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TECHNOLOGY SHOCKS AND
HOURS WORKED: A FRACTIONAL
INTEGRATION PERSPECTIVE
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Previous research has found that the dynamic response of hours worked to a technology
shock crucially depends on whether the hours variable is assumed to be an I (0) or an I (1)
variable ex ante. In this paper we employ a multivariate fractionally integrated model that
allows us to simultaneously estimate the order of integration of hours worked and its
dynamic response to a technology shock. Our evidence lends support to the hypothesis
that hours fall in response to a positive technology shock.
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1. INTRODUCTION

What is the effect of a technology shock on the number of hours worked by
the labor force at business cycle frequencies? This question lies at the heart of
modern macroeconomics. The reason is that technological innovation is a perennial
candidate as a source of dynamics for the aggregate economy and employment.
At the same time, full employment remains the main goal for policy makers. The
question that naturally arises in this context is then, How compatible are these two,
at least in the short run? A host of macroeconomic models have tackled this issue
from both theoretical and empirical perspectives, but no consensus has emerged
in the literature yet. This paper uses fractional integration techniques to give an
answer to this important question.

Authors disagree on the empirical implications of a technology shock on hours
worked per capita. Galı́ (1999) ignited an empirical literature on the issue when he
contradicted the tenets of the real business cycle (RBC) theory, whereby technol-
ogy shocks are key for business cycle dynamics. Galı́ (1999) and later on Galı́ and
Rabanal (2004; henceforth GR) and Francis and Ramey (2005a) showed not only
that technology shocks were unimportant for business cycle fluctuations but that,
contrary to the implications of RBC models, hours worked declined in response
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to a technology shock. Galı́’s results have recently been challenged by Christiano
et al. (2003) (henceforth CEV). In an empirical framework very similar to that of
Galı́, these authors find that hours actually increase after a technology shock. The
crucial difference between the two sets of studies is that CEV treat the variable
hours as stationary I (0), whereas the former authors, such as GR, treat it as a
nonstationary I (1) variable. From this perspective, the main issue that remains to
be determined is the exact order of integration of hours worked per capita: Is it
one or zero? Using an asymptotic local-to-unity approach, Pesavento and Rossi
(2005) also propose an agnostic method and find that a positive productivity shock
has a negative impact effect on hours. In their framework, the researcher does not
have to choose between levels and first differences in hours worked.

The main contribution of the present paper is to show that there is an alternative
way to resolve the technology-hours issue without assuming a given order of
integration for standard measures of hours ex ante. We derive a simple method
in a fractional integration framework, which lets the data simultaneously deter-
mine the response of hours to a technology shock and the order of integration of
hours worked. This method presents some advantages with respect to previous
approaches. First, the fractional integration approach makes it possible to discern
the order of integration of a given variable without restricting the econometrician
to choose a priori between one and zero. The order of integration could be zero,
a fraction of one, one, or even above one. Thus, our approach is agnostic with
respect to the order of integration of the variables before their inclusion in a vector
autoregressive (VAR) framework. As a result, pretests on the order of integration
of the variables are not required. As previously mentioned, Pesavento and Rossi
(2005) already addressed this problem in the context of a local-to-unity approach.
Our approach is, however, essentially different from theirs in that we allow the
order of integration to be any real number, whereas they remain in the I (0)/I (1)

framework.
Second, we show that, in our fractional setting, the implied impulse response

functions are invariant to estimating the model with the variables in either levels
or first differences. Because the order of integration is estimated from the data, the
responses of the series in first differences are exactly the same as those implied
by the variables in levels by construction. Moreover, the multivariate fractionally
integrated model employed in this paper permits us to identify the structural
impulse response functions in a way similar to the classic VAR systems with
the additional interaction of the binomial expansions implied by the fractional
polynomials involved in the model.

For our two data specifications, we find that hours worked decline on impact
in response to a technology shock. This response is statistically significant using
the CEV measure (total business hours worked per capita) but not under the GR
measure (nonfarm business hours worked per capita). We also find that the orders of
integration of hours worked identified by the more general fractionally integrated
multivariate systems are uniformly lower than for their univariate counterparts.
Whereas all the univariate frameworks point at orders of integration of hours
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close to 1 or even larger, multivariate models that allow richer and more realistic
dynamics identify orders of integration lower than 1. Thus, it seems that the
cross-sectional dependence allowed in the multivariate framework reduces the
degree of persistence in aggregate hours worked. Finally, our multivariate model
implies statistically different orders of integration for hours worked across data
specifications. Whereas the variable used by GR has an order of integration of 0.67,
the order of integration of the hours variable used by CEV is slightly above zero,
though with a higher level of dependence with respect to the short-run structure.

Section 2 revisits the controversial issue in hand, the divergence between the
responses of hours worked to a technology shock depending on the assumed order
of integration of hours worked. Section 3 develops our econometric framework,
intended to simultaneously identify the orders of integration of the macroeconomic
variables and the impulse responses to the structural shocks. It also compares our
framework with the local-to-unity approach. Section 4 performs univariate tests for
the orders of integration of productivity and hours from a fractionally integrated
perspective. Section 5 employs the multivariate fractionally integrated model de-
rived in Section 3 to determine the response of hours worked to a technology
shock across data specifications. Section 6 concludes.

2. THE CONTROVERSY

In this section we revisit the empirical evidence regarding the effect of a technology
shock on hours worked. We first describe the data used throughout the paper.
Then we report the impulse responses for both GR and CEV’s specifications and
comment on the differences across responses.

Both GR and CEV work with quarterly data, which is commonplace in the
business cycle literature. Whereas GR use productivity and hours data from the
nonfarm business sector in their bivariate VARs, CEV use data from all businesses,
including farming activities. We perform our analysis throughout the paper with
both data sets in order to uncover potential discrepancies across data specifications.
Both the nonfarm business data and total business data were collected from the
Federal Reserve Bank of St. Louis database (FRED). Nonfarm business sector
productivity is measured as output per hour of all persons (OPHNFB is the ID of
the series). Nonfarm business hours are computed as the ratio between the nonfarm
business sector hours of all persons (HOANBS) and the civilian noninstitutional
population over the age of 16 (CNP16OV). Total business productivity is measured
as the output per hour of all persons (OPHPBS) and total business hours per capita
are measured as the business hours of all persons (HOABS) divided by the civilian
noninstitutional population over the age of 16 (CNP16OV). We apply natural
logarithms to the resulting productivity and hours series. Our data set runs from
the first quarter of 1948 to the fourth quarter of 2004. We compared our total
business productivity and hours per capita series with those employed by CEV.1

We compared the data, and the differences between our total business series and
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theirs were indeed minimal. Moreover, the impulse responses were essentially the
same, despite the fact that their database ends on the fourth quarter of 2001.

Throughout the paper we work with bivariate VARs, because as Galı́ (1999)
and CEV show, introducing additional variables into the vector autoregressive
systems does not change the direction of the key impulse responses qualitatively.
Our empirical framework is similar to that of GR and CEV. This framework is
based upon the existence of an infinite moving average representation for the
first differences of the productivity (�xt ) and the hours series (�int ), where
i = 0 corresponds to the CEV specification of hours in levels, and i = 1 cor-
responds to the GR specification with the first difference of hours. In matrix
notation, [ �xt

�int

]
=

[
C11(L) C12(L)

C21(L) C22(L)

] [
εx
t

εn
t

]
, (1)

where the Cik(L) (i, k = 1, 2) elements are polynomials of infinite order depen-
dent on the lag operator L. εx

t and εn
t are the technology and hours i.i.d. shocks,

respectively. In order to recover the structural macroeconomic shocks, we first
estimate bivariate VAR systems. The order of the VAR is chosen to minimize
the Schwarz information criterion. In all cases the order chosen was 2. With the
estimates of the bivariate VAR(2), we obtain the infinite joint moving average
representation of the first differences in productivity and of hours worked as in
(1). We then apply the Blanchard and Quah (1989) (BQ) technique to identify
the structural shocks. Following both GR and BQ, the identification assumption
is that a shock to the hours worked does not affect productivity in the long run,
i.e. that C12(1) = 0. This identification strategy is implemented by means of a
standard Choleski decomposition.

Figure 1 displays the impulse responses of the level of hours worked to a
technology shock for the GR and CEV’s data specifications with their associated
centered 90% asymptotic confidence intervals. We estimated the VAR systems
with hours in levels and first differences. The size of the technology shock is
normalized to one. Both figures confirm the results reported in the literature
[see, for instance, Fernald (2007)]. When the hours variable is treated as an I (0)
stationary process, it increases after a technology shock and displays a persistent
hump-shaped trajectory, with a slow decay to the steady state value. When hours
are treated as a unit root, a different picture emerges, as hours decrease after a
technology shock. Then, hours increase and reach their steady-state after several
quarters. At the 10% significance level, the responses of hours in levels are statis-
tically positive after two or three quarters, whereas the responses of hours in first
differences are only significant on impact and during the following two or three
quarters.

As shown in Figure 1, within this framework, the key issue that remains to be
elucidated is then the order of integration of the variable hours worked per capita.
Standard unit root tests, such as Dickey and Fuller (1979; ADF), Phillips and
Perron (1988; PP), or Kwiatkowski et al. (1992; KPSS), are unable to reject the
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FIGURE 1. Impulse response functions of hours to a technology shock. Note: This figure
shows the impulse response functions of hours per capita worked to a technology shock.
Units are in percentages. The top two panels show the responses of the level of hours
to a technology shock using the VAR specification with hours in levels. GR is the Galı́
and Rabanal (2004) data specification with data for nonfarm businesses and CEV is the
Christiano et al. (2003) data specification with data for total businesses. The bottom panels
show the analogous responses of hours in levels implied by the VAR specification with hours
in first differences. The centered 90% coverage intervals in dashed lines were constructed
using a Monte Carlo experiment with 500 replications.

hypothesis of a unit root for the level of the series, and cannot reject that the series
is stationary in first differences (see both GR and CEV). Although this result is
robust across data specifications, it is well known that the power of these tests is
small under meaningful alternatives. Diebold and Rudebusch (1991), Hassler and
Wolters (1994), and Lee and Schmidt (1996), among others, show that standard
unit-root tests have extremely low power if the alternatives are close to the unit-root
circle, but also if they are of a fractional form.

In this paper we circumvent the problem of pretesting the order of integration
of the series object of study. Instead of testing for the order of integration of
hours before estimating the impulse response of hours to a technology shock, we
perform both tasks simultaneously. To do so, we develop a simple method for esti-
mating empirical macroeconomic systems in a multivariate fractional integration
setting.
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3. A FRACTIONAL INTEGRATION APPROACH

In this section, we first develop a simple method for obtaining the impulse response
functions in a multivariate framework when the variables follow I (d) processes.
Then we compare the fractional integration framework with the local-to-unity
approach, recently employed in multivariate analysis.

3.1. A General Method for Computing Impulse Response Functions in a
Multivariate Fractional Integration Framework

In a fractional integration setting, if a variable yt has an order of integration d

(d ∈ R), it is denoted as yt ∼ I (d) and can be expressed as

(1 − L)dyt = µt t = 1, 2, . . . , (2)

with yt = 0, t ≤ 0. µt is an I (0) process, defined as a covariance stationary
process, with a spectral density function that is positive and finite at the zero
frequency. Thus, µt may be a stationary ARMA process. We can express (1−L)d

as the following binomial expansion:

(1 − L)d =
∞∑

j=0

(
d

j

)
(−1)jLj

=
[

1 − dL + d(d − 1)

2!
L2 − d(d − 1)(d − 2)

3!
L3 . . .

]
. (3)

The representation of yt in (2) can then be approximated for any real d as[
1 − dL + d(d − 1)

2!
L2 − d(d − 1)(d − 2)

3!
L3 . . .

]
yt = µt . (4)

Whereas d captures the long-memory component of the series, µt describes the
short-run dynamics through its ARMA structure. The literature on fractional mod-
els such as (2) has recently emerged in macroeconomics and finance. Some ex-
amples are Diebold and Rudebusch (1989), Baillie and Bollerslev (1994), and
Gil-Alana and Robinson (1997).2

At a theoretical level, an argument employed to justify fractional integration in
macroeconomic series is the aggregation of heterogeneous AR processes [see, for
instance, Robinson (1978) and Granger (1980)]. Moreover, the fractional integra-
tion framework nests the two standard cases documented in the vast majority of
applied work in time series. If d = 0, as is the case for hours worked in CEV, the
series is a covariance stationary process and possesses “short memory,” with the
autocorrelations decaying fairly rapid. If d = 1, as is the case for hours worked in
GR, the series is a non stationary I (1) process. But in a fractional framework there
are more alternatives available for the order of integration of yt . If d belongs to
the interval (0, 0.50), yt is still covariance stationary, but both the autocorrelations

https://doi.org/10.1017/S1365100509080249 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100509080249


586 LUIS ALBERIKO GIL-ALANA AND ANTONIO MORENO

and the response of a variable to a shock take much longer to disappear than in
the standard (d = 0) stationary case.3 If d ∈ [0.50, 1), the series is no longer
covariance stationary, but is still mean reverting, with the effect of the shocks
dying away in the long run. Thus, the fractional differencing parameter d plays
a crucial role in our understanding of both the structure of the economy and the
macroeconomic dynamics. For instance, as d increases, a stronger policy action
is required to bring a variable back to its steady state.

There exist many procedures for estimating and testing the fractional differenc-
ing parameter d in a univariate framework. They can be parametric, semipara-
metric, or even nonparametric and they can be specified in either the time or the
frequency domain. In Section 4 we employ some of them. However, the main
goal of our study is the identification of the structural macroeconomic shocks
and the associated impulse response functions in a multivariate setting. We now
show how the fractional integration framework captures the joint behavior of a set
of macroeconomic variables. We first describe the structural multivariate model
and then show how the structural shocks can be recovered from an estimable
reduced-form model under standard identifying assumptions.

A set of jointly related macroeconomic variables can be described as

ADYt = νt , (5)

where A is an n × n matrix, Yt is an n × 1 vector of observable macroeconomic
variables, and νt is an n × 1 vector of possibly correlated errors. D is an n × n

diagonal matrix that has the following form:

D =

⎡
⎢⎢⎢⎣

(1 − L)d1 0 0 . . . 0
0 (1 − L)d2 0 . . . 0
...

...
... . . .

...

0 0 0 . . . (1 − L)dn

⎤
⎥⎥⎥⎦ , (6)

where di is the order of integration of the variable yi . We assume, without loss of
generality, that the vector of errors νt follows a VAR(1) process,

νt = Gνt−1 + εt , (7)

where G is an n × n matrix and εt is an n × 1 vector of structural macroeconomic
shocks i.i.d. with diagonal variance-covariance matrix �. Substituting (5) into
(7), one can obtain the following infinite moving average representation for the
macroeconomic system:

Yt = D−1[I − (A−1GA)L]−1A−1εt , (8)

where I is the identity matrix of order n. D−1 can be computed easily from the
binomial expansion in (3), valid for any real d. We therefore need to identify
2n + 2n2 structural parameters: 2n from D and � and 2n2 from A and G. Equa-
tion (8) makes clear that the (potentially) fractional orders of integration of the

https://doi.org/10.1017/S1365100509080249 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100509080249


TECHNOLOGY SHOCKS AND HOURS WORKED 587

macroeconomic variables (D) will directly affect the impulse response functions
to the structural shocks. Notice that our setting generalizes the standard impulse
response function framework, where the diagonal values in D are restricted to be
1 or 1 − L, depending on the choice of integration order for a variable, I (0) or
I (1) respectively. Moreover, we do not have to impose any a priori assumption
about the order of integration of the variables because, as we show below, they are
simultaneously estimated with the remaining system parameters.

Unlike the standard I (0)/I (1) VAR framework displayed in Section 2, the
impulse response functions in our fractional specification are not sensitive to
the choice between levels and first differences for the macroeconomic variables.
The reason is that the orders of integration are directly obtained from the data
using a method that is valid even in nonstationary contexts. Suppose, for instance,
that in a bivariate framework, d1 and d2 are, respectively, 1.5 and 0.6. If we take
first differences before estimating the model, this could be expressed as

AD̃ZYt = νt , (9)

νt = Gνt−1 + εt , (10)

where Z is a diagonal matrix with (1 − L) elements on the diagonal. Thus we
should expect estimates around d̃1 = 0.5 and d̃2 = −0.4, so that the model
dynamics are equivalent to those in (5) and (7). As a result, the impulse response
functions are invariant to the decision on differencing the variables previous to
the estimation. Indeed, the impulse response functions of the variables in first
differences are exactly the same as those implied by the series in levels.

In a multivariate setting, the number of estimation procedures for fractional
integration is very limited. Nielsen (2004) proposed a computationally simple
maximum likelihood procedure for multivariate I (d) models. Gil-Alana (2003a,
2003b) proposed an extension of the univariate tests of Robinson (1994) in the
frequency domain, whereas Nielsen (2005) developed time-domain versions of
Gil-Alana’s (2003a, 2003b) tests. These methods make it possible to estimate a
reduced-form system such as

DYt = ζt , (11)

where ζt is an n × 1 stationary I (0) vector of errors. We can further assume that
ζt follows a stationary VAR(1) process, such as

ζt = Fζt−1 + ηt , (12)

where F is an n × n matrix and ηt is a vector of reduced-form errors with
variance-covariance matrix V . Substituting (12) into (11), the following infinite
moving average representation can be derived:

Yt = D−1(I − FL)−1ηt . (13)
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The relation between structural and reduced-form error terms in (8) and (13) is
then given by

A−1εt = ηt , (14)

whereas the relation between structural and reduced-form coefficient matrices is
given by

A−1GA = F. (15)

The reduced-form model has n+n2 +n(n + 1)/2 parameters: n from D, n2 from
F , and n(n + 1)/2 from V . As a result, we need n(n + 1)/2 restrictions in the
structural system (5)–(7) so that the structural errors can be identified. It is standard
in the literature to assume that the variance-covariance of the structural error vector
is the identity matrix. Therefore, we need n(n − 1)/2 additional restrictions. A
standard identification strategy is based upon imposing long-run restrictions, as in
BQ, GR, or CEV. Notice that we can express (8) and (13), respectively, as

Yt = C0εt + C1εt−1 + C2εt−2 + . . . , (16)

Yt = ηt + R1ηt−1 + R2ηt−2 + . . . . (17)

We let C(1) = ∑∞
j=0 Cj and R(1) = ∑∞

j=0 Rj , so that placing restrictions on
C(1) is equivalent to setting long-run restrictions. To see this, note that equalizing
the variances across expressions, we have R(1)V R(1)

′ = C(1)C(1)
′
. Once C(1)

is identified, so are C0, C1, C2, . . . (since C0 = R(1)−1C(1), C1 = R1C0, . . .),
and thus the structural shocks. In our framework n = 2, so that we only need
one long-run restriction.4 In agreement with both GR and CEV, we assume that
a structural shock to hours worked does not affect productivity in the long run,
i.e., C12(1) = 0. Notice finally that D, while capturing additional long-memory
dynamics, does not alter the standard impulse response identification techniques.

3.2. Fractional Integration and Local-to-Unity Approaches

In a closely related article, Pesavento and Rossi (2005) employ an alternative
local-to-unity approach to elucidate the response of hours to a technology shock.
Although the fractional integration and local-to-unity approaches are essentially
different, they also present some interesting relationships. The local-to-unity ap-
proach is agnostic in the sense that it does not impose a priori an I (0) or an
I (1) process for hours worked. However, similarly to the classic methods, the
model is encompassed in the classic AR framework, whereas ours uses a different
fractionally integrated model. We illustrate this in the univariate case for hours.
The model in Pesavento and Rossi (2005) is

(1 − ρL)nt = ζt , ρ = 1 + 1

T
c, (18)

whereas ours is
(1 − L)dnt = ζt (19)
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and the unit-root null corresponds respectively to

H0 : ρ = 1 (or c = 0) (20)

in (18) and
H0 : d = 1 (21)

in (19). However, fractional and AR departures from (20) and (21) have very
different long-run implications. In (19), nt is nonstationary but nonexplosive for
all 0.5 ≤ d < 1. As d increases beyond 0.5 and through 1, nt can be viewed
as becoming “more nonstationary,” but it does so gradually, unlike the case of
(18) around (20). The dramatic long-run change in (18) around ρ = 1 has the
attractive implication that rejection of (20) can be interpreted as evidence of either
stationarity or explosivity. However, rejection of the null does not necessarily
warrant acceptance of any particular alternative. Alternatively, the I (d) class
comprises many stationary, nonstationary, invertible, and noninvertible processes.
This is in sharp contrast to asymptotic theory for statistics directed against AR
alternatives where different asymptotic theory is obtained for |ρ| < 1, for ρ = 1,
and for |ρ| > 1.

The fact that we do not impose an I (0)/I (1) specification for hours worked is
consistent with what Pesavento and Rossi (2005) did. They, however, assume a
VAR specification as in (1), with �i replaced by (1 − ρL) and ρ = 1 + 1

T
c, such

that the process is stationary and highly persistent (with c < 0). An advantage of
the I (d) approach is that d can be any real value, encompassing then stationary
I (0) and nonstationary I (1) models. Nevertheless, a drawback compared to the
local-to-unity approach is that the results for long-run dynamics rely on a single
parameter, d. The two approaches lead to a quite different decay of the impulse
responses; the local-to-unity being exponential, the fractional integration being
hyperbolical.

4. UNIVARIATE ANALYSIS

This section presents empirical evidence on the fractional orders of integration
of both labor productivity and hours worked per capita in a univariate setting.
This evidence is relevant for two reasons. First, although researchers have applied
standard unit root tests to the productivity and hours variables in order to decide
whether to introduce these variables in either levels or first differences into their
VARs, no study has investigated the fractional orders of integration of these
variables. The fractional setting is clearly more general, as it allows a given variable
to display an order of integration different from one and zero. We apply parametric
and semiparametric fractional integration tests in the frequency domain. Second,
we will be able to use the univariate results in a multivariate setting for two
purposes: First, if the fractional integration tests manage to pin down the orders
of integration of some of the variables clearly, then we can directly assume them
to be the right ones in a multivariate analysis. Second, we can assess whether the
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estimates of the order of integration of a given variable differ in univariate and
multivariate contexts.

We first use a parametric method proposed by Robinson (1994) to test for the
order of integration of the productivity and hours series. This method is based on
the Lagrange multiplier (LM) principle and uses the Whittle function, which is an
approximation to the likelihood function. One advantage of this method is that it
allows us to consider fractional orders of integration at any real value d, including
thus both stationary and nonstationary processes. In fact, other parametric methods
such as that of Sowell (1992) only allowed −0.5 < d < 0.5, i.e., in the stationary
region. Another advantage of the fractional approach presented here is that it does
not display an abrupt change in the limit behavior of the tests against the unit root.
In fact, the limit distribution is a standard normal for any real value d. In contrast,
the classic ADF, PP, and KPSS methods have a nonstandard limit distribution in
the sense that the critical values must be tabulated case by case by means of a
Monte Carlo simulation study. For ease of exposition, we rewrite the standard
expression for a fractionally integrated process yt ,

(1 − L)dyt = µt, (22)

with I (0) µt . Following the approach of Robinson (1994), we test

H0 : d = d0, (23)

for any given real value d0, in a model given by

xt = α + βt + yt , (24)

with t as a time trend and yt given by (22). Note that xt is the observable macroeco-
nomic variable and yt is now the regression error series, which might be fractionally
integrated according to (22). We first assume that α = β = 0 in (24); i.e., there
are no deterministic terms, implying that xt = yt . We also consider the cases of
an unknown α and β = 0 (with an intercept) and both α and β unknown (a linear
time trend). The results for the four series are given in Tables 1 and 2.5 In Table 1
we assume that the µt disturbances are white noise. In Table 2 we permit autocor-
relation patterns in the error term. Across these tables, we report the confidence
intervals of those values of d0 where the null hypothesis cannot be rejected at
the 5% level.6 We also display in the tables the value of d0 producing the lowest
statistic (in absolute value) across d’s. This value should be an approximation to
the maximum likelihood estimate.

Starting with the case of white noise for µt , we see in Table 1 that if we do not
include regressors, the unit root null hypothesis (i.e., d0 = 1) cannot be rejected
for any series. This hypothesis cannot be rejected for either of the two productivity
series when an intercept and/or a linear trend is included in the regression model.
For the number of hours, the unit root is rejected in all cases in favor of higher
orders of integration. In what respects to the model with autocorrelated residuals,
we first estimated autoregressive (AR) models. Modeling µt in terms of an AR(1)

https://doi.org/10.1017/S1365100509080249 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100509080249


TECHNOLOGY SHOCKS AND HOURS WORKED 591

TABLE 1. Robinson’s (1994) univariate test for fractional integration:
White noise disturbances

Series No regressors Intercept Linear time trend

GP [0.91 0.98 1.08] [0.91 1.01 1.13] [0.94 1.01 1.10]
GH [0.91 0.98 1.08] [1.45 1.60 1.77] [1.45 1.60 1.77]
CP [0.92 0.99 1.09] [0.93 1.03 1.13] [0.96 1.02 1.10]
CH [0.91 0.98 1.08] [1.36 1.49 1.65] [1.36 1.49 1.65]

Note: This table shows the 95% confidence intervals for the order of integration of a given time series
computed through the Robinson (1994) model,

xt = α + βt + yt ,

(1 − L)dyt = µt ,

where xt is the macroeconomic variable: GP is the productivity variable used by Galı́ and Rabanal
(2004), GH is the hours variable used by Galı́ and Rabanal (2004), CP is the productivity variable used
by Christiano et al. (2003), and CH is the hours variable used by Christiano et al. (2003). α and β are
constants, d is the order of integration of each process, and µt is assumed to be a white noise process.
The value of d corresponding to the lowest statistics of the Robinson (1994) test appears in bold in the
middle of the confidence interval.

TABLE 2. Robinson’s (1994) univariate test for fractional integration:
Autocorrelated disturbances

Series No regressors Intercept Linear time trend

GP [0.83 0.97 1.13] [0.77 1.04 1.27] [0.92 1.01 1.17]
GH [0.84 0.97 1.13] [0.84 1.05 1.36] [0.85 1.05 1.36]
CP [0.85 0.96 1.14] [0.98 1.16 1.33] [1.00 1.10 1.25]
CH [0.85 0.97 1.14] [1.07 1.21 1.35] [1.05 1.14 1.27]

Note: This table shows the 95% confidence intervals for the order of integration of a given time series
computed through the Robinson (1994) model,

xt = α + βt + yt

(1 − L)dyt = µt ,

where xt is the macroeconomic variable. GP is the productivity variable used by Galı́ and Rabanal
(2004), GH is the hours variable used by Galı́ and Rabanal (2004), CP is the productivity variable used
by Christiano et al. (2003), and CH is the hours variable used by Christiano et al. (2003). α and β

are constants, d is the order of integration of each process, and µt is assumed to be an autocorrelated
process. The value of d corresponding to the lowest statistics of the Robinson (1994) test appears in
bold in the middle of the confidence interval. These statistics are computed assuming that µt follows the
nonparametric autocorrelated model of Bloomfield (1973).

process produced some inconsistencies in the interpretation of the results. For
instance, the null hypothesis of d = 0 was not rejected in some cases; it was
rejected for values of d between 0 and 1 and it was again not rejected for values
of d close to 1. This lack of consistency can be explained by the fact that the
AR coefficients, though lower than 1 in absolute value, can be arbitrarily close
to 1 and thus they might be competing with d in describing nonstationarity. Note
that other standard unit root testing procedures face the same problem. We solved
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this problem by using the method of Bloomfield (1973). This method, which can
be flexibly applied in the context of Robinson’s (1994) tests, does not impose
a given parametric model for the I (0) disturbances but implies autocorrelations
for µt which decay exponentially as in the ARMA case. Moreover, this model
is stationary across the whole range of values for the parameter set, unlike the
AR case. Using this model, the results in Table 2 are very similar across series
and most of the nonrejection values for d oscillate around 1. However, for the
number of hours, although the unit root is not rejected in the case of the GR
series, d is larger than 1 using CEV’s definition and the null of a unit root is
rejected in two of the three cases. Two additional important features observed
across the tables are worth commenting. First, if we do not include regressors,
the lowest statistics occur in all series at values of d lower than 1. However,
including deterministic terms, they occur at values slightly higher than 1. Second,
the estimated orders of integration of hours are substantially lower if autocorrelated
errors are permitted, especially in the models including intercept and a linear trend.
This suggests that the addition of short-run dynamics, even in a nonparametric
form, tends to lower the orders of integration. This is clearly a consequence of
the inclusion of an additional alternative way to describe the dependence across
observations.

To confirm the above results we also display in Figure 2 the estimates of d

based on a semiparametric “local” Whittle method proposed by Robinson (1995).
We use this method because of its computational simplicity, noting that it simply
requires a single bandwidth number (m), and no additional user-chosen numbers
are required in the estimation, as is the case with other semiparametric methods.
The top panel of Figure 2 shows the results for the GR series whereas the bottom
panel presents the results for the CEV’s counterparts. For both series, we display
the estimates of d across the whole range of values for the bandwidth number
(m = 1, 2, . . ., T/2), along with the 95% confidence interval corresponding to
the I (1) hypothesis.7 Notice that the estimate of d is asymptotically normally
distributed. Starting with the number of hours, we see that the results are quite
unstable. Thus, if the bandwidth number is lower than T/4, most of the estimates
of d are within the I (1) interval; however, if it is higher than T/4, the values of
d are significantly above 1. Alternatively, the results for the productivity series
strongly support the hypothesis of a unit root in the two cases.

To sum up, our univariate fractional integration results strongly support the
hypothesis of a unit root for the productivity series and lead to some ambiguous
conclusions about the order of integration for hours worked. In the next section
we estimate the order of integration of the hours series in a multivariate context.

5. MULTIVARIATE ANALYSIS

This section applies the multivariate model derived in Section 3 to give an answer
to the technology-hours question. What is interesting about this framework is
that it allows the econometrician to jointly estimate the orders of integration of
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FIGURE 2. Fractional orders of integration using the local Whittle semiparametric estimates
of d [Robinson (1995)]. Note: This figure shows the fractional orders of integration of
productivity and hours worked for the data specifications in Galı́ and Rabanal (2004)
(GR) and Christiano, Eichenbaum, and Vigfusson (2003) (CEV). The orders of integration
are computed according to the model proposed by Robinson (1995). The horizontal axis
identifies the amplitude of the bandwidth, which goes from 1 to T/2, where T is the sample
size. The vertical axis identifies the order of integration (d). The 95% confidence intervals
of the null for d = 1 appear in diamonds.

the macroeconomic variables and the impulse response functions to the structural
shocks.

As noted in Section 2, we estimate bivariate systems with labor productivity
and hours worked. We will assume that the order of integration of the productivity
series is 1 throughout the following analysis. Our motivation for this assumption is
threefold. First, the univariate tests decisively pointed at 1 as the order of integration
of productivity, unlike the hours case (see, e.g., Figure 2). Second, this assumption
is uncontroversial for all of the papers in the technology-hours literature. Indeed,
GR, CEV, and all related papers assume that productivity is integrated of order 1.
Third, by assuming that the order of integration of productivity is 1, our approach
will estimate more efficiently the order of integration of hours in a multivariate
model, a very important object of study in the present paper. Nevertheless, we also
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computed the procedure allowing both orders of integration to be unknown, and
the value for the productivity series was very close to 1 in all cases.

The bivariate models are estimated following Gil-Alana (2003a), who derives
an extension of the Robinson (1994) univariate frequency domain tests, leading to
exactly the same estimates as in the maximum likelihood procedure proposed by
Nielsen (2004). This method yields normally distributed values for d, which allows
us to perform inference on impulse response function analysis. The multivariate
approach presents two important advantages. First, we do not need to impose a pri-
ori any assumption about the orders of integration of the series since they are freely
estimated from the real line. Second, with respect to the univariate case, the order
of integration of hours is estimated more efficiently, because it makes use of
additional information in both the parameters of the variance-covariance of the
residuals and those in the productivity equation.

We estimated the fractionally integrated model[
(1 − L) 0

0 (1 − L)dH

] (
xt

nt

)
=

(
ζ1,t

ζ2,t

)
, (25)

letting the differenced series (ζt = [(1−L)xt , (1−L)dH nt ]
′
) follow a VAR(1) in

order to accommodate both short-run persistence and long memory, as described
in equations (11) and (12).8 Gil-Alana’s (2003a) method is based on testing the
null hypothesis dH = dH0 for any real dH0 value in (25) and the functional form of
the test statistic and its limiting distribution is described in Appendix A.1. We note
that this method is based on the LM principle and uses the Whittle function in the
frequency domain. Under the null hypothesis, we estimate the VAR coefficients
in the model given by(

ζ1,t

ζ 0
2,t

)
=

(
f11 f12

f21 f22

) (
ζ1,t−1

ζ 0
2,t−1

)
+

(
η1,t

η2,t

)
, (26)

where ζ 0
2,t = (1−L)dH0 nt , and the parameters in F are estimated by least squares.

On the other hand, using Nielsen’s (2004) MLE approach, the vector of long-
memory parameters d follows the distribution

√
T (d̂ − d) →d N(0, 	−1), (27)

with
	 = π

6
� ⊗ �−1 − (��′V −1��) ⊗ �−1. (28)

� and V are the variance-covariance matrices of the reduced-form error terms ζt

and ηt in (12), respectively. � is the matrix of coefficients in the Wold represen-
tation of the ζt process.

Table 3 lists the orders of integration for hours worked across data specifications.
The order of integration of the GR measure (0.67) is much higher than that of
CEV (0.04). It also displays the associated 95% asymptotic confidence intervals,
revealing that most of the integration orders’ probability mass lies around the
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TABLE 3. Fractional order of integration of hours
worked: Multivariate model

Series

GR [0.62 0.67 0.74]
CEV [0.00 0.04 0.07]

Note: This table shows the results for the order of integration of per
capita hours worked obtained under the multivariate model described
in Section 5. The model is expressed as

DYt = ζt ,

ζt = Fζt−1 + ηt ,

where

D =
[
(1 − L) 0

0 (1 − L)dH

]

and Yt is a bivariate vector including labor productivity and hours
worked in levels. The table shows the 95% confidence interval along
with the value of dH producing the lowest value statistic (in bold) for
the order of integration of hours across data specifications [Galı́ and
Rabanal (2004) (GR) and Christiano et al. (2003) (CEV)].

TABLE 4. Multivariate autocorrelated
model: VAR(1) matrix for structural resid-
uals

GGR =
[

0.0087 0.0045
0.0213 0.7984

]

GCEV =
[−0.0209 −0.0057

0.1498 0.9800

]

Note: This table shows the implied VAR(1) matrices for the
structural residuals of the multivariate model described in
Section 5. The model is expressed as

ADYt = νt ,

νt = Gνt−1 + εt .

GGR is the G matrix obtained with the data in Galı́ and
Rabanal (2004), whereas GCEV is the G matrix obtained
with the data in Christiano et al. (2003).

point estimates. Table 3 also shows that the orders of integration for hours worked
across data specifications are both economically and statistically lower than in the
univariate frameworks. This finding suggests that introducing additional cross-
sectional and time series information reduces the estimated order of integration.
Table 4 shows the implied VAR(1) matrix of coefficients for the structural error
terms [matrix G in equation (7)]. Interestingly, it shows that although the au-
toregressive coefficient in the productivity equation is close to zero across data
specifications, its counterpart in the hours equation is close to one in both cases,
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FIGURE 3. Dynamic response of hours worked to a technology shock. Note: This figure
shows the response of per capita hours worked to a structural technology shock in the
fractional integration multivariate model

ADYt = νt ,

νt = Gνt−1 + εt ,

where Yt is a 2 × 1 vector including productivity and hours, νt follows a VAR(1) law of
motion, and εt follows a white noise process. Units are in percentages. The left-hand panel
shows the response of hours with the Galı́ and Rabanal (2004) (GR) data set, whereas the
right-hand panel shows the response of hours with the Christiano et al. (2003) (CEV) data
set. The centered 90% asymptotic coverage intervals in dashed lines were constructed using
a Monte Carlo experiment with 500 replications, described in Appendix A.2.

especially with the CEV data. In other words, most of the time dependence in the
CEV hours variable is now captured by the autoregressive structure, so that the
degree of integration of the series is close to zero.

The next step in our analysis is to report the associated impulse response
functions of hours to a technology shock. To do so, we plot in Figure 3 the impulse
response functions implied by the point estimates of the model in (25) under both
data specifications. Both panels include the centered 90% asymptotic confidence
intervals computed through a Monte Carlo exercise described in Appendix A.2.
Notice that the confidence intervals become larger after the initial impact, which
should reflect the additional uncertainty entailed by the fractional integration
parameter.

The left-hand panel of Figure 3 shows that the response of the level of hours in the
GR specification to a technology shock is negative on impact, although not statis-
tically significant. Following the initial reaction, hours increase toward the steady-
state level, which is reached after six quarters. Then hours slightly overshoot the
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steady-state level and after twelve quarters start to slowly revert to it. Our point-
estimate response of hours to the technology shock is qualitatively similar to (and
quantitatively slightly smaller than) that of GR and Francis and Ramey (2005a).
With respect to Pesavento and Rossi (2005), our impulse response point-estimate
is slightly less negative on impact and less positive after several quarters.

Regarding the response of hours in the CEV specification, the initial impact
is negative and statistically significant at the 10% confidence level. Since then,
hours remain negative, but they increase slowly through time. Notice that the
initial negative response of per capita hours is larger in the case of the CEV
specification. After the initial impact, hours remain negative but they increase
very slowly through time. This impulse response is qualitatively similar to the
one obtained by Fernald (2007) in his Figure 2, although slightly larger and more
slowly mean-reverting.

It may appear surprising to obtain a strong negative response of hours worked
to the technology shock in the CEV specification, when the order of integration of
hours is close to zero. Moreover, the response is quantitatively larger than in the GR
data specification, where the order of integration was estimated to be considerably
higher. To develop some intuition as to why this may be the case, we perform the
following exercise. We fractionally differentiate the CEV hours series over a grid
of values on 0.01 increments, including 0 and 1. Then we proceed to estimate a
VAR(1) in the resulting I (0) framework, imposing the BQ long-run restriction in
order to recover the response of hours to the technology shock. Notice that this
is a two-step exercise, as opposed to the one-step estimation performed earlier.
However, it can give us an intuition of how the response of hours may change
depending on its fractional order of integration. Figure 4 shows the response
of hours on impact to the technology shock for the grid of values described.
Interestingly, the series is clearly nonmonotonic. As expected, when dH = 0 the
response is positive, whereas when dH = 1 the response is negative. Nevertheless,
notice that the response of hours becomes negative for very low values of dH .
Indeed, for dH = 0.04, the initial response of hours is −0.12%, almost twice as
negative as when dH = 0.67. The series also exhibits several local maxima and
a fast decline of the impact effect on hours as dH approaches unity. Finally, it is
interesting to note that the impact response of hours to the technology shock is
negative for all values of dH smaller than zero. Thus, a slight differentiation of the
original series yields a decline of hours following a technology shock.

As a corollary to this exercise, we would like to emphasize that all of the model’s
parameter estimates, as well as the identified structural shocks, are conditional
on our fractional integration structure, so that differences with respect to the
I (0)/I (1) cases can naturally arise. Moreover, an important difference between
the two approaches is that the fractional integration framework makes a variable
depend on an infinite number of lags through the binomial expansions of the
long-memory coefficients.

There can also be economic explanations behind the statistical differences of
the responses across data specifications. The nature of the hours and productivity
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FIGURE 4. Hours response (on impact) to the technology shock: Sensitivity analysis. Note:
This figure displays a sensitivity analysis showing the impact response of hours to the
technology shock for a grid of values for the fractional differencing parameter dH on the
number of hours. This series is the result of a two-step procedure performed with the CEV
data specification, where hours are first fractionally differentiated and then the resulting
bivariate I (0) VAR(1) system is estimated for each order of integration of hours.

series differs across specifications. The CEV measure includes hours worked in
the agricultural sector, which can be more sensitive to productivity shocks. Indeed,
Figure 5 plots the logs of the two hours series, showing that nonfarm hours did
not converge with total hours until the mid-1970s. Before that date, total hours
were clearly above their nonfarm counterpart. With respect to the productivity
series, total business productivity growth is larger on average and in standard
deviation than its nonfarm counterpart, especially for the first part of the sample.
The combination of these two facts can make the CEV measure more sensitive to
labor productivity shocks.9

In summary, our two data specifications detect a decline of hours worked on
impact in response to a technology shock. In the CEV specification, the results are
statistically significant.

6. DISCUSSION AND CONCLUSIONS

The goal of this paper was to determine the response of hours worked to a tech-
nology shock, a debated question in macroeconomics today. Our contribution is to
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FIGURE 5. Hours across data specifications. Note: This figure compares the plots of the
natural logarithms of per capita hours worked across data specifications. GR stands for
nonfarm business hours, and CEV stands for total business hours.

derive a new unified econometric framework which simultaneously determines the
order of integration of hours worked and the dynamic impulse response function
of hours to a technology shock. Our results lend support to the hypothesis that
hours worked fall in response to a positive technology shock.

In a recent paper, Francis and Ramey (2005b), building on the intuition of Fer-
nald (2007), construct a measure of per capita hours worked that removes some
of the low-frequency fluctuations of the standard measures of hours worked.10

They find that removing these low-frequency dynamics renders the variable sta-
tionary and that this variable decreases on impact in response to a technology
shock. As mentioned above, our implied impulse responses are consistent with
their findings, despite of the clear methodological differences. We believe that
the fractional integration framework presented in this paper is well suited to
account for low-frequency dynamics, because it controls for the long memory
of the stochastic processes implied by macroeconomic aggregates. Nevertheless,
it would be interesting to perform univariate and multivariate fractional inte-
gration analysis with the new hours variable proposed by Francis and Ramey
(2005b).
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Recent works by Fisher (2006) and Fernald (2007) also show that the responses
of hours to a neutral technology shock, such as the one studied in this paper, are
sensitive to the existence of breaks in the series (both in productivity and in hours
worked). We perform subsample analysis in our fractional integration framework
and indeed verify that this may also be the case in our setting. We split the sample
in the first quarter of 1973, when there is a decline in productivity growth, as shown
by Fernald (2007). An interesting result of this subsample analysis is that although
the estimated orders of integration of hours worked are very similar for the GR
measure across subsamples (0.70 and 0.66), they are statistically and qualitatively
different for the CEV measure (0.19 and 0.80). This implies that during the first
subsample, which coincides with a greater weight of farm business activities, the
hours variable used by CEV displays a lower degree of long memory compared
with the post-1973 period. It is thus this subsample that seems to trigger the low
integration order of hours worked in the full sample.

The present article raises a number of interesting questions for future research. A
first issue is related to the difference in the order of integration of the variable hours
estimated in univariate and multivariate contexts. We found that it was lower in the
case of the multivariate models. This finding, in itself, suggests that conditioning
on additional information may reduce the memory of a given process. Although
multivariate tests are not often used to determine the level of integration of a given
variable, they are most interesting for macroeconomists, because the macroeco-
nomic literature often focuses on the dynamic properties in systems of variables.
In this sense, the issue of pretesting for the order of integration of a given variable
in univariate frameworks may be of secondary importance once we control for the
fractional order of integration in a multivariate framework. Moreover, our setup
solves the potential problem of unbalanced orders of integration in standard time
series regression frameworks.11 The study of fractionally co-integrated systems,
allowing for a nondiagonal matrix D in (6), also seems a fruitful avenue for future
research in this area.

Finally, exploring the relation between fractionally integrated systems and
structural macroeconomic models remains another important unresolved topic.
Macroeconomic models typically imply stationary systems and co-integrating
relationships, but not fractional integration. However, discrete shifts in either be-
havioral or policy parameters can give rise to time-varying coefficients in reduced-
form representations, which, in turn, can be reconciled with fractional integration
[see Ding and Granger (1996)].

NOTES

1. We are very grateful to Elena Pesavento and Barbara Rossi for kindly providing the data. They,
in turn, received the data directly from CEV.

2. The fractional integration literature was pioneered by Granger (1980) and Granger and Joyeaux
(1980). See Baillie (1996) and Gil-Alana and Hualde (2009) for a complete review of I (d) processes.

3. Note that if d = 0 and µt follows an AR process, the decay in the autocorrelations is exponentially
rapid compared with the I (d, d > 0) case, where the decay is hyperbolic.

https://doi.org/10.1017/S1365100509080249 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100509080249


TECHNOLOGY SHOCKS AND HOURS WORKED 601

4. In other contexts, an alternative strategy followed by researchers such as Christiano et al. (1999)
is to place short-run restrictions by assuming that the matrix A in the structural model (5) is lower
triangular.

5. The inclusion of a quadratic trend in (24) for hours worked [as suggested by GR and Fernald
(2007)] does not significantly change the conclusions reported in the paper. The results in this case are
available from the authors upon request.

6. These intervals were constructed as follows: First we choose a value of d from a grid, d0 =
0, 0.01, . . . , 2. Then we compute the test statistic testing the null for this value. If the null is rejected
at the 5% level, we discard this value of d. Otherwise, we keep it. An interval is then obtained after
consideraction of all the values of d in the grid.

7. In the case of the “local” Whittle estimator, the use of optimal bandwidth values has not been
theoretically justified. Some authors, such as Lobato and Savin (1998), use an interval of values for m.

8. Multivariate versions of the Bloomfield’s (1973) model have not been yet developed. Moreover,
they would be of no use to compute impulse responses, given that the Bloomfield model does not
display a parametric formula for the disturbances µt . We also estimated a VAR(2) specification for the
residuals in (25), and the results did not reveal significant differences.

9. Nonfarm (industrial and services) hours may display greater persistence because of other reasons,
such as mobility or substitution effects. Marelli (1994) shows that persistence in unemployment
is higher in industrialized sectors than in agriculture. The same is found in the case of Spanish
unemployment [see Garcı́a del Barrio and Gil-Alana (2007)].

10. Fernald (2007) removes the means of identified subsamples in labor productivity growth and
finds a fall of hours in response to a technology shock. He finds the same effect removing a quadratic
trend from labor productivity. A differential feature of our fractional integration approach is that it lets
the data stochastically determine the low frequencies present in hours.

11. See Baillie and Bollerslev (1994) for an exposition of this problem in the context of the forward
premium puzzle.
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APPENDIX
A.1. GIL-ALANA’S MULTIVARIATE FRACTIONAL INTEGRATION TEST

A simple version of the procedure proposed in Gil-Alana (2003a) consists of testing the
null hypothesis,

H0 : d ≡ (d1, d2, . . . , dn)
′ = (d10, d20, . . . , dn0)

′ ≡ d0, (A.1)

for any real vector d0, in the model given by (11), where ζt is assumed to be an I (0) vector
process with positive definite spectral density matrix f (λ). Thus ζt may be white noise, but
it can also accommodate stationary VAR structures. We assume that ζt in (11) is generated
by a parametric model of the form

ζt =
∞∑

j=0

Aj(τ)ωt−j t = 1, 2, . . . , (A.2)

where ωt is white noise and W is the unknown variance-covariance matrix of ωt . The
spectral density matrix of ζt is then

fζ (λ; τ) = 1

2π
θ(λ; τ)Wθ(λ; τ)∗, (A.3)

where θ(λ; τ) = ∑∞
j=0 Aj(τ)eiλj , and θ∗ is the complex-conjugate transpose of θ . A

number of conditions are required on A and fζ to derive the test statistic. The main
practical implication is that the spectral density matrix must be finite, with eigenvalues
bounded away from zero. It can be shown that a Lagrange multiplier (LM) of the H0 in
(A.1) for (11) takes the form

S̃ = T b̃T [C̃ − D̃T Ẽ−1D̃]−1b̃, (A.4)

where T is the sample size and

b̃ = − 1

T

T −1∑
r=1

ψ(λr) tr
[
Iζ (λr)f̃ (λr ; τ̃ )

]
, (A.5)

C̃ = 4

T

T −1∑
r=1

ψ(λr)ψ(λr)
T , (A.6)

D̃T = − 1

T

T −1∑
r=1

ψ(λr)

{
tr

[
f̃ −1(λr ; τ̃ )

∂f̃ (λr ; τ̃ )

∂τ1

]
; . . . ;

tr

[
f̃ −1(λr ; τ̃ )

∂f̃ (λr ; τ̃ )

∂τq

]}
, (A.7)

Ẽuv = 1

2T

T −1∑
r=1

tr

[
f̃ −1(λr ; τ̃ )

∂f̃ (λr ; τ̃ )

∂τu

f̃ −1(λr ; τ̃ )
∂f̃ (λr ; τ̃ )

∂τv

]
, (A.8)
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where Iζ (λr) is a matrix with the (u, v)th element

Iuv(λr) = Wu(λr)W̄v(λr); Wu(λr) = 1√
2πT

T∑
t=1

ζ̃ut e
iλr t ; λr = 2πr

T
, (A.9)

where W̄ denotes the complex conjugate and f̃ is the estimated spectral density matrix of
ζ̃t , and where ζ̃t are the reduced-form errors. Finally,

τ̃ = arg min
τ∈T ∗

{
T

2
log|f̃ (λr ; τ)| + 1

2

T −1∑
r=1

tr
[
f̃ −1(λr ; τ)Iζ (λr)

]}
, (A.10)

where T ∗ is a compact subset of the q-dimensional Euclidean space. Extending the condi-
tions in Robinson (1994), Gil-Alana (2003a) shows that, under H0 (A.1),

S̃ →d χ 2
n as T → ∞. (A.11)

A.2. ASYMPTOTIC CONFIDENCE INTERVALS

In this section, we explain how to obtain the confidence intervals of the impulse response
of hours worked to the structural technology shock implied by our fractional integration
VAR model. For ease of exposition, we reproduce here the model in matrix form:

DYt = ζt ,

ζt = Fζt−1 + ηt ,

where V is the covariance matrix of ηt . The Monte Carlo exercise can be summarized in
three steps:

1. We first perform 500 draws from the independent multivariate normal distributions to
build the above equations and obtain the matrix of fractional differencing parameters
(D), the matrix of vector autocorrelation of the errors F , and the covariance matrix
of ηt (V ). The distribution of D, derived by Nielsen (2004) and given in (27) and
(28), ensures the joint distribution of the I (0) VAR parameters F and V , as specified
by Proposition 11.2 in Hamilton (1994).

2. Given the 500 parameter sets, we compute the 500 impulse response functions of
hours worked associated with the structural model in equations (5) and (7) by impos-
ing the restriction that the hours shock does not affect productivity in the long-run.

3. With the standard deviations of the asymptotically distributed 500 impulse response
functions, we form the centered 90% asymptotic coverage intervals.
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