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This paper presents a reduced-order modelling strategy for Rayleigh–Bénard
convection of a radiating gas, based on the proper orthogonal decomposition (POD).
Direct numerical simulation (DNS) of coupled natural convection and radiative transfer
in a cubic Rayleigh–Bénard cell is performed for an air/H2O/CO2 mixture at room
temperature and at a Rayleigh number of 107. It is shown that radiative transfer
between the isothermal walls and the gas triggers a convection growth outside
the boundary layers. Mean and turbulent kinetic energy increase with radiation,
as well as temperature fluctuations to a lesser extent. As in the uncoupled case,
the large-scale circulation (LSC) settles in one of the two diagonal planes of the
cube with a clockwise or anticlockwise motion, and experiences occasional brief
reorientations which are rotations of π/2 of the LSC in the horizontal plane. A POD
analysis is conducted and reveals that the dominant POD eigenfunctions are preserved
with radiation while POD eigenvalues are increased. Two POD-based reduced-order
models including radiative transfer effects are then derived: the first one is based on
coupled DNS data while the second one is an a priori model based on uncoupled
DNS data. Owing to the weak temperature differences, radiation effects on mode
amplitudes are linear in the models. Both models capture the increase in energy with
radiation and are able to reproduce the low-frequency dynamics of reorientations
and the high-frequency dynamics associated with the LSC velocity observed in the
coupled DNS.

Key words: Bénard convection, low-dimensional models

1. Introduction
It has been recognised that radiative transfer can significantly alter thermally driven

flows encountered in atmospheric physics, in astrophysics or in various engineering
applications. The emission and absorption of radiation affect the temperature of a
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radiating fluid, which, in turn control the buoyant motion. Water vapour and carbon
dioxide are the most common radiating gases in the infrared and are present in
significant quantity in the atmosphere or in confined environments such as buildings.
First studies dedicated to radiative transfer effects on natural convection have been
focused on the onset of Rayleigh–Bénard convection (RBC), where a radiating fluid
layer is confined between two horizontal plates, heated from the bottom and cooled
from above. Using linear stability analysis, Goody (1956), followed by Spiegel (1960),
have shown that radiative transfer delays the onset of convection and stabilises the
fluid layer. Two stabilising physical mechanisms were highlighted: the decrease of
the static temperature gradient in the core of the layer and the damping of thermal
perturbations with radiative transfer. Although these studies were restricted to a grey
fluid (radiative properties independent of the wavelength), the stabilising effect of
radiation has been further confirmed for real molecular gases (Bdéoui & Soufiani
1997) and supported by experiments conducted with ammonia (Gille & Goody 1964)
or carbon dioxide (Hutchinson & Richards 1999). The study of the stability of
a radiating fluid layer exposed to a cold radiative background, which models the
atmospheric nocturnal boundary layer, also shows a delay of the onset of convection
when radiative transfer is taken into account (Prasanna & Venkateshan 2014).

While a substantial research effort has been devoted to understanding turbulent
RBC and predicting the scaling laws for the Nusselt number (Grossmann & Lohse
2000), the large-scale organisation of the flow (Brown, Nikolaenko & Ahlers 2005;
Mishra et al. 2011), the turbulence properties (Lohse & Xia 2010) or the plume
dynamics (van der Poel et al. 2015), the study of radiative transfer effects on RBC
at high Rayleigh numbers Ra has received little attention. The numerical investigation
of radiative transfer effects is actually restricted by the computational time required
for solving the radiative transfer equation in a turbulent participating medium. The
radiative intensity Iν(Ω, r, t) varies in a seven-dimensional space (wavenumber ν,
propagation direction Ω , space r and time t): its discretisation needs to cover all the
spatial and temporal scales of the turbulence but also all the propagation directions
of the angular domain and all the wavenumbers of the spectrum. Experimental
investigations are also challenging as non-intrusive measurement techniques are
required when radiation comes into play and as radiating gases are associated with
low thermal conductivities, making harder the insulation of the experimental devices.

Some authors have nevertheless attempted to account for radiative transfer in steady
or weakly turbulent RBC. Lan et al. (2003) explored flow regimes above the onset
of convection (Ra ∼ 103) using three-dimensional (3-D) coupled calculations for a
grey radiating fluid. Mishra, Akhtar & Garg (2014) also performed two-dimensional
(2-D) coupled calculations for a grey participating medium for Rayleigh numbers of
approximately 104 and reported an increase of the number of convective cells with
radiation. Radiation effects on the shape and on the number of large-scale convection
rolls have also been observed by Sakurai et al. (2012) for mixed convection
(Ra ∼ 106) using an optically thin model for radiation. In the weakly turbulent
regime (106 6 Ra6 107), the coupled numerical results obtained by Soucasse, Rivière
& Soufiani (2014a) for a real radiating gas in a a cubic cell show that radiative
transfer significantly increases the kinetic energy of the mean and fluctuating flows,
although the results were obtained within a limited integration time. This convection
intensification with radiation is also noticed in experiments where a lightspot serves
as a heat source for an absorbing fluid (Lepot, Aumaître & Gallet 2018; Bouillaut
et al. 2019). Radiation is found to promote the mixing-length scaling regime as
energy transfer is no longer restricted by the boundary layers and can influence the
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POD modelling of radiative transfer effects on RBC 898 A2-3

flow field in the core of the cavity. The convection intensification with radiation in
the weakly turbulent regime seems to contradict the stabilising effect described at
low Rayleigh numbers. Interestingly, the same observations have been reported in
differentially heated cavities where radiation is found to promote the turbulence in the
unsteady regime (Soucasse, Rivière & Soufiani 2016; Kogawa et al. 2017), while the
onset of convection is delayed (Borget et al. 2001). It should be finally mentioned that
surface-to-surface radiation can also affect RBC, as shown for instance by Czarnota
& Wagner (2016), who consider radiative and conductive horizontal plates.

This brief literature review reveals a lack of reference results to understand the
radiation effects on RBC but also the need for a simple model able to capture
these effects. Among the different modelling strategies for natural convection
flows, reduced-order models based on proper orthogonal decomposition (POD) are
established techniques that can capture the dynamics of turbulent large-scale flow
structures. POD is a modal decomposition method that extracts a basis of orthogonal
spatial modes from a statistical analysis of sampled flow field data. POD-based
low-order models are then derived using Galerkin projection of the Navier–Stokes
equations onto a reduced set of POD modes, selected from an energy criterion.
Although these models are mainly used to analyse numerical or experimental data
a posteriori in a given configuration, they have been able to predict flow modifications
due to a change in the flow parameters, such as variations of the turbulence intensity
due to additional rates of strain (Lumley & Podvin 1996). POD has been extensively
used to analyse and model natural convection flows (Park, Sung & Chung 2004;
Verdoold, Tummers & Hanjalić 2009; Bailon-Cuba, Emran & Schumacher 2010;
Podvin & Sergent 2017).

The goal of this paper is to extend such a kind of low-order model to account
for radiative transfer. We have carried out a long term direct numerical simulation
(DNS) of RBC at Ra= 107 in a cubic cell, for a radiating air/H2O/CO2 mixture at
room temperature whose composition is relevant for building applications. Radiative
transfer effects in these conditions have been analysed by comparison with uncoupled
DNS results discussed in a previous study (Soucasse et al. 2019). Two POD-based
reduced-order models including radiative transfer have been derived: the first one is
based on coupled DNS data while the second one is an a priori model based on
uncoupled DNS data. The linearisation of radiation emission (low temperature gradient
assumption) is used to decompose the radiative source term into a sum of modal
contributions associated with each POD temperature eigenfunction. The radiative
contribution in the low-order models is then obtained by projecting this decomposition
onto the POD basis. The problem configuration as well as the numerical methods
used to perform the coupled DNS are given in § 2. Radiative transfer effects are
analysed from numerical results in § 3. Finally, model derivation and model results
are discussed in § 4.

2. Direct numerical simulations of coupled natural convection and radiation
2.1. Problem set-up and governing equations

We consider a cubical cavity of size L, heated from below and cooled from above. The
cavity is filled with a radiating air/H2O/CO2 mixture, of molar composition XH2O =

0.02 and XCO2 = 0.001, at atmospheric pressure and at a mean temperature T0= 300 K.
Top and bottom walls are maintained at uniform temperature Tcold and Thot and the
four lateral walls are assumed to be adiabatic. The six walls are characterised by
uniform grey emissivities ε, the horizontal isothermal walls being black (ε= 1), while
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FIGURE 1. (a) Cubic Rayleigh–Bénard cell filled with a radiating air/H2O/CO2 mixture.
Top and bottom walls are isothermal and black while side vertical walls are adiabatic
and perfectly diffuse reflecting. (b) Absorption coefficient spectrum of the considered
air/H2O/CO2 mixture (atmospheric pressure, T0 = 300 K, XH2O = 0.02, XCO2 = 0.001).

the vertical adiabatic walls are perfectly diffuse reflecting (ε= 0). The problem set-up
is displayed in figure 1. The Rayleigh number which controls the flow regime is set
to 107 and is given by Ra= gβ1TL3/(νf a), where g is the gravitational acceleration,
β = 1/T0 is the thermal expansion coefficient, νf is the kinematic viscosity, a is the
thermal diffusivity and 1T = (Thot− Tcold) the temperature difference between hot and
cold walls. The Prandtl number is set to 0.707 and is given by Pr = νf /a. Since
radiation is treated in dimensional form, we also need to specify the size of the cavity,
which is set to L= 1 m.

Governing equations under the Boussinesq approximation are

∇ · u= 0, (2.1)
∂u
∂t
+ u · ∇u=−∇p+ Pr θ ez +

Pr
√

Ra
∇

2u, (2.2)

∂θ

∂t
+ u · ∇θ =

1
√

Ra

(
∇

2θ +P rad
)
, (2.3)

where u= (u, v,w) is the dimensionless velocity vector, p is the dimensionless motion
pressure, θ is the reduced temperature and P rad is the dimensionless radiative power.
A no-slip velocity condition (u= 0) is prescribed on the six walls of the cavity and
thermal boundary conditions are written as follows

θ = 0.5 on z= 0,
θ =−0.5 on z= 1,

∇θ · n= 0 on x= 0, x= 1, y= 0, y= 1,

 (2.4)

where x, y and z are the dimensionless Cartesian coordinates. Note that there is
no radiative flux on reflecting adiabatic sidewalls. Equations (2.1)–(2.3) are made
dimensionless using the length of the cavity L, the reference time L2/(a

√
Ra) and

the reduced temperature θ = (T − T0)/1T , T0 being the mean temperature between
hot and cold walls.

The dimensionless radiative power is given by

P rad(r)=
L2

λ1T

∫
ν

κν

(∫
4π

Iν(Ω, r) dΩ − 4πI◦ν (T(r))
)

dν, (2.5)
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POD modelling of radiative transfer effects on RBC 898 A2-5

where Iν(Ω, r) is the actual radiative intensity at wavenumber ν, direction Ω
and position r, I◦ν (T(r)) is the Planck equilibrium intensity at temperature T , κν
is the absorption coefficient that is assumed to be uniform owing to the weak
temperature differences and λ is the thermal conductivity. The line-by-line (high
resolution) absorption spectrum of the considered mixture is shown in figure 1. The
shape of the spectrum makes the numerical evaluation of the integration over the
wavenumbers in (2.5) computationally expensive. In order to save computational time,
the absorption distribution function (ADF) model (Pierrot et al. 1999) is used: it
consists in substituting the integration over the wavenumber with an integration over
the values k of the absorption coefficient, for which a coarse logarithmic discretisation
is sufficient. In the present study, the values of the absorption coefficient of figure 1
have been logarithmically discretised in 16 k-classes. With the ADF model, the
radiative power writes

P rad(r)=
L2

λ1T

∑
j

kj

(∫
4π

Ij(Ω, r) dΩ − 4wjσT4(r)
)
, (2.6)

where kj and wj are respectively the absorption coefficient and the weight associated
with the jth k-class and σ is the Stefan–Boltzmann constant; Ij(Ω, r) is the intensity
field associated with the jth k-class and satisfies the radiative transfer equation

Ω · ∇Ij(Ω, r)= kj

(wjσ

π
T4(r)− Ij(Ω, r)

)
, (2.7)

and boundary condition

Ij(Ω, rw)= ε
wjσ

π
T4(rw)+

1− ε
π

∫
Ω ′·n<0

Ij(Ω
′, rw)|Ω ′ · n| dΩ ′, (2.8)

for propagation direction Ω · n> 0, n being the normal at boundary point rw directed
towards the inside of the domain. The accuracy of the present ADF model has been
shown to be better than 1 % (Soucasse et al. 2012). Model parameters (kj, wj) and
details on the implementation can be found in Soucasse (2013).

It is worth noting that the flow equations are written and solved in dimensionless
form, while the radiative transfer equations are treated in dimensional form since
we consider an actual molecular radiating gas. A key parameter for radiation is
the optical thickness τ = kL that varies over several orders of magnitude in our
model. Considering a grey fluid (wavelength-independent absorption, single k value)
would facilitate a parametric study of radiation effects but would fail to represent the
behaviour of actual radiating gases.

Without radiation coupling, the problem satisfies four independent reflection
symmetries Sx, Sy, Sz and Sd with respect to the planes x = 0.5, y = 0.5, z = 0.5
and x = y (Puigjaner et al. 2008). These four elementary symmetries generate a
symmetry group of sixteen elements. In unsteady regime, we expect these symmetries
to be satisfied by the time-averaged flow field. Radiation emission being proportional
to T4, radiative transfer should break the Sz symmetry as the mean temperature
gradient is directed along the z axis. However, owing to the weak temperature
gradients (1T ' 0.1 K for the conditions specified), nonlinear effects are negligible
(namely 1 − (4T3

01T/T4
hot − T4

cold) ' 3 × 10−8) so that we can consider that the Sz

symmetry is still satisfied with radiation.
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2.2. Numerical methods
2.2.1. Flow field

Equations (2.1)–(2.3) are solved using a Chebyshev collocation method for the
three dimensions of space (Xin & Le Quéré 2002). The pressure–flow coupling is
ensured by a projection method that forces the velocity divergence free condition.
Time integration is performed through a second-order temporal scheme combining
a backward differentiation (BDF2) scheme for the linear terms with an Adams–
Bashforth extrapolation of convective terms. This algorithm is implemented for
parallel computations applying domain decomposition along the z-vertical direction
(Xin, Chergui & Le Quéré 2008).

The spatial flow mesh is made of 81 Chebyshev collocation points in the x and
y directions and 4 × 21 Chebyshev collocation points in the z direction (4 spatial
domains are constructed for parallelisation purposes, each discretised with 21 points).
The number of spatial collocation points in the kinetic and thermal boundary layers
(Nu,BL and Nθ,BL) is approximately 10 in the x and y directions and approximately 6
in the z direction, which is satisfactory regarding the criterion proposed by Shishkina
et al. (2010) (Nu,BL = 0.31Ra0.15 and Nθ,BL = 0.35Ra0.15 for Pr' 0.7). The thicknesses
of the kinetic and thermal boundary layers have been estimated using the correlations
provided by the same authors and are respectively equal to δu/L = 0.027 and
δθ/L = 0.031 at Ra = 107. It will be shown in § 3 that radiation does not affect
much the thermal and mechanical boundary-layer thicknesses in the case studied. The
dimensionless flow time step is set to 2.5× 10−3.

2.2.2. Radiation source term
In order to determine the intensity field Ij(Ω, r) and calculate the radiative power

(2.6) that goes into the energy balance (2.3), a ray-tracing algorithm has been
implemented. This approach consists in discretising uniformly the 4π solid angle
domain into a large number of rays NΩ and approximating angular integrals using∫

4π

Ij(Ω, r) dΩ =
4π

NΩ

NΩ∑
i=1

Ij(Ωi, r). (2.9)

The intensity Ij(Ωi, r) is obtained by solving (2.7) along the ray of direction Ωi
ranging from the current point r of abscissa s = 0 to the boundary point rw of
abscissa s= l

Ij(Ωi, r)=
∫ l

0
kjwj

σ

π
T4(s) exp(−kjs) ds+ Ij(Ωi, rw) exp(−kjl). (2.10)

The discretisation of the spatial integration along the ray in the equation above
is easily achieved using exact intersection calculations between the ray and the
Cartesian mesh on which the temperature field is provided. The intensity field at
boundary points, which is not known because of multiple reflections, is determined
iteratively in a first step before computing the intensity field in the medium at
points r. The ray-tracing algorithm is implemented in parallel by distributing the
NΩ rays among the different processors. This method has been validated against
the Monte Carlo method and used in coupled calculations of natural convection and
radiation (Soucasse et al. 2012, 2014b, 2016).

The spatial radiation mesh is made of 41 points in each spatial coordinate, obtained
by coarsening the spatial flow mesh by a factor of two in each direction. We have
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POD modelling of radiative transfer effects on RBC 898 A2-7

checked that the use of this coarser grid is sufficient to capture all the spatial
structures of the radiation field. Interpolations are used to get the temperature field
on the radiation mesh and the radiation source term on the flow mesh. The angular
mesh is made of NΩ = 900 rays (Nw

Ω = 450 rays from boundary points) which yields
very good accuracy. The calculation is carried out for the 16 k-classes of the ADF
model.

An explicit coupling is carried out between flow and radiation calculations. In
practice it is sufficient to update the radiation field every 10 flow time steps: the flow
time step is imposed by numerical stability constraints and does not correspond to
significant variations of the temperature field, so that we can consider the radiation
field constant over this period. Integration of the Navier–Stokes equations and
radiation equations are carried out simultaneously in an asynchronous way. Starting
from a fluid at u = 0 and θ = 0, coupled calculations are first carried out over a
dimensionless time period of 2400 in order to reach the asymptotic regime and then
continued over a dimensionless time period of 10 000 to conduct the analysis. The
total CPU cost of the coupled simulation is approximately 125 000 h (Intel Sandy
Bridge E5-4650, 2.7 GHz processors), 97 % of this cost being spent for radiation
computation. In the next section, coupled DNS results will be compared to uncoupled
DNS results, where the gas is considered transparent (P rad

= 0). Uncoupled results
have been integrated over the same time period in the asymptotic regime and have
been discussed in a previous study (Soucasse et al. 2019).

3. Radiative transfer effects

Radiative transfer effects are analysed in this section by comparing coupled DNS
results to uncoupled DNS results. The effects on mean and fluctuating fields are
discussed in § 3.1 and the effects on reorientations are discussed in § 3.2. Then, POD
analysis of the coupled DNS is performed in § 3.3.

3.1. Mean and fluctuating fields
Figure 2 compares results obtained with and without radiation coupling for time-
averaged and fluctuating fields: the mean temperature 〈θ〉, the mean kinetic energy
0.5〈u〉 · 〈u〉, the mean radiative power 〈P rad

〉, half of temperature variance 0.5〈θ ′θ ′〉
and the turbulent kinetic energy 0.5〈u′ · u′〉, where 〈·〉 denotes the time average and
′ denotes time fluctuations. These quantities are averaged over horizontal planes and
plotted along the vertical direction. While mean and fluctuating temperature fields
are not much affected by radiation coupling, there is a significant increase of kinetic
energy of both mean and fluctuating velocity fields when coupling with radiation.
The total kinetic energy increase (mean and fluctuating) is approximately 30 %. The
mean radiative power plot shows that the hot (respectively cold) gas in the lower
(respectively upper) half of the cavity is absorbing (respectively emitting), except in
very thin emitting (respectively absorbing) layer near the hot bottom (respectively cold
top) wall. The temperature in the cavity is thus slightly higher in the lower half of
the cavity (slightly lower in the upper half) allowing a reinforcement of the velocity
field that leads to an increase of velocity and temperature turbulent fluctuations. The
increase of temperature fluctuations is, however, smaller because radiative transfer
tends to damp temperature fluctuations (Soufiani 1991).

A quantity of interest in Rayleigh–Bénard convection is the total energy flux qtot in
the vertical direction which is the sum of the conductive qcond, convective qconv and
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FIGURE 2. From left to right, top to bottom: mean temperature 〈θ〉, mean kinetic energy
0.5〈u〉 · 〈u〉, mean radiative power 〈P rad

〉, half of the temperature variance 0.5〈θ ′θ ′〉 and
turbulent kinetic energy 0.5〈u′ ·u′〉 for coupled (black) and uncoupled (red-dashed) results.
Results are averaged over horizontal planes.

radiative qrad energy fluxes

qtot =−
∂〈θ〉

∂z︸ ︷︷ ︸
qcond

+
√

Ra〈θw〉︸ ︷︷ ︸
qconv

+
L
λ1T

〈∑
j

∫
4π

IjΩ · ez dΩ

〉
︸ ︷︷ ︸

qrad

. (3.1)

Averaged in the horizontal plane, this quantity is constant along z because the side
vertical walls are adiabatic. Figure 3 shows the three components of the total energy
flux averaged in time and in the horizontal plane. Flux values at the wall (z = 0,
z= 1) and in the core (z= 0.5) are reported in table 1. For the uncoupled case, we
consider that the gas is transparent (P rad

= 0) but that the wall emissivities are the
same as in the coupled case (isothermal walls are black, adiabatic vertical walls are
perfectly reflecting). There is thus a radiative flux qrad exchanged between the two
black isothermal walls, which does not vary with z because the radiation field does
not interact with the flow field (the radiating walls are isothermal).

The conductive flux slightly increases with radiation coupling (the Nusselt number
at the wall is 16.66 with radiation and 16.24 without radiation), both at the wall
and in the core of the cavity. The convective flux, however, significantly increases
in coupled calculations, especially in the core of the cavity (approximately 30 %). In
the coupled case, there is actually an energy transfer between radiation and convection
outside the boundary layers: in the lower half of the cavity, the gas absorbs radiation,
the radiative flux decreases with z and the convective flux increases accordingly while
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FIGURE 3. Conductive flux qcond, convective flux qconv and radiative flux qrad as defined
in (3.1) for coupled (black) and uncoupled (red-dashed) cases. Results are averaged over
horizontal planes.

Wall qcond qconv qrad qtot Core qcond qconv qrad qtot

Coupled 16.66 0 120.82 137.48 Coupled 0.12 21.62 115.77 137.51
Uncoupled 16.24 0 125.05 141.29 Uncoupled 0.08 16.14 125.05 141.27

TABLE 1. Energy budget at the wall and in the core of the cavity. Wall values are obtained
by averaging top z= 1 and bottom z= 0 wall values. Core values correspond to z= 0.5.

in the upper half of the cavity, the gas emits radiation, the radiative flux increases with
z and the convective flux decreases accordingly. This convection enhancement through
radiation is not possible in the uncoupled case (the radiative flux is constant) where
energy transfer is restricted by boundary layers near the walls. When considering a
participating medium, it can be noticed that the radiative flux at the wall is smaller
(120.79 with radiation coupling and 125.05 without) because gas absorption reduces
the radiative exchange between the isothermal walls. The total energy flux is thus also
weaker in the coupled case. The total energy flux values at the wall and in the core
are consistent although there is a small imbalance that is due to time averaging.

3.2. Flow reorientations
The unsteady dynamics of the flow in a Rayleigh Bénard cubic cell without radiative
transfer is characterised by low-frequency reorientations of the large-scale circulation
(LSC) (Bai, Ji & Brown 2016; Foroozani et al. 2017; Vasiliev et al. 2019). The LSC
is made of a dominant roll that convects heat from the hot wall to the cold wall
and lies in one of the two diagonal planes x = y or x = 1 − y with a clockwise
or anticlockwise motion (namely four quasi-stable states). A reorientation between
two quasi-stable states corresponds to a sudden rotation of the LSC of π/2 around
the vertical axis. Reorientations can be monitored with the time evolution of the x
and y components of the global angular momentum with respect to the centre of the
cavity r0

L=
∫
(r− r0)× u dr, (3.2)

which is plotted in figure 4 for both coupled and uncoupled calculations. It can
be seen that the coupling with radiation does not change the overall dynamics
of reorientations. Both components Lx and Ly display quasi-stable periods with
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FIGURE 4. Time evolution of the three components of the angular momentum (a,c) and
histograms of the x and y components (b,d). Coupled calculations (a,b) and uncoupled
calculations (c,d). Time intervals are coloured according to their associated quasi-stable
state as shown in (e).

moderate oscillations around a mean value separated by abrupt aperiodic sign switches
corresponding to reorientations. The dynamics seems, however, more chaotic in the
coupled case with several reorientation attempts that are quick passing through a
new stable state before returning to the initial stable state. The coupled case is
also characterised by a larger disequilibrium in the time spent in each of the four
quasi-stable flow states. This disequilibrium clearly appears in the histograms (Lx–Ly)
provided in figure 4 with a prevalence of the state (Lx > 0; Ly < 0) to the detriment
of the state (Lx < 0; Ly > 0). In the uncoupled case, the imbalance between the four
states is much weaker. It is also worth noting that the flow spends more time in the
vertical planes x= 0.5 or y= 0.5 (corresponding to Lx = 0 or Ly = 0) in the coupled
case compared to the uncoupled case.

The reorientation frequency can be estimated by tracking the zeros of a filtered
time evolution of Lx and Ly to avoid small-scale noise. We find a reorientation
frequency of 1.65 × 10−3 for coupled results and of 1.45 × 10−3 for uncoupled
results. Reorientations seem to be more frequent with radiation although there is
some uncertainty in the frequency values given the limited integration time. We
can actually infer two competing mechanisms which may affect reorientations in
the coupled case: on the one hand, the higher rotation velocity of the LSC tends
to stabilise the flow around a stable state, and on the other hand, higher velocity
fluctuations tend to promote rotation of the LSC and reorientation events. Finally,
a high frequency is noticeable in the time evolution of figure 4. It corresponds to
the rotation frequency of the LSC. It can be estimated by fc = 1/Tc = 0.0233 in the
coupled case using a reference ellipsoid path length 3.85 and a reference velocity
wref = 0.0898. The LSC rotates faster than in the uncoupled case ( fc = 0.0205,
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POD modelling of radiative transfer effects on RBC 898 A2-11

wref = 0.0788), this increase of approximately 13 % being consistent with the global
kinetic energy increase of 30 %.

3.3. POD analysis
A POD analysis of coupled flow results has been carried out. It consists in searching
for a basis of spatial modes or empirical eigenfunctions φn(r) that optimally represent
the flow field U(r, t) = {u, γ θ}, where γ is a scaling factor to be specified. These
spatial modes are orthonormal and their amplitudes an(t) vary in time. One has

U(r, t)=
∞∑

n=1

an(t)φn(r). (3.3)

The POD modes are hierarchically organised according to their energy content λn and
their amplitudes are statistically uncorrelated, namely 〈an(t)am(t)〉 = λnδnm where δnm
is the Kronecker symbol. The objective is to restrict the decomposition (3.3) to a few
modes with the largest eigenvalues so that the flow dynamics can be analysed in a
low-order subspace able to capture the most of the energy of the field U(r, t). The
POD spatial modes φn(r) are solution of the following eigenvalue problem (Berkooz,
Holmes & Lumley 1993)∫ 4∑

k=1

〈Um(r, t)Uk(r′, t)〉φk
n(r
′) dr′ = λnφ

m
n (r), (3.4)

which is solved in practice using the method of snapshots (Sirovich 1987). A statistical
set of 1000 snapshots U(r, ti) is extracted from the coupled DNS at discrete times ti
with a constant sampling period of 10 dimensionless time units (thus covering the
whole DNS time sequence of 10 000 time units). In order to improve the convergence
of the POD method, we have built an enlarged snapshot set, obtained by the action of
the symmetry group of the problem on the original snapshot set (Holmes, Lumley &
Berkooz 1996). The symmetry group (including the Sz symmetry see § 2.1) contains
16 elements and this allows us to multiply the number of snapshots by a factor of 16
to obtain a final snapshot set of 16 000 samples. Finally, the rescaling factor γ used
to combine the temperature and velocity fields is chosen so that each field has the
same energy (Podvin & Le Quéré 2001)

γ 2
=

〈∫ u(r, t) · u(r, t) dr∫
θ 2(r, t) dr

〉
. (3.5)

Because velocity fluctuations are proportionately larger than temperature fluctuations
in coupled calculations, this factor is greater when coupling with radiation: we obtain
γ coupled

= 1.421 and γ uncoupled
= 1.303. In the following, the POD analysis of coupled

DNS will be compared to the POD analysis of uncoupled DNS discussed by Soucasse
et al. (2019).

The POD eigenvalue spectrum is shown in figure 5. The eigenvalue decay is rather
slow owing to the 3-D and turbulent nature of the flow, even so, the first three modes
contain 62 % of the total energy. Also given in figure 5 is the ratio between the
eigenvalue spectrum obtained from coupled simulations and the eigenvalue spectrum
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FIGURE 5. POD eigenspectrum obtained from coupled simulations (a) and POD
eigenspectrum ratio between coupled and uncoupled results (b).

obtained from uncoupled simulations. All eigenvalues are higher in the coupled case,
with larger eigenvalue ratios for the low-order modes n 6 20, a minimum value of
1.1 around n = 1000 followed by a slow increase for the higher-order modes. The
shape of the spectrum ratio can be interpreted if we consider that mode ordering
roughly corresponds to a ranking of the eigenfunctions in terms of a characteristic
spatial scale, the low-order modes being associated with the largest spatial scales and
the high-order modes being associated with the smallest spatial scales. We have seen
that radiation–convection energy transfer outside the boundary layers reinforces the
large-scale flow structures. This supplementary energy compared to the uncoupled case
is transported towards smaller scales of the turbulent spectrum but is also dissipated
because of radiative damping of thermal fluctuations. Radiative damping rather affects
the intermediate spatial scales as molecular diffusion prevails for the smallest spatial
scales, which may explain the decrease of the ratio for the intermediate modes.

The first seven POD modes are shown in figure 6, together with their associated
amplitude an(t) in the coupled DNS time sequence. Isovalues of the convective heat
flux φθnφ

w
n coloured by mode temperature, as well as streamlines, are displayed to

highlight the mechanical and thermal structures. A remarkable feature is that these
first seven eigenfunctions are nearly identical to the first seven eigenfunctions obtained
without radiation coupling, although the associated eigenvalues are different. Namely,
the projection matrix P from the POD coupled basis Bcoupled

= {φ1, φ2, . . . , φ7}
coupled

onto the POD uncoupled basis Buncoupled
= {φ1, φ2, . . . , φ7}

uncoupled is very close to the
identity matrix: we get ‖P − I‖F = 0.052, if ‖ · ‖F denotes the Frobenius norm. This
result will be key for the derivation of an a priori reduced-order model of radiative
transfer effects (see § 4.2.2). We briefly recall below the physical meaning of these
modes.

The first mode corresponds to the mean flow: its amplitude is nearly constant
and oscillates around a mean value aeq

1 =
√
λ1. The velocity field is made of two

counter-rotating torus-like structures and the temperature field is vertically stratified
from the bottom hot wall to the top cold wall. Modes 2 and 3 form a pair of
degenerated modes: λ2 = λ3 and φ2(r) and φ3(r) are identical after a rotation of
π/2 around the z axis. They are made of a large-scale single roll around the x
axis (mode 2) or the y axis (mode 3) and are referred to as LSC modes. Their
time evolution is correlated with the x and y components of the angular momentum
(see figure 4) and displays aperiodic sign switches (reorientations) between two
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FIGURE 6. First seven POD modes φn(r) obtained from coupled simulations with
associated amplitude an(t). Streamlines and isosurfaces of convective heat flux φθnφ

w
n =0.25

coloured by mode temperature. Colour map for mode temperature ranges from −0.5 (blue)
to 0.5 (red).

quasi-stable states where the amplitude oscillates around a mean value aeq
2/3=±

√
λ2/3.

Modes 2 and 3 have therefore to be combined to form the quasi-stable diagonal
states observed in the simulation. Mode 4 is an 8-roll mode that transports fluid
from one corner to the other and strengthens the circulation along the diagonal. Its
time evolution is correlated with the product a2(t)a3(t) and displays abrupt sign
switches around equilibrium values aeq

4 = sgn(aeq
2 aeq

3 )
√
λ4. Its sign actually indicates

the diagonal plane of the LSC: a4 > 0 means the LSC lies in the plane x = 1 − y;
a4 < 0 means the LSC lies in the plane x = y. Modes 5 and 6 form another pair
of degenerated modes and are referred to as boundary-layer modes. They are made
of two longitudinal co-rotating structures around the x axis (mode 5) or the y axis
(mode 6) and connect the core of the cell with the horizontal boundary layers.
Modes 2 and 5 (respectively modes 3 and 6) possess the same symmetries and
strongly interact together. Although the time evolution of amplitudes a5(t) and a6(t)
seems noisy and chaotic, a moving average over 90 dimensionless time units shows a
non-zero equilibrium contribution during quasi-stable states, with sign switches during
reorientations such that sgn(aeq

5/6) = −sgn(aeq
2/3). As figure 7 shows, this contribution

is much lower than the standard deviation aeq
5/6 = ±η

√
λ5/6, in the uncoupled case
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FIGURE 7. Histogram of the filtered amplitude af
5 in the uncoupled and coupled DNS;

the amplitudes are filtered with a moving average of 100 dimensionless time units.

Mode n 1 2,3 4 5,6 7

λn 2.0× 10−2 7.1× 10−3 8.5× 10−4 5.3× 10−4 4.8× 10−4

‖φu
n‖

2 0.13 0.76 0.82 0.69 0.64
γ 2
‖φθn‖

2 0.87 0.24 0.18 0.31 0.36

TABLE 2. Thermal and mechanical content of the first seven POD eigenfunctions given
by partial norms ‖φu

‖
2 and γ 2

‖φθ‖2.

(an estimated value of η was approximately 0.2), but it is higher in the coupled case,
with a value of η = 0.35. This means that the connection between the roll and the
boundary-layer modes is much stronger in the coupled case. Finally, mode 7 is a
corner-roll mode which favours planar LSC (in planes x= 0.5 or y= 0.5) rather than
diagonal LSC (in planes x = y and x = 1 − y). It has a destabilising effect on the
quasi-stable states, although its temporal evolution does not show any specific pattern
during reorientations.

A last comment can be made regarding the thermal or mechanical nature of the
POD eigenfunctions. Although temperature and velocity fields have been combined to
perform the POD analysis, the mechanical and thermal weight associated with each
POD mode φn = {φ

u
n, γ φ

θ
n } can be retrieved according to

‖φn‖
2
= ‖φu

n‖
2
+ γ 2
‖φθn‖

2
= 1. (3.6)

Table 2 shows that the relative energy weights ‖φu
n‖

2 and γ 2
‖φθn‖

2 are not the
same for each mode. Mode 1, which possesses the mean thermal stratification, is a
thermal mode while modes 2–7 are rather mechanical modes. One can also notice
that the POD mode ranking would differ if one uses a mechanical energy criterion
(λn‖φ

u
n‖

2) or a thermal energy criterion (λnγ
2
‖φθn‖

2). This has been further confirmed
by performing a separate POD analysis of velocity and temperature fields: the same
dominant structures are obtained but they are not ranked exactly in the same way
compared to the combined case.

To sum up, POD analysis shows that the combined mechanical and thermal
fluctuating energy increases, and that the ratio of mechanical to thermal energy
increases in the presence of radiation, although the POD most energetic structures
are not significantly modified.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

39
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.395


POD modelling of radiative transfer effects on RBC 898 A2-15

4. Reduced-order modelling
4.1. POD-based model with radiative terms

A POD-based reduced-order model including radiation effects can be derived using
Galerkin projection of momentum and energy balance with radiation (2.2) and (2.3)
onto a POD basis set. Using decomposition (3.3) this yields a system of ordinary
differential equations of the form

dan(t)
dt
= (LB

nm + LD
nm + LR

nm) am(t)+Qnmp am(t)ap(t)+ Tn(t), (4.1)

where LB
nm, LD

nm and LR
nm are linear contributions associated with buoyancy, diffusion

and radiation respectively, Qnmp are quadratic contributions associated with advection
of momentum and energy (definitions of these quantities are provided in appendix B)
and Tn(t) is a closure term for taking into account the effect of the truncation.

4.1.1. Radiative terms
Radiative transfer effects can be considered as a linear contribution owing to the

weak temperature differences. The radiative emission in kjwjσT4/π in the radiative
transfer equation (2.7) can be linearised around the mean temperature T0. Because
the radiative transfer equation is linear, we can then use the superposition principle
and write the radiative intensity as a sum of partial intensities associated with each
term of the POD decomposition of the temperature field. We are therefore able to
define a modal-radiative power P rad

n (r), corresponding to the radiative response to a
temperature eigenfunction φθn (r) and such that

P rad(r, t)=
∑

n

an(t)P rad
n (r). (4.2)

Details of the derivation of this modal-radiative power are given in appendix A.
Figure 8 shows the modal-radiative power P rad

n associated with the first seven
modes. It is worth noting that P rad

n possesses the same symmetries as the associated
temperature eigenfunction φθn . Once P rad

n is determined, the radiation matrix LR can
be computed according to

LR
nm =

∫
γ 2

√
Ra

P rad
m (r)φθn (r) dr. (4.3)

Values of the coefficients are reported in appendix B for the coupled temperature
eigenfunctions φθn (r) presented in § 3.3. The radiation matrix is essentially diagonal
with two off-diagonal terms corresponding to a linear coupling between modes 2
and 5, and between modes 3 and 6 (these pairs of modes possess the same
symmetries). The coefficients LR

nm have the same sign as the coefficients LD
nm of

the diffusion matrix, which means that radiation will affect the reduced-order model
as molecular diffusion does, and are such that LR

nm ∼ 0.1LD
nm (except for LR

11).

4.1.2. Closure
Following Podvin & Sergent (2015), the closure term is modelled as an equivalent

dissipation term, expressed as a combination of linear and cubic terms, and by the
addition of noise such that

Tn(t)= LA
nm

(
1−

1
〈k〉

∑
p>2

|ap(t)|2
)

am(t)+ ε(t), (4.4)
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FIGURE 8. Isovalues of modal-radiative power P rad
m (r)=±2.5 for the first seven modes.

where LA
nm is an adjustable parameter, 〈k〉 is the temporal average of the energy

of the fluctuating modes in the truncation and ε(t) is a random noise perturbation
of amplitude σ . If the coefficients LA

nm are not known beforehand, it is possible to
determine them from the observed dynamics, as was done in Soucasse et al. (2019).
We will get back to this point in § 4.2.1. Assuming that the closure law derived
without radiation remains valid in the presence of radiation, the final form of the
model is thus

dan(t)
dt
=

(
LT

nm −
LA

nm

〈k〉

∑
p>2

|ap(t)|2
)

am(t)+Qnmp am(t)ap(t)+ ε(t), (4.5)

where LT
= LB
+ LD

+ LA
+ LR denotes the total linear contribution.

In Soucasse et al. (2019) we derived a POD-based dynamical system to describe the
evolution of the amplitudes of the largest POD modes in the same configuration in the
absence of radiation. This previous model will be referred to as the no-radiation model
in the remainder of the paper. In the following, we develop two different models
including radiation effects.

(i) The first model, called the observed model, is developed from direct observation
of the DNS with radiation. Parameters LB, LD, LR and Q are computed from
coupled POD eigenfunctions and parameter LA is adjusted based on the known
amplitude of the modes at equilibrium (see § 4.2.1).

(ii) The second model, called the predicted model, represents an a priori attempt
to predict radiative transfer effects from uncoupled DNS data. Parameters LB,
LD, Q and LA are taken from the no-radiation model (Soucasse et al. 2019) and
parameter LR is computed from uncoupled POD eigenfunctions (§ 4.2.2).

We actually restrict the expansion to the first seven modes and take the first mode
(mean flow) as constant so that the dimension of the reduced-order model is equal
to six.
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POD modelling of radiative transfer effects on RBC 898 A2-17

No-radiation model Observed model

LM
nm m= 2 m= 3 m= 4 m= 5 m= 6 m= 7 LM

nm m= 2 m= 3 m= 4 m= 5 m= 6 m= 7

n= 2 −0.044 — — 0.043 — — n= 2 −0.043 — — 0.024 — —

n= 3 — −0.044 — — 0.043 — n= 3 — −0.043 — — 0.024 —

n= 4 — — −0.136 — — — n= 4 — — −0.187 — — —

n= 5 −0.028 — — −0.143 — — n= 5 −0.030 — — −0.120 — —

n= 6 — −0.028 — — −0.143 — n= 6 — −0.030 — — −0.120 —

n= 7 — — — — — −0.068 n= 7 — — — — — −0.047

TABLE 3. Time average of the unresolved terms LM
= LA(1−

∑7
n=2 λn/〈k〉) in the model:

(left) without radiation, (right) with radiation.

4.2. Observed and predicted models
4.2.1. Observed model

To determine the adjustable parameters LA
nm of the observed model, we use

information about the POD amplitudes extracted from the DNS with radiation.
Namely, we require that the diagonal states be fixed points of the dynamical
system aeq

n , which leads to a balance between the global linear contribution and
the quadratic terms. Equilibrium values are taken such that aeq

1 =
√
λ1, aeq

2/3=±
√
λ2/3,

aeq
4 = sgn(aeq

2 aeq
3 )
√
λ4, aeq

5/6 =−sgn(aeq
2/3) η

√
λ5/6, aeq

7 = 0, where η = 0.35. The values
of the time-averaged closure terms are given in table 3. The values are close to
those obtained in the case without radiation, except for an increase in mode 4. This
suggests that the nature of energy transfer from large scales to small scales remains
unaffected. The other parameters of the observed model (LB

nm, LD
nm, LR

nm and Qnmp)
are directly computed from coupled POD eigenfunctions and values are reported in
appendix B.

In order to estimate the effect of the truncation of the radiation term
∑

m LR
nmam(t)

in the model (4.5), we have computed the following radiation truncation error

en =

∥∥∥∥∥ γ 2

√
Ra

∫
P rad(r, ti)φ

θ
n (r) dr−

7∑
m=1

LR
nmam(ti)

∥∥∥∥∥∥∥∥∥ γ 2

√
Ra

∫
P rad(r, ti)φ

θ
n (r) dr

∥∥∥∥ , (4.6)

where P rad(r, ti) is the radiative power of snapshot i at discrete time ti, am(ti) is the
associated POD coefficient extracted from the DNS and the norm is defined such that
‖ f (ti)‖ =

√∑
i f (ti)2. This quantity is equal to 0.13, 0.28, 0.20 and 0.31 for modes

2/3, 4, 5/6 and 7 respectively, showing that the radiation contribution of unresolved
scales is small but not negligible. This is not surprising given that the first seven
modes only contain 60 % of the total energy. We can, however, infer that the form
of the closure law still holds, given that radiation acts as a dissipation term in the
model. We will thus assume that the effect of the truncation of the radiation term is
captured by the adjustable parameter LA.

4.2.2. Predicted model
The second model attempts to predict the change in the energy level of the

modes directly from the uncoupled simulation results and the computation of the
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radiation terms. We assume that the eigenfunctions are the same as in the uncoupled
case, that the modelled terms do not change and that the value of γ is not modified.
The only modification of the model is therefore due to the radiative terms which are
computed from the uncoupled POD eigenfunctions.

Let r0
i be the equilibria in the uncoupled case. Owing to the symmetry between x

and y, it is sufficient to consider the fixed point r0
2 = r0

3 =

√
λ0

2/3, r0
5 = r0

6 =−η

√
λ0

5/6

(η= 0.2), r0
4 =
√
λ0

4, where λ0
n denotes the uncoupled POD eigenvalue of mode n. In

the uncoupled case at equilibrium, we can derive the following relations for modes
2/3, 5/6 and 4

LB
22 + LD

22 + LM
22 +Q212r0

1 +Q234r0
4 = 0, (4.7)

LB
52 + LD

52 + LM
52 +Q512r0

1 +Q534r0
4 = 0, (4.8)

(LB
44 + LD

44 + LM
44 +Q414r0

1)r
0
4 +Q423(r0

2)
2
+ 2Q425r0

2r0
5 +Q456(r0

5)
2
= 0, (4.9)

where LM
= LA(1 −

∑7
n=2 λn/〈k〉) is the equilibrium (time-averaged) closure term in

the no-radiation model (see table 3) and parameters LB, LD and Q are computed from
uncoupled POD eigenfunctions. Note that in (4.7) and (4.8) associated with modes
2 and 5, we assume that diagonal and off-diagonal linear contributions are balanced
independently.

We now determine how inclusion of the radiation term leads to changes in the
energy of the modes at equilibrium. The unknown equilibria in the radiatively coupled
case are denoted r1, r2, r3= r2, r4, r5, r6= r5, r7= 0. The predicted equilibrium relations
with radiation write

LB
22 + LD

22 + LR
22 + LM

22 +Q212r1 +Q234r4 = 0, (4.10)
LB

52 + LD
52 + LR

52 + LM
52 +Q512r1 +Q534r4 = 0, (4.11)

(LB
44 + LD

44 + LR
44 + LM

44 +Q414r1)r4 +Q423r2
2 + 2Q425r2r5 +Q456r2

5 = 0. (4.12)

Subtracting the two systems, equation by equation, one obtains

Q212r1 +Q234r4 =−LR
22 +Q212r0

1 +Q234r0
4, (4.13)

Q512r1 +Q534r4 =−LR
52 +Q512r0

1 +Q534r0
4, (4.14)

Q414r1r4 +Q423r2
2 + 2Q425r2r5 +Q456r2

5

=−LR
44r4 +Q414r0

1r0
4 +Q423(r0

2)
2
+ 2Q425r0

2r0
5 +Q456(r0

5)
2. (4.15)

Equations (4.13) and (4.14) can be solved directly for r1 and r4. We obtain new
values of 0.1578 and 0.028, representing increases of 22 % and 14 %. Equation (4.15)
involves r2 and r5, which are both unknown. We note that it displays a quadratic
dependence of r2 with respect to r4. Moreover, in the uncoupled DNS (also in the
coupled DNS), the amplitude of mode 4 is very well correlated with the product
a2a3 (with a correlation coefficient larger than 0.9), so that a4 ∼ Ca2a3. We use this
empirical relationship to estimate the increase in r2 such that

r2 = r0
2

√
r4

r0
4
, (4.16)

then solve (4.15) for r5. We obtain an increase of 7 % for r2 and of 15 % for r5.
The values of the predicted energies λp

n are reported in table 4. An estimate of the
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Mode n 1 2,3 4 5,6 7√
λ0

n (uncoupled DNS) 0.127 — 0.067 — 0.024 — 0.017 — 0.0165 —
√
λn (coupled DNS) 0.141 (12 %) 0.085 (25 %) 0.029 (17 %) 0.023 (29 %) 0.022 (33 %)
√
λ

p
n (predicted) 0.154 (22 %) 0.071 (7 %) 0.028 (14 %) 0.020 (15 %) N/A —

TABLE 4. Amplitudes of the POD eigenvalues λ0
n and λn in the uncoupled and coupled

simulations and predicted energies λp
n. The value of λp

5 is extrapolated from r5 using
λ

p
5 = λ

0
5(r5/r0

5)
2. The relative increase with respect to the uncoupled case is indicated in

parentheses.

energy of POD mode 5, λp
5, was made from the new equilibrium value r5 by assuming

that η remains constant, so that λp
5= λ

0
5(r5/r0

5)
2. Another estimate will be provided by

integration of the predicted model (see § 4.3). The model therefore predicts an increase
in the energy of all the modes which is of the order of that observed in the simulation,
with an overprediction of the mean mode and an underprediction of the roll modes.

4.3. Time integration
All models were integrated for a given noise level σ over 100 000 dimensionless
time units. The noise signal was the same for all models, but the noise intensities
were different. In the no-radiation model, the noise level was σ0 = 1.2 × 10−3. In
the observed model, the noise level is determined from the total energy level in the
unresolved modes i.e.

σ

σ0
=

∑
n>7

λn∑
n>7

λ0
n

∼ 1.22. (4.17)

The observed model was therefore integrated for relative noise levels σ/σ0 of 1.2 and
1.3. In the predicted model, the noise level is estimated from the new energy level of
the resolved modes. Since the transfer to the unresolved scales is assumed to be the
same (it is of the form LMa, where LM does not change), the noise level was therefore
determined using

σ

σ0
=

√√√√√√√
∑
n66

λp
n∑

n66

λ0
n

∼ 1.17. (4.18)

Results for the predicted model are shown for values of σ/σ0 of 1.1 and 1.2.
Histories for POD amplitudes a2, a3 and a4 in the observed and predicted models

are displayed in figure 9 for the first 10 000 dimensionless time units. It can be
seen that the overall dynamics of the coupled simulation (see figure 6) is fairly
reproduced: the system spends a long time near equilibrium values and experiences
fast reorientations (sign switch of either a2 or a3); the time evolution of a4 is well
correlated with the product a2a3. The energy of the amplitudes integrated with the
different models are reported in table 5. Results for the predicted and the observed
models are in good agreement with the simulation (table 4), except for mode 7, the
last mode in the truncation, which is overestimated. However, the relative increase
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FIGURE 9. Time evolution of the amplitudes a2, a3, a4 from left to right; (a–c) observed
model (σ = 1.2σ0); (d–f ) predicted model (σ = 1.2σ0).

Mode n 1 2,3 4 5,6 7√
〈a2

n〉 (observed, σ = 1.2σ0) 0.141 — 0.074 — 0.029 — 0.023 — 0.052 —√
〈a2

n〉 (observed, σ = 1.3σ0) 0.141 — 0.073 — 0.030 — 0.023 — 0.053 —√
〈a2

n〉 (predicted, σ = 1.1σ0) 0.154 (22 %) 0.062 (6 %) 0.024 (12 %) 0.015 (20 %) 0.045 (15 %)√
〈a2

n〉 (predicted, σ = 1.2σ0) 0.154 (22 %) 0.061 (5 %) 0.021 (9 %) 0.016 (27 %) 0.047 (15 %)√
〈a2

n〉 (no-radiation, σ = σ0) 0.127 — 0.057 — 0.019 — 0.013 — 0.040 —

TABLE 5. Amplitudes of the POD coefficients in the different models. The percentages
for the predicted model are expressed relative to the no-radiation model.

in mode 7 appears to be relatively well predicted by the observed model (+30 %
compared to the no-radiation model) as well as by the predicted model (+15 %). The
time-averaged energy of the first seven POD modes increases by 37 % in the DNS
due to radiative coupling. It increases by 42 % in the observed model and by 37 %
in the predicted model compared with the no-radiation model. However, individual
amplitudes in the predicted model are not as close to the coupled DNS values as
those of the observed model. We note that, for all models, the amplitudes of the roll
modes a2/3 tend to decrease as the noise level increases, while those of the boundary
layer modes 5 and 6 tend to increase.

Figure 10 compares the symmetrised phase portraits of the DNS and the models
in the (a2, a3) space. Despite the strong similarity, some differences can be noticed
between the uncoupled and coupled simulations, as the system spends more time away
from the equilibria in the coupled case. This trend is reproduced by the models, as
the size of the high probability regions is larger in the observed and predicted models
than in the no-radiation model. Once again, the phase portraits of the observed model
are in closer agreement with the DNS than those of the predicted model. Figure 11
compares the histogram of the POD amplitude of the fifth mode in the models. We
note that the observed model displays the wider distribution which was observed in the
DNS (see figure 7), while the predicted model is not able to reproduce this behaviour.
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FIGURE 10. Symmetrised phase portraits of the system; (a–c), from left to right: coupled
DNS, observed model (σ = 1.2σ0), predicted model (σ = 1.2σ0); (d,e), from left to right:
uncoupled DNS, no-radiation model (σ = σ0).

-2 -1 0 1 2
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FIGURE 11. Histogram of the filtered model amplitude af
5: no-radiation model (a, σ =σ0),

observed model (b, σ = 1.2σ0), predicted model (c, σ = 1.2σ0). A moving average of 100
time units has been applied.

4.4. Time scales

Measures of the average time between reorientations Tn, defined as the mean times
between zeros of an after application of a moving-average filter of 5Tc, are reported
in table 6. The models reproduce the order of magnitude of Tn observed in the
simulations and the moderate increase in the reorientation rate when compared with
the no-radiation model. Although the values of Tn reported in the table correspond to
one particular integration of the models, we checked that the order of magnitude did
not change over several integrations of the models with different noise signals.
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FIGURE 12. Cumulated spectra of the fluctuations of the POD energy ePOD(t) =∑7
n=1 an(t)2 in the DNS (a) and in the models (b). The noise level is σ = σ0 in the

no-radiation model and σ = 1.2σ0 in the observed and predicted models.

Mode n 2 3 4

Tn (uncoupled DNS) 1258 1516 703
Tn (coupled DNS) 1061 1412 586
Tn (no-radiation, σ = σ0) 1330 1400 860
Tn (observed, σ = 1.2σ0) 1455 1535 610
Tn (observed, σ = 1.3σ0) 1090 1255 585
Tn (predicted, σ = 1.1σ0) 1300 1354 740
Tn (predicted, σ = 1.2σ0) 993 1064 712

TABLE 6. Inter-switch periods observed in the simulation and predicted by the different
models. The inter-switch period Tn is defined as the mean average time between two zeros
of an provided that the time is larger than 5Tc where Tc corresponds to the high frequency
in the simulation (note that this is a slightly different definition from our previous study
(Soucasse et al. 2019)). Values given for the models are rounded off to each 5 units.

Figure 12 compares the cumulated spectrum of the fluctuating energy of the first
seven POD modes for the different models and the DNS. These fluctuations represent
9 %–10 % of the mean value for all models and simulations with and without radiative
coupling. We can see that the effect of radiation in the DNS is to increase the
energetic content across the spectrum, for low and high frequencies. The fluctuations
also increase over a wide range of frequencies in both models. However, the increase
is less marked at low frequencies, in particular for the predicted model, for which no
increase is detected below the frequency f ∼ 0.002. A 15 % increase (compared with
50 % in the simulation) is noted for the models at frequencies below fc/2 = 0.011,
where Tc = 1/fc corresponds to the recirculation time associated with fast oscillations
of the large-scale circulation. In the range centred around this frequency [ fc/2, 2fc],
the increase is respectively 23 % in the DNS, while it is approximately 30 % for the
predicted model and 40 % for the observed model. Over the full frequency range, the
increase in the fluctuations is 34 % in the DNS, while it is 19 % for the predicted
model and 24 % for the observed model (see figure 12).
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n 1,2 3 4,5 6

ωn (no-radiation) −0.009± 0.0543i −0.088 −0.137± 0.195i −0.045
ωn (observed model) −0.010± 0.0585i −0.084 −0.154± 0.208i −0.054
ωn (predicted model) −0.007± 0.0591i −0.085 −0.136± 0.209i −0.049

TABLE 7. Eigenvalues of the linearised model around the equilibria.

Further insight into the dynamics of the model can be provided by linear stability
analysis around the equilibria. As seen in Soucasse et al. (2019), the equilibria are
stable but can be destabilised in the presence of noise due to the existence of a
weakly stable direction, corresponding to the least stable pair of eigenmodes. In
particular, a connection can be established between high frequencies in the model
and the imaginary part of the least stable pair of eigenvalues. Table 7 shows that,
in the observed and predicted models, the least stable pair of eigenvalues has an
imaginary part of 0.0585 and 0.0591 respectively, compared with 0.0543 for the case
without radiation, which corresponds to relative increases of 8 % and 9 % respectively,
to be compared with the value of 13 % observed in the simulation.

To sum up, the observed model is able to reproduce energy levels, higher LSC
reorientation rates, faster oscillation times and qualitative changes in the statistics
of the POD amplitudes due to radiative coupling. The predicted model, which is
exclusively based on uncoupled data, is not as accurate as the observed model but
is still able to predict an increase in the energy of the modes and a higher LSC
reorientation rate.

5. Conclusion
DNS of coupled natural convection and thermal radiation has been performed in

a cubic Rayleigh–Bénard cell at Ra = 107 for an air/H2O/CO2 mixture at room
temperature. Results show that radiation strengthens the convection, increases the
kinetic energy of the flow and, to a lesser extent, increases the temperature fluctuations.
In addition, radiation alters the reorientation dynamics of the LSC: the reorientations
seem to be more frequent and the flow spends more time outside of the four
quasi-stable flow states. A POD analysis reveals that, compared to the uncoupled
case, the first POD eigenfunctions are preserved while POD eigenvalues are increased
when radiation is considered.

In order to capture these effects, a POD-based reduced-order modelling strategy has
been proposed. The approach extends standard POD modelling of the Navier–Stokes
equation by the addition of a radiation term in the model. This radiation term is
obtained from a rigorous projection of the radiative power onto the POD basis set.
The linearisation of radiation emission (consistent with the Boussinesq approximation)
is used to decompose the radiative power into a sum of modal contributions. From this
approach, two models have been considered. The first one is based on eigenfunctions
and eigenvalues computed from the radiatively coupled DNS. This observed model is
able to reproduce the change in dynamics associated with the coupling, in particular
higher reorientation rates and faster oscillations for the LSC. The second model is
derived from POD results obtained for the uncoupled case. This predicted model is
able to foresee some of the increase in the energy levels due to the effect of radiation.
It also predicts a higher reorientation rate, in good agreement with the observations
made from the simulation. The study shows that the POD-based reduced-order
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modelling approach is not only able to reproduce the changes in the dynamics due
to moderate radiative coupling, but that it can also predict them, at least in part.

To the best of our knowledge, this is the first time a POD-based low-order model for
natural convection has been derived taking into account radiation effects. Although we
have studied a particular configuration (given Rayleigh number, given radiating species
concentration, etc.), the proposed methodology is applicable to any coupled natural
convection–radiation problem under the Boussinesq approximation. The validity and
accuracy of the predicted approach of radiation effects from uncoupled data are not
guaranteed for large changes in radiation parameters. However, this predicted approach
can be used as an exploratory tool, to investigate the influence of radiative transfer at
low computational cost.
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Appendix A. Derivation of the modal-radiative power

This appendix details the derivation of the modal-radiative power P rad
n introduced in

§ 4.1.1. Owing to the weak temperature gradients, the power fourth temperature field
can be linearised around the mean temperature T0 and the POD decomposition of the
temperature field can be introduced

T4(r, t)' T4
0 + 4T3

01T
∑

n

an(t)φθn (r). (A 1)

Because of the linearity of the radiative transfer equation (equation (2.7)), the radiative
intensity field Ij(Ω, r) can be decomposed similarly

Ij(Ω, r, t)=
wjσ

π
T4

0 +
wjσ4T3

01T
π

∑
n

an(t)ψ θ
j,n(Ω, r), (A 2)

where ψ θ
j,n(Ω, r) is a modal-intensity field for the jth k-class, associated with the POD

mode temperature field φθn (r) and satisfying the following transport equation

Ω · ∇ψ θ
j,n(Ω, r)= kj(φ

θ
n (r)−ψ

θ
j,n(Ω, r)), (A 3)

and boundary condition for Ω · n> 0

ψ θ
j,n(Ω, rw)= εφθn (r

w)+
1− ε

π

∫
Ω ′·n<0

ψ θ
j,n(Ω

′, rw)|Ω ′ · n| dΩ ′. (A 4)

Once (A 3)–(A 4) are solved for each k-class using the ray-tracing algorithm detailed
in § 2.2, one can compute a modal-radiative power associated with the nth POD mode

P rad
n (r)=

L2

λ

σ4T3
0

π

∑
j

kjwj

(∫
4π

ψ θ
j,n(Ω, r) dΩ − 4πφθn (r)

)
, (A 5)

and the radiation matrix, as defined in (4.3). The total radiative power is then the sum
of all modal-radiative powers, weighted by the associated POD coefficient (4.2).
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LD
nm m= 1 m= 2 m= 3 m= 4 m= 5 m= 6 m= 7 LB

nm m= 1 m= 2 m= 3 m= 4 m= 5 m= 6 m= 7

n= 1 0.17 — — — — — — n= 1 0.04 — — — — — —
n= 2 — −0.09 — — 0.03 — — n= 2 — 0.12 — — −0.08 — —
n= 3 — — −0.09 — — 0.03 — n= 3 — — 0.12 — — −0.08 —
n= 4 — — — −0.15 — — — n= 4 — — — 0.08 — — —
n= 5 — 0.03 — — −0.09 — — n= 5 — 0.03 — — 0.08 — —
n= 6 — — 0.03 — — −0.09 — n= 6 — — 0.03 — — 0.08 —
n= 7 — — — — — — −0.17 n= 7 — — — — — — 0.11

LR
nm m= 1 m= 2 m= 3 m= 4 m= 5 m= 6 m= 7

n= 1 0.003 — — — — — —
n= 2 — −0.008 — — 0.005 — —
n= 3 — — −0.008 — — 0.005 —
n= 4 — — — −0.009 — — —
n= 5 — 0.005 — — −0.013 — —
n= 6 — — 0.005 — — −0.013 —
n= 7 — — — — — — −0.018

TABLE 8. Linear diffusion matrix (top left), linear buoyancy matrix (top right) and linear
radiation matrix (bottom) computed from coupled POD eigenfunctions. Entries below 10−5

are left empty.

Appendix B. Model parameters

This appendix provides model parameters LD, LB, LR and Q, defined by

LB
nm =

∫
Pr φm

θ φ
n
3 dr, (B 1)

LD
nm =

∫ [
Pr
√

Ra

∂2φm
i

∂xj∂xj
φn

i +
γ 2

√
Ra

∂2φm
θ

∂xj∂xj
φn
θ

]
dr, (B 2)

LR
nm =

∫
γ 2

√
Ra

P rad
m (r)φθn (r) dr, (B 3)

Qnmp =

∫ [
−φ

p
j
∂φm

i

∂xj
φn

i − γ
2φ

p
j
∂φm

θ

∂xj
φn
θ

]
dr. (B 4)

Here, LB, LD and LR are linear contributions in the model arising from Galerkin
projection of buoyancy term, diffusion terms and radiative term in (2.2) and (2.3)
onto the POD basis. Similarly, Q is a quadratic contribution in the model arising
from Galerkin projection of advection terms in (2.2) and (2.3) onto the POD basis.
More details on the derivation of these terms can be found for instance in Podvin &
Le Quéré (2001).

In the observed model, these quantities are determined from coupled POD
eigenfunctions, and values are reported in tables 8 and 9. In the no-radiation
model and in the predicted model, these quantities are determined from uncoupled
eigenfunctions; values of parameters LD, LB and Q can be found in Soucasse et al.
(2019) and values of parameter LR (for the predicted model only) are given in
table 10. Uncoupled POD eigenfunctions and coupled POD eigenfunctions being very
similar, differences in parameter values are mostly due to differences in the value of
γ that increases when coupling with radiation.
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Q1mp p= 1 p= 2 p= 3 p= 4 p= 5 p= 6 p= 7 Q2mp p= 1 p= 2 p= 3 p= 4 p= 5 p= 6 p= 7

m= 1 — — — — — — — m= 1 — 0.29 — — 0.01 — —
m= 2 — −0.58 — — −0.05 — — m= 2 0.29 — — — — — 0.30
m= 3 — — −0.58 — — −0.05 — m= 3 — — — −0.52 — — —
m= 4 — — — −0.87 — — — m= 4 — — −0.52 — — 0.05 —
m= 5 — −0.05 — — −0.74 — — m= 5 0.01 — — — — — 0.22
m= 6 — — −0.05 — — −0.74 — m= 6 — — — 0.05 — — —
m= 7 — — — — — — 0.07 m= 7 — 0.30 — — 0.22 — —

Q3mp p= 1 p= 2 p= 3 p= 4 p= 5 p= 6 p= 7 Q4mp p= 1 p= 2 p= 3 p= 4 p= 5 p= 6 p= 7
m= 1 — — 0.29 — — 0.01 — m= 1 — — — 0.43 — — —
m= 2 — — — −0.52 — — — m= 2 — — 1.04 — — 1.71 —
m= 3 0.29 — — — — — −0.30 m= 3 — 1.04 — — 1.71 — —
m= 4 — −0.52 — — 0.05 — — m= 4 0.43 — — — — — —
m= 5 — — — 0.05 — — — m= 5 — — 1.71 — — 0.87 —
m= 6 0.01 — — — — — −0.22 m= 6 — 1.71 — — 0.87 — —
m= 7 — — −0.30 — — −0.22 — m= 7 — — — — — — —

Q5mp p= 1 p= 2 p= 3 p= 4 p= 5 p= 6 p= 7 Q6mp p= 1 p= 2 p= 3 p= 4 p= 5 p= 6 p= 7
m= 1 — 0.07 — — 0.37 — — m= 1 — — 0.07 — — 0.37 —
m= 2 0.07 — — — — — 0.10 m= 2 — — — −1.76 — — —
m= 3 — — — −1.76 — — — m= 3 0.07 — — — — — −0.10
m= 4 — — −1.76 — — −0.43 — m= 4 — −1.76 — — −0.43 — —
m= 5 0.37 — — — — — 0.24 m= 5 — — — −0.43 — — —
m= 6 — — — −0.43 — — — m= 6 0.37 — — — — — −0.24
m= 7 — 0.10 — — 0.24 — — m= 7 — — −0.10 — — −0.24 —

Q7mp p= 1 p= 2 p= 3 p= 4 p= 5 p= 6 p= 7
m= 1 — — — — — — 0.54
m= 2 — −0.61 — — −0.12 — —
m= 3 — — 0.61 — — 0.12 —
m= 4 — — — — — — —
m= 5 — −0.12 — — −0.48 — —
m= 6 — — 0.12 — — 0.48 —
m= 7 0.54 — — — — — —

TABLE 9. Quadratic interaction matrices computed from coupled POD eigenfunctions (in
symmetric form i.e. corresponding to Qnmp +Qnpm for p 6=m and Qnmp for p=m). Entries
below 10−5 are left empty.

LR
nm m= 1 m= 2 m= 3 m= 4 m= 5 m= 6 m= 7

n= 1 0.002 — — — — —
n= 2 — −0.008 — — 0.004 —
n= 3 — — −0.008 — — 0.004
n= 4 — — — −0.007 — —
n= 5 — 0.004 — — −0.011 —
n= 6 — — 0.004 — — −0.011
n= 7 — — — — — — −0.014

TABLE 10. Linear radiation matrix computed from uncoupled POD eigenfunctions.
Entries below 10−5 are left empty.
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