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On the value of the reconnection rate
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Numerical simulations have consistently shown that the reconnection rate in certain
collisionless regimes can be fast, of the order of 0.1vABu, where vA and Bu are
the Alfvén speed and the reconnecting magnetic field upstream of the ion diffusion
region. This particular value has been reported in myriad numerical simulations under
disparate conditions. However, despite decades of research, the reasons underpinning
this specific value remain mysterious. Here, we present an overview of this problem
and discuss the conditions under which the ‘0.1 value’ is attained. Furthermore, we
explain why this problem should be interpreted in terms of the ion diffusion region
length.
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1. Introduction with overview of the problem
Magnetic reconnection is a fundamental plasma process that occurs in a wide

variety of laboratory, space and astrophysical plasmas. Its definition is meaningful
in plasmas that are almost ideal, i.e. in those cases where magnetic field lines
‘move’ with the plasma in the vast majority of the domain, while the breaking of
the magnetic field line connectivity occurs only in very localized diffusion regions.
This reconnection process can enable a rapid conversion of magnetic energy into
thermal, supra-thermal and bulk kinetic energy. As such, magnetic reconnection is
believed to play a key role in many of the most striking and energetic phenomena
such as sawtooth crashes, magnetospheric substorms, coronal mass ejections, stellar
and gamma-ray flares (Tajima & Shibata 1997; Kulsrud 2005; Yamada, Kulsrud & Ji
2010).

In order to explain the magnetic energy conversion rates associated with these
phenomena, it is essential to know the rate at which magnetic reconnection occurs.
The reconnection rate quantifies the temporal rate of change of magnetic flux
that undergoes the reconnection process. When the system under consideration is
translationally invariant in one direction, the reconnection rate can be expressed as

dΦ
dt
= d

dt

∫
S

B · dS=
∮
∂S

E · dl =
∫

X-line
Ez dl. (1.1)

Here, Φ is the magnetic flux through the surface S bounded by the contour ∂S
encompassing the X-line. An X-line is the projection of an hyperbolic point for the
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magnetic field along the ignorable direction. Therefore, the reconnection rate is a
measure of the rate at which magnetic flux is transported across the X-line. In a
more general three-dimensional case, the evaluation of the reconnection rate is more
subtle. A general approach (Hesse, Forbes & Birn 2005) would be to quantify the
reconnection rate as

dΦ
dt
=max

(∫
E‖ ds

)
, (1.2)

where s represents the parametrization of the magnetic field lines, and the integral
has to be performed over all field lines passing through the non-ideal region (where
E‖ = E · B/|B| 6= 0). The measure (1.2) is an attractive choice for quantifying the
reconnection rate, but there are some caveats associated with it. Indeed, there could
be some ambiguity related to the field line integration of E‖, as in regions where
magnetic field lines are stochastic (Borgogno et al. 2005), or it may be not possible
to distinguish between reconnection and simple diffusion (Huang, Bhattacharjee &
Boozer 2014). In addition, this measure can be applied only in the presence of a
non-vanishing magnetic field. If this is not the case, the reconnection rate may be
calculated by combining the line integrals of E‖ along magnetic separators (Lau &
Finn 1990; Greene 1998; Wilmot-Smith & Hornig 2011), which are magnetic field
lines connecting two null points (i.e. points at which |B| = 0). As this brief discussion
may suggest, a completely general and practical measure of the reconnection rate is
still lacking, and indeed, it constitutes an important ongoing area of research (see, for
example, the discussion given by Dorelli & Bhattacharjee (2008) in the context of the
Earth’s magnetosphere).

The problem of determining the reconnection rate of a magnetic reconnection
process dates back to the 1950s. At that time, the astrophysical community was
trying to understand if magnetic reconnection could have served as the mechanism
underlying solar flares, which are bursts of high-energy radiation from the Sun’s
atmosphere that strongly affect the space weather surrounding the Earth. A simple
resistive magnetohydrodynamic (MHD) model of magnetic field line merging was
proposed by Sweet (1958), and then, with the contribution of Parker (1957), the
reconnection rate was evaluated. They considered a quasi-stationary reconnection
process occurring within a two-dimensional current sheet. Then, assuming an
incompressible flow, the normalized reconnection rate (per unit length) can be shown
to be

1
vABu

dΦ
dt
∼ S−1/2(1+ Pm)

1/4. (1.3)

In this formula, S := vAL/η and Pm := ν/η are the Lundquist number and the magnetic
Prandtl number, respectively. As usual, η indicates the magnetic diffusivity and ν the
kinematic viscosity. The Lundquist number is evaluated using the current sheet half-
length L and the Alfvén speed vA = Bu(µ0ρ)

−1/2, where Bu is the reversing magnetic
field upstream of the current sheet. In reality, equation (1.3) is not exactly the Sweet–
Parker formula for the reconnection rate, but represents its generalization to account
for plasma viscosity (Park, Monticello & White 1984).

The Sweet–Parker model of reconnection is faster than simple diffusion, but for very
large S systems, such as those found in most space and astrophysical environments,
it is far too slow to explain the observed fast energy release rates. In order to bypass
this limitation, Petschek (1964) proposed a different model in which a relatively short
reconnection layer acts as a source for two pairs of slow mode shocks, allowing for
much faster reconnection rates. This model was subsequently generalized by Priest
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& Forbes (1986), who put forward a wider family of ‘almost-uniform models’ that
include Petschek’s model as a special case. However, these models have not been
supported by numerical simulations (Biskamp 1986), which have shown that Petschek-
like configurations cannot be sustained in the context of MHD with constant resistivity.
Petschek’s mechanism can occur within the resistive-MHD framework if the plasma
resistivity increases sharply in the reconnection layer (Kulsrud 2001, 2011), but the
difficulties in firmly establishing the nature and details of such anomalous resistivity
have led the scientific community to look for alternatives.

An important advance occurred when Bhattacharjee et al. (2009), and later Cassak,
Shay & Drake (2009), showed that the predictions of the Sweet–Parker model
break down for large S values because of the occurrence of the plasmoid instability
(Biskamp 1986; Tajima & Shibata 1997; Loureiro, Schekochihin & Cowley 2007;
Comisso & Grasso 2016; Comisso et al. 2016). In the high Lundquist number regime,
the reconnection process in the nonlinear regime becomes strongly time dependent
due to the continuous formation, merging and ejection of plasmoids. An estimation
of the time-averaged reconnection rate in this regime was proposed by Huang &
Bhattacharjee (2010), as well as by Uzdensky, Loureiro & Schekochihin (2010),
and it has been generalized to account for plasma viscosity as (Comisso, Grasso &
Waelbroeck 2015; Comisso & Grasso 2016)

1
vABu

〈
dΦ
dt

〉
∼ 10−2(1+ Pm)

−1/2, (1.4)

where 〈· · ·〉 denotes a time average. This formula shows that, for high Lundquist
numbers, the (time-averaged) reconnection rate becomes independent of the Lundquist
number (but not the magnetic Prandtl number) and much higher than the Sweet–Parker
rate for very large S-values.

Other MHD models of reconnection have also been investigated. In particular, since
the pioneering work by Matthaeus & Lamkin (1986), turbulence effects have been
shown to produce a distribution of reconnection sites that is capable of increasing
the global reconnection rate (Servidio et al. 2009). The impact of turbulence and
the plasmoid instability on the reconnection rate has caused a rethinking of magnetic
reconnection in MHD plasmas. However, in many situations, the current layers
that form reach scales at which two fluid/kinetic effects become important. In all
these cases, an MHD description fails to reproduce accurately the physics of the
reconnection process, and two-fluid and kinetic effects must be considered.

For the aforementioned reasons, a complementary path in investigating fast magnetic
reconnection has been pursued at least since the 1990s by means of numerical
simulations of Hall-MHD, two-fluid and kinetic models. Several research groups
have shown that collisionless effects were able to strongly speed up the reconnection
process (Aydemir 1992; Ottaviani & Porcelli 1993; Wang & Bhattacharjee 1993;
Mandt, Denton & Drake 1994; Biskamp, Schwarz & Drake 1995; Kleva, Drake &
Waelbroeck 1995; Ma & Bhattacharjee 1996; Grasso et al. 1999; Shay et al. 1999;
Birn et al. 2001; Porcelli et al. 2002). In particular, numerical simulations consistently
demonstrated that the reconnection rate in certain collisionless regimes becomes

1
vABu

dΦ
dt
∼ 0.1, (1.5)

a value that is compatible with many observations and experiments (Yamada et al.
2010), meaning that collisionless effects may be crucial to explain many magnetic
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reconnection phenomena. Note that even here (and in the following) we have
considered the reconnection rate per unit length in the out-of-plane direction, whereas
vA and Bu are evaluated upstream of the ion diffusion region, which can be seen as
the region where Ez + (vi × B)z 6= 0. Although the relation (1.5) was found to be
valid only in the steady-state limit, or in the vicinity of the peak reconnection rate, it
was nevertheless surprising to discover that (vABu)

−1dΦ/dt seemed to be unaffected
by the microphysics and macrophysics of specific models. This intriguing result led
Shay et al. (1999) to speculate that the aforementioned value could be universal.
Such a conjecture stimulated a long debate in the plasma physics and astrophysics
communities – one that continues to this day. Is the reconnection rate value of 0.1
truly universal? What are the physical reasons of this particular value?

In order to explain the fast reconnection rates observed in numerical simulations,
Shay et al. (1999) brought forward an argument by Mandt et al. (1994), who
proposed that fast magnetic reconnection is enabled by the presence of fast dispersive
waves. These waves would speed up the reconnection process by giving rise to
the development of a Petschek-type outflow configuration. In contrast, the absence
of dispersive waves would lead to an extended Sweet–Parker-type layer, forcing
collisionless reconnection to be slow in large systems (Rogers et al. 2001). This
argument, however, was found not to be true. Indeed, numerical simulations have
shown that fast magnetic reconnection also occurs in electron–positron plasmas,
which do not support fast dispersive waves (Bessho & Bhattacharjee 2005; Daughton
& Karimabadi 2007; Chacón et al. 2008; Zenitani & Hesse 2008). More recently,
Liu et al. (2014) and Stanier et al. (2015) have reconsidered this argument and have
shown that, in an electron–ion plasma, fast reconnection is also manifested in the
strongly magnetized limit (where fast dispersive waves are suppressed) defined by
β := 2µ0n0kB(Te + Ti)/B2�me/mi and B2

u� (me/mi)B2.
While several works have shown that fast dispersive waves are not required for fast

magnetic reconnection, they have also confirmed that the maximum/steady-state
reconnection rate satisfies (1.5) (e.g. Daughton & Karimabadi 2007; Liu et al.
2014; Stanier et al. 2015). There are also some works that have argued against
the ∼0.1 value of the maximum/steady-state reconnection rate (e.g. Porcelli et al.
2002; Fitzpatrick 2004; Bhattacharjee, Germaschewski & Ng 2005; Andrés, Dmitruk
& Gómez 2016). In light of the subtlety of the problem, we shall elucidate the
conditions under which one should expect a maximum/steady-state reconnection
rate ∼0.1. We will also present some thoughts on this apparent commonality of
the reconnection rate, which still remain a mystery, and constitutes an important
unsolved problem in magnetic reconnection theory. We refer to this problem as the
‘0.1 problem’.

2. Thoughts on the interpretation of this problem
Hitherto, we have focused on summarizing some important discoveries and ideas

that underlie the reconnection rate and the 0.1 problem. In this section, we will present
some thoughts as to how to interpret this problem.

The first important point that cannot be overlooked is that not all of the collisionless
reconnection processes give rise to a peak/steady-state reconnection rate ∼0.1. Indeed,
this value is attained only if the system under consideration is strongly unstable (e.g.
the tearing stability parameter ∆′ is greater than a certain threshold) and/or forced (e.g.
the externally imposed flow or magnetic perturbation exceeds a certain threshold). In
the following, we will assume that this is the case. Otherwise, the reconnection rate
can be arbitrarily low (e.g. Rutherford-like evolution).
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In principle, there are no fundamental reasons to believe that different physical
models – e.g. Hall-MHD, extended-MHD, multi-fluid, gyrofluid, hybrid, gyrokinetic,
kinetic – which are characterized by different physics at the X-line, should yield the
same peak/steady-state reconnection rate. Indeed, one may think that the commonality
of the ∼ 0.1 value is just a coincidence. However, if the same motif is repeated many
times, that cannot be coincidence (Christie 1936), especially when one considers all
the differences inherent in the many numerical simulations that have reported this
reconnection rate. In particular, it appears that:

(1) The steady-state reconnection rate is not linked to the microphysics of the
electron diffusion region (e.g. Shay & Drake 1998; Stanier et al. 2015).

(2) The ∼0.1 value of the reconnection rate is independent of the system size (e.g.
Shay et al. 2004; Comisso et al. 2013).

(3) The ∼0.1 value occurs even when the field structures (e.g. current density) are
very different (e.g. Liu et al. 2014; Stanier et al. 2015).

(4) Three-dimensional simulations, despite exhibiting great differences in the
structure of the reconnection layer, give reconnection rates similar to those
of two-dimensional simulations (e.g. Daughton et al. 2014; Guo et al. 2015).

(5) Simulations in turbulent scenarios lead to current sheets characterized by the
same reconnection rate as in the standard laminar picture (e.g. Wendel et al.
2013; Daughton et al. 2014).

To correctly interpret the aforementioned results, we argue that is necessary to shift
the focus from the reconnection rate itself, and we conjecture that the reconnection
rate is actually not the real ‘universal quantity’, but it is derived from a more
fundamental one, the aspect ratio of the ion diffusion region ∆/L. It is not the
former that is ∼0.1, but it is the latter which takes on this value. Then, from mass
conservation in steady state, ∇ · (nv)= 0, one obtains

vin

vout

nin

nout
∼ ∆

L
∼ 0.1. (2.1)

It is only when the flow is incompressible, ∇ · v = 0, and the outflow velocity is
vout ∼ vA, that the reconnection rate turns out to be ∼ 0.1. The discrepancy between
the aspect ratio and the reconnection rate can become particularly evident when
considering magnetic reconnection in the relativistic regime. Indeed, the inflow
velocity may increase due to Lorentz contraction as per the relation vin/vout ∼
(γoutnout/γinnin)∆/L, where n is the proper particle number density and γ :=
(1− v2/c2)−1/2. This reconnection rate enhancement has been clearly found in
electron–positron plasmas, which are characterized by ∆∼ L[S−1(1+Pm)

1/2+H−1]1/2,
where H := f−1(2L/λe)

2 is the thermal–inertial number (Comisso & Asenjo 2014) and
f = K3(ζ )/K2(ζ ) is the relativistic thermal factor (Kn indicates the modified Bessel
function of the second kind of order n and ζ defines the ratio of rest-mass energy
to thermal energy). Indeed, in the strictly collisionless regime, Liu et al. (2015) have
performed kinetic simulations that have shown an enhancement of vin/vout consistent
with the increase of γin/γout.

There is another important point that needs to be considered. This involves an
essential difference between collisional and collisionless reconnection. In collisional-
MHD models, the thickness of the diffusion region depends on its length L, precisely

∆

L1/2
∼
(
η

vA

)1/2

(1+ Pm)
1/4. (2.2)
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On the other hand, in two-fluid/kinetic collisionless models, the width of the ion
diffusion region depends only on the details of the microphysics of the reconnection
process:

∆∼ ρse = cse

ωci
, ρs = cs

ωci
, λi = c

ωpi
, λe = c

ωpe
, . . . . (2.3a−d)

This width is associated with very different length scales, such as the cold ion
sound Larmor radius ρse, the ion sound Larmor radius ρs, the ion skin depth λi, the
positron/electron skin depth λe, etc. Therefore, if ∆/L ∼ 0.1 holds true for all the
different two-fluid/kinetic models, it means that L self-adjusts in such a way to match
the observed aspect ratio.

Given the above refocusing observations, the key question of the 0.1 problem shifts
to: why does the ion diffusion region self-adjust in such a way that the length obeys
L∼ 10∆?

Here, without intending to furnish a solution to this problem, we provide qualitative
arguments to illustrate why L cannot be significantly different from 10∆. This can
be shown heuristically in the following manner. Let us start by assuming L=∆ and
examine its validity. This limit has been studied extensively in the past (e.g. Priest
1985; Priest & Forbes 2000) and is relevant to the solution of the 0.1 problem (e.g.
P. A. Cassak and M. A. Shay, private communication, 2016). In this instance, it
is possible to demonstrate that the reconnection rate vanishes in a plasma. To this
purpose, one can exploit the symmetries of the problem, which dictate that

vx(±x,∓y)=±vx(x, y), vy(±x,∓y)=∓vy(x, y), (2.4a,b)

Bx(±x,∓y)=∓Bx(x, y), By(±x,∓y)=±By(x, y), (2.5a,b)

if the reconnection occurs at a symmetric X-point configuration, with the X-point
situated at the origin. Combining the above properties with the fact that the
reconnection rate for L=∆ must be invariant under a point reflection of the velocity
field

(vx, vy, Bx, By) 7→ (−vx,−vy, Bx, By), (2.6)

it follows that the only possible solution is vin = vout = 0. This implies that the
reconnection process chokes itself off if L=∆. It is straightforward to check that a
steady reconnection process is also not possible for L<∆. Indeed, in this case, the
current density at the X-point would act to decrease the inflow velocity.

Next, we consider the case L>ξ∆, where ξ�1 represents a coefficient that will be
discussed soon. If a current sheet remains stable over time for arbitrarily large ξ , the
possibility of obtaining a fast reconnection rate ∼0.1 would be precluded. However,
extended current sheets are subject to a tearing-like (plasmoid) instability (Comisso
et al. 2016). This implies that for ξ > ξc, with ξc indicating a critical threshold value,
the global current sheet breaks up and is replaced by a chain of plasmoids/flux ropes
of different sizes separated by smaller current sheets (Shibata & Tanuma 2001).

In a reconnection layer dominated by the presence of plasmoids, the complexity
of the dynamics gives rise to a strongly time-dependent process (e.g. Daughton et al.
2009). Nevertheless, if this process can reach a statistical steady state, we may expect
that the current sheet located at the main X-point, which is the one that determines
the global reconnection rate, should not be longer than the marginally stable sheet
(Huang & Bhattacharjee 2010; Uzdensky et al. 2010; Comisso et al. 2015; Comisso
& Grasso 2016). Indeed, the fractal cascade arising from the plasmoid instability
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terminates when the length of the innermost local current layer is shorter than the
critical length Lc= ξc∆. The local current sheet situated at the primary X-point could
be subjected to continual stretching by plasmoids moving in the outflow direction,
but the plasmoid instability occurs if its length exceeds Lc. Thus, it is reasonable
to assume that the length of the local current sheet at the main X-point should not
exceed Lc. As a consequence, the length of the main diffusion region remains bounded
from above, but a clear-cut value of ξc remains unknown. Although at present there
are no analytical estimates of the aspect ratio of the main diffusion region, numerical
simulations have found ξc ∼ 50 in the collisionless regime (Daughton, Scudder &
Karimabadi 2006; Ji & Daughton 2011).

According to the above arguments, it is clear that the length of the ion diffusion
region that determines the reconnection rate is bounded from above and below as
∆ < L . 50∆ in a quasi-steady (or statistical steady state) strongly driven/unstable
collisionless reconnection process.

3. Final remarks
We have seen that the maximum/steady-state reconnection rate is regulated by

the length of the ion diffusion region. However, so far we have not stressed the
importance of the boundary conditions on the diffusion region length. Boundary
condition may indeed have a strong impact on the length of the current sheets
if the computational domain is not sufficiently large. Therefore, the choice of the
boundary conditions require extra caution. For example, periodic boundary conditions
in computational domains that are not sufficiently large may force the length of a
current sheet to remain small, limiting the duration in which the results are physically
meaningful (Daughton et al. 2006).

The knowledge of the maximum/steady-state reconnection rate is crucial when
trying to understand whether magnetic reconnection can be fast enough to account
for the energy release time scales observed in a specific system. This is because
most of the magnetic flux reconnection takes place during this stage of the process.
It is therefore not surprising that much of the magnetic reconnection research done
to date has focused on this issue. However, we wish to end our discussion by
noting that there are other important questions that lie beyond the paradigm of the
maximum/steady-state reconnection rate. While this observable could be insensitive
to many features of the specific model, the reconnection rate evolution is not. Indeed,
it can be extremely different in diverse systems, since the initial evolution of
any reconnection process depends on the details of the microphysics as well as
the large-scale ideal-MHD conditions. This initial (typically linear) stage could be
completely negligible in terms of magnetic flux reconnection, but it is crucial for
determining whether a particular system has enough time to accumulate the magnetic
energy that is mostly liberated during the faster stage of the reconnection process.
This issue, which is commonly referred to as the onset problem, is also an important
and active area of research.
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