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The paper introduces a new nonparametric specification test for dynamic regres-
sion models+ The test combines chi-square statistics based on Fourier series regres-
sion+ A data-driven choice of the regression order, which uses the square root of
the number of Fourier coefficients, is proposed+ The benefits of the new test are
~1! the selection procedure produces explicit and chi-square critical values that
give a finite-sample size close to the nominal size; ~2! the test is adaptive rate-
optimal and detects local alternatives converging to the null with a rate that can
be made arbitrarily close to the parametric rate+ Simulation experiments illustrate
the practical relevance of the new test+

1. INTRODUCTION

Starting with Bierens ~1984! and Robinson ~1989!, nonparametric specification
testing for dependent data has received much attention in the econometric lit-
erature+ The range of potential applications includes nonlinearity tests and time
series model building as reviewed in Tjøstheim ~1994! and Fan and Yao ~2003!,
specification of a continuous-time diffusion model for interest rates ~Aït-Sahalia,
1996!, specification of the Phillips curve ~Hamilton, 2001!, rational expecta-
tions models and conditional portfolio efficiency ~Chen and Fan, 1999; Robin-
son, 1989!, and tests of the Black and Scholes formula ~Aït-Sahalia, Bickel,
and Stocker, 2001! among others+

An important branch of this literature has considered a nonparametric approach
that uses a smoothing parameter, such as a bandwidth or the order of a series
expansion+ This has raised two important issues, the detection properties and
the size accuracy+ The former can be addressed with efficiency considerations,
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as pioneered in Ingster ~1992, 1993!; see also Guerre and Lavergne ~2002!+
This framework leads to calibration tests to detect alternatives, in a given smooth-
ness class, that approach the null at the fastest possible rate+ However, the pro-
posed smoothing parameters depend upon the chosen smoothness class, which
is too restrictive for practical applications because the choice of a smoothness
class is often arbitrary+ Regarding the size issue, the statistics considered in the
literature are often quadratic, but the critical values are computed from a nor-
mal approximation that may be inaccurate; see Hong and White ~1995! for non-
parametric series and Tjøstheim ~1994! for kernel methods+ Recent work for
independent and identically distributed ~i+i+d+! observations, such as Fan, Zhang,
and Zhang ~2001!, suggests that more sophisticated approximations should be
used instead of the normal+ Härdle and Mammen ~1993! and Gozalo ~1997!,
among others, have proposed bootstrapped critical values as a solution+ This
may be difficult when the parametric model under consideration is specified in
continuous time and is therefore costly to simulate or to bootstrap+ Bootstrap-
ping is also a burden when the dynamic specification includes covariates that
are not strongly exogenous and need to be simulated+

An important step for the detection issue was the development of the adap-
tive framework+ Under this approach, the smoothness class containing the alter-
native is considered unknown+Adaptive tests combine several statistics, designed
for a specific class, to build a test; see Hart ~1997! for a review of earlier work
in this direction+ Spokoiny ~1996! has developed an efficiency theory for the
adaptive case+ Various papers considered adaptive rate-optimal tests using the
maximum of the statistics, including Fan ~1996!, Fan and Huang ~2001!, Horo-
witz and Spokoiny ~2001!, and Spokoiny ~1996, 2001!+ More specifically,
Horowitz and Spokoiny ~2001! have proposed an adaptive rate-optimal kernel-
based specification test for a general parametric regression model that has gen-
erated various extensions+ Baraud, Huet, and Laurent ~2003! consider some
nonasymptotic refinements of the maximum approach for specification of a lin-
ear model+ Poo, Sperlich, and Vieu ~2004! are interested in a semiparametric
null hypothesis, whereas Gayraud and Pouet ~2005! considered a nonparamet-
ric null+ Gao and King ~2001, 2004! and Fan and Yao ~2003! have proposed
extending the scope of applications to dependent data+

However, the maximum approach produces statistics with unstable asymp-
totic null behavior, so that achieving an accurate size remains a difficult issue+
Fan ~1996! found that the null limit distribution of his test gives a poor approx-
imation for finite samples+ Horowitz and Spokoiny ~2001! did not derive a null
limit distribution and used simulated critical values+ On the other hand, Guerre
and Lavergne ~2005! built on a data-driven selection procedure that, under the
null, selects a prescribed statistic with a high probability+ Compared to the max-
imum approach, this considerably reduces the complexity of the null behavior
of the resulting test statistic, which asymptotic distribution is a standard nor-
mal given by a specific statistic+ But the statistics of Guerre and Lavergne ~2005!
have a complicated quadratic structure, and so these authors used bootstrapped
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critical to achieve a level close to the nominal size+ Hence, as mentioned ear-
lier, such an approach may not be suitable for a dynamic model+

In this paper, a suitable modification of the Guerre and Lavergne ~2005! test
is proposed to derive an adaptive rate-optimal specification test with an accu-
rate size in a dynamic setting+ The null hypothesis considered is the specifica-
tion of the conditional mean for a time series with heteroskedastic innovations+
Nonparametric series methods are used to compute chi-square statistics of var-
ious orders, which, in case of low degrees of freedom, have an accurate chi-
square approximation under the null+ A selection criterion, using a low penalty
term proportional to the square root of the number of coefficients, chooses a
test statistic+ Hence the rejection region of the test can use accurate chi-square
critical values+ The rest of the paper is organized as follows+ Section 2 presents
our test and the adaptive framework on a nontechnical level+ Section 3 groups
our main assumptions and our main results+ After studying the null behavior of
the test, adaptive rate-optimality is introduced, and the test is shown to be effi-
cient+ Detection of local alternatives, approaching the null with a rate close to
the parametric one, is also considered+ Section 4 illustrates the size and detec-
tion properties of the test with a simulation experiment, and Section 5 con-
cludes the paper+ The proofs are grouped in Section 6 and two Appendixes+

2. HEURISTICS OF THE DATA-DRIVEN TEST

Consider an autoregressive model with exogenous variables Zt ,

Yt � m~Yt�1, + + + ,Yt�q , Zt !� «t �m~Xt !� «t

with Xt � @Yt�1, + + + ,Yt�q , Zt
'# ' � R

d, E@«t 6Ft # � 0, and Var @«t 6Ft # � s 2~Xt !,
where Ft is the past Borel field generated by X1, + + + , Xt + Given T observations
~Y1, X1!, + + + , ~YT , XT !, we want to test that m~{! belongs to some parametric fam-
ily $m~{;u!,u � Q � R

p% , that is, the correct specification hypothesis

H0 :m~{! � m~{;u! for some u � Q+

The proposed procedure builds on the estimated residuals ZUt � Yt � m~Xt ; ZuT !,
where ZuT is a consistent estimator of u under H0, such as, for instance, the
nonlinear least squares estimator

ZuT � arg min
u�u
(
t�1

T

~Yt � m~Xt ;u!!2+

By Yt � m~Xt ! � «t , the residuals decompose as ZUt � ZD~Xt ! � «t , where
ZD~{! � m~{! � m~{; ZuT ! indicates potential misspecification, which asymptoti-

cally vanishes under the null but not under the alternative+ Our test combines
nonparametric series statistics constructed by projecting the residuals to detect
the presence of a significant ZD~{! over a compact L � @�l,l# d + More specifi-
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cally, we focus on multivariate Fourier series regression+1 For k � @k1, + + + , kd #
' �

Z
d , define the kth trigonometric function over L as

ck~x! � )
��1

d

Fk�
~x� !,

where Fn~z!�





 M2

Ml cos�pnz

l
� I~�l� z � l! n � 0,

1

M2l
I~�l� z � l! n � 0,

M2

Ml sin�pnz

l
� I~�l� z � l! n � 0,

(2.1)

so that $ck~{!, k � Z
d% is an L2~dx!-orthonormal system, that is, *L ck~x!

ck ' ~x! dx � 1 if k � k ' and 0 otherwise+ Let 6k 6 � (��1
d 6k� 6 be the degree of

ck~{!+ The series estimation of ZD~{! over L builds on trigonometric multivariate
polynomial function (6k 6�K bkck~{! of degree K, with a number cK of coeffi-
cients bk proportional to K d + To account for heteroskedasticity, assume that an
estimator [s~{! of s~{! is given and consider the generalized least squares esti-
mator ZbK � @ Zbk, 6k 6 � K # ' ,

ZbK � ~CK
' ZV�1CK !

�1CK
' ZV�1 ZU � arg min

@bk , 6k 6�K # '
(
t�1

T � ZUt � (
6k 6�K

bkck~Xt !

[s~Xt !
�2

,

where ZU � @ ZU1, + + + , ZUT #
' , ZV102 is the diagonal matrix with entries [s~Xt !, and

CK is the T � cK matrix @ck~Xt !,1 � t � T, 6k 6 � K # + Suppose that ZD~{! is a
trigonometric polynomial function of order K+ A standard procedure to test the
significance of Fourier coefficients would use the chi-square statistic

ZRK � ZU ' ZV�1CK ~CK
' ZV�1CK !

�1CK
' ZV�1 ZU �(

t�1

T � (6k 6�K

Zbkck~Xt !

[s~Xt !
�2

, (2.2)

leading to rejection of H0 when ZRK is large+ However, assuming that ZD~{! has a
finite series expansion of known order K is too simplistic for practical applica-
tions+ More generally, an arbitrary choice of K may affect the power, and a
better understanding of the impact of K is important to build a proper specifi-
cation test+ Set ZD � @ ZD~X1!, + + + , ZD~XT !#

' and « � @«1, + + + ,«T #
' so that ZU �

ZD � « and ZRK decomposes into three terms ZRK � ZR1K � 2 ZR2K � ZR3K with

ZR1K � ZD' ZV�1CK ~CK
' ZV�1CK !

�1CK
' ZV�1 ZD,

ZR2K � ZD' ZV�1CK ~CK
' ZV�1CK !

�1CK
' ZV�1«,

ZR3K � « ' ZV�1CK ~CK
' ZV�1CK !

�1CK
' ZV�1«+ (2.3)
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The term ZR1K is crucial regarding detection of potential misspecification+ It
is the squared norm of the orthogonal projection of ZV�102 ZD on the columns
of ZV�102CK , which increases with K up to (t�1

T ZD2~Xt !I~Xt � L!0 [s 2~Xt !,
achieved for cK � T+ Hence ZR1K can be viewed as a downward-biased esti-
mation of the empirical measure of misspecification (t�1

T ZD2~Xt !I~Xt � L!0
[s 2~Xt !, that is,

ZR1K � (
t�1

T ZD2~Xt !

[s 2~Xt !
I~Xt � L!� biasm~K !,

where biasm~K ! � 0 depends upon the unknown m~{! and decreases with K+
The other important term in the decomposition ~2+3! of the statistic ZRK is ZR3K ,
a pure noise term+ It can be expected that ZR3K is asymptotically a chi-square
variable with cK degree of freedom, with mean cK and variance 2cK , so that
ZR3K � cK � M2cKOP~1!+ Neglecting2 ZR2K and substituting in ~2+3! gives a bias

variance type decomposition for ZRK � cK
3

ZRK � cK � (
t�1

T ZD2~Xt !

[s 2~Xt !
I~Xt � L!� biasm~K !� M2cKOP~1!+ (2.4)

Looking for the best estimator ZRK � cK of the misspecification indicator sug-
gests that an ideal choice of K should achieve the minimum of 6biasm~K !6 �
M2cKOP~1!+ However, this is infeasible in practice, at least because biasm~{!
depends upon the unknown m~{!+ Alternative feasible choices of K include the
Akaike information criterion ~AIC! and Bayesian information criterion ~BIC!
as reviewed in Hart ~1997!+ These selection procedures consider a K achieving
the maximum of ZRK � gcK where g is a penalty parameter+ According to ~2+4!,
this amounts to achieving the minimum of 6biasm~K !6� ~g� 1!cK~1 � oP~1!!+
Therefore these selection procedures asymptotically balance 6biasm~K !6 with
~g � 1!cK in place of the ideal order cK

102 in ~2+4!+ This suggests using instead
a lower penalty term of the form ck � gcK

102 affecting the square root of the
number of coefficients cK

102 in place of ck+ More specifically, let KT be a
set of admissible degree K larger than or equal to Kmin+ Our data-driven choice
of K is

ZK g � arg max
K�KT

$ ZRK � cK � gT ~2~cK � cKmin
!!102 %

� arg max
K�KT

$ ZRK � ZRKmin
� ~cK � cKmin

!� gT ~2~cK � cKmin
!!102 %

with gT � 0+ (2.5)

The introduction of Kmin quantities in the penalty criterion reflects a preference
for low degree as justified now from considerations on the null behavior of the
retained ZR ZKg +

NONPARAMETRIC TEST FOR DYNAMIC REGRESSION MODELS 547

https://doi.org/10.1017/S0266466606060282 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466606060282


As seen from Fan ~1996! or Horowitz and Spokoiny ~2001!, finding an accu-
rate approximation for the null distribution of a statistic that combines the
ZRK ’s as ZR ZK g is difficult+ A first distinctive feature is that the selection proce-

dure ~2+5! is flexible enough to limit the contribution of the statistics with
high K by taking gT large enough+ Indeed, a limit case is gT � �`, which
gives that ZK g� Kmin+ This continues to hold asymptotically provided gT diverges
fast enough, as shown in Theorem 1 in Section 3+ Moreover, as detailed now,
an accurate approximation of the distribution of ZR ZK g is a standard chi-square+
Because ZD~{! asymptotically vanishes under H0, ~2+3! shows that the null dis-
tribution of ZRK is approximately that of ZR3K and then, neglecting the effect of
the variance estimation, of

R3K � « 'V�1CK ~CK
' V�1CK !

�1CK
' V�1«,

where V102 � Diag@s~X1!, + + + ,s~XT !# + In the i+i+d+ case and according to the
Berry–Esseen bound in Hart ~1997, Thm+ 7+2!, the distribution of the vector

CK
' V�1« � �(

t�1

T ck~Xt !«t

s 2~Xt !
, 6k 6� K� '

has a normal approximation up to an error a~cK !0T 102 where a~cK ! diverges
with cK + Therefore, the distribution of the chi-squared statistic R3K should be
close to a chi-square with cK degree of freedom up to an error a~cK !0T 102 ,
which is smaller for moderate K+4 Hence the test uses a chi-square critical value
za � za,T with

P�x~cKmin
!� cKmin

M2cKmin

� za�� a,

where x~c! is a chi-square with c degree of freedom and rejects H0 if5

ZRg � cKmin

M2cKmin

� za where ZRg � ZR ZK g + (2.6)

Consider now the power issue+ The data-driven choice ~2+5! of K combines
the detection properties of each of the ZRK ’s+ Indeed, because cK � cKmin

for any
K in KT , we have

ZRg � cKmin
� ZR ZK g � c ZK g � max

K�KT

$ ZRK � cK � gT ~2~cK � cKmin
!!102 %

� gT ~2~c ZK g � cKmin
!!102

� max
K�KT

$ ZRK � cK � gT ~2~cK � cKmin
!!102 %

� ZRK � cK � gT ~2~cK � cKmin
!!102+ (2.7)
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This gives the power lower bound

P� ZRg � cKmin

M2cKmin

� za� � P~ ZRK � cK � gT ~2~cK � cKmin
!!102 � zaM2cKmin

� 0!

� P� ZRK � cK

M2cK

�
zaM2cKmin

� gT ~2~cK � cKmin
!!102

M2cK
�,
(2.8)

which holds in particular for an optimal K that balances the bias with the pen-
alty term+ Taking K � Kmin gives that

P� ZRg � cKmin

M2cKmin

� za� � P� ZRKmin
� cKmin

M2cKmin

� za�, (2.9)

a power bound that shows that the test ~2+6! improves on the one using the
single statistic ZRKmin

+ As seen from ~2+4! and ~2+8!, consistency holds as soon
as there is a degree K in KT such that the misspecification measure
(t�1

T ZD2~Xt !I~Xt � L!0 [s 2~Xt ! is asymptotically larger than the sum of
6biasm~K !6, gTM2~cK � cKmin

!, and zaM2cKmin
+ Hence increasing gT too much

should give a less powerful test+ The form of the low penalty term in ~2+5! is
crucial to show adaptive rate-optimality; see Theorem 2 in Section 3+ Theo-
rem 3 in Section 3 shows that the test detects Pitman local alternatives with a
rate arbitrarily close to the rate T �102 +

3. MAIN RESULTS

3.1. Main Assumptions

Consider T observations ~Yt , Xt ! with Yt �m~Xt !� «t , Xt � ~Yt , + + + ,Yt�q , Zt
'!' �

R
d, and where m~{! can depend upon T, in which case ~Yt , Xt ! forms a tri-

angular array ~YtT , XtT !+ Let vX t and PX t denote the Borel field generated by
X1,«1, + + + , Xt ,«t and Xt ,«t , Xt�1,«t�1, + + + , respectively+ The a-mixing coeffi-
cients of $Xt ,«t %t�N

* are

a~n! � sup
t�N

*
sup

A� vXt ,B� PXt�n

6P~A � B!� P~A!P~B!6, n � N+

The next assumptions deal with the «t ’s, the mixing coefficients, and the para-
metric mean+

Assumption E+ Let Ft be the Borel field generated by ~X1,«0!, + + + , ~Xt ,«t�1!+
The variables $«t %t�N are martingale difference with E@«t 6Ft #� 0, E@«t

2 6Ft #�
s 2~Xt�1!, and supt�N E@«t

8 6Ft # � ` a+s+ The standard deviation function,
s~{! � Var @«t 6Xt � {# , is continuous and bounded away from 0 on R

d+

NONPARAMETRIC TEST FOR DYNAMIC REGRESSION MODELS 549

https://doi.org/10.1017/S0266466606060282 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466606060282


Assumption X+ The process $Xt ,«t %t�N
* on R

d � R is stationary, with the
following conditions holding+

~i! a~n! � An�1�a for some constant A,a � 0+
~ii! The variable Xt has a density f ~{! with respect to the Lebesgue measure

on R
d + The density f ~{! is bounded away from 0 and infinity+

Assumption M+ The parameter set Q is a subset of R
p , and the following

conditions hold+

~i! The regression function m~x;u! is twice continuously differentiable with
respect to u+ The gradient m ~1!~x;u! and Hessian matrix m ~2!~x;u! are
bounded over L � Q+

~ii! For any sequence of regression functions mT ~{! with EmT
2 ~Xt ! � `,

there exists a sequence of parameter uT in Q such that T 102~ ZuT � uT ! �
OP~1!, with uT � u if mT ~{! � m~{;u! for some u in Q+

Assumption E ensures that the sums (t�1
T ck~Xt !«t 0s 2~Xt ! are martingales

that are asymptotically normal under Assumption X~i!+ The polynomial mixing
rate of X~i! is a minimal rate to achieve T 102-consistency in the weak law of
large numbers for the empirical mean T �1CK

' V�1CK + Under Assumption X~ii!,
the limit of T �1CK

' V�1CK has an inverse+ Mixing conditions for Markovian
~Yt , Xt ! as in Assumption X~i! can be derived using a drift condition; see
Fan and Yao ~2003, Thm+ 2+4! and the references therein+ When ZuT �
arg minu�u (t�1

T ~Yt � m~Xt ;u!!2 , the sequence uT in Assumption M~ii! is the
pseudo–true value arg minu�QE~mT~Xt !� m~XT ;u!!2, which is uniquely defined
under identification of the parametric regression model; see Domowitz and White
~1982!+ Assumption M~i! then ensures that ZD~{!� mT ~{!� m~{; ZuT ! is close to
D~{! � mT ~{! � m~{;uT ! over L up to an OP~T �102! term+

Let us now turn to the construction of the test+ The first assumption specifies
a set of admissible degrees KT in the spirit of the dyadic bandwidth set of Horo-
witz and Spokoiny ~2001!+

Assumption K+ Let a be as in Assumption X+ Set Kmax � 2Jmax � O~T C1 0d !
for some C1 in ~0, 34_ @~1 � a!0~5 � 3a!#!, Kmin � 2Jminr` with Kmin

d � O~ lnC2 T !
for C2 � 0, where Jmin � Jmax are integer numbers+ The set of admissible degrees
KT is dyadic, that is,

KT � $K � 2J, J � Jmin , Jmin � 1, + + + , Jmax%+ (3.1)

Note that ~3+1! and the polynomial divergence rate of Kmax imply that Card KT

is of exact order ln T+ Such a restriction is helpful to show that ZK g � Kmin

asymptotically under the null but also has some practical justifications+ Indeed,
achieving a small P~ ZK g � Kmin! is an important condition to get an accurate
size+ Because ZRK � ZRKmin

� ~cK � cKmin
!� gT ~2~cK � cKmin

!!102 vanishes if and
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only if K � Kmin, ~2+5! yields that ZK g � Kmin if and only if one of these penal-
ized statistics is strictly positive for a K � Kmin, or equivalently

max
K�KT � $Kmin%

ZRK � ZRKmin
� ~cK � cKmin

!

~2~cK � cKmin
!!102

� gT +

Hence

P~ ZK g � Kmin! � P� max
K�KT � $Kmin%

ZRK � ZRKmin
� ~cK � cKmin

!

~2~cK � cKmin
!!102

� gT�, (3.2)

so that P~ ZK g� Kmin! increases with KT and decreases with the penalty sequence
gT + Therefore, using a parsimonious KT can improve the size accuracy of the
test+ On the other hand, a dyadic KT as in Assumption K contains sequences
with any arbitrary order between lnC2 T and T C1 that is sufficient for adap-
tive rate-optimality+ The constant C1 of Assumption K must be smaller than
3
4
_ @~1 � a!0~5 � 3a!# where a comes from Assumption X~i!, a~n! � O~n�1�a!+
This gives a Kmax of order T 10~4d ! at best, whereas, in the i+i+d+ setup, Hong and
White ~1995! allowed for a better order T 10~3d ! when using a single series sta-
tistic on which to base the test+

Let us now turn to variance estimation+ The next condition allows us to
approximate T �1CK

' ZV�1CK with T �1CK
' V�1CK for degrees K depending on

the sample size T, as in Assumption K+

Assumption V+ Let Kmax � 2Jmax � max$K;K � KT % + Then, for the consid-
ered sequence of regression models Yt � mT ~Xt !� «t , supx�L6 [s~x!� s~x!6�
OP~vT ! and, for some integer � � d02 and all ~�1, + + + ,�d ! with �1 � {{{� �d �
�, supx�L 6]� [s~x!0~]�1x1 + + + ]�dxd !6 � OP~vT !, where vT � o~Kmax

�3d020ln T ! and
lim infTr`T 102vT � 0+

Assumption V requires consistency of [s~{! under the null and the alterna-
tive+ Convergence of [s~{! with the rate vT requires that mT ~{! and s~{! satisfy a
minimal smoothness condition+ As seen from Guerre and Lavergne ~2002!,
consistency is not necessary under the alternative but can be useful to get a
powerful test+ Under homoskedasticity, a simple choice of [s~{! is a constant
difference-based estimator, in which case Assumption V holds with a best pos-
sible vT � T �102 so that Kmax � o~T 10~3d ! ln20~3d ! T !+ The heteroskedastic case
requires nonparametric variance estimation, such as kernel, sieves, series expan-
sion; see, among others, Guerre and Lavergne ~2002, 2005! and Horowitz and
Spokoiny ~2001!+ The rate vT is then the consistency rate for the �th partial
derivatives, which restricts the divergence rate of Kmax+

3.2. Asymptotic Behavior under the Null

As discussed following ~3+2! and ~2+9!, a fast divergence rate for gT is useful to
achieve an accurate size under the null but may negatively affect its power
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properties+ Therefore, an important issue is to find a minimal divergence rate
for gT ensuring that the test is asymptotically of level a or equivalently that
P~ ZK g� Kmin! asymptotically vanishes under H0+ The Bonferroni inequality gives,
in ~3+2!,

P~ ZK g � Kmin! � (
K�KT � $Kmin%

P� ZRK � ZRKmin
� ~cK � cKmin

!

~2~cK � cKmin
!!102

� gT�, (3.3)

and showing that the last sum asymptotically vanishes for small gT necessitates
precise uniform bounds for these probabilities, so that simple Chebychev-type
inequalities may not be sufficient+ Better Gaussian-type bounds in the spirit of
Mill’s ratio inequality P~N ~0,1! � g! � exp~�g202!0~M2pg! are derived in
Lemma A+3 in Appendix A+ Because the exact order of Card KT is ln T, the
next theorem ensures that the asymptotic size of the test is a provided that the
penalty sequence gT diverges faster than ~ln ln T !102 +

THEOREM 1+ Consider that the null hypothesis H0 is true and assume that
Assumptions E, K, M, V, and X hold. Then, if gT diverges with

gT � ~1 � e!M2 ln Card KT , for some e � 0, (3.4)

limTr�`P~ ZK g � Kmin! � 1, and the test (2.6) is asymptotically of level a.

The minimal divergence rate ~ln ln T !102 ensuring that the test is asymptoti-
cally of level a is surprisingly low compared to the penalty term of order ln T
used in the BIC criterion+ Such improvement comes from the Gaussian-type
bounds used for the tails of the standardized ZRK � ZRKmin

’s+ Indeed, this
gives, up to remainder terms, a bound Card KT exp~�gT

202!0~M2pgT ! in ~3+3!,
which asymptotically vanishes provided that ~3+4! holds+ On the other hand,
such a low rate is in line with previous findings for rate-optimal adaptive test-
ing+ Indeed, ~3+2! shows that suitable gT should resemble the critical values of
a maximum test such as that of Fan ~1996!, who found critical values with a
typical rate of ~2 ln ln T !102 + This suggests that our minimal rate condition ~3+4!
cannot be improved+

Another condition for Theorem 1 to hold is that Kmin diverges with the sam-
ple size; see Assumption K+ This is used to neglect the parametric estimation
error T 102~ ZuT � u! in the chi-square approximation of the distribution of ZRKmin

+
Accounting for such an effect would allow us to consider a fixed Kmin; see, for
example, Hart ~1997, Sect+ 8+3+1!+

3.3. Detection of Small Alternatives

As discussed following equation ~2+9!, the detection properties of the test depend
upon a bias term from ~2+4!+ Establishing formal adaptive rate-optimality of the
test necessitates bounding this bias+ The current mathematical approach to do
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so makes use of some smoothness restrictions+We consider here Hölder smooth-
ness classes C~L, s! that we introduce now+ Define the departure from the
null as

Dm,T ~{! � m~{!� m~{;uT !,

with a uT as in Assumption M+ We restrict ourselves to departures D~{! with a
restriction to L that admits a ~2l!-periodic extension+ Consider first the case
s � ~0,1# , for which

C~L, s! � �D~{! : sup
x, x '�L

6D~x!� D~x ' !6

7x � x ' 7s
� L� +

For real s � 0, let {s} be the lower integer part of s, that is, the unique integer
number satisfying {s} � s � {s}� 1, so that s � {s} is in ~0,1# with s � {s}� s
for s � ~0,1# + For any s � 0, the smoothness class C~L, s! is defined as

C~L, s! � $D~{! : the {s} th partial derivatives of D~{! are in C~L, s � {s} !%+

Hence the smoothness class C~L, s! is defined for all s � 0 and L � 0+ Lemma 1
in Section 6 gives, for the bias term of ~2+4!, the following bound:

6biasm~K !6 � OP�T 102K�s
E

102�Dm,T ~Xt !I~Xt � L!

s~Xt !
�2

� TK�2s� ,
for any Dm,T ~{! in C~L, s! and any K+ This gives, for small alternatives, which
are the harder to detect,

6biasm~K !6 � OP~TK�2s ! provided E
102�Dm,T ~Xt !I~Xt � L!

s~Xt !
�2

� O~K�s !+

(3.5)

Our minimax adaptive framework evaluates tests uniformly over alternatives at
distance r from the null, that is, in

H1~r;L, s! � �m~{!� m~{;uT !� Dm,T ~{!;

Dm,T ~{! � C~L, s!,E�Dm,T ~Xt !I~Xt � L!

s~Xt !
�2

� r2� ,
with unknown smoothness index ~L, s!+ Such alternatives allow for a general
shape of Dm,T ~{! with narrow peaks and valleys that may depend upon on T;
see Horowitz and Spokoiny ~2001!+ As pointed out in Guerre and Lavergne
~2005!, uniform consistency over H1~ IrT ;L, s! is equivalent to consistency against
any sequence
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mT ~{! � m~{;uT !� DT ~{!, where DT ~{!� DmT ,T ~{!,

in H1~ IrT ;L, s! as considered here+ A crucial issue is the choice of a suitable
asymptotically vanishing rate IrT + Indeed, some of the alternatives of H1~ IrT ;L, s!
will not be detected by any tests if IrT goes to 0 at too rapid a rate+ On the other
hand, detection can become straightforward if H1~ IrT ;L, s! remains far from
the null+ Hence a good candidate IrT to evaluate a test is a frontier rate that
separates these two extreme situations+ In the adaptive approach, such a rate
depends upon the unknown smoothness index s, and Spokoiny ~1996! has shown
that the optimal adaptive rate is6

rT � rT ~s!� �Mln ln T

T
�2s0~4s�d !

,

which is slower than the parametric rate T �102 + Guerre and Lavergne ~2002!
derived an optimal rate for a known smoothness index s that improves rT from
the ~ln ln T !102 factor, so that the price to pay for rate adaptation is moderate+
As is well known, the rate rT decreases faster than the nonparametric estima-
tion rate T �s0~2s�d ! + The adaptive rate-optimality of our test is stated in the next
result+

THEOREM 2+ Consider a sequence of alternatives

mT ~{! � m~{;uT !� DT ~{! in H1 ~C3{rT ;L, s! for some unknown s and L,

with s � d~20C1 � 1!04, L � 0, C3 � 0, and supx�L 6DT ~x!6 �
O@E102~DT

2 ~Xt !I~Xt � L!0s 2~Xt !!# . Assume that Assumptions E, K, M, and V
hold. Then, if gT is of exact order ~ ln ln T !102 and provided C3 is taken large
enough, the test is consistent, that is, limTr`P~~ ZRg� cKmin

!��M2cKmin
� za!�1.

The proof of Theorem 2 builds on the lower power bound ~2+8! and on the
bias variance decomposition ~2+4!+ In view of the bias order ~3+5! for small
alternatives, an optimal choice of K in ~2+8! is such that the order of the penalty
term gT K d02 is proportional to TK�2s , that is, for

K* � K*~s!� 2@20~4s�d !@ ln~T0gT !0~ ln 2!## @ � T

gT
�20~4s�d !

, (3.6)

where @{# is the integer part+ Such K* detects alternatives within the bias order
divided by the sample size, K*

�s @ ~gT 0T !2s0~4s�d ! , which coincides with the
optimal adaptive order rT provided gT has the smallest possible order ~ln ln T !102

compatible with Theorem 1+ Note that, under Assumption K, K* is in KT pro-
vided s � d~20C1 � 1!04, which implies that s � 7d04+

Because adaptation means detection over various smoothness classes C~L, s!,
it is crucial that the test combine several statistics, as seen from the optimal K*
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in ~3+6!, which depends on the smoothing index s+ Therefore, tests that use a
single statistic ZRK generally fail to be rate-optimal adaptive+ A more specific
property of the test ~2+6! is detection of small local alternatives+

THEOREM 3+ Consider a sequence of local alternatives mT ~{! satisfying

mT ~Xt ! � m~Xt ;uT !� rT D0T ~Xt !

with D0T ~{! in C ~L, s! for some unknown s, L � 0,

s � d~20C1 � 1! , and

E�D0T ~Xt !I~Xt � L!

s~Xt !
�2

� 1, sup
x�L
6D0T ~x!6� O~1!+

Then, under Assumptions E, K, M, V, and X, the test is consistent provided
10rT � o~MT0Kmin

d02! .

Because Kmin can diverge very slowly, the rate rT can be arbitrarily close to
the parametric detection rate 10T 102 + This slightly improves on the results of
Horowitz and Spokoiny ~2001!, who achieved a rate ~ln ln T !1020T 102 + A key
argument there is that the local alternatives of Theorem 3 are asymptotically
very smooth, because the departure from the null rTD0T ~{! is in C~LrT , s!, with
a Lipschitz constant LrT that goes to 0+ Hence these alternatives differ from the
general ones in Theorem 2, and they are typically detected by trigonometric
series with low degree such as Kmin, so that ~2+9! yields consistency of the test+
On the other hand, using the single statistic ZRKmin

would give a test that is not
consistent against the alternatives of Theorem 2, so that combining several sta-
tistics as in our procedure is crucial to achieve these opposite kinds of detec-
tion properties+

4. SIMULATION EXPERIMENTS

In this section we study the size and the power properties of the proposed pro-
cedure when testing for a null of linearity in the context of a Markov process
of order 1+ The resulting test is compared with the one developed by Hamilton
~2001! to detect nonlinearity+ First, to examine the size properties, we use the
AR~1!

Yt � rYt�1 � et +

Three distributions are considered for the error term: standard normal, standard-
ized student with five degrees of freedom, and a centered and standardized expo-
nential+ To examine the sensitivity of the tests to temporal dependence, we
consider various values of the autoregressive parameter r, namely, r� 0, 0+25,
0+50, 0+75+ To implement our test, we choose the interval ~L in Section 2! for
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projecting the covariate Yt�1 onto the trigonometric expansion to be equal to 2
divided by standard error of Yt under the null+ This corresponds to approxi-
mately 95% of the observations+ The set KT is equal to $1,2,4,8,16% + The asymp-
totic critical value is given by ~x0+05~1! � 1!0M2, where x0+05~1! is the critical
value at 5% of a chi-square with one degree of freedom+ We study the small-
sample properties of the test for various values of the penalty parameter gT +
We fix gT equal to cM2 ln Card KT where we set c � 2,3,5+ The parameters are
estimated by ordinary least squares ~OLS!+ The sample size is set to 200, and
the number of simulations is equal to 10,000+

The simulation results for the size, which are presented in Table 1, are encour-
aging+ For c � 2 the test slightly overrejects in all cases+ However, for c � 3,5,
the size is accurate whatever the distribution, persistence, and number of obser-
vations considered+ The Lagrange multiplier ~LM! test developed by Hamilton
~2001! shares these good size properties+

To study the effect on power of the penalty sequence gT , two alternative
specifications of the linear autoregressive process are examined+ The first spec-
ification is a threshold autoregressive model defined as

Yt � r1Yt�1 I$Yt�1�0%� r2Yt�1 I$Yt�1�0%� et ,

where et is i+i+d+ N~0,1!+7 This representation contains two regimes delimited
by a threshold equal to zero+When Yt�1 is greater than zero, the dynamic depen-
dence is controlled by the parameter r1+ In the case where it is inferior to zero,

Table 1. Size properties ~5%! of our test and Hamilton test ~LM!
~200 observations!

c

Distribution r 2 3 5 LM

normal 0 0+057 0+048 0+047 0+047
student 0 0+055 0+047 0+046 0+047
exponential 0 0+056 0+048 0+047 0+048

normal 0+25 0+057 0+048 0+047 0+045
student 0+25 0+059 0+052 0+051 0+051
exponential 0+25 0+060 0+051 0+049 0+049

normal 0+50 0+057 0+047 0+045 0+044
student 0+50 0+056 0+050 0+050 0+051
exponential 0+50 0+057 0+050 0+047 0+049

normal 0+75 0+052 0+044 0+043 0+044
student 0+75 0+059 0+051 0+050 0+050
exponential 0+75 0+058 0+048 0+046 0+055
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the dynamic depends on the parameter r2+ Under the null of linearity r1 � r2+
The distance from the null is a function of the absolute value of the difference
between r1 and r2+ To see this, we can rewrite the threshold autoregressive
model as follows:

Yt � r1Yt�1 � ~r2 � r1!Yt�1 I$Yt�1�0%� et +

Thus, under the null, m~Xt ! � r1Yt�1 whereas the nonlinear alternative is

m~Xt ! � r1Yt�1 � dYt�1 I~Yt�1 � 0!, where d� r2 � r1 +

To examine the sensitivity of the tests to temporal dependence, we consider
various types of dependence for the process Yt + We run the following experi-
ments: ~1! r1 � 0 and r2 � 0+25, 0+50, 0+75, ~2! r1 � 0+25 and r2 � 0+50, 0+75,
�0+50, ~3! r1 � 0+50 and r2 � 0+25, 0, �0+25, and ~4! r1 � 0+75 and r2 � 0+50,
0+25, 0+ The values of r2 under the alternative are chosen such that the param-
eter ~d! that governs the distance from the null is equal to 0+25, 0+50, and 0+75,
respectively+ Table 2 reports the power results+ Our test is more powerful than
Hamilton’s for all cases+ Our power gains increase with the degree of temporal
dependence and the distance of the alternative from the null+ The difference in
the rejection rate can be as high as 38%+

Table 2. Power properties ~5%! of our test and Hamilton test ~LM!:
First experiment ~200 observations!

c

r1 r2 6r2 � r16 2 3 5 LM

0 0+25 0+25 0+236 0+224 0+222 0+118
0+50 0+50 0+653 0+646 0+645 0+361
0+75 0+75 0+849 0+846 0+846 0+682

0+25 0+5 0+25 0+237 0+227 0+226 0+128
0+75 0+50 0+583 0+576 0+575 0+413

�0+50 0+75 0+947 0+945 0+944 0+666

0+50 0+25 0+25 0+261 0+247 0+246 0+123
0 0+50 0+725 0+715 0+713 0+360

�0+25 0+75 0+967 0+965 0+964 0+652

0+75 0+50 0+25 0+312 0+298 0+295 0+160
0+25 0+50 0+797 0+785 0+781 0+411
0 0+75 0+979 0+976 0+975 0+673
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The second experiment corresponds to an alternative for which the data-
driven optimal test is specially designed+ The alternative models have the
following form:

Yt � rYt�1 �
r

t
f ~Yt�1 0t!� et , (4.1)

where f ~ y0t! � ~1��M2ps 2 ! � exp~�~102s 2!~ y0t!2!, s 2 � 10~1 � r2!, and
et is i+i+d+ N~0,1!+ Figure 1 shows the function f ~{! for t � 1, 0+50, and 0+25,
r� 0+50, and values of Yt between �10 and 10+ The function f ~{! is symmetric
around zero and more concentrated for smaller values of t+ The function is
bounded between zero and one, with f ~0! � 1 and limxr6` f ~x! � 0+ We can
easily show that the alternative ~4+1! respects the drift condition of Fan and
Yao ~2003, Thm+ 2+4! for geometric ergodicity+ This alternative is then compat-
ible with the assumptions in this paper+

We examine the sensitivity of the tests to the narrowness of the peak and
temporal dependence+We consider the parameter values t� 25, 0+50, 0+75 and
r � 0+25, 0+50, 0+75+ Table 3 shows the results of the experiment+ For t � 1,

Figure 1. Alternative model ~r � 0+50!+ Dashed line, t � 0+25; thick line, t � 0+50;
and solid line, t � 1+
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Hamilton’s test is close to the nominal size+ For 200 observations, our test rejects
at a rate of 17% for r� 0+25 and 56% for r� 0+75+ For t� 0+50, our test also
clearly dominates the test proposed by Hamilton for all cases+ For a narrow
peak ~t� 0+25!, the rejection rate of both tests is quite similar+ The better per-
formance of the Hamilton test for this alternative compared to the one with a
wider peak is probably due to the specification of the variance-covariance func-
tion of the random field underlying the test statistic+ See Hamilton ~2001! for
further details on the construction of this test+

5. CONCLUDING REMARKS

This paper proposes a new adaptive rate-optimal specification test for time series+
As in the maximum approach of Fan ~1996! or Horowitz and Spokoiny ~2001!,
the test combines several statistics to achieve adaptive rate-optimality+ More
specifically, the test builds on series regression chi-square statistics with increas-
ing orders+ A data-driven selection procedure, in the spirit of Guerre and
Lavergne ~2005!, uses a penalty term proportional to the square root of the
number of Fourier coefficients to choose the test statistic+ Under the null, the
retained statistic is, with high probability, a statistic with a distribution close to
a chi-square+ Therefore, standard chi-square critical values can be used, allow-
ing for better control of the size of the test+ This contrasts with the maximum
approach, where using a null limit distribution performs poorly, as noted in
Fan ~1996!, or is out of reach, as in Horowitz and Spokoiny ~2001!+ Hence, the
maximum approach necessitates the use of simulated critical values, limiting
the scope of applications to time series models that can be easily simulated+ A

Table 3. Power properties ~5%! of our test and Hamilton test ~LM!:
Second experiment ~200 observations!

c

t r 2 3 5 LM

1 0+25 0+168 0+161 0+161 0+056
0+50 0+426 0+421 0+420 0+072
0+75 0+564 0+555 0+553 0+105

0+50 0+25 0+245 0+233 0+231 0+080
0+50 0+639 0+605 0+595 0+213
0+75 0+758 0+716 0+699 0+477

0+25 0+25 0+301 0+263 0+254 0+278
0+50 0+751 0+664 0+622 0+716
0+75 0+857 0+764 0+702 0+776
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simulation experiment confirms the good level properties of the proposed test,
which shows interesting power improvements compared to a simpler test using
a single statistic such as that of Hamilton ~2001!+ We also examine the power
of the test that is adaptive rate-optimal and detects local alternatives approach-
ing the null at a faster rate than in Horowitz and Spokoiny ~2001!+ The simu-
lation experiment shows that the choice of the penalty term has a moderate
impact on the power+ This positively illustrates the interest of our approach,
which builds on the fact that the combination mechanism inherent to adaptive
testing can also be designed to achieve a level close to the nominal size+

Although our results are stated for Fourier series methods, our approach also
applies to wavelets or polynomial series regression+ As noted in Guerre and
Lavergne ~2005!, the series construction of the test statistic easily can be mod-
ified to cope with additive alternatives that are not affected by the curse of
dimensionality+ Obtaining an accurate size in the case of kernel or local poly-
nomial methods is theoretically feasible+ The scope of applications of the new
data-driven selection procedure can also be extended as discussed in Hart ~1997!
for earlier adaptive procedures or as in Tjøstheim ~1994! and Fan and Yao ~2003!
in the time series context, in addition to many other specification hypotheses of
econometric interest+

6. PROOFS OF MAIN RESULTS

The proofs are organized as follows+ Important intermediate results and proofs
of the main statements are given in Section 6+ Proofs of auxiliary results are
gathered in Appendixes A and B+We now introduce some notation and conven-
tions+ All functions can be set to 0 outside L without loss of generality+ We set
(t�0

�1 �(t�T�1
T � 0+ The symbol aT � bT means that the two sequences aT , bT

with the same sign are such that c 6aT 6 � 6bT 6 � C 6aT 6 for some 0 � c �
C � ` and T � 1+ Constants are denoted by the generic letter C and vary from
expression to expression+

For notational convenience, we reindex the trigonometric functions ~2+1! as
$ck~{!%k�N

* and set cK � k+We assume that the new ordering is such that CK �
@c1, + + + ,ck# and uses the notation Ck for CK + Here ck, k � N

*, is a column
vector with ck � @ck~X1!, + + + ,ck~XT !#

' � R
T + Therefore Ck is a T � k matrix

and k � K d + With little abuse of notation, KT denotes both the set of admissi-
ble K or k with k between kmin � 2Jmin d and kmax � 2Jmax d + The term [kg cor-
responds to ZK g + The variance estimation rate in Assumption V is such that vT �
o~kmax

�3020ln T !+
Let 7{7 be the euclidean norm of R

T or R
k , that is, if u � @u1, + + + ,uk# ' � R

k ,
7u7 � ~(k�1

k uk
2!102 � ~u 'u!102 + If m � @m~X1!, + + + ,m~XT !#

' where m~{! maps
R

d to R, 7m7 � T 102 supx�R
d 6m~x!6+ Under Assumption E, 7«7 � OP~T 102!+

For a k � k matrix S � @Sk�#1�k, ��k, 7S7 is the spectral radius 7S7 �
supu�0�R

k 7Su707u7+ Recall that 7Su7 � 7S77u7, 6u1
' Su2 6 � 7S77u16 7u27+ It
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follows that the entries of Su are bounded by k1027S7max1�k�k6uk6+ If S is a
symmetric matrix, 7S7 � sup7u7�16u 'Su 6 is the largest eigenvalue in absolute
value of S+ Because ZV�102Ck~Ck

' ZV�1Ck!
�1Ck

' ZV�102 is the orthogonal projec-
tion on the space spanned by the columns of ZV�102Ck, we have

6u ' ZV�1Ck~Ck
' ZV�1Ck!

�1Ck
' ZV�1u 6 � 7 ZV�102u72 and

7 ZV�102Ck~Ck
' ZV�1Ck!

�1Ck
' ZV�102 7� 1+

In what follows, we bound variance of sums using the Wolkonski–Rozanov
inequality ~see Fan and Yao, 2003, Prop+ 2+5~ii!!, which states that

6Cov~g1~Xt !, g2~Xt�n !!6 � 4a~n! sup
x�R

d
6g1~x!6 sup

x�R
d
6g2~x!6

for any real-valued bounded g1~{! and g2~{!+ This gives

Var� 1

T (t�1

T

g~Xt !� �
1

T
�Var~g~X1!!� 2 (

n�1

T T � n

T
Cov~g~X1!, g~Xn�1!!�

�
8

T
sup
x�R

d
6g~x!62 (

n�0

`

a~n!+ (6.1)

6.1. Estimation Errors

We consider first the parametric and variance estimation errors induced by
ZuT � uT and [s~{! � s~{!, respectively+ For DT ~{! � mT ~{! � m~x;uT !, set U �
DT � « and let V102 be the T � T diagonal matrix with entries s~Xt !+ Set

Sk � E�Ck'~Xt !Ck~Xt !

s 2~Xt !
���E�ck~Xt !c�~Xt !

s 2~Xt !
��

1�k,��k

,

ZSk � ZSk~ ZV!��ck~X !c�~X !

[s 2~X !
�

1�k,��k

, (6.2)

where

ck~X !c�~X !

[s 2~X !
�

1

T (t�1

T ck~Xt !c�~Xt !

[s 2~Xt !
,

so that T ZSk � Ck
' ZV�1Ck and ZRk� U ' ZV�1Ck ~T ZSk!�1Ck

' ZV�1U+

PROPOSITION 1+ Consider a departure from the null such that
supx�L6DT ~x!6 � O@E102~DT ~Xt !0s~Xt !!

2# . Under Assumptions E, M, V, and
X, and if kmin r `, kmax � O~T 1030ln2 T ! , we have
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max
k�KT

6 ZRk� « 'V�1Ck~TSk!
�1Ck

'V�1«� 2DT ZV�1Ck~T ZSk!�1Ck
' ZV�1«� DT ZV�1Ck~T ZSk!�1Ck

' ZV�1DT 6

k102

� OP�T 102

kmin
102

E
102�DT ~Xt !

s~Xt !
�2�+

Proof of Proposition 1+ See Appendix A+

6.2. Proof of Theorem 1

The next proposition is the key tool to establish Theorem 1+

PROPOSITION 2+ Assume that H0 holds, that is, DT ~{! � 0. Then under
Assumptions E, K, M, V, and X, make the following assumptions.

(i) Let x~k! be a chi-square variable with k degree of freedom. Then, for
any k � kT in KT ,

sup
z�R

�P�« 'V�1Ck~TSk!
�1Ck

'V�1«� k

M2k
� z�

� P�x~k!� kM2k
� z��� o~1!

and

sup
z�R

�P� ZRkmin
� kmin

M2kmin

� z�� P�x~kmin!� kmin

M2kmin

� z��� o~1!+

(ii) Assume that (3.4) holds, that is, that for some e � 0, gT � ~1 � e!
M2 ln Card KT + Then

P� max
k�KT�$kmin%

ZRk� ZRkmin
� ~k� kmin!

M2~k� kmin!
� gT�� o~1!+

Proof of Proposition 2+ See Appendix A+

Proof of Theorem 1+ Equation ~3+2! and Proposition 2~ii! yield

P~ ZRg � ZRkmin
! � P~ [kg � kmin!

� P� max
k�KT�$kmin%

ZRk� ZRkmin
� ~k� kmin!

M2~k� kmin!
� gT�� o~1!+
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Then the definition of za in ~2+6! and Proposition 2~i! yield

P� ZRg � kmin

M2kmin

� za� � P� ZRkmin
� kmin

M2kmin

� za�� o~1!

� P�x~kmin!� kmin

M2kmin

� za�� o~1!r a+ �

6.3. Proof of Theorems 2 and 3

The next lemma is crucial for the consistency properties of the test and is used
for the item ZR1K in ~2+3!+

LEMMA 1+ Consider a departure from the null such that supx�L6DT ~x!6 �
O@E102~DT ~Xt !0s~Xt !!

2# . Assume that Assumptions E, V, and X hold and that
k � kT diverges with k � o~T 1030ln2 T ! .

Then there exists a constant C5 � 0, depending upon s, L, and L, such that
for any k � KT , any D~{! from L to R in C~L, s! , we have

@DT
' ZV�1Ck~Ck

' ZV�1Ck!
�1Ck

' ZV�1DT #
102

� T 102�E
102�DT ~Xt !

s~Xt !
�2

� C5k
�s0d�~1 � oP~1!!, (6.3)

6DT
' ZV�1Ck~Ck

' ZV�1Ck!
�1Ck

' ZV�1« 6

� T 102OP�E
102�DT ~Xt !

s~Xt !
�2

� k�s0d� + (6.4)

Proof of Lemma 1+ See Appendix A+

Proof of Theorem 2+ Let s � d~20C1 � 1! and L be some unknown smooth-
ness indexes+ Let K* be as in ~3+6!, so that K* corresponds to a k* in the new
indexation+ Observe that this k* is such that

Tk*
�2s0d � TrT

2 � ~Mln ln T !4s0~4s�d !T d0~4s�d ! � gT k*
102 � gTM2~k*� kmin!,

(6.5)

because the exact order of gT is ln102 ln T, s � 0, and kmin is smaller than a
power of ln T+

Consider now a sequence of alternatives mT ~{! in H1~C3+rT ! with C3rT �
2C5k*

�s0d , where C5 is from Lemma 1+ This gives that E
102~DT ~Xt !0s~Xt !!

2 �
C5k*

�s0d � 1
2
_
E

102~DT ~Xt !0s~Xt !!
2 and that T E~DT ~Xt !0s~Xt !!

2 diverges+
Hence Lemma 1 gives
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DT
' ZV�1Ck*~Ck*

' ZV�1Ck* !
�1Ck*

' ZV�1DT

� �1

4
� oP~1!�T E�DT ~Xt !I~Xt � L!

s~Xt !
�2

,

DT
' ZV�1Ck*~Ck*

' ZV�1Ck* !
�1Ck*

' ZV�1«

� OP�T 102
E

102�DT ~Xt !I~Xt � L!

s~Xt !
�2�

� oP~1!DT
' ZV�1Ck*~Ck*

' ZV�1Ck* !
�1Ck*

' ZV�1DT +

Observe also that Proposition 2~i! shows that

« ' ZV�1Ck*~Ck*
' ZV�1Ck* !

�1Ck*
' ZV�1«� kT

� OP~k*
102!� oP~1!~gTM2~k*� kmin!!

� oP~1!DT
' ZV�1Ck*~Ck*

' ZV�1Ck* !
�1Ck*

' ZV�1DT +

Hence, ~6+5!, applying Proposition 1 for KT � $k*% ~so that kmax � kmin � kT !,
and substituting yield

ZRk*� k*� gTM2~kT � kmin! � zaM2kmin

� @DT
' ZV�1Ck*~Ck*

' ZV�1Ck* !
�1Ck*

' ZV�1DT � gTM2~kT � kmin!# ~1 � oP~1!!

� T� 1

4
E�DT ~Xt !I~Xt � L!

s~Xt !
�2

� CrT
2�~1 � oP~1!!

� TrT
2�C3

2

4
� C�~1 � oP~1!!

P
&&�`

provided C3 is large enough+ The lower power bound ~2+8! then shows that
Theorem 2 is proved+ �

Proof of Theorem 3+ Because the proof of Theorem 3 is similar to the proof
of Theorem 2 up to the fact that detection is achieved through kmin, we just
give the main steps+ Expression ~2+7! yields that ZRg � kmin � ZRkmin

� kmin, so
that it is sufficient to show that ZRkmin

� kmin � M2kmin diverges to �` in prob-
ability+ Building on Propositions 1 and 2~i! and Lemma 1 as for Theorem 2
now gives, because kmin � Kmin

d r `,
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ZRkmin
� kmin � M2kmin

� rT
2D0T
' ZV�1CkT

~CkT

' ZV�1CkT
!�1CkT

' ZV�1D0T ~1 � oP~1!!� OP~kmin
102!

� TrT
2�E�D0T ~Xt !I~Xt � L!

s~Xt !
�2

� C5kmin
�s0d�~1 � oP~1!!� OP~kmin

102!

� TrT
2 � OP~Kmin

d02! P
&&�`

provided TrT
2 diverges with limTr` Kmin

d020~TrT
2! � 0 as assumed in

Theorem 3+ �

NOTES

1+ Using other series approximation methods, as, for instance, polynomial functions or wave-
lets, is possible but leads to a more involved theoretical study+ Indeed, the Fourier system satisfies
supk�Z

d supx�L 6ck~x!6 � `, a condition that simplifies algebraic manipulations under dependence
mixing conditions+ Another interest of Fourier methods is that using wavelets may limit the scope
of applications to alternatives with a maximal smoothness given by the choice of the wavelet basis;
see the wavelet tests considered in Spokoiny ~1996! and Theorem 2+4 therein+

2+ Assume that H0 is m~{!� 0 and that s~{! is known so that ZD~{!� m~{! and the choice [s~{!�
s~{! is possible+ In the case of Gaussian i+i+d+ «t independent of the Xt’s, ZR2K would be an N ~0, ZR1K !�
OP~ ZR1K

102!, which can be neglected with respect to ZR1K when this variable diverges+ Note also that
the distribution of ZR3K coincides with its chi-square approximation for such ZD~{!, [s~{!, and «+

3+ Note that ZRK � cK is a better misspecification indicator than ZRK , which is affected by an
additional systematic bias term cK + Guerre and Lavergne ~2005! proposed a different bias correc-
tion that makes asymptotic inference less accurate in finite sample, so that the bootstrap is used+

4+ This continues to hold in the dependent setup where the bound ~B+9! in Appendix B gives a
more complicated error term, which is K 2d0T 102 at best+A normal approximation would be affected
with a bigger K 2d0T 102 � K�d02 error term+

5+ A second distinctive feature of the selection procedure ~2+5! is standardization with cKmin
in

the critical region $ ZRg � cKmin
� zaM2cKmin

%; see ~2+6!+ Because ZK g � Kmin asymptotically, an
alternative a-level critical region would use c ZK g in place of cKmin

+ But such a choice would asymp-

totically reduce power because c ZK g � zaM2c ZK g � cKmin
� zaM2cKmin

+ This also contrasts with a

maximum procedure that would use the test statistic ~ ZR ZK * � c ZK * !��M2c ZK * � maxK�KT
~ ZRK � cK !��

M2cK with a c ZK * larger than cKmin
+ The simulation experiments of Guerre and Lavergne ~2005!

revealed that such a construction of the critical region ~2+6! gives a test that improves on its adap-
tive rate-optimal competitors+

6+ Spokoiny ~1996! studied the continuous time white noise model ~CTWN! Yn~t !� m~t ! dt �
~s0Mn ! dW~t !, t � @0,1# , where $W~t !%t�@0,1# is a standard Brownian motion+ Although this model
is mainly of theoretical interest, results established for the CTWN model extend to more common
models through model equivalence; see Brown and Low ~1996!+

7+ Results for the normal distribution are only reported here because the results for the two
other distributions are very similar+ Of course, those results can be obtained upon request+
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APPENDIX A:
Proofs of Propositions 1 and 2

and Lemma 1

A.1. Preliminary Lemmas. We begin with the estimation errors ZSk � Sk ~see ~6+2!!
and preliminary bounds+ Define

Dck~{! � ck~{!�Ckmin
~{!Skmin

�1
E�ck~Xt !Ckmin

' ~Xt !

s 2~Xt !
� ,

ESk � �E� Dck~Xt ! Dc�~Xt !

s 2~Xt !
��
kmin�k,��k

, (A.1)

which are used to study the difference ZRk� ZRkmin
in the proof of Proposition 2~ii!+ The

next lemmas hold for general orthonormal systems $ck~{!%k�N
* of L2~L,dx! with

supk�N
* supx�L 6ck~x!6 � `+ Recall that vT is such that supx�L6 [s~x!� s~x!6� OP~vT !

with vT � o~kmax
�3020ln T !; see Assumption V+

LEMMA A+1+ Let Sk, ZSk be as in (6.2) and $ Dck~{!%k�kmin
, ESk as in (A.1). Then, under

Assumptions E, V, and X,

(i) supk�N
* max~7Sk�17,7Sk7! � `, supk�kmin

supx�L 6 Dck~x!6 � Ckmin
102 and

supk�N
* max~7 ESk�17,7 ESk7! � `.

(ii) If kmax � o~T 102! , the matrices ZSk, 1 � k � kmax, have an inverse with a prob-
ability tending to 1 and

max
k�KT

max@7 ZSk� Sk7,7 ZSk
�1 � Sk

�17# � OP��kmax
2

T
�102

� kmaxvT�� oP~1!+

(iii) If kmax � o~T 102! , max1�k�kmax
max~7 ZSk7,7 ZSk�17! � OP~1! .
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LEMMA A+2+ Let mT ~{! and mT ~{! from R
d to R be some functions with support L.

Then, under Assumptions E, V, and X and if Card KT � O~ ln T ! , kmax � o~T 1030ln203 T ! ,

max
k�KT

6mT
' ZV�1Ck~Ck

' ZV�1Ck!
�1Ck

' ZV�1mT 6 � 7 ZV�102mT77 ZV�102mT7, (A.2)

max
k�KT

7Ck
' ZV�1«7

MTk
� Card102KT OP~1!, (A.3)

max
k�KT

6« ' ZV�1Ck~Ck
' ZV�1Ck!

�1Ck
' ZV�1«� « 'V�1Ck~TSk!

�1Ck
'V�1« 6

k102

� Card KT OP��kmax
3

T
�102

� kmax
302 vT�� oP~1!, (A.4)

max
k�KT

6mT
' ZV�1Ck~Ck

' ZV�1Ck!
�1Ck

' ZV�1« 6

k102

�
T 102

kmin
102 OP�E

102�mT ~Xt !

s~Xt !
�2

� inf
p~{!�Pkmin

sup
x�L
6mT ~x!�p~x!6� vT sup

x�L
6mT ~x!6� +

(A.5)

The functions mT ~{! and mT ~{! may depend upon ~X1,«1!, + + + , ~XT ,«T ! in (A.2) but not
in (A.5).

Proofs of Lemmas A.1 and A.2. See Appendix B+

The next lemma is used for Proposition 2+ It is stated for general maps wk~{! from R
d

to R, k � 1+ Consider the row vector Fk~Xt ! � @w1~Xt !, + + + ,wk~Xt !# and the k � T
matrix Fk � @Fk~X1!

', + + + ,Fk~XT !
'# ' + Define

Vk � E�Fk' ~Xt !Fk~Xt !

s~Xt !
� +

We make the following assumption+

Assumption B. The matrices Vk have an inverse with supk�N
* 7Vk�17 � `, and the

functions wk~{! are such that max~sup1�k�k supx�R
d 6wk~x!6,1! � w` � `+

Define

ST � SkT � Vk
�102(

t�1

T Fk
' ~Xt !

s~Xt !

«t

s~Xt !
, QT � QkT �

T �1ST
' ST � k

M2k
�

T �1 7ST72 � k

M2k
+

We now study the tail probability of QT +
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LEMMA A+3+ Let QT � QkT be as before. Then, under Assumptions E, X(i), B, and
k � kT � o~T ~304!@~1�a!0~5�3a!# ! , make the following assumptions.

(i) Let x~k! be a chi-square variable with k degree of freedom. Then

lim
Tr`

sup
g�R

�P~QT � g!� P�x~k!� kM2k
� g��� 0+

(ii) Consider e � 0. Then there exists a constant Ce, which does not depend upon k
and g, such that for any g � e and k,

P~QT � g!�
1

M2p~g� e!
exp��

~g� e!2

2
�

� Ce� w`6 k2T �~302!@~1�a!0~5�3a!# �
1

Mk� +
Proof of Lemma A.3. See Appendix B+

A.2. Proof of Propositions 1 and 2.

Proof of Proposition 1. For brevity of notation, the proof is made for p � dim u� 1+
Define

e~u! � @e1~u!, + + + , eT ~u!#
' where et � m~Xt ;uT !� m~Xt ; ZuT ! so that ZU � U � e~u!+

This gives

ZRk � U ' ZV�1Ck~T ZSk!�1Ck
' ZV�1U � 2Ak� Bk

with Ak � U ' ZV�1Ck~T ZSk!�1Ck
' ZV�1e~u!

and Bk � e~u!' ZV�1Ck~T ZSk!�1Ck
' ZV�1e~u!+

Under Assumption M, max1�t�T 6et~u!6 � OP~T �102!, which gives 7e~u!7 � OP~1! and
maxk�KT

6Bk 6 � OP~1!, so that max1�k�kmax
k�102 6Bk 6 � OP~kmin

�102!+ Consider now Ak+
Under Assumption M, the Taylor formula gives

et ~u! � ~ ZuT � uT !
]m~Xt ;uT !

]u
�

1

2
~ ZuT � uT !

2
]2m~Xt ;utT

* !

]2u

so that e~u!� ~ ZuT � uT !m1 �
1

2
~ ZuT � uT !

2m2 ,
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with a utT
* between uT and ZuT and where m1 and m2 are R

T column vectors with bounded
entries given by the first- and second-order derivatives+ Because U � DT � «, this gives

Ak � A1k� A2k�
1

2
A3k with A1k� e '~u! ZV�1Ck~T ZSk!�1Ck

' ZV�1DT ,

A2k � ~ ZuT � uT !m1
' ZV�1Ck~T ZSk!�1Ck

' ZV�1«,

A3k � ~ ZuT � uT !
2m2
' ZV�1Ck~T ZSk!�1Ck

' ZV�1«+

The Cauchy–Schwarz inequality gives 6A1k6� 7e~u!77DT7 with 7e~u!7� OP~1!, so that

max
k�KT

6A1k 6

k102 � OP� 7DT7

kmin
102 �� OP�T 102

kmin
102 E

102�DT ~Xt !

s~Xt !
�2�,

because 7DT72 � OP~T !E~DT ~Xt !0s~Xt !!
2 by the Markov inequality and Assump-

tion E+ Because T 102~ ZuT � uT ! � OP~1! and under Assumption M, applying ~A+5! for
A2k and the Cauchy–Schwarz inequality for A3k give

max
k�KT

6A2k 6

k102 � OP~kmin
�102!,

max
k�KT

6A3k 6

k102 � OP� 1

Tkmin
102�7m277«7� OP~kmin

�102!+

Substituting in the expression of Ak and ZRk give

max
k�KT

6 ZRk� U ' ZV�1Ck~T ZSk!�1Ck
' ZV�1U 6

k102 �
1

kmin
102 OP�1 � T 102

E
102�DT ~Xt !

s~Xt !
�2� +

(A.6)

But

U ' ZV�1Ck~T ZSk!�1Ck
' ZV�1U � « ' ZV�1Ck~T ZSk!�1Ck

' ZV�1«

� 2DT
' ZV�1Ck~T ZSk!�1Ck

' ZV�1«

� DT
' ZV�1Ck~T ZSk!�1Ck

' ZV�1DT

so that substituting ~A+4! in the preceding equation and ~A+6! give the desired result+�

Proof of Proposition 2. Define

Rk
0 � « 'V�1Ck~TSk!

�1Ck
'V�1« and Qk

0 � QkT
0 �

Rk
0 � k

M2k
+
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Under the null, Proposition 1 yields

max
k�KT

6 ZRk� Rk
0 6

k102 � oP~1! or, equivalently, max
k�KT

� ZRk� k

M2k
� Qk

0�� oP~1!+ (A.7)

Hence Proposition 2~i! follows from taking k � kmin in Lemma A+3~i! and ~A+7!+ Con-
sider now Proposition 2~ii!+ Let e be as in ~3+4!, so that gT � M2 ln Card KT � e for T
large enough+ Therefore ~A+7! yields that Proposition 2~ii! is a consequence of

P� max
k�KT�$kmin%

Rk
0 � Rkmin

0 � ~k� kmin!

M2~k� kmin!
� M2 ln Card KT � e�� o~1!+ (A.8)

To prove ~A+8!, we first rewrite Rk
0 � Rkmin

0 as a suitable quadratic form+ For k,k �
kmin, let Dck~{! and ESk be as in ~A+1! and consider the row vectors ECkmin

k ~Xt ! �
@ Dckmin�1~Xt !, + + + , Dck~Xt !# ,

ECk~Xt ! � @Ckmin
~Xt !, ECkmin

k ~Xt !#�Ck~Xt !bk so that ECk�Ckbk ,

for some regular k � k matrix bk+ Elementary algebra gives

Rk
0 � T �1« 'V�1 ECk�Skmin

�1 0

0 ESk
�1� ECk'V�1« and

Rkmin

0 � T �1« 'V�1 ECk�Skmin

�1 0

0 0
� ECk'V�1«+

Hence

Rk
0 � Rkmin

0 � T �1« 'V�1 ECk�0 0

0 ESk
�1� ECk'V�1«� T �1« 'V�1 ECkmin

k ESk
�1 @ ECkmin

k # 'V�1« '

� M2~k� kmin! EQk� k� kmin +

We now verify that the quadratic form EQk obeys the conditions of Lemma A+3+
Lemma A+1~i! yields that supk supx�R

d 6 Dck~x!6� Ckmin
102 , so that Assumption B holds tak-

ing w`� O~kmin
102!� O~ lnC2 d02 T !+ Recall that k� kmin � 2 jd � 2Jmin d by the definition

~3+1! of KT + Hence Lemma A+3~ii! yields, for ~A+8!,

P� max
k�KT�$kmin%

EQk � M2 ln Card KT � e�
� (
k�KT�$kmin%

P~ EQk� M2 ln Card KT � e!

� Card KT

exp~�ln Card KT !

2pM2 ln Card KT

� Cw`
6 (
k�KT�$kmin%

~k� kmin!
2T �~302!@~1�a!0~5�3a!#

� C (
k�KT�$kmin%

~k� kmin!
�102

� o~1!� Cw`
6 Card KT kmaxT �~302!@~1�a!0~5�3a!# � C2�dJmin02 (

j�1

�`

2�jd02 � o~1!+ �
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A.3. Proof of Lemma 1. In this proof, we apply Lemmas A+1 and A+2 for KT �

$k% , which is such that k � kmin � kmax � o~T 1030ln2 T !+ The Jackson theorem ~see
Timan, 1994, eqn+ ~8!, p+ 278! yields that there is a trigonometric polynomial function
P~{! � PDT ,k~{! with degree � k10d such that

P~x! � (
k�1

k

bkck~x!I~x � L! such that sup
x�L
6DT ~x!�P~x!6� Ck�s0d+ (A.9)

Because [s~{! is bounded away from 0 over L in probability, ~A+9! implies that

max
1�t�T�

DT ~Xt !�P~Xt !

[s~Xt !
� � OP~k

�s0d !+

Note that 6m ' ZV�1Ck~Ck
' ZV�1Ck!Ck

' ZV�1m 6 � 7m7 � T 102 supx�R
d 6m~x!6+ Let P �

@P~X1!, + + + ,P~XT !#
' , which is such that P' ZV�1Ck~Ck

' ZV�1Ck!Ck
' ZV�1P � P' ZV�1P �

7 ZV�102P7 because ZV�102P is in the space spanned by the columns of ZV�102Ck+ Hence
the triangular inequality and ~A+9! give

@DT
' ZV�1Ck~Ck

' ZV�1Ck!
�1Ck

' ZV�1DT #
102

� @P' ZV�1Ck~Ck
' ZV�1Ck!

�1Ck
' ZV�1P#102

� @~P� DT !
' ZV�1Ck~Ck

' ZV�1Ck!
�1Ck

' ZV�1~P� DT !#
102

� 7 ZV�102P7� CT 102k�s0d+

In the expression ~A+9! of P~{!, write b � @b1, + + + ,bk# ' , so that the definitions of ZSk,
Sk in ~6+2! and Lemma A+1~ii! give

7 ZV�102P7 � �(
t�1

T P2~Xt !

[s 2~Xt !
�102

� ~Tb ' ZSk b!102

� T ~b 'Sk b!
102�1 � OP��k2

T
�102

� kvT��
� T 102

E
102�P~Xt !

s~Xt !
�2

~1 � oP~1!!� T 102�E
102�DT ~Xt !

s~Xt !
�2

� Ck�s0d� +
Substituting shows that ~6+3! is proved+ Equation ~6+4! follows from ~A+5! and Assump-
tion V, which gives

6DT
' ZV�1Ck~Ck

' ZV�1Ck!
�1Ck

' ZV�1« 6 � T 102OP�E
102�DT ~Xt !

s~Xt !
�2

� k�s0d� + �
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APPENDIX B: Proof of Lemmas A+1–A+3

B.1. Proof of Lemma A.1. We begin with Lemma A+1~i!, supk�N
*

max~7Sk�17,7Sk7! � `+ Because u 'Sku � E~(k�1
k ukck~Xt !0s~Xt !!

2 , 7Sk7 is the larg-
est eigenvalue of the symmetric Sk and 7Sk�17 is the inverse of the smallest eigenvalue
of Sk+ Hence

7Sk7 � sup
7u7�1

E�(
k�1

k

uk

ck~Xt !

s~Xt !
�2

,
1

7Sk
�17

� inf
7u7�1

E�(
k�1

k

uk

ck~Xt !

s~Xt !
�2

+

Because f ~{! and s~{! are bounded away from 0 and infinity over L by Assumptions E
and X~ii!, and because $ck~{!%k�N

* is an orthonormal system of L2~L,dx!, we have uni-
formly in k

E�(
k�1

k

uk

ck~Xt !

s~Xt !
�2

�	
L
�(

k�1

k

ukck~x!�2 f ~x!

s 2~x!
dx � 	

L
�(

k�1

k

ukck~x!�2

dx � 7u72+

This gives supk�N
* max~7Sk�17,7Sk7! � `, and we now prove that supk�N

*

max~7 ESk�17,7 ESk7! � `+ Let Ckmin

k ~Xt ! � @ckmin�1~Xt !, + + + ,ck~Xt !# and note that

ESk � �E�ck~Xt !c�~Xt !

s 2~Xt !
��
kmin�k,��k

� E�Ckmin
~Xt !Ckmin

k ' ~Xt !

s 2~Xt !
�Skmin

�1
E�Ckmin

k ~Xt !Ckmin

' ~Xt !

s 2~Xt !
�+

It then follows that ESk � @Eck~Xt !c�~Xt !0s 2~Xt !#kmin�k,��k where A � B means that
A � B is a symmetric nonnegative matrix+ This gives that 7 ESk7 � 7Sk7 because the
upper bound is a diagonal block submatrix of Sk+ Observe that ESk�1 is also a diagonal
block of Sk

�1 by the partitioned inverse formula, so that 7 ESk�17 � 7Sk�17+ This gives
supk�N

* max~7 ESk�17,7 ESk7! � `+ To show that supk�kmin
supx�L 6 Dck~x!6 � `, note that

Ckmin
~{!Skmin

�1
E@ck~Xt !Ckmin

' ~Xt !0s 2~Xt !# is the L2~L, f ~x! dx0s2~x!!-orthogonal pro-
jection of ck~{! on c1~{!, + + + ,ckmin

~{!+ The Pythagore inequality gives, uniformly in k �
1,

E�Ckmin
~Xt !

s~Xt !
Skmin

�1
E�ck~Xt !Ckmin

' ~Xt !

s 2~Xt !
��2

� E� ck
2~Xt !

s 2~Xt !
�� C+

Therefore, the Cauchy–Schwarz inequality gives for all x and k � 1,

6 Dck~x!6 � sup
k�1

sup
x�L
6ck~x!6� sup

x�L
7Skmin

�102Ckmin

' ~x!7��Skmin

�102
E�ck~Xt !Ckmin

' ~Xt !

s 2~Xt !
���

� C � C7Skmin

�1027kmin
102 � E�ck~Xt !Ckmin

~Xt !

s 2~Xt !
�Skmin

�1
E�ck~Xt !Ckmin

' ~Xt !

s 2~Xt !
�

� Ckmin
102

Eck
2~Xt !� Ckmin

102 +
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Consider now Lemma A+1~ii! and ~iii!+ Define

OSk � ZSk~V!��ck~X !c�~X !

s 2~X !
� OSk��

1�k,��k

+

Assumptions E and X~i! and ~6+1! give

E OSk� � E�ck~Xt !c�~Xt !

s 2~X !
�� Sk� , Var~ OSk� !�

C

T (n�0

`

a~n!,

and then, by the Cauchy–Schwarz inequality

E max
1�k�kmax

7 OSk� Sk72 � E7 OSkmax
� Skmax

72 � E sup
7u7�1

�(
k�1

kmax�(
��1

kmax

~ OSk� � Sk� !u��2�
� sup
7u7�1
(
k�1

kmax

(
��1

kmax

E~ OSk� � Sk� !
2 7u72 � O�kmax

2

T
� (B.1)

and then max1�k�kmax
7 OSk � Sk7 � OP~kmax

2 0T !102 , and we now bound max1�k�kmax

7 ZSk � OSk7+ We have, uniformly in k � kmax,

7 ZSk� OSk7 � sup
7u7�1

� u 'Ck
'~ ZV�1 �V�1 !Cku

T �
� sup
7u7�1

� 1

T (t�1

T �(
k�1

k

ukck~Xt !�2� 1

[s 2~Xt !
�

1

s 2~Xt !
��

� OP� max
1�t�T

6 [s~Xt !� s~Xt !6� 1

T (t�1

T

(
k�1

kmax

ck
2~Xt !� OP~kmaxvT !+

Because kmax � Kmax
d , Assumption V and kmax

2 0T � o~1! yield

max
1�k�kmax

7 ZSk� Sk7 � OP��kmax
2

T
�102

� kmaxvT�� oP~1!+

Therefore the smallest eigenvalue of ZSk is bounded away from 0 and these matrices
have an inverse for 1 � k � kmax with a probability tending to 1+ The order of
max1�k�kmax

7 ZSk�1 � Sk
�17 comes from the series expansion

7 ZSk
�1 � Sk

�17 � 7Sk
�1 @~Idk� ~ ZSk� Sk!Sk

�1!�1 � Idk#7� ��(
n�1

`

Sk
�1~~ ZSk� Sk!Sk

�1!n��

� (
n�1

`

7 ZSk� Sk7n� sup
k�N

*
7Sk

�17�n�1
,

which ends the proof of Lemma A+1~i! and ~iii! because supk7Sk�17 � `+ �
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B.2. Proof of Lemma A.2. Let us recall some results from an empirical process
useful to establish some preliminary bounds+ Consider the class of functions GT from L
to R with

GT � �g~{! : sup
x�L
6g~x!� s~x!6� MT , sup

x�L
� ]�g~x!

]�1x1 + + + ]�dxd
� � MT

for all d-uple with �1 � {{{� �d � �� ,
with � as in Assumption V+ Under Assumption V, there is an MT � vT such that

lim infTr` P~ [s�2~{! � GT ! � 1 � e, for any e+

Then, to establish Lemma A+2, we can view [s�2~{! as a member of a GT + Consider
now a sequence of functions from L to R and define the empirical process ZT

k ~{! �
$ZT

k ~g!, g � GT % as

ZT
k ~g! �

1

T 102 (
t�1

T

~mT ~Xt !ck~Xt !g~Xt !� E@mT ~Xt !ck~Xt !g~Xt !# ! or

ZT
k ~g! �

1

T 102 (
t�1

T

mT ~Xt !ck~Xt !g~Xt !«t +

Modifications of bounds ~8+3!, ~8+7!, and ~8+9! in Rio ~2000! to account for multiplica-
tion by mT ~{! and ck~{! with supx�L6ck~x!6 � 1 show that

sup
k�1

E� sup
g�GT

6ZT
k ~g!� ZT

k ~s�2 !62� � O~vT
2! sup

x�L
6mT ~x!62+ (B.2)

Define

ek~«! � Ck
'~ ZV�1 �V�1 !«, ek~m!�Ck

'~ ZV�1 �V�1 !mT , ek~S!� ZSk
�1 � Sk

�1 ,

so that Ck
' ZV�1« � Ck

'V�1« � ek~«!, Ck' ZV�1mT � Ck
'V�1mT � ek~mT !, and ZSk�1 �

Sk
�1 � ek~S!+ The Chebyshev inequality, ~B+2!, and Lemma A+1~ii! give

max
k�KT

7ek~«!72

Tk
� max
k�KT

1

k (k�1

k � 1

T 102 (
t�1

T

ck~Xt !~ [s�2~Xt !� s
�2~Xt !!«t�2

� OP~1! (
k�KT

1

k (k�1

k

max
g~{!�GT

� 1

T 102 (
t�1

T

ck~Xt !~g~Xt !� s
�2~Xt !!«t�2

� OP~vT
2 Card KT !, (B.3)
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max
k�KT

7ek~m!72

T 2k
� OP~1! max

k�KT

1

k (k�1

k

max
g~{!�GT

� 1

T (t�1

T

mT ~Xt !ck~Xt !~g~Xt !�s
�2~Xt !!�2

� OP~1! (
k�KT

2

k (k�1

k

max
g�GT

�� 1

T (t�1

T

E@mT ~Xt !ck~Xt !~g~Xt !�s
�2~Xt !!#�2

�
~Zn

k~g!� Zn
k~s�2 !!2

T 102 �
� OP~vT

2 Card KT ! sup
x�L
6mT ~x!62, (B.4)

max
k�KT

7ek~S!7 � OP��kmax
2

T
�102

� kmaxvT� + (B.5)

Observe also that the martingale structure of the «t ’s, Assumption E, and ~6+1!
yield that

E�max
k�KT

7CkV�1«72

Tk
� � (

k�KT

1

Tk (k�1

k

E�(
t�1

T ck~Xt !«t

s 2~Xt !
�2

� C Card KT ,

E�max
k�KT

7CkV�1mT � E@CkV
�1mT #72

Tk
� � (

k�KT

1

Tk (k�1

k

Var�(
t�1

T mT ~Xt !ck~Xt !

s 2~Xt !
�2

� C Card KT sup
x�L
6mT ~x!62+

It follows that

max
k�KT

7CkV�1«7

MTk
� OP~Card102 KT !,

max
k�KT

7CkV�1mT � E@CkV
�1mT #7

MTk
� OP~Card102 KT ! sup

x�L
6mT ~x!6+ (B.6)

Note that ~A+2! is due to Cauchy–Schwarz inequality and 7 ZV�102Ck~Ck
' ZV�1Ck!

�1

Ck
' ZV�102 7 � 1+ Expression ~A+3! follows from ~B+3! and ~B+6!+ We now prove ~A+4!+

We have
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« ' ZV�1Ck~Ck
' ZV�1Ck!

�1Ck
' ZV�1«

�
~« 'V�1Ck� ek

' ~«!!~Sk
�1 � ek~S!!~Ck

'V�1«� ek~«!!

T

�
« 'V�1CkSk

�1Ck
'V�1«

T
�

2« 'V�1CkSk
�1 ek~«!� «

'V�1Ck ek~S!Ck
'V�1«

T

�
2« 'V�1Ck ek~S!ek~«!� ek

' ~«!Sk
�1 ek~«!� ek

' ~«!ek~S!ek~«!

T
+

By ~B+3!, ~B+5!, ~B+6!, Lemma A+1~i!, Assumption V, kmax � o~T 1030ln203 T !, and
Card KT � O~ ln T !, we have

max
k�KT

6« 'V�1Ck ek~S!Ck
'V�1« 6

Tk102 � kmax
102 max
k�KT

6« 'V�1Ck ek~S!Ck
'V�1« 6

Tk

� kmax
102 max
k�KT

7ek~S!77Ck
'V�1«72

Tk

� kmax
102 max
k�KT

7Ck
'V�1«72

Tk
� max
k�KT

7ek~S!7

� OP��kmax
3

T
�102

� kmax
302 vT�Card KT � oP~1!,

max
k�KT

6« 'V�1CkSk
�1 ek~«!6

Tk102 � OP~kmax
102 ! max

k�KT

7« 'V�1Ck7

MTk
� max
k�KT

7ek~«!7

MTk

� OP~kmaxvT Card KT !,

the other remainder terms being negligible+ This gives ~A+3!+
We now turn to ~A+5!+ Let pk~{! � pk,T ~{! be a trigonometric polynomial function

of Pk with supx�L6mT ~x! � pk~x!6 � 2 infp~{!�Pk supx�L 6mT ~x! � p~x!6+ Because
ZV�102pkmin

is a linear combination of the columns of ZV�102Ck for all k � kmin, it fol-
lows that pkmin

' ZV�1Ck~Ck
' ZV�1Ck!

�1Ck
' ZV�1« � pkmin

' ZV�1«+ This gives

mT
' ZV�1Ck~Ck

' ZV�1Ck!
�1Ck

' ZV�1« � pkmin

' ZV�1«� ~mT �pkmin
!' ZV�1Ck~T ZSk!�1Ck

' ZV�1«

(B.7)

with

~mT �pkmin
!' ZV�1Ck~T ZSk!�1Ck

' ZV�1«

� E� ~mT �pkmin
!'V�1Ck

T
�Sk�1Ck

'V�1«

� E� ~mT �pkmin
!'V�1Ckmin

T
�~ ZSk�1Ck

' ZV�1 � Sk
�1Ck

'V�1 !«

� � ~mT �pkmin
!' ZV�1Ck

T
� E� ~mT �pkmin

!'V�1Ck

T
�� ZSk�1Ck

' ZV�1«+ (B.8)
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Consider first the leading term pkmin

' ZV�1« of ~B+7!+ Because supkmin
supx�L 6pkmin

~x!6 �
` and taking c1~{! � 1 gives, in ~B+2!,

6pkmin

' ~ ZV�1 �V�1 !« 6 � OP~T
102vT ! sup

x�L
6pkmin

~x!6

� OP~T
102vT !�sup

x�L
6mT ~x!6� sup

x�L
6mT ~x!�pkmin

~x!6�+
The definition of pkmin

~{! yields, under Assumption E,

E~pkmin

' V�1«!2 � E~pkmin

' V�1pkmin
!

� T E�pkmin
~Xt !

s~Xt !
�2

� T�E
102�pkmin

~Xt !

s~Xt !
�2

� sup
x�L
6mT ~x!�pkmin

~x!6�2

+

This gives, for the leading term of ~B+7!,

max
k�KT

� pkmin

' ZV�1«

k102 � �
T 102

kmin
102 OP�E

102�mT ~Xt !

s~Xt !
�2

� ~1 � vT !

� inf
p~{!�Pkmin

sup
x�L
6mT ~x!�p~x!6� vT sup

x�L
6mT ~x!6� +

For the first item of ~B+8!, note that Assumption E gives that Var~Ck
'V�1«! � TSk �

E@Ck
'V�1Ck# ; see ~6+2!+ Because orthogonal projection decreases the mean squared

norm, this gives, for the first term in ~B+8!,

E�E� ~mT �pkmin
!'V�1Ck

T
�Sk�1Ck

'V�1«�2

�
1

T
E@~mT �pkmin

!'V�1Ck# @E~Ck
'V�1Ck!#

�1
E@Ck

'V�1~mT �pkmin
!#

�
1

T
E@~mT �pkmin

!'V�1~mT �pkmin
!#

� E�mT ~Xt !�pkmin
~Xt !

s~Xt !
�2

� C sup
x�L
6mT ~x!�pkmin

~x!6,

so that

max
k�KT

� 1

Tk102 E@~mT �pkmin
!'V�1Ck#Sk

�1Ck
'V�1«�

� inf
p~{!�Pkmin

sup
x�L
6mT ~x!�p~x!6OP�Card102 KT

kmin
102 �+

578 ALAIN GUAY AND EMMANUEL GUERRE

https://doi.org/10.1017/S0266466606060282 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466606060282


For the second term in ~B+8!, observe that

��E� ~mT �pkmin
!'V�1Ck

T 102 � '��2

� C��Sk�102
E� ~mT �pkmin

!'V�1Ck

T 102 � '��2

�
C

T
E@~mT �pkmin

!'V�1Ck# @E~Ck
'V�1Ck!#

�1

� E@Ck
'V�1~mT �pkmin

!#

� CE�mT ~Xt !�pkmin
~Xt !

s~Xt !
�2

� C sup
x�L
6mT ~x!�pkmin

~x!6, and then

�E� ~mT �pkmin
!'V�1Ckmin

T
�~ ZSk�1Ck

' ZV�1 � Sk
�1Ck

'V�1 !«�

�

C sup
x�L
6mT ~x!�pkmin

~x!6

T 102 @7 ZSk
�1 � Sk

�177Ck
'V�1«7� 7 ZSk

�177ek~«!7# +

Therefore Lemma A+1, ~B+3!, and ~B+6! yield

max
k�KT

1

k102 �E� ~mT �pkmin
!'V�1Ckmin

T
�~ ZSk�1Ck

' ZV�1 � Sk
�1Ck

'V�1 !«�

� inf
p~{!�Pkmin

sup
x�L
6mT ~x!�p~x!6OP��kmax

2

T
�102

� kmaxvT�Card102 KT +

For the last item of ~B+8!, ~B+3!, ~B+4!, ~B+6!, and Lemma A+1 give that

max
k�KT

1

Mk �� ~mT �pkmin
!' ZV�1Ck

T
� E� ~mT �pkmin

!'V�1Ck

T
�� ZSk�1Ck

' ZV�1«�
� inf
p~{!�Pkmin

sup
x�L
6mT ~x!�p~x!6kmax

102 OP~vT Card102 KT !

�MTkmaxOP @~1 � vT !Card102 KT #

� inf
p~{!�Pkmin

sup
x�L
6mT ~x!�p~x!6T 102OP~kmax

102 vT Card KT !+
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Substituting in ~B+8! and ~B+7! yields

max
k�KT

6mT
' ZV�1Ck~Ck

' ZV�1Ck!
�1Ck

' ZV�1« 6

k102

�
T 102

kmin
102 OP�E

102�mT ~Xt !

s~Xt !
�2

� ~1 � vT ! inf
p~{!�Pkmin

sup
x�L
6mT ~x!�p~x!6

� vT sup
x�L
6mT ~x!6�

� inf
p~{!�Pkmin

sup
x�L
6mT ~x!�p~x!6OP

���kmin
�102 � �kmax

2

T
�102

� kmaxvT�Card102 KT � T 102kmax
102 vT Card KT�

�
T 102

kmin
102 OP�E

102�mT ~Xt !

s~Xt !
�2

� inf
p~{!�Pkmin

sup
x�L
6mT ~x!�p~x!6� vT sup

x�L
6mT ~x!6� +

�

B.3. Proof of Lemma A.3. Abbreviate Vk
�102Fk

' ~Xt !«t into ht + Consider a sequence
$ Iht %t�N of i+i+d+ N~0, Idk! variables independent of $«t %t�N and $Xt %t�N, where Idk is the
identity matrix of dimension k � k+ Let I~{! be a three time differentiable real
function+ Define DSt�1

T � (i�t�1
T Iht , EQT � ~T �1 7 DS1

T72 � s 2k!��M2k+ The proof of
Lemma A+3 is divided into three steps+ The main step aims to establish that for C~I !�
max~1,supz�R6I '~z!6,supz�R6I ''~z!6! and some C � 0 independent of k and T,

6E@I~QT !#� E@I~ EQT !#6 � C{C~I !{w`6 k2T �~302!@~1�a!0~5�3a!#+ (B.9)

Step 1. Proof of (B.9). We build on arguments used in the proof of the Lindeberg
central limit theorem as given in Billingsley ~1968, Thm+ 7+2!; see Horowitz and Spokoiny
~2001, Lem+ 10! for a similar approach in the context of adaptive testing+ It consists of
successive changes of the ht into their Gaussian counterparts [ht , as seen from ~B+10!,
which follows+ However, a important difference is due to the use of nonparametric series
methods and dependence+ Define

StT ~h! � St�1 � h� DSt�1
T , QtT ~h!�

T �1StT
' ~h!StT ~h!� k

M2k
,

JtT ~h! � I~QtT ~h!! for h � R
k+

This gives

6E@I~QT !#� E@I~ EQT !#6 � 6E@JTT ~hT !#� E@J1T ~ Ih1!#6� �(
t�1

T

~E@JtT ~ht !#� E@JtT ~ Iht !# !�
� (

t�1

T

6E@JtT ~ht !#� E@JtT ~ Iht !#6+ (B.10)
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Define, for z � R and h � R
k , JtT ~z;h! � JtT ~zh!+ A third-order Taylor expansion of

JtT ~z;h! with integral remainder yields

JtT ~ht !� JtT ~0! �
dJtT ~0;ht !

dz
�

1

2

d 2JtT ~0;ht !

d 2z
�	

0

1 ~1 � z!2

2

d 3JtT ~z;ht !

d 3z
dz,

with





 dJtT ~0;ht !

dz
�

2

TM2k
ht
'StT ~0!I '~QtT ~0!!,

d 2JtT ~0;ht !

d 2z
�

2

TM2k
7ht72I '~QtT ~0!!�

4

T 2k
~ht
'StT ~0!!

2I ''~QtT ~0!!,

d 3JtT ~z;ht !

d 3z
�

10

T 2k
7ht72ht

'StT ~zht !I ''~QtT ~zht !!�
8

T 3k302
~ht
'StT ~zht !!

3I '''~QtT ~zht !!+

(B.11)

Let EFt be the sigma field generated by + + + ,ht�2,ht�1, Iht�1, Iht�2, + + + and note that StT ~0!
and QtT ~0! are EFt -measurable+ Because ht and Iht are centered given EFt , we have

E� dJtT ~0;ht !

dz
�

dJtT ~0; Iht !

dz � � E� 2

TM2k
StT
' ~0!I '~QtT ~0!!E@~ht � Iht !6 EFt #�� 0+

Substituting the Taylor expansion in ~B+10! yields

6E@I~QT !#� E@I~ EQT !#6 �
1

2 (t�1

T

�E� d 2JtT ~0;ht !

d 2z
�

d 2JtT ~0; Iht !

d 2z
�� (B.12)

�
1

2 (t�1

T 	
0

1

~1 � z!2��E
d 3JtT ~z;ht !

d 3z �
� �E

d 3JtT ~z; Iht !

d 3z �� dz, (B.13)

and we now bound each of these two sums+
We begin by establishing a preliminary inequality+ Let n1 and n2 be two positive real

numbers with 2 � n1 � n2 � 8+ Then for any t, t ' and z � @0,1# ,

max~E7StT ~zht !7n1 7ht ' 7n2,E7StT ~z Iht !7n1 7 Iht ' 7n2 ! � Cw`
n1�n2k~n1�n2 !02T n1 02+ (B.14)

We give a proof for E7StT ~zht !7n1 7ht ' 7n2 , the other bound being similarly established+
The Hölder inequality implies that

E7StT ~zht !7n1 7ht ' 7n2 � E
n1 0~n1�n2 ! 7StT ~zht !7n1�n2 E

n2 0~n1�n2 ! 7ht ' 7n1�n2

� E
n1 0~n1�n2 ! ~7St � zht7� 7 DSt�1

T 7!n1�n2

� �7Vk�1027n2 E
n2 0~n1�n2 !�(

k�1

k

wk
2~Xt ' !«t '

2� ~n1�n2 !02�
� 2n1�n2�1~En1 0~n1�n2 ! 7St � zht7n1�n2 � E

n1 0~n1�n2 ! 7 DSt�1
T 7n1�n2 !

� ~7Vk
�1027n2w`

n2kn2 02 E
n2 0~n1�n2 ! 6«t ' 6n1�n2 !+
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Because Iht is an N~0,s2 Idk!, it is easily seen that E
n1 0~n1�n2 ! 7 DSt�1

T 7n1�n2 �
Cs n1�n2~kT !n1 02 , and we now bound E

n1 0~n1�n2 ! 7St � zht7n1�n2 + We have, by con-
vexity, the Burkholder inequality ~see Chow and Teicher, 1988, p+ 396, noticing that
(i�1

t�1 wk~Xi !«i � zwk~Xt !«t is a sum of difference of martingale!, and the Minkowski
inequality

E7St � zht7n1�n2

� 7Vk
�1027n1�n2k~n1�n2 !02 E� 1

k (k�1

k �(
i�1

t�1

wk~Xi !«i � zwk~Xt !«t�2� ~n1�n2 !02

� 7Vk
�1027n1�n2k@~n1�n2 !02#�1 (

k�1

k �E
10~n1�n2 !�(

i�1

t�1

wk~Xi !«i � zwk~Xt !«t�
n1�n2�n1�n2

� 7Vk
�1027n1�n2k@~n1�n2 !02#�1

� C (
k�1

k �E
20~n1�n2 !�(

i�1

t�1

wk
2~Xi !«i

2 � z 2wk
2~Xt !

2«t�~n1�n2 !02� ~n1�n2 !02

� C7Vk
�1027n1�n2k@~n1�n2 !02#�1 (

k�1

k �(
i�1

t

E
20~n1�n2 ! 6wk

2~Xi !«i
2 6~n1�n2 !02� ~n1�n2 !02

� C7Vk
�1027n1�n2~kT !~n1�n2 !02w`

n1�n2E6«t 6n1�n2+

This gives E
n1 0~n1�n2 ! 7St � zht7n1�n2 � C~kT !n1 02w`

n1 and then ~B+14!+
We now return to ~B+13!+ The expression ~B+11! of the third derivative of JtT ~z;ht !

and ~B+14! yield

(
t�1

T 	
0

1

~1 � z!2��E
d 3JtT ~z;ht !

d 3z �� �E
d 3JtT ~z; Iht !

d 3z �� dz

� C~I ! (
t�1

T 	
0

1

~1 � z!2 � 10

T 2k (t�1

T

E@7ht73 7StT ~zht !7� 7 Iht73 7StT ~z Iht !7#

�
8

T 3k302 E@7ht73 7StT ~zht !73 � 7 Iht73 7StT ~z Iht !73 #� dz

� C{w`
6 {C~I !~k{T �102 � k302{T �102 !� C{w`

6 {C~I !�k3

T
�102

+ (B.15)

To study ~B+12!, let OFk~Xt ! � Vk
�102Fk

' ~Xt ! � @ Tw1~Xt !, + + + , Twk~Xt !#
' , StT � StT ~0! �

@S1tT , + + + ,SktT #
' , QtT � QtT ~0!+ The definitions of ht , Iht , and EFt show that E@hkth�t �

Ihkt Ih�t 6 EFt #� Twk~Xt ! Tw�~Xt !� I~k� �!� Twk~Xt ! Tw�~Xt !� E@ Twk~Xt ! Tw�~Xt !# + Therefore
because QtT and StT are EFt measurable, conditioning with respect to EFt yields, using the
expression of the second-order derivative of JtT ~0;ht ! given in ~B+11!,
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E� d 2JtT ~0;ht !

d 2z
�

d 2JtT ~0; Iht !

d 2z
�

�
2

TM2k
(
k�1

k

E@~ Twk
2~Xt !� E Twk

2~Xt !!I '~QtT !#

�
4

T 2k (1�k,��k

E@~ Twk~Xt ! Tw�~Xt !� E@ Twk~Xt ! Tw�~Xt !# !SktT S�tT I ''~QtT !#

�
2

TM2k
(
k�1

k

Cov~ Twk
2~Xt !,I '~QtT !!

�
4

T 2k (1�k,��k

Cov~ Twk~Xt ! Tw�~Xt !,SktT S�tT I ''~QtT !!+

Let n be an integer and define

S̆tT � St�n�1 � DSt�1
T ,

Q̆tT �
T �1 7S̆tT72 � s 2k

M2k
� QtT �

2S̆tT
' ~St � St�n�1!� 7St � St�n�172

TM2k
+

The variables Q̆tT and S̆tT depend upon Iht�1, + + + , IhT and h1, + + + ,ht�n�1, which are n � 1
time periods far from the Twk

2~Xt !’s+ Because supx�R
d 6 Twk~x!6 � supx�R

d 7 OFk~x!7 �
7Vk�1027w`Mk, the Wolkonski–Rozanov inequality yields

�(
k�1

k

Cov~ Twk
2~Xt !,I '~Q̆tT !!�

� 4C~I !7Vk�10272w`
2 ka~n!, (B.16)

� (
1�k,��k

Cov@ Twk~Xt ! Tw�~Xt !, S̆ktT S̆�tT I ''~Q̆tT !#�

� 8C~I !7Vk�10272w`
2 ka 304~n! (

1�k,��k

E
104 6 S̆ktT S̆�tT 64

� 8C~I !7Vk�10272w`
2 ka 304~n! (

1�k,��k

E
108 6 S̆ktT 68 E

108 6 S̆�tT 68

� C{C~I !7Vk�10274w`
4 k3Ta 304~n!, (B.17)

by first integrating out with respect to the Iht�1, + + + , IhT , which are independent from the
ht ’s, and using ~B+14!+ Note that E Twk~Xt !

4 � 7Vk�10272w`2 kE Twk~Xt !
2 � 7Vk�10272w`2 k

and Var102~ Twk
2~Xt ! Twk

2~Xt !! � ~E Twk
4~Xt !E Twk

4~Xt !!
104 � 7Vk�1027w`Mk+ This together

with the definition of Q̆tT and ~B+14! gives
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�(
k�1

k

Cov@ Twk
2~Xt !,I '~QtT !� I '~Q̆tT !#�

�
C~I !
TM2k
(
k�1

k

E@6 Nfk
2~Xt !� 16~27S̆tT77St�1 � St�n�17� 7St�1 � St�n�172 !#

�
C~I !
TM2k
(
k�1

k

E
102 6 Nfk

2~Xt !� 162

� ~E104 7S̆tT74 � E
104 7St�1 � St�n�174 � E

102 7St�1 � St�n�174 !

� C
C~I !
TM2k

~k � w`k
102 � ~w`MkTw`Mkn � w`

2 kn!!

� C{C~I !{w`3 k2
MTn � n

T
,

� (
1�k,��k

Cov@ Twk~Xt ! Tw�~Xt !,S�tT SktT ~I
''
~QtT !� I ''~Q̆tT !!#�

�
C~I !
TM2k

~E108 7S̆tT78 E
108 7St�1 � St�n�178 � E

104 7St�1 � St�n�178 !

� (
1�k,��k

Var102~ Twk
2~Xt ! Tw�

2~Xt !!E
108S�tT

8
E

108SktT
8

� C
C~I !
TMk kw`

2 ~MTn � n! � k2w`Mkw`2 T � C{C~I !{w`5 k3~MTn � n!,

� (
1�k,��k

Cov@ Twk~Xt ! Tw�~Xt !, ~S�tT � S̆�tT !~SktT � S̆ktT !I ''~Q̆tT !#�

� C~I ! (
1�k,��k

Var102~ Twk
2~Xt ! Tw�

2~Xt !!E
104~S�tT � S̆�tT !

4
E

104~SktT � S̆ktT !
4

� C{C~I !{w`3 k502n,

� (
1�k,��k

Cov@ Twk~Xt ! Tw�~Xt !, S̆ktT ~S�tT � S̆�tT !I ''~Q̆tT !#�

� C~I ! (
1�k,��k

Var102~ Twk
2~Xt ! Tw�

2~Xt !!E
104S̆ktT

4
E

104~S�tT � S̆�tT !
4

� C{C~I !{w`3 k502MnT +

584 ALAIN GUAY AND EMMANUEL GUERRE

https://doi.org/10.1017/S0266466606060282 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466606060282


Therefore, ~B+16!, ~B+17!, and these inequalities give

�(
k�1

k

Cov~ Twk
2~Xt !,I '~QtT !!�

� C{C~I !{w`3 k�aX ~n!� k
~MTn � n!

T
�

� (
1�k,��k

Cov~ Twk~Xt ! Tw�~Xt !,SktT S�tT I ''~QtT !!�

� � (
1�k,��k

Cov@ Twk~Xt ! Tw�~Xt !, S̆ktT S̆�tT I ''~Q̆tT !#�

� � (
1�k,��k

Cov@ Twk~Xt ! Tw�~Xt !,SktT S�tT ~I ''~QtT !� I ''~Q̆tT !!#�

� 2� (
1�k,��k

Cov@ Twk~Xt ! Tw�~Xt !, S̆ktT ~S�tT � S̆�tT !I ''~Q̆tT !#�

� � (
1�k,��k

Cov@ Twk~Xt ! Tw�~Xt !, ~S�tT � S̆�tT !~SktT � DSktT !I ''~Q̆tT !#�
� C{C~I !{w`5 k3~TaX

304~n!�MnT � n!{

Summing over t gives in ~B{12!

(
t�1

T

�E� d 2JtT ~0;ht !

d 2z
�

d 2JtT ~0; Iht !

d 2z
��

� C{C~I !{w`3Mk�aX ~n!� k
~MTn � n!

T
�

� C{C~I !{w`5
k2

T
~TaX

304~n!�MnT � n!

� C{C~I !{w`5 �MkaX ~n!� k
2aX

304~n!� ~k302 � k2 !
~MTn � n!

T
�

� C{C~I !{w`5 k2�aX
304~n!�

~MTn � n!

T
�

� C{C~I !{w`5 k2�n�~304!~1�a! �
~MTn � n!

T
�, (B.18)

under Assumption M~i!+ An optimal choice of the order of n in ~B+18! is T 20~5�3a! ,
which gives the upper bound C{C~I !{w`5 k2T �~302!@~1�a!0~5�3a!# + Therefore ~B+18! and
~B+12!, ~B+15!, and ~B+13! yield that ~B+9! is proved+

NONPARAMETRIC TEST FOR DYNAMIC REGRESSION MODELS 585

https://doi.org/10.1017/S0266466606060282 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466606060282


Step 2. Proof of Lemma A.3(i). Now choose a three time continuously differentiable
Ie~z! with Ie~z! � 0 if z � �e, Ie~z! � 1 if z � 0+ This gives, for any g � R,

I~z � g!� Ie~z � g!� I~z � g� e!, (B.19)

and then, by ~B+9!,

P~QT � g!� EIe~QT � g!� EIe~ EQT � g!� Ce{w`
6 k2T �~302!@~1�a!0~5�3a!# (B.20)

� P~ EQT � g� e!� o~1!,

P~QT � g!� EIe~QT � g� e!� EIe~ EQT � g� e!� o~1!

� P~ EQT � g� e!� o~1!+

Note that EQT is a ~x~k! � k!��M2k that has a continuous density and converges in dis-
tribution to a standard normal if k goes to infinity+ Therefore taking e small enough
gives Lemma A+3~i!+

Step 3. Proof of Lemma A.3(ii). The proof is done by bounding EIe~ EQT � g! in
~B+20!+ Observe that EQT has the same distribution as

1

Mk (k�1

k zk
2 � 1

M2
,

where the zk’s are i+i+d+ N~0,1! random variables+ As established in the proof of Theo-
rem 7+2 of Billingsley ~1968! and changing the ~zk

2 � 1!��M2 into standard N~0,1! vari-
ables, there is a constant Ce with

6EIe~ EQT � g!� EIe~N~0,1!� g!6 �
Ce

Mk +

Then ~B+19! and ~B+20! show

P~QT � g!� P~N~0,1!� g� e!� Ce @k
2T �~302!@~1�a!0~5�3a!# � ~10Mk!#+

Applying the Mill’s ratio inequality ~see Shorack and Wellner, 1986, p+ 850! to P~N~0,1!�
g � e! shows that Lemma A+3~ii! is proved+ �
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