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Abstract. Let X be a compact, geodesically complete, locally CAT(0) space such that the
universal cover admits a rank-one axis. Assume X is not homothetic to a metric graph with
integer edge lengths. Let Pt be the number of parallel classes of oriented closed geodesics
of length at most t; then limt→∞ Pt/(e

ht /ht) = 1, where h is the entropy of the geodesic
flow on the space GX of parametrized unit-speed geodesics in X.
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1. Introduction
Given a locally geodesic space, it is natural to consider the number Pt of closed geodesics
of length at most t > 0. In general, Pt may be infinite for all t above a certain threshold
T ≥ 0, but under certain geometric conditions one finds it is finite for all t and can obtain
asymptotic information about the growth rate of Pt .

The classic example of this situation is a theorem of Margulis [10]. If M is a closed,
negatively curved Riemannian manifold, then limt→∞ Pt/(e

ht /ht) = 1, where h is the
entropy of the geodesic flow on the unit tangent bundle SM . Margulis also proved that the
number Qt of geodesic arcs of length less than or equal to t starting at x ∈ M and ending
at y ∈ M satisfies limt→∞ Qt/e

ht = C, where C depends only on x, y.
In non-positive curvature (instead of strictly negative curvature), there are often parallel

geodesics, which can make the number Pt as defined above infinite for large t. However,
if one refines the definition of Pt to be the number of parallel classes of closed geodesics
of length less than or equal to t, it becomes meaningful again in this case, while
staying the same in the case of negative curvature. Knieper [6] proved that when M
is a closed, rank-one non-positively curved Riemannian manifold, there exists C > 0
such that 1/C ≤ lim inf Pt/(eht /ht) and lim sup Pt/eht ≤ C. Knieper later improved
his bounds [7] to 1/C ≤ lim inf Pt/(eht /ht) ≤ lim sup Pt/(eht /ht) ≤ C. (This type of
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inequality occurs frequently enough in this paper that we will use the notation l̃im when the
inequality holds for both lim inf and lim sup. In this notation, the last inequalities become
1/C ≤ l̃imPt/(eht /ht) ≤ C.) Knieper’s original bounds were recently proved by different
means by Burns et al.f [3]. A recent paper of Liu, Wang, and Wu [9] generalizes this
beyond non-positive curvature to the case of closed Riemannian manifolds without focal
points.

Another way to generalize the setting of Margulis’s theorem is to allow the spaces
to admit singularities. In fact, locally CAT(−1) spaces are a generalization of nega-
tively curved manifolds which allow branching and other singularities. They are locally
geodesic spaces in which all sufficiently small geodesic triangles are ‘thinner’ than
their respective comparison triangles in the hyperbolic plane H2. Roblin proved [14]
that if the Bowen–Margulis measure of a proper, locally CAT(−1) space is finite,
then limt→∞ Qt/e

ht = C, where C depends only on x, y. A recent paper by Link [8]
generalizes this statement from CAT(−1) to rank-one CAT(0). Locally CAT(0) spaces
generalize non-positively curved manifolds by allowing singularities; the definition uses
comparison triangles in the Euclidean plane R2 instead of H2. Roblin also proved [14] that
if the Bowen–Margulis measure of a proper, locally CAT(−1) space X is finite and mixing,
and X is geometrically finite, then limt→∞ Pt/(e

ht /ht) = 1†.
In this paper, we focus on the case of proper, rank-one, locally CAT(0) spaces. We

assume throughout the paper (with the exception of §3) that � is a group acting freely,
properly discontinuously, non-elementarily, and by isometries on a proper, geodesically
complete CAT(0) space X with rank-one axis. We also assume the geodesic flow is
mixing and the Bowen–Margulis measure (constructed in [12]) is finite and mixing
under the geodesic flow. When � acts cocompactly, it is well known to also act
non-elementarily unless X is isometric to the real line; in [12] it was shown that
cocompactness also implies the Bowen–Margulis measure is always finite and mixing
unless X is homothetic to a tree with integer edge lengths. We prove the following
theorem.

THEOREM 1.1. Let � be a group acting freely, geometrically (that is, properly discontinu-
ously, cocompactly, and by isometries) on a proper, geodesically complete CAT(0) space
X with rank-one axis. Assume X is not homothetic to a tree with integer edge lengths. Let Pt
be the number of parallel classes of oriented closed geodesics of length at most t in �\X;
then limt→∞ Pt/(e

ht /ht) = 1, where h is the entropy of the geodesic flow on the space
GX of parametrized unit-speed geodesics in X.

We remark that if X is homothetic to a tree with integer edge lengths, then the limit
of Pt/(eht /ht) does not exist. Also, the closed geodesics which bound a half flat in the
universal cover (called the higher-rank geodesics) grow at a strictly smaller exponential
rate; this statement is proved in Corollary 14.6 of this paper.

† Technically, Roblin and Link do not address the question of entropy. The constant h used here is the critical
exponent δ� of the Poincaré series for � (see §5.1). In the case where � acts freely and cocompactly, δ� equals
the topological entropy h. The results of Link and Roblin, in fact, hold on the universal cover without assuming
freeness of the group action.
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We note that a recent preprint of Gekhtman and Yang [4] generalizes Knieper’s bounds
1/C ≤ l̃imPt/(eht /ht) ≤ C to a class of group actions including the proper, rank-one,
locally CAT(0) case. In our more restricted setting, we prove the exact limit. We also
note that an unpublished paper from 2007 by Gunesch [5] claims our result for compact,
rank-one, non-positively curved manifolds. Indeed, many of the ideas in Gunesch’s work
are good and inspired the current paper.

We proceed as follows in the paper. First, after establishing notation and standard facts
about rank-one CAT(0) spaces, we use Papasoglu and Swenson’s π -convergence theorem
to prove a statement about local uniform expansion along unstable horospheres. Next,
we construct product boxes (which behave better than standard flow boxes for measuring
lengths of intersection for orbits), and use mixing to prove a result about the total measure
of intersections under the flow for these product boxes. We use this to count the number of
intersections coming from periodic orbits. Then we construct measures equally weighted
along periodic orbits. We adapt Knieper’s proof of an equidistribution result to prove
Theorem 1.1.

It may be of interest to the reader that Theorem 1.1 is the consequence of the more
general Theorem 15.5, which we state as follows.

THEOREM 1.2. Let � be a group acting freely, properly discontinuously, and by isometries
on a proper, geodesically complete CAT(0) space X with rank-one axis. Assume m� is
finite and mixing. Also assume the closed geodesics of �\X equidistribute onto m� . Let
U ⊆ GX contain an open neighborhood of some zero-width geodesic with both endpoints
in the limit set of �. Let Pt(U) be the number of parallel classes of oriented closed
geodesics of length at most t in �\X; then limt→∞ Pt(U)/(e

ht /ht) = 1, where h is the
critical exponent δ� of the Poincaré series for �.

The main difficulty in applying Theorem 1.2 is the equidistribution hypothesis, which
is shown in Theorem 14.7 for �\X compact; Theorem 1.1 follows immediately.

We make one final remark. Although we assume throughout the paper that X is
geodesically complete and � acts non-elementarily on X, these hypotheses do not play
a role in the proofs of this paper except in guaranteeing that the Bowen–Margulis measure
exists and has full support on the geodesics with both endpoints in the limit set of �, and
that Proposition 5.2 and Theorem 5.3 hold.

2. Preliminaries
A geodesic in a metric space X is an isometric embedding of the real line R into X. A
geodesic segment is an isometric embedding of a compact interval, and a geodesic ray is
an isometric embedding of [0, ∞).

A metric space X is called uniquely geodesic if for every pair of distinct x, y ∈ X there
is a unique geodesic segment u : [a, b] → X such that u(a) = x and u(b) = y. The space
X is geodesically complete (or X has the geodesic extension property) if every geodesic
segment in X extends to a full geodesic in X.

A CAT (0) space is a uniquely geodesic space such that for every triple of distinct points
x, y, z ∈ X, the geodesic triangle is no fatter than the corresponding comparison triangle
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in Euclidean R2 (the triangle with the same edge lengths). A detailed account of CAT(0)
spaces is found in [1] or [2].

Every complete CAT(0) space X has an ideal boundary, written ∂X, obtained by taking
equivalence classes of asymptotic geodesic rays. The compact-open topology on the set of
rays induces a topology on ∂X, called the cone or visual topology. If X is proper (meaning
all closed balls are compact), then both ∂X and X = X ∪ ∂X are compact metrizable
spaces.

Standing hypothesis. From now on, X will always be a proper, geodesically complete
CAT(0) space.

For ξ ∈ ∂X and p, q ∈ X, let bξ (p, q) be the Busemann cocycle

bξ (p, q) = lim
t→∞[d([q, ξ)(t), p)− t].

These functions are continuous in all three variables and 1-Lipschitz in p and q. They also
satisfy the cocycle property bξ (x, y)+ bξ (y, z) = bξ (x, z). Furthermore, bγ ξ (γ x, γy) =
bξ (x, y) for all γ ∈ Isom X.

Denote by GX the space of all geodesics R → X, where GX is endowed with the
compact-open topology. Then GX is naturally a proper metric space, and there is a
canonical footprint projection map π : GX → X given by π(v) = v(0); this map is proper.
We will use the simple metric on GX given by

dGX(v, w) = sup
t∈R

e−|t | dX(v(t), w(t)),

which makes π1-Lipschitz. There is also a canonical endpoint projection map E: GX →
∂X × ∂X defined by E(v) = (v−, v+) := (limt→−∞ v(t), limt→+∞ v(t)). And w ∈ GX
is parallel to v ∈ GX if and only if E(w) = E(v).

The geodesic flow gt on GX is defined by the formula (gtv)(r) = v(t + r).
Notice bv−(v(t), v(0)) = t and bv+(v(t), v(0)) = −t . Let πp : GX → ∂X × ∂X × R

be the continuous map

πp(v) := (v−, v+, bv−(v(0), p)).

Define the cross-section of v ∈ GX to be CS(v) := {w ∈ SX : πp(w) = πp(v)}, and the
width of a geodesic v ∈ GX to be width(v) := diam CS(v). In fact, the set Par(v) of
geodesics parallel to v splits isometrically as Par(v) = CS(v)× R, and so the width of v
is actually the maximum width of a flat strip R × [0, R] in X parallel to v.

A geodesic v in X is called higher-rank if it can be extended to an isometric embedding
of the half-flat R × [0, ∞) ⊆ R2 into X. A geodesic which is not higher-rank is called
rank-one. Let R ⊆ GX denote the set of rank-one geodesics. (Notice that v ∈ R if and only
if width(v) is finite.) The following lemma describes an important aspect of the geometry
of rank-one geodesics in a CAT(0) space.

LEMMA 2.1. [1, Lemma III.3.1] Let w : R → X be a geodesic which does not bound a flat
strip of width R > 0. Then there are neighborhoods U and V in X of the endpoints of w
such that for any ξ ∈ U and η ∈ V , there is a geodesic joining ξ to η. For any such geodesic
v, we have d(v, w(0)) < R; in particular, v does not bound a flat strip of width 2R.
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Now let � be a group acting properly discontinuously, and by isometries on X. The
�-action on X naturally induces an action by homeomorphisms on X (and therefore on
∂X). The limit set of � is 	 = �x ∩ ∂X, for some x ∈ X. The limit set is closed and
invariant, and it does not depend on choice of x. The action is called elementary if either
	 contains at most two points, or � fixes a point in ∂X.

The �-action on X also induces a properly discontinuous, isometric action on GX.
Denote by gt� the induced flow on the quotient �\GX, and let pr : GX → �\GX be the
canonical projection map.

A geodesic v ∈ GX is an axis of an isometry γ ∈ Isom X if γ translates along v, that
is, γ v = gtv for some t > 0. If some rank-one geodesic v ∈ R is an axis for γ ∈ Isom X,
we call γ rank-one. We call the �-action rank-one if some γ ∈ � is rank-one.

Standing hypothesis. � is a group acting properly discontinuously, and by isometries on
X. Except in §3, we further assume the action is rank-one, non-elementary, and free (that
is, no non-trivial γ ∈ � fixes a point of x ∈ X).

3. Locally uniform expansion along unstable horospheres
There is a topology on ∂X, finer than the visual topology, that comes from the Tits
metric dT on ∂X. The Tits metric is complete CAT(1), and measures the asymptotic
angle between geodesic rays in X. In fact, a geodesic v ∈ GX is rank-one if and only if
dT (v

−, v+) > π . Write BT (ξ , r) for the open Tits ball of dT -radius r about ξ in ∂X and
BT (ξ , r) for the closed ball.

Papasoglu and Swenson’s π -convergence result is stated as follows.

THEOREM 3.1. [11, Lemma 18] Let X be a proper CAT(0) space and G a group acting
by isometries on X. Let x ∈ X, θ ∈ [0, π ], and (gi) ⊂ G such that gi(x) → p ∈ ∂X and
g−1
i (x) → n ∈ ∂X. For any compact set K ⊂ ∂X \ BT (n, θ), gi(K) → BT (p, π − θ),

(in the sense that for any open U ⊃ BT (p, π − θ), gi(K) ⊂ U for all i sufficiently large).

From Theorem 3.1 we prove that the geodesic flow expands unstable horospheres locally
uniformly (Theorem 3.4).

LEMMA 3.2. The evaluation map ev: GX × (−∞, ∞) → X given by ev(v, t) = v(t)

extends continuously to a map GX × [−∞, ∞] → X.

LEMMA 3.3. Let � be a group acting properly discontinuously and by isometries on a
proper CAT(0) space X. Let v ⊂ GX be compact. Let v− = {v− : v ∈ v} and v+ = {v+ :
v ∈ v}. Let (γi) be a sequence in � such that γix → ξ ∈ ∂X for some (hence any) x ∈ X
and v ∩ γig−tiv �= ∅ for some sequence (ti) in [0, ∞). Then ξ ∈ v+. Let K ⊂ ∂X be
compact such that dT (v−, K) > π − c for some c ∈ [0, π ]. If U ⊆ ∂X is an open set such
that BT (ξ , c) ⊆ U , then γi(K) ⊆ U for all i sufficiently large.

Proof. First observe that the sets π(g[0,∞]v) = v+ ∪ {v(t) : v ∈ v and t ≥ 0} and
π(g[−∞,0]v) = v− ∪ {v(t) : v ∈ v and t ≤ 0} are closed in X because v is compact.

For each i ∈ N, let vi ∈ v ∩ γig−tiv. Passing to a subsequence if necessary, we may
assume the sequence (vi) converges to some v0 ∈ v, and (γ−1

i gti vi) converges to some
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w0 ∈ v. Let x0 = v0(0) and y0 = w0(0). Recall that γiy0 → ξ ∈ ∂X. We may assume the
sequence (γ−1

i x0) converges to some η ∈ ∂X.
We know d(γiw0, gti vi) → 0, so d(γiy0, vi(ti)) → 0. Since π(g[0,∞]v) is closed,

we may conclude ξ = lim vi(ti) ∈ v+. Now for each i ∈ N let wi = γ−1
i gti vi . Then

d(γ−1
i v0, g−tiwi) = d(γ−1

i v0, γ−1
i vi) → 0, and so d(γ−1

i x0, wi(−ti )) → 0. Since each
wi ∈ v and π(g[−∞,0]v) is closed, we see that η = lim wi(−ti ) ∈ v−.

Thus γix0 → ξ ∈ v+ and γ−1
i x0 → η ∈ v−. Apply Theorem 3.1.

THEOREM 3.4. Let � be a group acting properly discontinuously and by isometries on a
proper CAT(0) space X. Let v ⊂ GX be compact. Let v− = {v− : v ∈ v} and v+ = {v+ :
v ∈ v}. Let c ∈ [0, π ] and let {Uλ} be an open cover of v+ such that for every ξ ∈ v+, there
is some λ such that BT (ξ , c) ⊆ Uλ. For any compact set K ⊂ ∂X such that dT (v−, K) >
π − c, there is some t0 ≥ 0 such that for all t ≥ t0 and γ ∈ �, if v ∩ γg−tv �= ∅ then
γK ⊆ Uλ for some λ.

Proof. Suppose not. Then for each i ∈ N there exist γi ∈ � and ti → ∞ such that vi ∈
v ∩ γig−tiv but γiv+ � Uλ for all i, λ. Since (γi) escapes to infinity, we may assume
γix → ξ ∈ ∂X for some ξ ∈ ∂X and x ∈ X. This contradicts Lemma 3.3. Therefore, the
theorem must hold.

Putting c = 0 into Theorem 3.4, we obtain the following corollary.

COROLLARY 3.5. Let � be a group acting properly discontinuously and by isometries
on a proper CAT(0) space X. Let v ⊂ GX be compact, let v− = {v− : v ∈ v} and v+ =
{v+ : v ∈ v}, and let {Uλ} be an open cover of v+. For any compact set K ⊂ ∂X such that
dT (v

−, K) > π , there is some t0 ≥ 0 such that for all t ≥ t0 and γ ∈ �, if v ∩ γg−tv �= ∅
then γK ⊆ Uλ for some λ.

4. Quasi-product neighborhoods
Fix a metric ρ on ∂X (with the cone topology). Let v0 ∈ R, let p = v0(0), and let ε ≥ 0.
For each δ > 0, let

v(v0, ε, δ) = π−1
p (Bρ(v

−
0 , δ)× Bρ(v

+
0 , δ)× [0, ε]).

We may abbreviate v(v0, ε, δ) = vε,δ = vδ = v. As it turns out, we will want to extend the
sets vε,δ slightly for some of our results, so we also define

ṽε,δ = g[−ε,ε]vε,δ .

Since v0 ∈ R, by Lemma 2.1 we know vδ is always compact for δ sufficiently small. In
fact, we have the following lemma.

LEMMA 4.1. Let v0 ∈ R. For all ε ≥ 0 we have limδ→0 diam ṽε,δ ≤ 4ε + diam CS(v0).

Proof. Suppose, by way of contradiction, there exist α > 0 and sequences of δn >
0 and vn, wn ∈ ṽε,δn such that δn → 0 but d(vn, wn) ≥ 4ε + diam CS(v0)+ α for all
n. For each n find sn, tn ∈ [−ε, 2ε] such that g−snvn, g−tnwn ∈ v0,δ . By the triangle
inequality, d(g−snvn, g−tnwn) ≥ diam CS(v0)+ α for all n. We may assume g−snvn → v
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and g−tnwn → w for some v, w ∈ ⋂
δ>0 v0,δ . Thus v, w ∈ CS(v0), hence d(v, w) ≤

diam CS(v0), contradicting g−snvn → v and g−tnwn → w. Therefore, the statement of
the lemma must hold.

Let ε, δ > 0. For each t ∈ R and γ ∈ �, let

wγ (v0, ε, δ, t) = v(v0, ε, δ) ∩ γg−tv(v0, ε, δ).

We abbreviate wγ (v0, ε, δ, t) = w
γ
ε,δ,t = w

γ
δ,t = wγ . Similarly, define w̃γ = ṽ ∩ γg−t ṽ.

LEMMA 4.2. Let v0 ∈ R have zero width. Assume � acts freely, properly discontinuously,
and by isometries on X. There exist ε0 > 0 and δ0 > 0 such that for all ε ∈ [0, ε0], δ ∈
(0, δ0], and t ∈ R, the sets E(w̃γ ) = E(w̃γε,δ,t ) are pairwise disjoint.

Proof. Let p = v0(0). Because � acts freely and properly discontinuously on X, there is
some r0 > 0 such that d(p, γp) ≥ r0 for all non-trivial γ ∈ �. Let ε0 = r0/30, and let
δ0 > 0 be small enough that diam ṽ3ε0,δ0 < 15ε0. This implies ṽ3ε0,δ0 ∩ γ ṽ3ε0,δ0 = ∅ for
all γ �= id by the triangle inequality.

Now let ε ∈ [0, ε0] and δ ∈ (0, δ0]. Let γ , γ ′ ∈ � be such that E(w̃γ ) ∩ E(w̃γ
′
) is

non-empty. By definition of ṽ, there exist t ′ ∈ R and w ∈ GX such that w ∈ gt w̃γ ∩
gt

′
w̃γ

′
. Then

w ∈ (gt ṽ ∩ γ ṽ) ∩ (gt ′ ṽ ∩ γ ′gt ′−t ṽ) = (gt ṽ ∩ gt ′ ṽ) ∩ (γ ṽ ∩ γ ′gt ′−t ṽ).

So w ∈ gt ṽ ∩ gt ′ ṽ, hence |t ′ − t | ≤ 3ε by definition of ṽ. Then also

γ−1w ∈ ṽε,δ ∩ γ−1γ ′gt ′−t ṽε,δ ⊂ g−ε0 ṽ3ε0,δ0 ∩ γ−1γ ′g−ε0 ṽ3ε0,δ0 ,

which is empty by the previous paragraph unless γ−1γ ′ = id. Therefore γ = γ ′.

COROLLARY 4.3. All the w̃γ are disjoint.

LEMMA 4.4. Fix a zero-width geodesic v0 ∈ GX. Assume � acts freely, properly dis-
continuously, and by isometries on X. There exist ε0 > 0 and δ0 > 0 such that for every
δ ∈ (0, δ0] and ε ∈ [0, ε0], the set v = v(v0, ε, δ) satisfies all the following properties.
(1) If ε > 0 then v contains an open neighborhood of gε/2v0 in GX.
(2) v and ṽ are compact.
(3) For all v ∈ v, gtv ∈ v if and only if 0 ≤ s(gtv) ≤ ε. Similarly, for all v ∈ ṽ, gtv ∈ ṽ

if and only if −ε ≤ s(gtv) ≤ 2ε.
(4) dT (̃v

−
δ , ṽ+

δ ) = dT (v
−
δ , v+

δ ) > π .
(5) The sets E(w̃γ ) = E(w̃γε,δ,t ) are pairwise disjoint for all t ∈ R.

Proof. Property (1) follows from continuity of πp, (2) and (4) from Lemma 2.1, (3) from
the definitions, and (5) from Lemma 4.2.

Remark 4.5. Only property (5) requires v0 zero-width and � acting freely. The others
require only v0 rank-one and � acting properly isometrically.
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5. Mixing calculations
5.1. Measures. We recall the measures constructed in [12].

The critical exponent δ� = inf{s ≥ 0 :
∑
γ∈� e−sd(p,γ q) < ∞} of the Poincaré series

for � does not depend on choice of p or q. We shall always assume δ� < ∞ (which
holds whenever � is finitely generated, for instance). Then Patterson’s construction yields
a conformal density (μp)p∈X of dimension δ� on ∂X, called the Patterson–Sullivan
measure.

Definition 5.1. A conformal density of dimension δ is a family (μp)p∈X of equivalent finite
Borel measures on ∂X, supported on 	, such that for all p, q ∈ X and γ ∈ �:
(1) the pushforward γ∗μp = μγp; and
(2) the Radon–Nikodym derivative (dμq/dμp)(ξ) = e−δbξ (q,p).

Now fix p ∈ X. For (v−, v+) ∈ E(GX), let βp : E(GX) → R be βp(v
−, v+) =

(bv− + bv+)(v(0), p); this does not depend on choice of v ∈ E−1(v−, v+). The measure
μ on ∂X × ∂X defined by

dμ(ξ , η) = e−δ�βp(ξ ,η) dμp(ξ) dμp(η)

is �-invariant and does not depend on choice of p ∈ X; it is called a geodesic current.
The Bowen–Margulis measure m, a Radon measure on GX that is invariant under both

gt and �, is constructed as follows [12]. The measure μ× λ on ∂X × ∂X × R (where λ
is Lebesgue measure) is supported on 	×	× R. One shows the set E(Z)× R has full
measure, where Z ⊆ GX is the set of zero-width geodesics in X. Recall from §2 the map
πp : GX → ∂X × ∂X × R given by πp(v) = (v−, v+, bv−(v(0), p)). This map restricts
to a homeomorphism from Z to E(Z)× R, hence m = μ× λ may be viewed as a Borel
measure on GX.

Write G	X = E−1(	×	) ⊆ GX. Importantly, m has full support on G	X—that
is, m(U) > 0 for every open neighborhood U of v ∈ G	X in GX. In particular,
m(v(v0, ε, δ)) > 0 whenever v0 ∈ G	X. Moreover, we have the following proposition.

PROPOSITION 5.2. [12] Let � be a group acting freely, non-elementarily, properly
discontinuously, and by isometries on a proper, geodesically complete CAT(0) space X
with rank-one axis. The zero-width geodesics of G	X are dense in G	X.

(However, the zero-width geodesics do not in general form an open set in GX, even in the
cocompact case.)

The Bowen–Margulis measure m has a quotient measure m� on �\GX. Since we
assume � acts freely on X (and therefore on GX), m� can be described by saying that
whenever A ⊂ GX is a Borel set on which pr is injective, m�(pr A) = m(A).

One can adapt the methods of Knieper’s proof [6] that the Bowen–Margulis measure is
the unique measure of maximal entropy to the locally CAT(0) case. One thus obtains the
following theorem (see [13] for details).

THEOREM 5.3. [13] Let � be a group acting freely geometrically on a proper, geodesically
complete CAT(0) space X with rank-one axis. The Bowen–Margulis measurem� on �\GX
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is the unique measure (up to rescaling) of maximal entropy for the geodesic flow, which
has entropy h = δ� .

To simplify notation, we write h := δ� , even if � does not act cocompactly.
The �-action on X is said to have arithmetic length spectrum if the translation lengths

of axes are all contained in some discrete subgroup cZ of R. In [12], we showed that when
	 = ∂X, X is geodesically complete, and m� is finite, the only examples of arithmetic
length spectrum are when X is a tree with integer edge lengths, up to homothety. Moreover,
when the �-action on X does not have arithmetic length spectrum, the measure m� is
mixing under the geodesic flow gt� .

Standing hypothesis. We assume throughout that m� is finite, and thus we may
normalize the measure by assuming m�(�\GX) = 1. We also assume non-arithmetic
length spectrum, so m� is mixing.

5.2. Averaging. Fix a zero-width geodesic v0 ∈ GX, and let p = v0(0). Let ε ∈ (0, ε0]
and δ ∈ (0, δ0].

Our goal in this section is to prove Corollary 5.17, which describes the total measure
of intersections v ∩ �gt (v) for large t. Let w = ⋃

γ∈� wγ and w̃ = ⋃
γ∈� w̃γ . It is easy

to see by mixing that limt→∞ m(w) = m(v)2 and limt→∞ m(w̃) = m(̃v)2. Less obvious,
however, is that limt→∞ μ(E(w)) = (2/ε)m(v)2.

Definition 5.4. Define s : GX → R by s(v) = bv−(v(0), p). And for each γ ∈ �, define
τγ : GX → R by τγ (v) = bv−(γp, p)− t .

LEMMA 5.5. τγ (v) = s(v)− s(γ−1gtv).

Proof. We compute

s(v)− s(γ−1gtv) = bv−(v(0), p)− bγ−1v−(γ−1v(t), p)

= bv−(v(0), p)− [bv−(v(0), γp)+ t]

= bv−(γp, p)− t

= τγ (v).

Define φ : w̃ → � by putting φ(v) equal to the unique γ ∈ � such that v ∈ w̃γ . Notice
that for v ∈ w, φ(v) is the unique γ ∈ � such that v ∈ wγ .

Define τ : w̃ → R by τ(v) = τφ(v)(v). Also define � : w̃ → R by �(v) = ε − |τ(v)|,
and let �̃(v) = 2ε + �(v).

LEMMA 5.6. Let v ∈ w̃. Then �̃(v) is the length of the geodesic segment gR(v) ∩ w̃.
Similarly, if v ∈ w then �(v) is the length of the geodesic segment gR(v) ∩ w. Moreover,
|τ(v)| ≤ ε if and only if E(v) ∈ E(w). In other words, �̃(v) ≥ 2ε if and only if E(v) ∈
E(w).

Proof. These statements follow from Lemma 5.5, by (3) and (5) of Lemma 4.4.
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COROLLARY 5.7. For all f ∈ L1(μ),∫
E(w)

f dμ =
∫
w

f ◦ E
�

dm =
∫

E(w̃)∩{�̃≥2ε}
f dμ =

∫
w̃∩{�̃≥2ε}

f ◦ E
�̃

dm.

By Lemma 4.4 (5), the map φ : w̃ → � factors as φ = φ̂ ◦ E for some φ̂ : E(w̃) → �.
Similarly, τ : w̃ → R factors as τ = τ̂ ◦ E for some τ̂ : E(w̃) → R, and � = �̂ ◦ E.

COROLLARY 5.8. If f ∈ L1(R) vanishes outside [−ε, ε], then∫
E(w)

f ◦ τ̂ dμ =
∫
w

f ◦ τ
�

dm =
∫

E(w̃)
f ◦ τ̂ dμ =

∫
w̃

f ◦ τ
�̃

dm.

Define σ : w̃ → R by σ(v) = s(φ(v)−1gtv).

LEMMA 5.9. σ is continuous.

Proof. The restriction of σ to each w̃γ is s ◦ γ−1 ◦ gt , and w̃ is the disjoint union of
finitely many (closed) w̃γ .

FACT 5.10. τ = s − σ .

FACT 5.11. Both s(v), σ(v) ∈ [0, ε] for all v ∈ w, and s(v), σ(v) ∈ [−ε, 2ε] for v ∈ w̃.

Recall the �-action on GX commutes with the geodesic flow gt on GX, so we have a
quotient flow gt� on �\GX defined by gt�(pr v) = pr(gtv) for all v, t .

LEMMA 5.12. Let ψ : �\GX → R be measurable, and let ψt = ψ ◦ gt� . Then

lim
t→∞(ψ × ψt)∗m�(C ×D) = (ψ∗m� × ψ∗m�)(C ×D)

for every measurable C ×D ⊆ R2, where (ψ × ψt)(v̄) := (ψ(v̄), ψt(v̄)) ∈ R2.

Proof. By mixing, limt→∞ m�(ψ
−1(C) ∩ ψ−1

t (D)) = m�(ψ
−1(C)) ·m�(ψ−1(D))..

LEMMA 5.13. If f : [0, ε] × [0, ε] → R is Riemann integrable, then

lim
t→∞

∫
w
f (s(v), σ(v)) dm(v) = m(v)2

ε2

∫ ε

0

∫ ε

0
f (x, y) dx dy.

Similarly, if f : [−ε, 2ε] × [−ε, 2ε] → R is Riemann integrable, then

lim
t→∞

∫
w̃
f (s(v), σ(v)) dm(v) = m(v)2

ε2

∫ 2ε

−ε

∫ 2ε

−ε
f (x, y) dx dy.

Thus (s × σ)∗(m|w) converges weakly tom(v)2/ε2 times Lebesgue measure on [0, ε]2,
where m|w is the restriction of m to w.

Proof. Since s∗(m|v) is m(v)/ε times Lebesgue measure on [0, ε], by Lemma 5.12 the
conclusion of Lemma 5.13 holds whenever f is the characteristic function of a measurable
product set C ×D ⊆ [0, ε]2. (Specifically, one can apply Lemma 5.12 to the well-defined
measurable function ψ : �\GX → R given by ψ(pr v) = s(v) for v ∈ v and ψ(v̄) = −1
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if v̄ /∈ pr(v). Then s∗(m|v) = (ψ∗m�)|[0,ε], while (ψ × ψt)(v̄) ∈ [0, ε]2 if and only if
v̄ ∈ pr(w), hence (ψ × ψt)∗(m�|v) = ((ψ × ψt)∗m�)|[0,ε]2 .) The conclusion of Lemma
5.13 then easily extends to all finite linear combinations of characteristic functions of
measurable product sets.

Now if f is Riemann integrable, there exist step functions ϕn ≤ f ≤ ψn satisfying
limn

∫ ε
0

∫ ε
0 ϕn = ∫ ε

0

∫ ε
0 f = limn

∫ ε
0

∫ ε
0 ψn. Then∫

ϕn d(s × σ)∗m ≤
∫
f d(s × σ)∗m ≤

∫
ψn d(s × σ)∗m,

and so letting t → ∞, we obtain

m(v)2

ε2

∫ ε

0

∫ ε

0
ϕn ≤ lim inf

t→∞

∫
f d(s × σ)∗m

and

lim sup
t→∞

∫
f d(s × σ)∗m ≤ m(v)2

ε2

∫ ε

0

∫ ε

0
ψn.

Letting n → ∞, we find

lim
t→∞

∫
f d(s × σ)∗m = m(v)2

ε2

∫ ε

0

∫ ε

0
f .

This proves the first part of the lemma.
In the same manner one obtains

lim
t→∞

∫
w̃
f (s(v), σ(v)) dm(v) = m(̃v)2

9ε2

∫ 2ε

−ε

∫ 2ε

−ε
f (x, y) dx dy,

and the second part of the lemma follows by observing that m(̃v) = 3m(v).

LEMMA 5.14. If f : [−3ε, 3ε] → R is Riemann integrable and supported on [−ε, ε], then
the function F : [−ε, 2ε] × [−ε, 2ε] → R given by F(x, y) = (1/(3ε − |x − y|))f (x −
y) is Riemann integrable, and∫ 2ε

−ε

∫ 2ε

−ε
F (x, y) dx dy =

∫ ε

−ε
f (z) dz.

Proof. By change of variables (putting z = x − y and w = x + y − ε),∫ 2ε

−ε

∫ 2ε

−ε
F (x, y) dx dy =

∫ 3ε

−3ε

1
2

∫ 3ε−|z|

−3ε+|z|
f (z)

3ε − |z| dw dz =
∫ 3ε

−3ε
f (z) dz.

Remark 5.15. In the notation of Lemma 5.14, (f ◦ τ)/� = F ◦ (s × σ).

PROPOSITION 5.16. Let X be a proper CAT(0) space. Assume � acts freely, properly
discontinuously, and by isometries on X, and that m� is finite and mixing, and normalized
so that ‖m�‖ = 1. If f : [−ε, ε] → R is Riemann integrable then

lim
t→∞

∫
E(w)

f ◦ τ̂ dμ = lim
t→∞

∫
w

f ◦ τ
�

dm = m(v)2

ε2

∫ ε

−ε
f .
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Proof. Corollary 5.8 gives us the first equality. It also gives us limt→∞
∫
w((f ◦ τ)/�) dm

= limt→∞
∫
w̃((f ◦ τ)/�̃) dm. From Lemma 5.14 and Lemma 5.13 we obtain limt→∞

∫
w̃

((f ◦ τ)/�̃) dm = (m(v)2/ε2)
∫ ε
−ε f because (f ◦ τ)/� = F ◦ (s × σ).

COROLLARY 5.17. limt→∞ μ(E(w)) = (2/ε)m(v)2 = limt→∞(2/ε)m(w).

Proof. Putting f = 1 in Proposition 5.16, we obtain limt→∞ μ(E(w)) = (m(v)2/ε2)
∫ ε
−ε

1 = (2/ε)m(v)2. Putting f = 1 in Lemma 5.13, we find limt→∞(2/ε)m(w) =
(2/ε)m(v)2.

Remark 5.18. In terms of averages, we find limt→∞(1/μ(E(w)))
∫

E(w) f ◦ τ̂ dμ =
(1/2ε)

∫ ε
−ε f . In particular,

lim
t→∞

1
μ(E(w))

∫
E(w)

�̂ dμ = ε

2
and lim

t→∞
1

m(w)

∫
w
� dm = 2ε

3
.

Thus the average length of intersection in w is ε/2 if one averages by cross-sectional area,
but 2ε/3 if one averages by volume.

6. Product estimates
We recall our standing hypotheses, from §5.2 through the rest of the paper. The group �
acts freely, non-elementarily, properly discontinuously, and by isometries on the proper,
geodesically complete CAT(0) space X with rank-one axis. We also assume m� is finite
and mixing, and normalized so that ‖m�‖ = 1.

For this section, fix v0 ∈ GX and ε, δ > 0, and let t ∈ R.

6.1. Unclipped intersections.

Definition 6.1. Let I = I (v0, ε, δ, t) be the set of non-trivial γ ∈ � such that wγ = v ∩
g−t γ v is not empty. Call γ ∈ I unclipped if γ v+ ⊆ v+ and v− ⊆ γ v−. Let I unclipped be
the set of unclipped γ ∈ I .

We would like to say that γ is unclipped if and only if E(wγ ) = v− × γ v+, but
care requires us to pad the set v slightly as follows. Define v̂ε,δ = v̂ε,δ,t , where ε̂ =
ε + 3 diam π(v0,δ). Write ŵγ = v̂ ∩ g−t γ v̂ and ŵ = ⋃

γ∈I ŵ
γ .

LEMMA 6.2. Assume E(ŵγ ) = v− × γ v+. Then γ v+ ⊆ v+ and v− ⊆ γ v−.

Proof. Notice that E(ŵγ ) = E(̂v ∩ g−t γ v̂) ⊆ E(̂v) ∩ E(g−t γ v̂) = E(v) ∩ γ E(v) =
(v− × v+) ∩ γ (v− × v+) = (v− ∩ γ v−)× (v+ ∩ γ v+). So by hypothesis, v− × γ v+ ⊆
(v− ∩ γ v−)× (v+ ∩ γ v+), that is, v− ⊆ v− ∩ γ v− and γ v+ ⊆ v+ ∩ γ v+. But this
implies v− ⊆ γ v− and γ v+ ⊆ v+.

To prove the converse, we first bound τ on v.

LEMMA 6.3. Let t ∈ R and γ ∈ I0,δ,t (that is, γ is non-trivial and w
γ

0,δ,t = v0,δ ∩
g−t γ v0,δ is not empty). Then |bv−(γp, p)− t | ≤ 3 diam π(v0,δ) for all v ∈ vε,δ .
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Proof. Let w ∈ w
γ

0,δ,t = v0,δ ∩ g−t γ v0,δ and v ∈ vε,δ . Since τγ (v) depends only on v−,
we may assume v+ = w+ and v ∈ v0,δ . Then combine the bounds

|bv−(γp, p)− bv−(γ γ−1gtw(0), v(0))| ≤ 2 diam π(v0,δ)

and

|bv−(w(t), v(0))− t | = |bv−(w(t), v(t))|
≤ d(w(t), v(t)) ≤ d(w(0), v(0)) ≤ diam π(v0,δ)

to obtain the desired bound.

Our next bound on τ is an easy consequence of Lemma 6.3.

LEMMA 6.4. Let γ ∈ Iε,δ,t . Then |τγ | ≤ ε + 3 diam π(v0,δ) on vε,δ .

Proof. By hypothesis, we may find v ∈ vε,δ ∩ g−t γ vε,δ . Then let w ∈ vε,δ . Since τγ
depends only on the backward endpoint, it suffices to prove the lemma when w+ = v+
and s(w) = 0. So assume w+ = v+ and s(w) = 0.

By choice of v, we know s(v), s(γ−1gtv) ∈ [0, ε]. Now s(γ−1gtv) = s(v)− τγ (v),
so g−s(v)v ∈ v0,δ satisfies γ−1gt+τγ (v)g−s(v)v = g−s(γ−1gt v)γ−1gtv ∈ v0,δ . Thus by
Lemma 6.3,

|τγ (w)− τγ (v)| = |bw−(γp, p)− t − τγ (v)| ≤ 3 diam π(v0,δ).

Since τγ (v) ∈ [−ε, ε], we see that |τγ (w)| ≤ ε + 3 diam π(v0,δ).

We can now state the relationship we wanted.

LEMMA 6.5. Let γ ∈ I . Then γ is unclipped if and only if E(ŵγ ) = v− × γ v+.

Proof. Lemma 6.2 proves the ‘backwards’ direction, so assume γ v+ ⊆ v+ and v− ⊆
γ v−. First observe that E(ŵγ ) ⊆ E(v) ∩ γ E(v) = (v− ∩ γ v−)× (v+ ∩ γ v+) = v− ×
γ v+ by hypothesis on v− and v+. On the other hand, Lemma 6.4 implies (ξ , η) ∈ E(ŵγ )
for all (ξ , η) ∈ E(v) ∩ γ E(v). This completes the proof.

We remark that if γ ∈ I is unclipped, then E(wγ ) is always non-empty (because γ ∈ I )
and splits as a product E(wγ ) = A× γ v+ for some A ⊆ v− (because whether v ∈ v lies
in wγ depends only on τγ (v), which depends only on v−).

6.2. Unclipped estimates. Here is a general statement about products of sets in the
boundary.

LEMMA 6.6. Let U , V ⊆ ∂X be Borel sets with μ(U × V ) > 0, and let γ ∈ �. Assume
γV ⊆ V and |βp| ≤ C on U × V . Then

e−2hC ≤
∫
U×γV f (ξ , η) dμ(ξ , η)∫

U×V f (ξ , γ η′) e−hbγη′ (p,γp)
dμ(ξ , η′)

≤ e2hC

for any Borel function f : U × γV → (0, ∞).
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Proof. By the properties of conformal densities and the definition of μ,∫
U×γV

f (ξ , η) dμ(ξ , η) =
∫
U×γV

f (ξ , η) e−hβp(ξ ,η) dμp(ξ) dμp(η)

=
∫
U×V

f (ξ , γ η′) e−hβp(ξ ,γ η′) dμp(ξ) dμγ−1p(η
′)

=
∫
U×V

f (ξ , γ η′) e−hβp(ξ ,γ η′) dμp(ξ) e
−hbη′ (γ−1p,p) dμp(η

′)

=
∫
U×V

f (ξ , γ η′) e−hbγη′ (p,γp)
e−hβp(ξ ,γ η′) dμp(ξ) dμp(η

′)

=
∫
U×V

f (ξ , γ η′) e−hbγη′ (p,γp)
e−h[βp(ξ ,γ η′)−βp(ξ ,η′)] dμ(ξ , η′).

The conclusion of the lemma follows immediately.

We will use Lemma 6.6 with U × V = v−
δ × v+

δ . By Lemma 5.3 of [12], βp is
continuous on E(R). Thus limδ→0 maxv∈vδ |βp(v)| = 0. However, for simplicity we will
just use the bound maxv∈vδ |βp(v)| ≤ 2 diam π(v0,δ) ≤ 2 diam(vε,δ).

LEMMA 6.7. Let γ ∈ � be unclipped. Then

e−6h diam(v) ≤ eht
∫

E(ŵγ )
f (ξ , η) dμ(ξ , η)∫

E(v) f (ξ , γ η′) dμ(ξ , η′)
≤ e6h diam(v)

for any Borel function f : E(v) → (0, ∞).

Proof. By Lemma 6.6,

e−4h diam(v) ≤ eht
∫
v−×γv+ f (ξ , η) dμ(ξ , η)∫

v−×v+ f (ξ , γ η′) eh[t−bγη′ (p,γp)]
dμ(ξ , η′)

≤ e4h diam(v).

If η′ ∈ v+ then γ η′ = w+ for some w ∈ wγ because γ is unclipped. So both w and
γ−1gtw are in v. Hence

|bγη′(p, γp)− t | = |bw+(p, γp)− t |
≤ |bw+(w(0), γ · γ−1gtw(0))− t | + 2 diam(π(v))

= 2 diam π(v) ≤ 2 diam(v).

Therefore,

e−6h diam(v) ≤ eht
∫
v−×γv+ f (ξ , η) dμ(ξ , η)∫

v−×v+ f (ξ , γ η′) dμ(ξ , η′)
≤ e6h diam(v).

Definition 6.8. To simplify future statements, we write Cε,δ = e6h diam(vε,δ).

Notice that for ε > 0 fixed, Cε,δ is an upper semicontinuous increasing function of δ.
And for δ > 0 fixed, Cε,δ is a continuous increasing function of ε.
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COROLLARY 6.9. Let γ ∈ I unclipped
ε,δ,t . Then

1
Cε,δ

≤ eht

μ(E(v))

∫
E(ŵγ )

dμ ≤ Cε,δ .

7. Counting unclipped intersections
Fix a zero-width geodesic v0 ∈ GX. Let N = N(v0, ε, δ, t) = #I (v0, ε, δ, t) and
Nunclipped = Nunclipped(v0, ε, δ, t) = #I unclipped(v0, ε, δ, t).

Recall that w = ⋃
γ∈� wγ . We also define wunclipped = ⋃

γ∈I unclipped wγ . Similarly
write ŵ = ⋃

γ∈� ŵγ and ŵunclipped = ⋃
γ∈I unclipped ŵγ .

Note that although E(v) = E(̂v), the inclusion E(wγ ) ⊆ E(ŵγ ) may be strict.

LEMMA 7.1. Assume ε ∈ (0, ε0] and δ ∈ (0, δ0]. Then

1
Cε,δ

· μ(E(ŵunclipped)) ≤ e−htμ(E(v))Nunclipped ≤ Cε,δ · μ(E(ŵunclipped)).

In particular, if μ(E(ŵunclipped)) > 0 then we have

1
Cε,δ

≤ e−ht μ(E(v))

μ(E(ŵunclipped))
Nunclipped ≤ Cε,δ .

Proof. Since m(vε,δ) > 0, we have Nunclipped = 0 if and only if μ(E(ŵunclipped)) = 0.
Thus the lemma is trivial if μ(E(ŵunclipped)) = 0. So assume μ(E(ŵunclipped)) > 0. Start
with the identity

Nunclipped =
∑

γ∈I unclipped

1 =
∑

γ∈I unclipped

1
μ(E(ŵγ ))

∫
E(ŵγ )

dμ.

By Corollary 6.9,

1
Cε,δ

≤ e−ht μ(E(v))
μ(E(ŵγ ))

≤ Cε,δ

for γ unclipped, so

1
Cε,δ

μ(E(ŵunclipped)) =
∑

γ∈I unclipped

1
Cε,δ

∫
E(ŵγ )

dμ

≤ e−htμ(E(v))Nunclipped

≤
∑

γ∈I unclipped

Cε,δ

∫
E(ŵγ )

dμ

= Cε,δ μ(E(ŵunclipped)).

8. Jiggling near rank-one geodesics
Clearly the inclusions I unclipped

δ,t ⊆ Iδ,t and w
unclipped
δ,t ⊆ wδ,t always hold. We now prove

inclusions when we allow δ > 0 to vary.
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LEMMA 8.1. Let v0 ∈ R and 0 < r < δ ≤ δ0. There exists t0 ≥ 0 such that

Ir ,t ⊆ I
unclipped
δ,t ⊆ Iδ,t

for all t ≥ t0 and ε ∈ (0, ε0].

Proof. Let α = δ − r > 0. By Corollary 3.5, there exists t1 ≥ 0 such that for all t ≥ t1 and
γ ∈ Ir ,t (that is, vr ∩ γg−tvr �= ∅), γ v+

δ ⊆ Bρ(v
+
r , α) = v+

δ . Similarly, there exists t2 ≥
0 such that for all t ≥ t2 and γ ∈ Ir ,t (that is, vr ∩ γ−1gtvr �= ∅), γ−1v−

δ ⊆ Bρ(v
−
r , α) =

v−
δ . So for all t ≥ t0 = max{t1, t2}, if γ ∈ Ir ,t then γ ∈ I unclipped

δ,t .

COROLLARY 8.2. Let v0 ∈ R and 0 < r < δ ≤ δ0. There exists t0 ≥ 0 such that

wr ,t ⊆ w
unclipped
δ,t ⊆ wδ,t

for all t ≥ t0 and ε ∈ (0, ε0].

Since m(v) > 0 whenever v0 ∈ G	X, by Corollary 5.17 and Corollary 8.2 we see that
m(w

unclipped
δ,t ) > 0 for all v0 ∈ G	X ∩ R with small δ, ε > 0 and large t > 0.

In what follows, we shall often want to state things for both lim inf and lim sup. The
following definition makes this more convenient. Write a ≤ l̃imt→∞f (t) ≤ b if for every
ε > 0 there exists t0 ∈ R such that a − ε ≤ f (t) ≤ b + ε for all t ≥ t0. In other words,
lim inft→∞ f (t) ≥ a and lim supt→∞ f (t) ≤ b.

LEMMA 8.3. Let v0 ∈ G	X be zero-width and ε ∈ (0, ε0]. Let δ ∈ (0, δ0] be a point of
continuity of the non-decreasing function r �→ m(vr ). Then

1
Cε,δ

≤ l̃im
t→∞

N
unclipped
δ,t

2ehtm(vδ)
≤ ε̂

ε
Cε,δ .

Proof. By Corollary 5.17, limt→∞ μ(E(wr ,t )) = (2/ε)m(vr )2 for all r ∈ (0, δ0]. Hence δ
is a point of continuity of the function f (r) = limt→∞ μ(E(wr ,t )). So by Corollary 8.2,

lim
t→∞ μ(E(wunclipped

δ,t )) = lim
t→∞ μ(E(wδ,t ))

= 2
ε
m(vδ)

2 ≤ lim
t→∞ μ(E(ŵunclipped

δ,t )) ≤ lim
t→∞ μ(E(ŵδ,t ))

= 2
ε̂
m(̂vδ)

2 = 2̂ε
ε2m(vδ)

2.

But now

1
Cε,δ

≤ l̃im
t→∞

N
unclipped
δ,t

2ehtm(vδ)
≤ ε̂

ε
Cε,δ

by Lemma 7.1 because μ(E(v)) = m(v)/ε.

Remark 8.4. The points of continuity of r �→ m(vr ) = ε · μ(v−
r × v+

r ) do not depend on
ε. Also, for such r we find that vr is a continuity set for m (that is, the topological frontier
∂vr of vr has m(∂vr ) = 0); this is easy to see because the projection GX → ∂X × ∂X ×
R is continuous, and therefore ∂vr ⊆ ∂ E(vr )× {0, ε}.
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The remark above also applies to r �→ m(̂vr ) = ε̂ · μ(v−
r × v+

r ), with ε̂ = ε +
3 diam π(v0,δ). The points of continuity here are a subset of those above.

LEMMA 8.5. Let v0 ∈ G	X be zero-width and ε ∈ (0, ε0]. Let δ ∈ (0, δ0) be a point of
continuity of the non-decreasing function r �→ m(vr ). Then

1
Cε,δ

≤ l̃im
t→∞

Nδ,t

2ehtm(vδ)
≤ ε̂

ε
Cε,δ .

Proof. Whenever δ′ ∈ (δ, δ0], we find N
unclipped
δ,t ≤ Nδ,t ≤ N

unclipped
δ′,t ≤ Nδ′,t for all t

sufficiently large by Lemma 8.1, hence

φ(r) = lim sup
t→∞

e−htNunclipped
r ,t and ψ(r) = lim sup

t→∞
e−htNr ,t

satisfy φ(δ) ≤ ψ(δ) ≤ φ(δ′) ≤ ψ(δ′). Taking a decreasing sequence δ′n → δ such that
each δ′n > δ is a point of continuity of r �→ m(vr ), we find by Lemma 8.3 that

2m(vδ)
Cε,δ

≤ lim inf
t→∞ e−htNunclipped

δ,t ≤ lim inf
t→∞ e−htNδ,t

and

ψ(δ) ≤ lim inf
n→∞ φ(δ′n) ≤ lim inf

n→∞ 2m(̂vδ′n)Cε,δ′n = 2m(̂vδ)Cε,δ .

9. Counting periodic intersections
Definition 9.1. Let v0 ∈ R and ε, δ > 0. Define

I
periodic
ε,δ,t = {γ ∈ Iε,δ,t : γ has an axis in vε,δ}

and Nperiodic
ε,δ,t = #I periodic

ε,δ,t .

Clearly the inclusion I periodic
ε,δ,t ⊆ Iε,δ,t always holds.

LEMMA 9.2. Let v0 ∈ GX be zero-width, and let ε ∈ (0, ε0] and δ ∈ (0, δ0]. Then
I

unclipped
ε,δ,t ⊆ I

periodic
ε,δ,t for all t > 0.

Proof. Let t > 0 and γ ∈ I unclipped
ε,δ,t . Since γ v+ ⊆ v+, the nested intersection

⋂
n∈N γ nv+

of compact sets must contain a point ξ ∈ ∂X. Similarly, the nested intersection⋂
n∈N γ−nv− must contain a point η ∈ ∂X. Since E(v) = v− × v+, there is some

geodesic v ∈ v with endpoints E(v) = (η, ξ). We may assume v is the central geodesic
in its parallel set—that is, v(0) is the circumcenter of CS(v)—so then γ must stabilize
gRv (as a set). Thus γ must act on v by γ v = gt

′
v for some t ′ ∈ R. By Lemma 6.4,

|t ′ − t | ≤ ε + 3 diam π(v0,δ). It follows from Lemma 4.2 that t ′ > 0. Thus v contains an
axis for γ .

LEMMA 9.3. Let v0 ∈ GX be zero-width, ε ∈ (0, ε0], δ ∈ (0, δ0], and t > 0. Then

I
periodic
ε̂,δ,t

⊆ {γ ∈ � : γ has an axis in vε,δ and |γ | ∈ [t − ε, t + ε]} ⊆ I
periodic
ε,δ,t ,

where ε̂ = ε − 3 diam π(v0,δ).
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Proof. Let v ∈ vε,δ be an axis for γ ∈ �, that is, γ v = g|γ |v, and observe that t +
τγ (v) = |γ |. By Lemma 6.4 we see that if γ ∈ Î

ε,δ,t then τγ (v) ∈ [−ε, ε]; this proves
the first inclusion. For the second, it suffices to show τγ (v) ∈ [−ε, ε] implies γ ∈ Iε,δ,t .
So assume τγ (v) ∈ [−ε, ε]. We may also assume s(v) = 0. If τγ (v) ∈ [−ε, 0], then
γ−1gtv = g−τγ (v)v ∈ vε,δ , and therefore v ∈ v ∩ g−t γ v. If τγ (v) ∈ [0, ε], then for w =
gτγ (v)v ∈ vε,δ we find γ−1gtw = g−τγ (v)w = v, and therefore w ∈ v ∩ g−t γ v. Thus in
either case v ∩ g−t γ v is not empty, hence τγ (v) ∈ [−ε, ε] implies γ ∈ Iε,δ,t .
PROPOSITION 9.4. Let X be a proper CAT(0) space. Assume � acts freely, properly
discontinuously, and by isometries on X, and that m� is finite and mixing. Let v0 ∈
G	X be zero-width, and let ε ∈ (0, ε0]. Let δ ∈ (0, δ0) be a point of continuity of the
non-decreasing function r �→ m(vr ). Then

1
Cε,δ

≤ l̃im
t→∞

N
periodic
ε,δ,t

2ehtm(vε,δ)
≤ ε̂

ε
Cε,δ .

Proof. By Lemma 9.2, Nunclipped
ε,δ,t ≤ N

periodic
ε,δ,t ≤ Nε,δ,t for all sufficiently large t, hence

lim inf
t→∞

N
unclipped
ε,δ,t

2ehtm(vε,δ)
≤ l̃im
t→∞

N
periodic
ε,δ,t

2ehtm(vε,δ)
≤ lim sup

t→∞
Nε,δ,t

2ehtm(vε,δ)
.

Now apply the bounds from Lemma 8.3 and Lemma 8.5.

10. Conjugacy classes and intersection segments
We recall again our standing hypotheses, from §5.2 through the rest of the paper. The
group � acts freely, non-elementarily, properly discontinuously, and by isometries on the
proper, geodesically complete CAT(0) space X with rank-one axis. We also assume m� is
finite and mixing, and normalized so that ‖m�‖ = 1.

A non-identity element γ ∈ � is called axial if it has an axis v ∈ GX. In other words,
γ �= id is axial if there exist v ∈ GX and t > 0 such that γ v = gtv.

10.1. Conjugacy classes. Let C(�) be the set of axial conjugacy classes [γ ] of �. Call
a function a : C(�) → GX a choice of axis if every a[γ ] is an axis for some γ ′ ∈ [γ ]. In
other words, for every axial γ ∈ � there exists φ ∈ � such that φa[γ ] is an axis for γ .

Call a conjugacy class [γ ] ∈ C(�) imprimitive if γ = φn for some φ ∈ � and n > 1;
note this does not depend on choice of representative γ for [γ ]. Note that by [2, Theorem
II.6.8(2)], if γ = φn with n > 1 and γ is axial, then φ is also axial. Let Cprime(�) ⊂ C(�)

be the set of conjugacy classes which are not imprimitive.
For any subset U ⊆ GX, write CU(�) ⊆ C(�) for the set of conjugacy classes [γ ]

such that γ has an axis parallel to some v ∈ �U ; this also does not depend on choice
of representative γ for [γ ]. Also define Cprime,U(�) = Cprime(�) ∩ CU(�). We remark
that Cvε,δ (�) = {[γ ] ∈ Cvε,δ (�) : γ has an axis in �vε,δ} (that is, checking for parallel
geodesics is unnecessary here by construction of vε,δ).

For v ∈ GX, let |v| be the length of the smallest period under gt� of the projection
pr(v) ∈ �\GX, with |v| = ∞ if pr(v) is not periodic.
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For γ ∈ �, let |γ | be the translation length of γ . By CAT(0) geometry, if v ∈ GX is an
axis for γ and γ is primitive (that is, not imprimitive) then |γ | = |v|.

For t ≥ t ′ ≥ 0, let C�(t ′, t) = {[γ ] ∈ C(�) : t ′ ≤ |γ | ≤ t}. Similarly define Cprime
� (t ′, t),

CU� (t
′, t), and C

prime,U
� (t ′, t) for U ⊆ GX. Let Conj�(t

′, t) = #C�(t ′, t), and similarly
define Conjprime

� (t ′, t), ConjU� (t
′, t), and Conjprime,U

� (t ′, t).

10.2. Intersection segments. Let v0 ∈ GX, ε ∈ (0, ε0], and δ ∈ (0, δ0].
For every v ∈ GX, the intersection of �vε,δ with gRv is the disjoint union of orbit

segments of length ε. Call these segments intersection segments for v with vε,δ; call two
segments equivalent if there is an isometry γ ∈ � carrying one to the other.

Let Svε,δ (v) be the collection of equivalence classes of intersection segments for v
with vε,δ , and let Svε,δ (v) = #Svε,δ (v). Notice that Svε,δ (v) is in natural bijection with the
collection of disjoint orbit segments (length ε) arising as intersections of vε,δ with �gRv.
Of course Svε,δ (v) is infinite in general, but it is finite when v is an axis for some γ ∈ �.
In fact, in this case, elements of Svε,δ (v) correspond to those conjugacy classes of γ in �
that have an axis in vε,δ . We deduce the following lemma.

LEMMA 10.1. For all U satisfying vε,δ ⊆ U ⊆ GX, we have

N
periodic
ε̂,δ,t

≤
∑

[γ ]∈CU� (t−ε,t+ε)
Svε,δ (a[γ ]) ≤ N

periodic
ε,δ,t .

Proof. In the sum, CU� (t − ε, t + ε) is the set of [γ ] ∈ C(�) such that γ has a conjugate
with an axis parallel to some v ∈ U and |γ | ∈ [t − ε, t + ε], whereas Svε,δ (a[γ ]) is the
number of conjugates of γ with an axis in vε,δ . But by Lemma 9.3 we have

N
periodic
ε̂,δ,t

≤ #{γ ∈ � : γ has an axis in vε,δ and |γ | ∈ [t − ε, t + ε]} ≤ N
periodic
ε,δ,t .

LEMMA 10.2. Let v0 ∈ G	X be zero-width, and let ε ∈ (0, ε0]. Let δ ∈ (0, δ0) be a point
of continuity of the non-decreasing function r �→ m(vr ). Then

lim sup
t→∞

Conjvε,δ� (t − ε, t + ε)

2ehtm(vε,δ)
≤ ε̂

ε
Cε,δ .

Proof. Since Svε,δ (a[γ ]) ≥ 1 for all [γ ] ∈ C
vε,δ
� , we have Conjvε,δ� (t − ε, t + ε) ≤

N
periodic
ε,δ,t by Lemma 10.1. Apply the upper bound from Proposition 9.4.

11. Measuring along periodic orbits
For each v ∈ GX, let λv be Lebesgue measure on gRv. Notice the quotient measure λv� on
�\GX has ‖λv�‖ = |v|.

LEMMA 11.1. Let v0 ∈ GX, ε ∈ (0, ε0], and δ ∈ (0, δ0]. For all v ∈ GX, there are
(1/ε)λv�(pr vε,δ) equivalence classes of intersection segments for v with vε,δ; that is,

Svε,δ (v) = 1
ε
λv�(pr vε,δ).
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Proof. The intersection segments for v with vε,δ are each of length ε, and they are pairwise
disjoint. Hence λv�(pr vε,δ) = ε · Svε,δ (v).

For any U ⊆ GX and t ≥ α > 0, define

λ
mult,U
a,t ,α = 1

ConjU� (t − α, t)

∑
[γ ]∈CU� (t−α,t)

1

‖λa[γ ]
� ‖

λ
a[γ ]
� ,

λ
prime,U
a,t ,α = 1

Conjprime,U
� (t − α, t)

∑
[γ ]∈Cprime,U

� (t−α,t)

1

‖λa[γ ]
� ‖

λ
a[γ ]
� ,

λ̃
mult,U
a,t ,α = 1

t · ConjU� (t − α, t + α)

∑
[γ ]∈CU� (t−α,t+α)

λ
a[γ ]
� .

Note that by Proposition 9.4, if v0 ∈ G	X then for all ε, δ > 0 and sufficiently large
t > 0, we have Nperiodic

ε,δ,t > 0, and thus we are not dividing by zero in the definition of the
above measures, provided vε,δ ⊆ U and t > 0 is sufficiently large.

LEMMA 11.2. For all U satisfying vε,δ ⊆ U ⊆ GX, we have

N
periodic
ε̂,δ,t

≤ t

ε
ConjU� (t − ε, t + ε)λ̃

mult,U
a,t ,ε (pr vε,δ) ≤ N

periodic
ε,δ,t .

Proof. Lemma 11.1 gives us∑
[γ ]∈CU� (t−ε,t+ε)

Svε,δ (a[γ ]) = t

ε
ConjU� (t − ε, t + ε)λ̃

mult,U
a,t ,ε (pr vε,δ),

and we apply Lemma 10.1.

COROLLARY 11.3. Let v0 ∈ G	X be zero-width, and let ε ∈ (0, ε0]. Let δ ∈ (0, δ0) be a
point of continuity of the non-decreasing function r �→ m(vr ). Then

ε̂

ε

1
Cε,δ

lim sup
t→∞

m(vε,δ)

λ̃
mult,U
a,t ,ε (pr vε,δ)

≤ l̃im
t→∞

ConjU� (t − ε, t + ε)

2εeht/t
≤ ε̂

ε
Cε,δ lim inf

t→∞
m(vε,δ)

λ̃
mult,U
a,t ,ε (pr vε,δ)

whenever vε,δ ⊆ U ⊆ GX.

Proof. Combine Proposition 9.4 and Lemma 11.2, and observe that

1
C
ε̂,δ

lim sup
t→∞

m(v̂
ε,δ)

λ̃
mult,U
a,t ,ε (pr vε,δ)

≥ ε̂

ε

1
Cε,δ

lim sup
t→∞

m(vε,δ)

λ̃
mult,U
a,t ,ε (pr vε,δ)

.

The measures λ̃mult,U
a,t ,α and λmult,U

a,t+α,2α have the same weak limits. In fact, one easily checks
the following result directly from the definitions.

LEMMA 11.4. Let U ⊆ GX be such that vε,δ ⊆ U . For any fixed α > 0 and choice of axis
a, limt→∞ ‖λ̃mult,U

a,t ,α − λ
mult,U
a,t+α,2α‖ = 0.

https://doi.org/10.1017/etds.2021.83 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.83


1240 R. Ricks

Proof. By definition,

λ
mult,U
a,t+α,2α = 1

ConjU� (t − α, t + α)

∑
[γ ]∈CU� (t−α,t+α)

1

|λa[γ ]
� |

λ
a[γ ]
�

and

λ̃
mult,U
a,t ,α = 1

ConjU� (t − α, t + α)

∑
[γ ]∈CU� (t−α,t+α)

1
t
λ
a[γ ]
� .

Since t − α ≤ |λa[γ ]
� | ≤ t + α for all λa[γ ]

� ∈ CU� (t − α, t + α), we see that for t > α,

t

t + α
λ̃

mult,U
a,t ,α (V ) ≤ λ

mult,U
a,t+α,2α(V ) ≤ t

t − α
λ̃

mult,U
a,t ,α (V )

for all Borel sets V ⊆ GX. The conclusion of the lemma follows.

COROLLARY 11.5. Let v0 ∈ G	X be zero-width, and let ε ∈ (0, ε0]. Let δ ∈ (0, δ0) be a
point of continuity of the non-decreasing function r �→ m(vr ). Then

lim inf
t→∞

Conjvε,δ� (t − ε, t + ε)

2εeht/t
≥ ε̂

ε

m(vε,δ)

Cε,δ
.

Proof. By Corollary 11.3 and Lemma 11.4,

lim inf
t→∞

Conjvε,δ� (t − ε, t + ε)

2εeht/t
≥ ε̂

ε

1
Cε,δ

lim sup
t→∞

m(vε,δ)

λ
mult,vε,δ
a,t+ε,2ε(pr vε,δ)

.

The fact that λmult,vε,δ
a,t+ε,2ε is a probability measure gives us the desired inequality.

Combining Lemma 10.2 and Corollary 11.5, we obtain the following result.

PROPOSITION 11.6. Let X be a proper CAT(0) space. Assume � acts freely, properly
discontinuously, and by isometries on X, and that m� is finite and mixing. Let v0 ∈
G	X be zero-width, and let ε ∈ (0, ε0]. Let δ ∈ (0, δ0) be a point of continuity of the
non-decreasing function r �→ m(vr ). Then for every α > 0 there exists t0 > 0 such that
for all t ≥ t0,

1 − α

Cε,δ
· 2̂εm(vε,δ)eht

t
≤ Conjvε,δ� (t − ε, t + ε) ≤ (1 + α)Cε,δ · 2

ε̂

ε
ehtm(vε,δ).

We will not use Proposition 11.6 in what follows, but it gives an idea of the strength of
result we can prove without adding additional hypotheses.

LEMMA 11.7. Let U ⊆ GX and α > 0. Assume there is an open set V ⊆ U such that
V ∩G	X is non-empty. There exist C > 0 and t0 > 0 such that for all t ≥ t0,

ConjU� (t − α, t + α) ≥ C
eht

t
.

Proof. By Proposition 5.2, there is some zero-width v0 ∈ V . By Lemma 2.1, there exist
δ > 0 and ε > 0 such that vε,δ = v(v0, ε, δ) is completely contained in R ∩ V . We may
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assume ε ≤ min{α, ε0} and that δ ∈ (0, δ0] is chosen such that

lim inf
t→∞

Conjvε,δ� (t − ε, t + ε)

2εeht/t
≥ ε̂

ε

m(vε,δ)

Cε,δ

by Corollary 11.5. Thus there exist C > 0 and t0 > 0 such that for all t ≥ t0,

C
eht

t
≤ Conjvε,δ� (t − ε, t + ε) ≤ ConjU� (t − ε, t + ε) ≤ ConjU� (t − α, t + α).

It is easy to see that Lemma 11.7 is equivalent to the following statement, where we
replace ConjU� (t − α, t + α) by ConjU� (t − α, t).

COROLLARY 11.8. Let U ⊆ GX and α > 0. Assume U contains an open neighborhood
about some v0 ∈ G	X. There exist C > 0 and t0 > 0 such that for all t ≥ t0,

ConjU� (t − α, t) ≥ C
eht

t
.

Proof. By Lemma 11.7, there exist C′ > 0 and t ′0 > 0 such that for all t ≥ t ′0,

ConjU�

(
t − α

2
, t + α

2

)
≥ C′ · e

ht

t
.

So let C = C′ · e−hα/2 and t0 = t ′0 + α/2. Then for all t ≥ t0,

ConjU� (t − α, t) ≥ C′ · e
h(t−α/2)

t − α/2
= C · t

t − α/2
· e

ht

t
≥ C

eht

t
.

12. Counting multiplicities
We start with a simple upper bound on the number of conjugacy classes, coming from the
construction of the Patterson–Sullivan measures.

LEMMA 12.1. If K ⊂ GX is compact, then limt→∞ e−h′tConjK� (0, t) = 0 for all h′ > h.

Proof. Consider that for γ ∈ � with an axis in K, we know d(γp, p) ≤ |γ | +
2 diam π(K), and therefore for all h′ > h,∑

t>0

e−h′tConjK� (t , t) =
∑

[γ ]∈C(�)
with an axis in K

e−h′|γ | ≤
∑
γ∈�

with an axis in K

e−h′|γ |

≤
∑
γ∈�

with an axis in K

e−h′ d(γp,p)+2h′ diam π(K)

≤ e2h′ diam π(K)
∑
γ∈�

with an axis in K

e−h′ d(γp,p)

converges because h is the critical exponent of the Poincaré series for Patterson’s
construction. It follows that limt→∞ e−h′tConjK� (0, t) = 0.
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LEMMA 12.2. Let U ⊆ GX contain an open neighborhood about some v0 ∈ G	X, and
assume U ⊆ �K for some compact set K ⊆ GX. Then for every α > 0,

lim
t→∞

Conjprime,U
� (t − α, t)

ConjU� (t − α, t)
= 1.

Remark 12.3. In particular, if � acts cocompactly on X, then limt→∞(Conjprime
� (t − α, t)/

Conj�(t − α, t)) = 1.

Proof. Let α > 0. By Corollary 11.8, there exist C > 0 and t ′0 > 0 such that

ConjU� (t − α, t) ≥ C
eht

t

for all t ≥ t ′0. Now by definition, ConjK� (0, t/2) = Conj�K� (0, t/2) ≥ ConjU� (0, t/2). Since
limt→∞ 2te−(3/2)htConjK� (0, t) = 0 by Lemma 12.1, there exists t0 ≥ t ′0 such that

ConjU�

(
0,
t

2

)
≤ ConjK�

(
0,
t

2

)
≤ C · e

(3/4)ht

t

for all t ≥ t0. Since every imprimitive [γ ] ∈ CU� (t − α, t) \ Cprime,U
� (t − α, t) is a multiple

of some [φ] ∈ CU� (0, t/2), we see that

0 ≤ ConjU� (t − α, t)− Conjprime,U
� (t − α, t) ≤ ConjU� (0, t/2).

Thus

ConjU� (t − α, t) ≥ Conjprime,U
� (t − α, t) ≥ ConjU� (t − α, t)− ConjU� (0, t/2)

and therefore

1 ≥ Conjprime,U
� (t − α, t)

ConjU� (t − α, t)
≥ 1 − ConjU� (0, t/2)

ConjU� (t − α, t)
≥ 1 − e−(1/4)ht .

Since ConjU� (0, t) diverges, we obtain the following corollary.

COROLLARY 12.4. Under the hypotheses of Lemma 12.2,

lim
t→∞

Conjprime,U
� (0, t)

ConjU� (0, t)
= 1.

It follows from Lemma 12.2 that the probability measures λprime,vε,δ
a,t ,α and λmult,vε,δ

a,t ,α have
the same weak limits. In fact, we have the following lemma.

LEMMA 12.5. Let U ⊆ GX contain an open neighborhood about some v0 ∈ G	X, and
assume U ⊆ �K for some compact set K ⊆ GX. For any fixed α > 0 and choice of
axis a,

lim
t→∞

∥∥∥λprime,U
a,t ,α − λ

mult,U
a,t ,α

∥∥∥ = 0.
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Proof. Let W be a Borel subset of GX. By the definitions,

λ
mult,GX
a,t ,α (W) = 1

ConjU� (t − α, t)

∑
[γ ]∈C�(t−α,t)

1

‖λa[γ ]
� ‖

λ
a[γ ]
� (W)

and

λ
prime,GX
a,t ,α (W) = 1

Conjprime,U
� (t − α, t)

∑
[γ ]∈Cprime

� (t−α,t)

1

‖λa[γ ]
� ‖

λ
a[γ ]
� (W).

The outside coefficients are asymptotically equal (and non-zero), and the difference in
the sums is at most ConjU� (t − α, t)− Conjprime,U

� (t − α, t), which is asymptotically zero
compared to ConjU� (t − α, t) by Lemma 12.2.

13. Limiting process
For a fixed interval [a, b] ⊂ R and continuous function f : [a, b] → R, the Riemann
sums

∑n
k=1 2εnf (xn) converge to

∫ b
a
f (x) dx, for εn = (b − a)/2n and xn = (2k − 1)εn.

This also holds whenever f is Riemann integrable, for example, f is bounded and
non-decreasing. For completeness, we give here a proof of a standard generalization of
this fact to asymptotic intervals.

LEMMA 13.1. Let F : R → R be eventually positive and non-decreasing. Then

1
C

≤ l̃im
t→∞

∫ t
0 F(x) dx∑�t/2ε�

k=0 2εF (t − (2k + 1)ε)
≤ C,

where C = lim supx→∞ F(x + ε)/F (x).

Proof. For any fixed a ∈ R and m ∈ Z,

lim
t→∞

∫ t
0 F(x) dx∫ t
a
F (x) dx

= 1 and lim
t→∞

∑�t/2ε�
k=0 2εF (t − (2k + 1)ε)∑�t/2ε�−m

k=0 2εF (t − (2k + 1)ε)
= 1,

so without loss of generality we may assume F is positive and non-decreasing on [0, ∞).
We may similarly assume, for α > 0 fixed, that 1 ≤ (F (x + ε)/F (x)) ≤ C + α for all
x > −2ε. Let t > 0 and put n = �t/2ε�. For each k = 0, 1, 2, . . . , n, we have

1
C + α

F(t − (2k + 1)ε) ≤ F(x) ≤ (C + α)F (t − (2k + 1)ε)

for all x ∈ [t − (2k + 2)ε, t − 2kε]. Thus

1
C + α

2εF (t − (2k + 1)ε) ≤
∫ t−2kε

t−(2k+2)ε
F (x) dx ≤ (C + α)2εF (t − (2k + 1)ε)
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for each k = 0, 1, 2, . . . , n, and therefore

1
C + α

n−1∑
k=0

2εF (t − (2k + 1)ε) ≤
∫ t

2ε
F (x) dx ≤

∫ t

0
F(x) dx

≤
∫ t

−2ε
F (x) dx ≤ (C + α)

n∑
k=0

2εF (t − (2k + 1)ε).

But

lim
t→∞

∑�t/2ε�
k=0 2εF (t − (2k + 1)ε)∑�t/2ε�−1
k=0 2εF (t − (2k + 1)ε)

= 1,

so

1
C + α

≤ l̃im
t→∞

∫ t
0 F(x) dx∑�t/2ε�

k=0 2εF (t − (2k + 1)ε)
≤ C + α.

As α > 0 was arbitrary, we find

1
C

≤ l̃im
t→∞

∫ t
0 F(x) dx∑n

k=0 2εF (t − (2k + 1)ε)
≤ C.

The following is another standard calculation which we include for completeness.

LEMMA 13.2. Let ε > 0. Then

1
C

≤ l̃im
t→∞

�t/2ε�∑
k=0

2ε
eh(t−(2k+1)ε)/(t − (2k + 1)ε)

eht /ht
≤ C,

where C = ehε.

Proof. It is a standard fact that for any fixed t0 > 0,

lim
t→∞

∫ t

t0

ehx

x
dx

/
eht

ht
= 1. (1)

This comes from the calculation∫ t

t0

ehx

x
dx = ehx

hx

∣∣∣∣t
t0

+
∫ t

t0

ehx

hx2 dx = eht

ht
− eht0

ht0
+

∫ t

t0

ehx

hx2 dx;

the second term of the last expression tends to zero relative to eht /ht because it is
constant, the third because limx→∞ (ehx/hx2)/(ehx/x) = 0. On the other hand, for all
ε > 0, Lemma 13.1 gives us

e−hε ≤ l̃im
t→∞

�t/2ε�∑
k=0

2ε
eh(t−(2k+1)ε)

t − (2k + 1)ε

/∫ t

t0

ehx

x
dx ≤ ehε
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and therefore

e−hε ≤ l̃im
t→∞

�t/2ε�∑
k=0

2ε
eh(t−(2k+1)ε)

t − (2k + 1)ε

/
eht

ht
≤ ehε

from (1).

14. Entropy and equidistribution
Knieper also proves an equidistribution result [6, Proposition 6.4]; adapting his proof, we
obtain a similar result. For clarity, we include a proof.

We first briefly recall the definition of measure-theoretic entropy (a good reference is
[15]). Let ν be a probability measure on a space Z. The entropy of a measurable partition
A = {A1, . . . , Am} of Z is

Hν(A) =
m∑
i=1

−ν(Ai) log ν(Ai).

Let φ : Z → Z be a measure-preserving transformation. For the partitions

A(n)
φ := {Aj1 ∩ φ−1Aj2 ∩ · · · ∩ φ−(n−1)Ajn−1 : 1 ≤ j1, j2, . . . , jn−1 ≤ m},

n �→ (1/n)Hν(A(n)
φ ) is a subadditive function. Hence (1/n)Hν(A(n)

φ ) decreases to a limit

hν(φ, A) := lim
n→∞

1
n
Hν(A(n)

φ ) = inf
n∈N

1
n
Hν(A(n)

φ ),

called the entropy of φ with respect to A. The measure-theoretic entropy of φ is

hν(φ) := sup
A
hν(φ, A).

The measure-theoretic entropy of a measure-preserving flow φ = (φt )t∈R on Z is defined
to be that of its time-one map φ1, that is, hν(φ) := hν(φ

1).
A significant portion of Knieper’s proof of his Proposition 6.4 is spent proving the

following (unstated) general lemma.

LEMMA 14.1. Let φ be a measurable map of a measurable space to itself. Let (μk) be a
sequence of φ-invariant probability measures, and let A be a measurable partition. Then

lim sup
k→∞

Hμk(A(nk)
φ )

nk
≤ lim inf

k→∞
Hμk(A(q)

φ )

q

for all integers q > 1 and sequences (nk) in N such that nk → ∞.

We next define separated sets for gt� . Recall the metric on GX is given by

dGX(v, w) = sup
t∈R

e−|t |dX(v(t), w(t)).

The quotient metrics d�\X and d�\GX on �\X and �\GX, respectively, are

d�\X(x̄, ȳ) = inf
γ∈� dX(x, γy) and d�\GX(v̄, w̄) = inf

γ∈� dGX(v, γw),
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where x, y, v, w are arbitrary representatives of the equivalence classes x̄, ȳ, v̄, w̄,
respectively. We will write d for all these metrics.

Now for n ∈ N and ε > 0, call a setA ⊂ �\GX(n, ε)-separated if for all distinct v̄, w̄ ∈
A, there is some integer k such that 0 ≤ k ≤ n and d(gk�(v̄), g

k
�(w̄)) > ε.

Write injrad(�\X) for the injectivity radius of �\X.

LEMMA 14.2. Let � be a group acting freely, properly discontinuously, by and isome-
tries on a proper CAT(0) space X. Let t0 > 0 and let P ⊂ C�(t0 − α, t0). If α <
e−1/2 injrad(�\X) then pr(a(P )) is (�t0�, α)-separated for any choice of axis a.

Proof. Let a be a choice of axis, and let 0 < α < e−1/2 injrad(�\X). Let γ1, γ2 ∈ �
represent distinct conjugacy classes [γ1], [γ2] ∈ P . Let v = a[γ1] and w = a[γ2], and
write v̄ = pr v and w̄ = pr w. We may assume, replacing w by γw and γ2 by γ γ2γ

−1

(for some γ ∈ �) if necessary, that d(v̄, w̄) = d(v, w).
Write n = �t0�. Suppose, by way of contradiction, that d(gk�v̄, gk�w̄) ≤ α for all k =

0, 1, 2, . . . , n. For each k ∈ Z, let ϕk ∈ � satisfy d(gkv, ϕkgkw) = d(gk�v̄, gk�w̄). (Note
we assumed above that ϕ0 = id.) Then

e−1/2d(v(k ± 1
2 ), ϕkw(k ± 1

2 )) ≤ d(gkv, ϕkgkw) = d(gk�v̄, gk�w̄) ≤ α

for all k = 0, 1, 2, . . . , n, hence d(v(k ± 1
2 ), ϕkw(k ± 1

2 )) ≤ e1/2α. So

d(ϕkw(k + 1
2 ), ϕk+1w(k + 1

2 )) ≤ 2e1/2α < 2 injrad(�\X),
and therefore ϕn = ϕn−1 = · · · = ϕ0 = id. It follows that d(v(k), w(k)) = d(v̄(k), w̄(k)) ≤
α for all k = 0, 1, 2, . . . , n. Thus d(v(t), w(t)) ≤ α for all t ∈ [0, t0] by convexity.

Find t1, t2 ∈ [t0 − α, t0] such that γ1v = gt1v and γ2w = gt2w. Then

d(γ−1
2 γ1v(0), w(0)) = d(γ−1

2 v(t1), γ−1
2 w(t2)) = d(v(t1), w(t2)) ≤ 2α.

Hence d(γ−1
2 γ1v(0), v(0)) ≤ 3α < 2 injrad(�\X), which is only possible if γ−1

2 γ1 is
trivial. This contradicts our hypothesis that [γ1] and [γ2] are distinct. Therefore, there must
be some k ∈ {0, 1, 2, . . . , n} such that d(gk�v̄, gk�w̄) > α, and thus we see that pr(a(P ))
is (n, α)-separated.

Remark 14.3. The constant e−1/2 in the statement of Lemma 14.2 is an artifact of the
metric we defined on GX. If we had used any constant b ∈ (1, 9

4 ) in place of e in defining
dGX, we could have used the constant 2

3 in place of e−1/2 in Lemma 14.2.

Definition 14.4. Let P ⊂ C� be finite. Call a gt -invariant probability measure ν on �\GX
equal-weighted along a(P ) if ν gives measure 1/#P to the orbit of pr(a[γ ]) for each [γ ] ∈
P , where pr : GX → �\GX is the canonical projection map.

PROPOSITION 14.5. Let � be a group acting freely geometrically on a proper, geodesically
complete CAT(0) space X with rank-one axis. Let (νk) be a sequence of gt -invariant
probability measures on �\GX, and let a be a choice of axis. Assume each νk is
equal-weighted along a(Pk) for some subset Pk ⊂ C�(tk − ε, tk), where ε satisfies 0 <
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ε < e−1/2 injrad(�\X) and tk → ∞ as k → ∞. If

lim
k→∞

log #Pk
tk

= h

then νk → m� weakly.

Proof. By compactness of the space of gt -invariant Borel probability measures on �\GX
under the weak* topology, every subsequence (νkj ) has at least one weak* accumulation
point ν of {νk}. By uniqueness of the measure of maximal entropy, it suffices to prove that
every such ν is a measure of maximal entropy for gt� .

Let ν be a weak* accumulation point of {νk}; passing to a subsequence if necessary, we
may assume νk → ν in the weak* topology. Fix a measurable partition A = {A1, . . . , Am}
of �\GX such that δ := diam A < ε and ν(∂Ai) = 0. Let nk = �tk� and φ = g1. Since
the closed geodesics in pr(a(Pk)) are (nk , ε)-separated by Lemma 14.2, they are also
(nk , δ)-separated. But by construction, no two geodesics in any one α ∈ A(nk+1)

φ are

(nk , δ)-separated, hence each α ∈ A(nk+1)
φ touches at most one geodesic from pr(a(Pk)).

But Lemma 14.2 holds for arbitrary choice of axis, including flowing each geodesic in
a(Pk) by a different amount; hence each α ∈ A(nk+1)

φ touches at most one orbit from
pr(a(Pk)). Thus νk(α) ≤ 1/#Pk . Therefore the entropy

Hνk (A(nk+1)
φ ) =

∑
α∈A(nk+1)

φ

−νk(α) log νk(α) ≥
∑

α∈A(nk+1)
φ

νk(α) log #Pk = log #Pk .

Since ν(∂Ai) = 0 for all Ai ∈ A, we have Hνk (A(q)
φ ) → Hν(A(q)

φ ) and thus

hν(φ) ≥ hν(φ, A) = lim
q→∞

Hν(A(q)
φ )

q
= lim
q→∞ lim

k→∞
Hνk (A(q)

φ )

q
.

By Lemma 14.1 and the inequality Hνk (A(nk+1)
φ ) ≥ log #Pk from above,

lim
q→∞ lim

k→∞
Hνk (A(q)

φ )

q
≥ l̃im
k→∞

Hνk (A(nk+1)
φ )

nk
≥ lim
k→∞

log #Pk
tk

= h.

Therefore hν(φ) ≥ h, which shows that ν is a measure of maximal entropy. Becausem� is
the unique such probability measure by Proposition 5.3, we have ν = m� .

COROLLARY 14.6. Let � be a group acting freely geometrically on a proper, geodesically
complete CAT(0) space X with rank-one axis. Then

lim sup
t→∞

log ConjGX\R
� (t − ε, t)
t

< h

for all ε satisfying 0 < ε < e−1/2 injrad(�\GX)). In particular,

lim sup
t→∞

log ConjGX\R
� (0, t)
t

< h and lim sup
t→∞

log ConjGX\R
� (0, t)

log ConjR� (0, t)
= 0.
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Proof. Suppose the first statement fails. Then we have ε ∈ (0, e−1/2 injrad(�\GX)) and
tk → ∞ such that the sets Pk := C

GX\R
� (tk − ε, tk) satisfy limk→∞(log #Pk/tk) = h.

Hence by Proposition 14.5, λGX\R
a,tk ,α → m� weakly. But GX \ R is closed in GX, so m�

must be supported on �\(GX \ R), which contradicts the fact that m� is supported on
R. Therefore, the first statement must hold. Then there exist h′ < h and t0 > 0 such
that ConjGX\R

� (t − ε, t) ≤ eh
′t for all t ≥ t0, and thus ConjGX\R

� (0, t) ≤ Ceh
′t for some

C > 0 by Lemma 13.1; the second inequality follows directly and the final equality from
Corollary 11.8.

THEOREM 14.7. Let � be a group acting freely geometrically on a proper, geodesically
complete CAT(0) space X with rank-one axis. Let U ⊆ GX contain a non-empty open
set. For any fixed α with 0 < α < e−1/2 injrad(�\X) and choice of axis a, the measures
λ

mult,U
a,t+α,2α , λprime,U

a,t ,α , and λ̃mult,U
a,t ,α all converge weakly to m� as t → ∞.

Proof. Let (tk) be a sequence of positive real numbers such that tk → ∞. Let Pk =
CU� (tk − α, tk). By Corollary 11.8, limk→∞(log #Pk/tk) = h, and thus λUa,tk ,α → m�

weakly by Proposition 14.5. Since (tk) was arbitrary, it follows that the measures λmult,U
a,t ,α

converge weakly to m� . By Lemma 12.5, so do the measures λmult,U
a,t ,α . It follows that

λ
mult,U
a,t+α,2α → m� weakly, and so λ̃mult,U

a,t ,α → m� weakly by Lemma 11.4.

15. Using equidistribution
We recall again our standing hypotheses, from §5.2 through the rest of the paper. The
group � acts freely, non-elementarily, properly discontinuously, and by isometries on the
proper, geodesically complete CAT(0) space X with rank-one axis. We also assume m� is
finite and mixing, and normalized so that ‖m�‖ = 1.

LEMMA 15.1. Fix a zero-width geodesic v0 ∈ G	X. Let ε ∈ (0, ε0], and let δ ∈ (0, δ0) be
a point of continuity of the non-decreasing function r �→ m(vr ). Let U satisfy vε,δ ⊆ U ⊆
GX. Assume that, for some choice of axis a, the measures λ̃mult,U

a,t ,ε converge weakly to m�
as t → ∞. Then

ε̂

ε

1
Cε,δ

≤ l̃im
t→∞

ConjU� (t − ε, t + ε)

2εeht/t
≤ ε̂

ε
Cε,δ .

Proof. Since vε,δ is a continuity set for m, we see that limt→∞ λ̃
mult,U
a,t ,ε (pr vε,δ) =

m�(pr vε,δ) by hypothesis on λ̃mult,U
a,t ,ε . By choice of ε0, δ0 > 0 (Lemma 4.2), we find pr

is injective on vε,δ , and therefore m�(pr vε,δ) = m(vε,δ). Apply Corollary 11.3.

Putting F(t) = eht /t in Lemma 13.1, by Lemma 15.1 we obtain our desired asymptotics
for ConjU� (0, t). But to do so, we need to check the overlaps we get from counting the
endpoints of closed intervals are asymptotically small.

We record first the following observation. If (ak) and (bk) are sequences in R such that
(bk) is eventually positive and non-decreasing, and 1/c ≤ l̃imk→∞ ak/bk ≤ c for some
c ≥ 1, then 1/c ≤ l̃imn→∞(

∑n
k=1 ak/

∑n
k=1 bk) ≤ c. The proof is straightforward: Since

(bk) is eventually positive and non-decreasing, the first finitely many terms of both sums
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are negligible. Thus for each δ > 0, we may assume 1/c − δ ≤ ak/bk ≤ c + δ for all k,
whence 1/c − δ ≤ (

∑n
k=1 ak/

∑n
k=1 bk) ≤ c + δ for all n, proving the claim. Essentially

the same proof establishes the following result.

LEMMA 15.2. Let f , g : R → R, and assume g is eventually positive and non-decreasing.
If a ≤ l̃imt→∞ f (t)/g(t) ≤ b for some a, b > 0, then

a ≤ l̃im
t→∞

∑�t/2ε�
k=0 f (t − (2k + 1)ε)∑�t/2ε�
k=0 g(t − (2k + 1)ε)

≤ b

for all ε > 0.

Proof. Let ε > 0. By hypothesis on g, we may ignore finitely many terms from both sums.
Thus for each δ > 0, we may assume a − δ ≤ f (t)/g(t) ≤ b + δ for all t > 0, whence a −
δ ≤ (

∑�t/2ε�
k=0 f (t − (2k + 1)ε))/(

∑�t/2ε�
k=0 g(t − (2k + 1)ε)) ≤ b + δ for all t > 0. This

proves the lemma.

LEMMA 15.3. Fix a zero-width geodesic v0 ∈ G	X. Let ε ∈ (0, ε0], and let δ ∈ (0, δ0) be
a point of continuity of the non-decreasing function r �→ m(vr ). Let U satisfy vε,δ ⊆ U ⊆
GX. Assume that for every α ∈ (0, ε] there is a choice of axis a such that the measures
λ̃

mult,U
a,t ,α converge weakly to m� as t → ∞. Then

ε̂

ε

1
ehεCε,δ

≤ l̃im
t→∞

ConjU� (0, t)
eht /ht

≤ ε̂

ε
ehεCε,δ .

Proof. By Lemma 15.1, for all α ∈ (0, ε] we have

α̂

α

1
Cα,δ

≤ l̃im
t→∞

ConjU� (t − α, t + α)

2αeht/t
≤ α̂

α
Cα,δ ,

and therefore by Lemma 15.2,

α̂

α

1
Cα,δ

≤ l̃im
t→∞

∑�t/2ε�
k=0 ConjU� (t − (2k + 1)ε − α, t − (2k + 1)ε + α)∑�t/2ε�

k=0 2αeh(t−(2k+1)ε)/(t − (2k + 1)ε)
≤ α̂

α
Cα,δ .

Since for all α ∈ (0, ε),

�t/2ε�∑
k=0

ConjU� (t − (2k + 1)ε − α, t − (2k + 1)ε + α)

≤ ConjU� (0, t) ≤
�t/2ε�∑
k=0

ConjU� (t − (2k + 2)ε, t − 2kε),

letting α → ε from below gives us

ε̂

ε

1
Cε,δ

= lim
α→ε−

α̂

α

1
Cα,δ

≤ l̃im
t→∞

ConjU� (0, t)∑�t/2ε�
k=0 2εeh(t−(2k+1)ε)/(t − (2k + 1)ε)

≤ ε̂

ε
Cε,δ .
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Thus by Lemma 13.2,

1
C

· ε̂
ε

1
Cε,δ

≤ l̃im
t→∞

ConjU� (0, t)
eht /ht

≤ C · ε̂
ε
Cε,δ ,

where C = ehε.

Remark 15.4. We do not actually need λ̃mult,U
a,t ,α → m� weakly for all α ∈ (0, ε]. It suffices

for this to hold for an increasing sequence αk → ε, and for ε itself.

THEOREM 15.5. Let � be a group acting freely, properly discontinuously, and by
isometries on a proper, geodesically complete CAT(0) space X with rank-one axis. Let
U ⊆ GX contain an open neighborhood of some zero-width geodesic v0 ∈ G	X. Assume
m� is finite and mixing, and also that for all sufficiently small α > 0 there is a choice of
axis a such that λ̃mult,U

a,t ,α → m� weakly as t → ∞. Then

lim
t→∞

ConjU� (0, t)
eht /ht

= 1.

Moreover, if U ⊆ �K for some compact set K ⊆ GX, then

lim
t→∞

Conjprime,U
� (0, t)
eht /ht

= lim
t→∞

ConjU� (0, t)
eht /ht

= 1.

Proof. Choose decreasing sequences εk , δk → 0 such that each δk ∈ (0, δ0) is a point of
continuity of the non-decreasing function r �→ m(vεk ,r ). Since limε,δ→0 Cε,δ = 1, the first
statement holds by Lemma 15.3. The second holds by Corollary 12.4.

COROLLARY 15.6. Let � be a group acting freely geometrically on a proper, geodesically
complete CAT(0) space X with rank-one axis. Assume X is not homothetic to a tree with
integer edge lengths. Let U ⊆ GX contain a non-empty open set. Then

lim
t→∞

Conjprime,U
� (0, t)
eht /ht

= lim
t→∞

ConjU� (0, t)
eht /ht

= 1.

Proof. By [12, Theorems 4 and 5], m� is finite and mixing. By Theorem 14.7, for every
α > 0 with α < e−1/2 injrad(�\X) and every choice of axis a, we have λ̃mult,U

a,t ,α → m�

weakly as t → ∞. Apply Theorem 15.5.

In particular, putting U = R and U = GX in Corollary 15.6, we obtain

lim
t→∞

Conjprime,R
� (0, t)
eht /ht

= lim
t→∞

ConjR� (0, t)
eht /ht

,

= lim
t→∞

Conjprime
� (0, t)
eht /ht

= lim
t→∞

Conj�(0, t)
eht /ht

= 1.

This proves Theorem 1.1.
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