.1 Bom = 15.1Bom = 7.5

Bom = 6.1 Bom = 15.1Bom = 7.5

R
=

0
.3

3

R
=

1

R
=

0
.6

6
Figure 12. Variation of the non-dimensional length of the sister droplet moving in the left branch (l∗l ) for the
various magnetic field Bond numbers (Bom). Blue-coloured arrow indicates the position of the threshold Bom
at which l∗l is maximum. Here, R = Qc/Qd , where Qc, Qd are the flow rates of the continuous phase and the
dispersed phase, respectively. The inset shows the snapshots of the sister droplet for the various cases under
consideration. Here, Ca = ∼10−3, Re ∼ 10−3.

volume of slug to move into the various branches of the T-junction divergence (precisely
the left/right branch). In the following section, we explore the physical reason behind
this typical behaviour of the sister droplet train in a confined microfluidic passage in the
presence of a non-uniform magnetic field.

3.4. Mechanism of splitting: a time scale perspective
The results until now have shown that there exist a threshold magnetic field strength
(Bom) and flow ratio (R) for which the size of the generated sister droplet in the left
branch becomes maximum. In this section, we attempt to unearth the reason behind this
typical splitting behaviour of droplets in the presence of a non-uniform magnetic field.
As mentioned before in the present work, splitting takes place by virtue of permanent
obstruction. Therefore, the underlying motion of the droplet (being split) moving in the
left branch and the right branch simultaneously will dictate the overall splitting process.

To develop an overall understanding of the splitting phenomenon, two distinguishable
parameters were identified: the velocity of the sister droplets advancing towards the
left (ul), and the right divergences (ur), simultaneously. It is found that, due to the
non-uniformity in the distribution of the magnetic field flux density, there exists a
significant difference between ul and ur. It is worth mentioning here that, owing to this
effect, the flow time scale of the sister droplets’ motions in the left branch (tl = l/ul) and
in the right branch (tr = l/ur) of the microfluidic channel become different.

The flow time scale refers to the time required by the individual sister droplet to
travel the characteristics length (l) in the respective branches (left/right) of the T-junction
divergence. It may be reiterated that, in the absence of any external forcing, the dispersed
phase (the ferrofluid droplet) on impacting the T-junction divergence (i.e. the splitting
junction) blocks the whole junction and stretches itself symmetrically in the left and
right branches. During the stretching phase, the dumbbell-shaped bulges of the droplet
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Figure 13. Variation of the flow time scales of the ferrofluid sister droplet migrating in the left branch for the
various magnetic Bond numbers (Bom) and flow ratios (R). Here, tl indicates the flow time scale in the left and
right branches of the T-junction.

(being split) move in both the left and right branches independently. This migration
event eventually culminates in the breaking of the droplet into two sister droplets. As
a consequence of the symmetric motion of the sister droplets (in the absence of any
external forcing), the respective time scales are also equal. Whereas, under the motion of
a non-uniform magnetic forcing, the time scale of motion of the respective sister droplet
(i.e. the sister droplets migrating towards the left and right branch ) is different. Due to the
non-uniform distribution of the magnetic force field gradient, the asymmetry between the
two time scales i.e. tl and tr, leads to the formation of sister droplets of unequal sizes. It
is understandable that, due to the presence of a high force field gradient in the left branch,
tl < tr, indicating that the time required for the dispersed phase (i.e. the sister droplet) to
move a characteristics length (l) is higher in the right branch in comparison with the left
branch. Moreover, we found that the flow time scale (tl) in the left branch is dependent
on the simultaneous effect of the magnetic field flux density and the flow ratio (R). In
figure 13, we show the variation of tl, for the different cases under consideration. It can be
clearly observed from figure 13 that the migration time scale of the sister droplet moving
in the left branch is minimum for Bom = 7.5 for all the cases under consideration. As a
consequence, we have observed that l∗l is maximum for Bom = 7.5 (refer to figures 11 and
12 for details). This observation is also suggestive of the presence of a threshold flow ratio
and magnetic field intensity at which l∗l is maximum.

We explain this typical behaviour of the times scales in the left/right branch of
the T-junction divergence with the help of a graphical representation, as shown in
figure 14(a,b). Although, as already discussed, it is comprehensible that the magnetic
field gradient promotes the asymmetric splitting of the ferrofluid droplets, it cannot be
ignored that the flow of the ferrofluid droplet train in the left branch also faces resistance
due to the non-uniform distribution of the magnetic field flux density (since the magnet is
placed adjacent to the left branch). It is worth mentioning here that, it is because of this
resistance that the droplets moving in the left branch and the right branch have different
times scales, as illustrated in figure 14(a). With an initial increase in the magnetic Bond
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Figure 14. Schematic representation of the droplet breakup dynamics for the case when (a) R is constant,
Bom increases, (b) Bom is constant, R increases.

number (Bom), the size of the ferrofluid droplets moving in the left branch (l∗f ) increases.
With an increase in Bom beyond the critical value, l∗f decreases further. This decrease in
l∗f is due to the substantial increase in the restriction of the sister droplets motion in the
left branch, as can be observed from figure 14(a). This argument is further justified, since
we observe an increase in tl beyond critical Bond number (i.e. Bom,Crt = 7.5), as depicted
in figure 13. As a consequence of this resistance, the flow rate of the continuous phase in
this particular branch decreases and, primarily for this reason, we observe a decrease in
the size of the sister droplet (moving in the left branch) beyond the critical Bond number
(Bom,Crt).

Similar observation can be seen with a change in the flow ratio (R). Note that a low
flow ratio (R) ensures a high initial slug length (l0) of the mother droplet and vice
versa. As discussed previously, an increase in the mother droplet length will ensure a
simultaneous high resistance to the flow (in the left branch), thereby further decreasing
l∗f as depicted in figure 12. On the other hand, with a reduction in initial droplet length
(l0), l∗f increases. However, a further reduction in l0 (i.e. increasing flow ratio, R) beyond
the critical value(l0,crt), limits the amount of magnetization realized by the droplet that is
being split. This limited realization of the magnetic force by the ferrofluid droplets restricts
the asymmetricities involved in the droplet splitting phenomenon and leads to a decrease
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in l∗f further. This phenomenon can be clearly observed from the graphical representation
of 14(b).

4. Conclusion

In summary, we have systematically investigated the ferrofluid droplet breakup dynamics
in a T-junction divergence of an LOC device in the presence of a non-uniform magnetic
field. The study is especially limited to the ‘breakup with permanent obstruction’
regimes. Firstly, we have methodically explored the droplet breakup behaviour under the
modulation of a non-uniform magnetic field. With the help of numerical simulations,
we have investigated, the internal hydrodynamics of the droplet under the influence of
a non-uniform forcing. We found that the presence of a ‘hump-like structure’ developed
inside the left moving bulge (of the ferrofluid droplet) triggers the onset of augmented
flow convections inside the moving volume. By performing further investigation, we have
explored the roles of the critical magnetic Bond number (Bom), and the flow ratio (R) on
the underlying droplet splitting phenomenon. A critical magnetic Bond number (Bom,crt)

is found for which the length of the split slug (l∗f ) becomes maximum in the left branch,
while any increase in magnetic field strength beyond the critical value is seen to reduce l∗f .
Similarly, we have also observed the presence of a threshold flow ratio (Rcrt) at which the
length of the split droplet (l∗f ) is a maximum. To understand these characteristic behaviours
of the ferrofluid droplet undergoing deformation in the presence of non-uniform force
field, we have investigated the role played by the various dominant time scales. We found
that, due to the imbalance between the flow time scale in the left and right branches of the
T-junction divergence, asymmetric droplet breakup takes place. The non-uniformity of the
magnetic field (placed adjacent to the left branch) initiates a lower flow time scale in the
left branch in comparison with the right branch. Also, we unveiled that, at the critical state,
the flow time scale is lowest in the left branch, thereby ensuring the largest size of the sister
droplet formed therein. At the critical Bom,crt, the length of the sister droplet (in the left
branch) is increased by almost 33 % when compared with the base case, i.e. in the absence
of a magnetic field. The proposed technique is expected to open up new avenues towards
the development of a LOC device for achieving rapid and controlled droplet splitting,
typically finding relevance in point-of-care-related diagnostics.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2022.504.
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