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The paper introduces a new nonparametric specification test for dynamic regres-
sion models. The test combines chi-square statistics based on Fourier series regres-
sion. A data-driven choice of the regression order, which uses the square root of
the number of Fourier coefficients, is proposed. The benefits of the new test are
(1) the selection procedure produces explicit and chi-square critical values that
give a finite-sample size close to the nominal size; (2) the test is adaptive rate-
optimal and detects local alternatives converging to the null with a rate that can
be made arbitrarily close to the parametric rate. Simulation experiments illustrate
the practical relevance of the new test.

1. INTRODUCTION

Starting with Bierens (1984) and Robinson (1989), nonparametric specification
testing for dependent data has received much attention in the econometric lit-
erature. The range of potential applications includes nonlinearity tests and time
series model building as reviewed in Tjgstheim (1994) and Fan and Yao (2003),
specification of a continuous-time diffusion model for interest rates (Ait-Sahalia,
1996), specification of the Phillips curve (Hamilton, 2001), rational expecta-
tions models and conditional portfolio efficiency (Chen and Fan, 1999; Robin-
son, 1989), and tests of the Black and Scholes formula (Ait-Sahalia, Bickel,
and Stocker, 2001) among others.

An important branch of this literature has considered a nonparametric approach
that uses a smoothing parameter, such as a bandwidth or the order of a series
expansion. This has raised two important issues, the detection properties and
the size accuracy. The former can be addressed with efficiency considerations,
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as pioneered in Ingster (1992, 1993); see also Guerre and Lavergne (2002).
This framework leads to calibration tests to detect alternatives, in a given smooth-
ness class, that approach the null at the fastest possible rate. However, the pro-
posed smoothing parameters depend upon the chosen smoothness class, which
is too restrictive for practical applications because the choice of a smoothness
class is often arbitrary. Regarding the size issue, the statistics considered in the
literature are often quadratic, but the critical values are computed from a nor-
mal approximation that may be inaccurate; see Hong and White (1995) for non-
parametric series and Tjgstheim (1994) for kernel methods. Recent work for
independent and identically distributed (i.i.d.) observations, such as Fan, Zhang,
and Zhang (2001), suggests that more sophisticated approximations should be
used instead of the normal. Hiirdle and Mammen (1993) and Gozalo (1997),
among others, have proposed bootstrapped critical values as a solution. This
may be difficult when the parametric model under consideration is specified in
continuous time and is therefore costly to simulate or to bootstrap. Bootstrap-
ping is also a burden when the dynamic specification includes covariates that
are not strongly exogenous and need to be simulated.

An important step for the detection issue was the development of the adap-
tive framework. Under this approach, the smoothness class containing the alter-
native is considered unknown. Adaptive tests combine several statistics, designed
for a specific class, to build a test; see Hart (1997) for a review of earlier work
in this direction. Spokoiny (1996) has developed an efficiency theory for the
adaptive case. Various papers considered adaptive rate-optimal tests using the
maximum of the statistics, including Fan (1996), Fan and Huang (2001), Horo-
witz and Spokoiny (2001), and Spokoiny (1996, 2001). More specifically,
Horowitz and Spokoiny (2001) have proposed an adaptive rate-optimal kernel-
based specification test for a general parametric regression model that has gen-
erated various extensions. Baraud, Huet, and Laurent (2003) consider some
nonasymptotic refinements of the maximum approach for specification of a lin-
ear model. Poo, Sperlich, and Vieu (2004) are interested in a semiparametric
null hypothesis, whereas Gayraud and Pouet (2005) considered a nonparamet-
ric null. Gao and King (2001, 2004) and Fan and Yao (2003) have proposed
extending the scope of applications to dependent data.

However, the maximum approach produces statistics with unstable asymp-
totic null behavior, so that achieving an accurate size remains a difficult issue.
Fan (1996) found that the null limit distribution of his test gives a poor approx-
imation for finite samples. Horowitz and Spokoiny (2001) did not derive a null
limit distribution and used simulated critical values. On the other hand, Guerre
and Lavergne (2005) built on a data-driven selection procedure that, under the
null, selects a prescribed statistic with a high probability. Compared to the max-
imum approach, this considerably reduces the complexity of the null behavior
of the resulting test statistic, which asymptotic distribution is a standard nor-
mal given by a specific statistic. But the statistics of Guerre and Lavergne (2005)
have a complicated quadratic structure, and so these authors used bootstrapped
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critical to achieve a level close to the nominal size. Hence, as mentioned ear-
lier, such an approach may not be suitable for a dynamic model.

In this paper, a suitable modification of the Guerre and Lavergne (2005) test
is proposed to derive an adaptive rate-optimal specification test with an accu-
rate size in a dynamic setting. The null hypothesis considered is the specifica-
tion of the conditional mean for a time series with heteroskedastic innovations.
Nonparametric series methods are used to compute chi-square statistics of var-
ious orders, which, in case of low degrees of freedom, have an accurate chi-
square approximation under the null. A selection criterion, using a low penalty
term proportional to the square root of the number of coefficients, chooses a
test statistic. Hence the rejection region of the test can use accurate chi-square
critical values. The rest of the paper is organized as follows. Section 2 presents
our test and the adaptive framework on a nontechnical level. Section 3 groups
our main assumptions and our main results. After studying the null behavior of
the test, adaptive rate-optimality is introduced, and the test is shown to be effi-
cient. Detection of local alternatives, approaching the null with a rate close to
the parametric one, is also considered. Section 4 illustrates the size and detec-
tion properties of the test with a simulation experiment, and Section 5 con-
cludes the paper. The proofs are grouped in Section 6 and two Appendixes.

2. HEURISTICS OF THE DATA-DRIVEN TEST

Consider an autoregressive model with exogenous variables Z,,

Yt = /"L(Yﬁl" . -thfcpZz) + & = /‘L(Xt) + &

with X, = [Y,_,...,Y,_,Z/]' € RY E[g,|F] = 0, and Var[g,| %] = 0*(X,),
where F; is the past Borel field generated by X, ..., X,. Given T observations
(Y1, Xy),...,(Yr, Xr), we want to test that u(-) belongs to some parametric fam-

ily {m(-;0),0 € ® € R"}, that is, the correct specification hypothesis
Hy:u(-) = m(-;0) forsome 6 € 6.

The proposed procedure builds on the estimated residuals U, =Y, —m(X; éT),
where 67 is a consistent estimator of # under H,, such as, for instance, the
nonlinear least squares estimator

A
6 = argmin >, (Y, — m(X,;0))>

0€0 =1

By Y, = u(X,) + &, the residuals decompose as U, = A(X,) + &, where
AG) = w(-) — m(-;67) indicates potential misspecification, which asymptoti-
cally vanishes under the null but not under the alternative. Our test combines
nonparametric series statistics constructed by projecting the residuals to detect
the presence of a significant A(-) over a compact A = [—A, A]9. More specifi-
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cally, we focus on multivariate Fourier series regression.! For k = [ky,...,k,;]' €
7.4, define the kth trigonometric function over A as

i (x) = eli[ Fk((-x{(),
( \/5 (an
cos

—_— — | I(—A=z=A) n<O,
Vi >( )
1

A
where F (z) = § —I(-A=z=A) n=0, 2.1)

Nz
s1n< >]I(—)\st)\) n>0,

VA

so that {iy(-),k € Z?} is an L,(dx)-orthonormal system, that is, [, i, (x)
Yo (x)dx = 1if k = k' and 0 otherwise. Let |k| = 29_,|k,| be the degree of
(+). The series estimation of A(-) over A builds on trigonometric multivariate
polynomial function X, = by (-) of degree K, with a number cx of coeffi-
cients by proportional to K¢. To account for heteroskedasticity, assume that an
estimator & () of o (-) is given and consider the generalized least squares esti-
mator B¢ = [b;,|k| = K7]',

T Ut_ 2 bkl;[/k(Xz) ’

= (VO ') WO U =arg min 1=K ’
(b [K|=K]" 1=1 o(X,)
where U = [U,,...,Ur]", Q" is the diagonal matrix with entries & (X,), and

Wi is the T X cx matrix [¢(X,),1 =t = T,|k| = K]. Suppose that A() is a
trigonometric polynomial function of order K. A standard procedure to test the
significance of Fourier coefficients would use the chi-square statistic

T 2 l;k ¢k(Xt) ’
Ry = U W (WL0 " )1 O 0= S| B2 ] 2.2)
=1 O'(Xz)

leading to rejection of H, when Ry is large. However, assuming that A(-) has a
finite series expansion of known order K is too simplistic for practical applica-
tions. More generally, an arbitrary choice of K may affect the power, and a
better understanding of the impact of K is important to build a proper specifi-
cation test. Set A =[AX)),....,.AXp)] and & = =[ey,...,er] so that U=
A+ ¢ and RK decomposes into three terms RK = RIK + 2R2K + R3K with

Rix=A0 lpr(\Ifnlpr) vLOA,
Ry = MO W (W00 ) WL O

Ry = &' Q' W (W07 "W, ) "W O e, (2.3)
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The term R, is crucial regarding detection of potential misspecification. It
is the squared norm of the orthogonal projection of Q7127 on the columns
of O~'2W,, which increases with K up to >, A2(X,)I(X, € A)/¢2(X,),
achieved for ¢y = T. Hence ﬁlK can be viewed as a downward-biased esti-
mation of the empirical measure of misspecification >, A2(X,)I(X, € A)/
6%(X,), that is,

. T A2(X)
R = E

1= IUZ(X)

I(X, € A) + bias,, (K),

where bias,(K) = 0 depends upon the unknown () and decreases with K.
The other important term in the decomposmon (2.3) of the statistic RK is R3 K>
a pure noise term. It can be expected that R is asymptotically a chi-square
variable with cg degree of freedom, with mean cg and variance 2cg, so that
Rix = cx + \/Z_CKO[P(I). Neglecting? R,x and substituting in (2.3) gives a bias
variance type decomposition for Ry — ¢?

) TR (x,)
R"_CK‘,Elazm

(X, € A) + bias, (K) + \2c,05(1). 2.4)

Looking for the best estimator Ry — ck of the misspecification indicator sug-
gests that an ideal choice of K should achieve the minimum of |bias,(K)| +
\/T Op(1). However, this is infeasible in practice, at least because bias,(-)
depends upon the unknown w(-). Alternative feasible choices of K include the
Akaike information criterion (AIC) and Bayesian information criterion (BIC)
as reviewed in Hart (1997). These selection procedures consider a K achieving
the maximum of Ry — vck where vy is a penalty parameter. According to (2.4),
this amounts to achieving the minimum of |bias, (K)| + (y — I)cg(1 + op(1)).
Therefore these selection procedures asymptotically balance |bias,(K)| with
(y — 1)ck in place of the ideal order cy/? in (2.4). This suggests using instead
a lower penalty term of the form c; + yc}/? affecting the square root of the
number of coefficients ¢/ in place of ¢;. More specifically, let X, be a
set of admissible degree K larger than or equal to K ,;,. Our data-driven choice
of K is

A

K” = arg max {R — cx — y,(2(cx — ek )V}
Kek,

= arg max {IéK - Ié[(min —(cx— CKmm) —yr2(cx — CK,“m))l/z}
KEK,

with 7, = 0. (2.5)

The introduction of K;, quantities in the penalty criterion reflects a preference
for low degree as justified now from considerations on the null behavior of the
retained R g,
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As seen from Fan (1996) or Horowitz and Spokoiny (2001), finding an accu-
rate approximation for the null distribution of a statistic that combines the
Rg’s as Rg» is difficult. A first distinctive feature is that the selection proce-
dure (2.5) is flexible enough to limit the contribution of the statistics with
high K by taking yr large enough. Indeed, a limit case is y; = +oo, which
gives that K? = K., This continues to hold asymptotically provided y; diverges
fast enough, as shown in Theorem 1 in Section 3. Moreover, as detailed now,
an accurate approximation of the distribution of R~ is a standard chi- square.
Because A (- ) asymptotically vanishes under Hy, (2.3) shows that the null dis-
tribution of Ry is approximately that of Rsx and then, neglecting the effect of
the variance estimation, of

Ryg = &' Q "W (W Q' ) ' O

where Q7?2 = Diag[o(X)),...,0(X7)]. In the i.i.d. case and according to the
Berry—Esseen bound in Hart (1997, Thm. 7.2), the distribution of the vector

T X ’
‘1,1,(9718 — |:2 dik( t)‘gr’|k| SK:|

=1 Uz(Xz)

has a normal approximation up to an error a(ck)/T /%> where a(cg) diverges
with cg. Therefore, the distribution of the chi-squared statistic R3x should be
close to a chi-square with cgx degree of freedom up to an error a(cg)/T"?,
which is smaller for moderate K.* Hence the test uses a chi-square critical value
Za = Zgr With

X(CKmin) Kinin
Pl —F——— =2z, | =«
2C‘](vl11ll1

where y(c) is a chi-square with ¢ degree of freedom and rejects Hy, if”

pY —
R Cg

min
\} ZCKmin

Consider now the power issue. The data-driven choice (2.5) of K combines
the detection properties of each of the Rx’s. Indeed, because cx = cg_ . for any
K in K, we have

=z, Wwhere R” = Rg». (2.6)

A

RY = e = R = e = max (R = e~ yr(2lex — e, )7}
+ v, 2(cgr — CK,,,m))l/z
= max {Rg — cx — y7(2(cx — e, )"}
KEK,
= ]éK —cx — Yr(2(eg — e N2 (2.7)

min
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This gives the power lower bound
ﬁy - cKmin A
Pl —F—— =z, | = PRy —cx — v7(2(cx — ek N"* = 2,\2¢. = 0)

ZCKmm
IéK —Cx  Za \/ZCK,,.m + yr(2(cx — CK,mn))l/2
Z b
A ’ZCK \/26‘,(

(2.8)

which holds in particular for an optimal K that balances the bias with the pen-
alty term. Taking K = K,;, gives that

A

]/éV T CKin RKmin T CKin
Pl —— = | = e S 2.9)
chmin N 2CKmin

a power bound that shows that the test (2.6) improves on the one using the
single statistic Ié,(mm. As seen from (2.4) and (2.8), consistency holds as soon
as there is a degree K in Ky such that the misspecification measure

I A(X)I(X, € A)/62(X,) is asymptotically larger than the sum of
|bias, (K)|, y742(cx — cx_ ), and z,42¢, . Hence increasing 7 too much
should give a less powerful test. The form of the low penalty term in (2.5) is
crucial to show adaptive rate-optimality; see Theorem 2 in Section 3. Theo-
rem 3 in Section 3 shows that the test detects Pitman local alternatives with a
rate arbitrarily close to the rate 7'/,

3. MAIN RESULTS
3.1. Main Assumptions

Consider T observations (Y, X,) with ¥, = u(X,) + &, X, = (Y,,...,Y,_,, Z]) €
RY, and where w(-) can depend upon T, in which case (Y;,X,) forms a tri-
angular array (Y7, X,7). Let X, and X, denote the Borel field generated by
X, &1,...,X;,e, and X;, &, X,41,&+1,..., respectively. The a-mixing coeffi-
cients of {X,, &, },en+ are

a(n) = sup sup  |P(A N B) —P(A)P(B)|, n € N.
(EN* AEX,,BEX,,,

The next assumptions deal with the g,’s, the mixing coefficients, and the para-
metric mean.

Assumption E. Let F, be the Borel field generated by (X, &), ...,(X;,&_).
The variables {&,},cy are martingale difference with E[e,|F] =0, E[e?|F] =
o%(X, 1), and sup,eyE[e}|F] < oo a.s. The standard deviation function,
o(-) = Var[g,|X, = -], is continuous and bounded away from 0 on R?,
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Assumption X. The process {X,,€,},cn* on RY X R is stationary, with the
following conditions holding.

(i) a(n) = An~'"“ for some constant A,a > 0.
(ii) The variable X, has a density f(-) with respect to the Lebesgue measure
on RY. The density f(-) is bounded away from 0 and infinity.

Assumption M. The parameter set O is a subset of R”, and the following
conditions hold.

(i) The regression function m(x;6) is twice continuously differentiable with
respect to . The gradient mV(x;6) and Hessian matrix m® (x;6) are
bounded over A X 0.

(ii) For any sequence of regression functions u(-) with E,u,zT(AX,) < oo,
there exists a sequence of parameter f; in © such that 7'%(6; — 6;) =
Op(1), with 07 = 0 if wr(-) = m(-;60) for some 0 in O.

Assumption E ensures that the sums >, (X, )¢, /o-2(X,) are martingales
that are asymptotically normal under Assumption X(i). The polynomial mixing
rate of X (i) is a minimal rate to achieve 7 '/?-consistency in the weak law of
large numbers for the empirical mean T~ W, Q™' ¥,.. Under Assumption X (ii),
the limit of 77 'W;Q !W, has an inverse. Mixing conditions for Markovian
(Y,,X,) as in Assumption X(i) can be derived using a drift condition; see
Fan and Yao (2003, Thm. 2.4) and the references therein. When éT =
arg minge, >, (Y, — m(X,;0))?, the sequence 6 in Assumption M(ii) is the
pseudo—true value arg mingee E(ur(X,) — m(X7;0))?, which is uniquely defined
under identification of the parametric regression model; see Domowitz and White
(1982). Assumption M(i) then ensures that A(-) = pr(-) — m(-;6y) is close to
A() = ur(-) — m(-;6;) over A up to an Op(T ~/?) term.

Let us now turn to the construction of the test. The first assumption specifies
a set of admissible degrees /C; in the spirit of the dyadic bandwidth set of Horo-
witz and Spokoiny (2001).

Assumption K. Let a be as in Assumption X. Set K, = 2/m = O(T“1/9)
for some C; in (0,2[(1 + a)/(5 + 3a)]), Kin = 2/mn — 0o with K&, = O(In2 T')
for C, > 0, where J,;, = Jiax are integer numbers. The set of admissible degrees
K7 is dyadic, that is,

r=4K=20=J i Jin T L, o s Jan - 3.1

Note that (3.1) and the polynomial divergence rate of K, imply that Card K
is of exact order In 7. Such a restriction is helpful to show that KY = K.in
asymptotically under the null but also has some practical justifications. Indeed,
achieving a small IP’(K Y # Kpnin) iS an important condition to get an accurate
size. Because Ry — Ry — (cx — cx ) — yr(2(ck — ¢k ))"/? vanishes if and

min min min
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only if K = K, (2.5) yields that K¥ # K, if and only if one of these penal-
ized statistics is strictly positive for a K # K,;,, or equivalently

kK - iéKmin - (CK - CKmin) >
max .
KERL T\ Kpint (2(CK - C[(mi“))l/z rr
Hence
P(RY #K. ) =P Ry - IéKmm — (ex — ) 32)
) = max = s .
min KEK Ko} (Z(CK _ CKm;n))l/z Yr

so that ]P’(I? Y # K,in) increases with K, and decreases with the penalty sequence
vr. Therefore, using a parsimonious Ky can improve the size accuracy of the
test. On the other hand, a dyadic K7 as in Assumption K contains sequences
with any arbitrary order between In“>T and T that is sufficient for adap-
tive rate-optimality. The constant C; of Assumption K must be smaller than
2[(1 + a)/(5 + 3a)] where a comes from Assumption X (i), a(n) = O(n~'"9).
This gives a K,y of order T/“4) at best, whereas, in the i.i.d. setup, Hong and
White (1995) allowed for a better order 7''/¢) when using a single series sta-
tistic on which to base the test.

Let us now turn to variance estimation. The next condition allows us to
approximate T~ ' W, "W, with 7' W, Q"' W, for degrees K depending on
the sample size 7, as in Assumption K.

Assumption V. Let K, = 2/» = max{K;K € K}. Then, for the consid-
ered sequence of regression models Y, = u(X,) + &, sup,ea| 6 (x) — o (x)| =
Op(v7) and, for some integer € > d/2 and all (€4,...,¢,;) with €; + -+ + €, =
€, sup,c, |06 (x)/(0%x,...0%x,)| = Op(vy), where vy = 0(K;,2¥?/InT) and
liminfr_,, T '?vy > 0.

Assumption V requires consistency of ¢ (-) under the null and the alterna-
tive. Convergence of ¢ (-) with the rate v, requires that w,(-) and o (-) satisfy a
minimal smoothness condition. As seen from Guerre and Lavergne (2002),
consistency is not necessary under the alternative but can be useful to get a
powerful test. Under homoskedasticity, a simple choice of ¢ (-) is a constant
difference-based estimator, in which case Assumption V holds with a best pos-
sible vy = T2 so that Ky, = o(TVC? n?/GD T). The heteroskedastic case
requires nonparametric variance estimation, such as kernel, sieves, series expan-
sion; see, among others, Guerre and Lavergne (2002, 2005) and Horowitz and
Spokoiny (2001). The rate vy is then the consistency rate for the €th partial
derivatives, which restricts the divergence rate of K.

3.2. Asymptotic Behavior under the Null

As discussed following (3.2) and (2.9), a fast divergence rate for vy is useful to
achieve an accurate size under the null but may negatively affect its power
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properties. Therefore, an important issue is to find a minimal divergence rate
for vy, ensuring that the test is asymptotically of level a or equivalently that
P(K?Y # Ki,) asymptotically vanishes under H,,. The Bonferroni inequality gives,
in (3.2),

P(R? # Kp) = > P( G ) (33)
min) = YT | .
KEK M Kin} (2(cx = cx, N2 !

min

and showing that the last sum asymptotically vanishes for small y; necessitates
precise uniform bounds for these probabilities, so that simple Chebychev-type
inequalities may not be sufficient. Better Gaussian-type bounds in the spirit of
Mill’s ratio inequality P(N(0,1) = y) = exp(—yz/Z)/(\/ﬁ'y) are derived in
Lemma A.3 in Appendix A. Because the exact order of Card [Cy is InT, the
next theorem ensures that the asymptotic size of the test is a provided that the
penalty sequence 7y diverges faster than (Inln T)%2,

THEOREM 1. Consider that the null hypothesis Hy is true and assume that
Assumptions E, K, M, V, and X hold. Then, if y; diverges with

vr=(1+e€)N2InCard K, for somee >0, 3.4
limy, ., P(KY = K,,;,) = 1, and the test (2.6) is asymptotically of level .

The minimal divergence rate (Inln 7')'/? ensuring that the test is asymptoti-
cally of level « is surprisingly low compared to the penalty term of order In T
used in the BIC criterion. Such improvement comes from the Gaussian-type
bounds used for the tails of the standardized Rx — R ... S- Indeed, this
gives, up to remainder terms, a bound Card K, exp(—y2/2)/(N27y;) in (3.3),
which asymptotically vanishes provided that (3.4) holds. On the other hand,
such a low rate is in line with previous findings for rate-optimal adaptive test-
ing. Indeed, (3.2) shows that suitable y; should resemble the critical values of
a maximum test such as that of Fan (1996), who found critical values with a
typical rate of (21n1n T)'/2. This suggests that our minimal rate condition (3.4)
cannot be improved.

Another condition for Theorem 1 to hold is that K,;;, diverges with the sam-
ple size; see Assumption K. This is used to neglect the parametric estimation
error T'/2(6; — 6) in the chi-square approximation of the distribution of R Koo
Accounting for such an effect would allow us to consider a fixed K;,; see, for
example, Hart (1997, Sect. 8.3.1).

3.3. Detection of Small Alternatives

As discussed following equation (2.9), the detection properties of the test depend
upon a bias term from (2.4). Establishing formal adaptive rate-optimality of the
test necessitates bounding this bias. The current mathematical approach to do
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so makes use of some smoothness restrictions. We consider here Holder smooth-
ness classes C(L,s) that we introduce now. Define the departure from the
null as

A/J,,T(.) = ﬂ() - m(-;HT),

with a 67 as in Assumption M. We restrict ourselves to departures A(-) with a
restriction to A that admits a (2A)-periodic extension. Consider first the case
s € (0,1], for which

[A(x) = A(x")] }
—— = L.

x/”s

C(L,s) = {A(~): sup

x,x €A HX -

For real s > 0, let | s | be the lower integer part of s, that is, the unique integer
number satisfying |s] < s < |s]+ 1, so that s — | s]isin (0,1] with s — |s]| = s
for s € (0,1]. For any s > 0, the smoothness class C(L, s) is defined as

C(L,s) = {A(-) : the | s | th partial derivatives of A(-) are in C(L,s — | s])}.

Hence the smoothness class C(L, s) is defined for all s > 0 and L > 0. Lemma 1
in Section 6 gives, for the bias term of (2.4), the following bound:

A, 7(X)I(X, €N
|b1as#(K)\ <= O]P’ |:T1/2Ks]E1/2< TN t 4+ TK™2s ,
o(X,)

for any A, 7(-) in C(L,s) and any K. This gives, for small alternatives, which
are the harder to detect,

A/.L,T(XZ)H(XI S A)
o(X,)

2
|bias,, (K)| = Op(TK>*) provided IEm( ) =0(K™).

3.5)

Our minimax adaptive framework evaluates tests uniformly over alternatives at
distance p from the null, that is, in

H(p;L,s) = {M(-) =m(-;07) + A, 7();

A;L,T(Xt)H(Xt S A) )2 }
=p?(,

A()E C(L,s),E( o)

with unknown smoothness index (L,s). Such alternatives allow for a general
shape of A, r(-) with narrow peaks and valleys that may depend upon on T;
see Horowitz and Spokoiny (2001). As pointed out in Guerre and Lavergne
(2005), uniform consistency over H,(pz; L, s) is equivalent to consistency against
any sequence
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pr(-) =m(-;07) + Az(-), where Ap(-) = A,U,T,T(')’

in H,(pr;L,s) as considered here. A crucial issue is the choice of a suitable
asymptotically vanishing rate p;. Indeed, some of the alternatives of H,(g7; L, s)
will not be detected by any tests if g goes to 0 at too rapid a rate. On the other
hand, detection can become straightforward if H(pz;L,s) remains far from
the null. Hence a good candidate p; to evaluate a test is a frontier rate that
separates these two extreme situations. In the adaptive approach, such a rate
depends upon the unknown smoothness index s, and Spokoiny (1996) has shown
that the optimal adaptive rate is®

,\/m )25/(4s+d)

pr = pr(s) ( T
which is slower than the parametric rate 7~ /2. Guerre and Lavergne (2002)
derived an optimal rate for a known smoothness index s that improves py from
the (Inln T)'/? factor, so that the price to pay for rate adaptation is moderate.
As is well known, the rate p; decreases faster than the nonparametric estima-
tion rate 7~*/s74)_ The adaptive rate-optimality of our test is stated in the next
result.

THEOREM 2. Consider a sequence of alternatives
wr(-) =m(-;0;) + Ay (1) inH, (Cy-pr;L,s) for some unknown s and L,

with s = d(2/C, — 1)/4, L > 0, C3 > 0, and sup,e,|Ar(x)] =
O[E'Y2(AZ(X,)I(X, € A)/o?*(X,))]. Assume that Assumptions E, K, M, and V
hold. Then, if yr is of exact order (InlnT)"? and provided Cj is taken large
enough, the test is consistent, that is, limy_,., P((RY — c,(m)/\ﬂc,(min =z, =1

The proof of Theorem 2 builds on the lower power bound (2.8) and on the
bias variance decomposition (2.4). In view of the bias order (3.5) for small
alternatives, an optimal choice of K in (2.8) is such that the order of the penalty
term y;K%/? is proportional to TK ~2*, that is, for

T 2/(4s+d)
K, = K,(s) = 2[2/@s+d)In(T/yp)/(n2)]] o <7_> , 3.6)
T

where [ -] is the integer part. Such K, detects alternatives within the bias order
divided by the sample size, K, * o (yp/T)*/“*®  which coincides with the
optimal adaptive order p; provided y; has the smallest possible order (Inln 7')'/?
compatible with Theorem 1. Note that, under Assumption K, K, is in Ky pro-
vided s = d(2/C, — 1)/4, which implies that s > 7d/4.

Because adaptation means detection over various smoothness classes C(L, s),
it is crucial that the test combine several statistics, as seen from the optimal K.
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in (3.6), which depends on the smoothing index s. Therefore, tests that use a
single statistic Ry generally fail to be rate-optimal adaptive. A more specific
property of the test (2.6) is detection of small local alternatives.

THEOREM 3. Consider a sequence of local alternatives ur(-) satisfying
pr(X,) = m(X,;07) + rpAor(X,)
with Ay (+) in C (L,s) for some unknown s, L > 0,
s=d2/C, — 1), and

(AOT(X,)MX, EA)
o(X,)

2
) =1, sup| Ay (x)] = O(1).
XEA

Then, under Assumptions E, K, M, V, and X, the test is consistent provided
1rr = o(NT/KZ2).

Because K,,;, can diverge very slowly, the rate r; can be arbitrarily close to
the parametric detection rate 1/7 /2. This slightly improves on the results of
Horowitz and Spokoiny (2001), who achieved a rate (Inln7)Y?%/T'/2, A key
argument there is that the local alternatives of Theorem 3 are asymptotically
very smooth, because the departure from the null r;Ag7(+) is in C(Lry,s), with
a Lipschitz constant Lr; that goes to 0. Hence these alternatives differ from the
general ones in Theorem 2, and they are typically detected by trigonometric
series with low degree such as K,,;,, so that (2.9) yields consistency of the test.
On the other hand, using the single statistic R .., would give a test that is not
consistent against the alternatives of Theorem 2, so that combining several sta-
tistics as in our procedure is crucial to achieve these opposite kinds of detec-
tion properties.

4. SIMULATION EXPERIMENTS

In this section we study the size and the power properties of the proposed pro-
cedure when testing for a null of linearity in the context of a Markov process
of order 1. The resulting test is compared with the one developed by Hamilton
(2001) to detect nonlinearity. First, to examine the size properties, we use the
AR(1)

Y, = pYi + e,

Three distributions are considered for the error term: standard normal, standard-
ized student with five degrees of freedom, and a centered and standardized expo-
nential. To examine the sensitivity of the tests to temporal dependence, we
consider various values of the autoregressive parameter p, namely, p = 0, 0.25,
0.50, 0.75. To implement our test, we choose the interval (A in Section 2) for
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projecting the covariate Y,_; onto the trigonometric expansion to be equal to 2
divided by standard error of Y; under the null. This corresponds to approxi-
mately 95% of the observations. The set K is equal to {1,2,4,8,16}. The asymp-
totic critical value is given by (xo.0s(1) — 1)/V2, where xo0s(1) is the critical
value at 5% of a chi-square with one degree of freedom. We study the small-
sample properties of the test for various values of the penalty parameter y;.
We fix y; equal to ¢2 In Card K, where we set ¢ = 2,3,5. The parameters are
estimated by ordinary least squares (OLS). The sample size is set to 200, and
the number of simulations is equal to 10,000.

The simulation results for the size, which are presented in Table 1, are encour-
aging. For ¢ = 2 the test slightly overrejects in all cases. However, for ¢ = 3,5,
the size is accurate whatever the distribution, persistence, and number of obser-
vations considered. The Lagrange multiplier (LM) test developed by Hamilton
(2001) shares these good size properties.

To study the effect on power of the penalty sequence y;, two alternative
specifications of the linear autoregressive process are examined. The first spec-
ification is a threshold autoregressive model defined as

Y,=p Y, H{YH>0} +p. Y, H{YH<0} 1€,

where €, is i.i.d. N(0,1).” This representation contains two regimes delimited
by a threshold equal to zero. When Y,_, is greater than zero, the dynamic depen-
dence is controlled by the parameter p,. In the case where it is inferior to zero,

TABLE 1. Size properties (5%) of our test and Hamilton test (LM)
(200 observations)

Distribution P 2 3 5 LM
normal 0 0.057 0.048 0.047 0.047
student 0 0.055 0.047 0.046 0.047
exponential 0 0.056 0.048 0.047 0.048
normal 0.25 0.057 0.048 0.047 0.045
student 0.25 0.059 0.052 0.051 0.051
exponential 0.25 0.060 0.051 0.049 0.049
normal 0.50 0.057 0.047 0.045 0.044
student 0.50 0.056 0.050 0.050 0.051
exponential 0.50 0.057 0.050 0.047 0.049
normal 0.75 0.052 0.044 0.043 0.044
student 0.75 0.059 0.051 0.050 0.050
exponential 0.75 0.058 0.048 0.046 0.055
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the dynamic depends on the parameter p,. Under the null of linearity p; = p-.
The distance from the null is a function of the absolute value of the difference
between p; and p,. To see this, we can rewrite the threshold autoregressive
model as follows:

Y,=p Y1+ (p—p)Y, H{1/H<0} t €.
Thus, under the null, u(X,) = p,Y,_, whereas the nonlinear alternative is
(X)) =p Y, +0Y, I(Y,.; <0), whered=p,—p;.

To examine the sensitivity of the tests to temporal dependence, we consider
various types of dependence for the process Y;. We run the following experi-
ments: (1) p; = 0 and p, = 0.25, 0.50, 0.75, (2) p, = 0.25 and p, = 0.50, 0.75,
—0.50, (3) p; = 0.50 and p, = 0.25, 0, —0.25, and (4) p, = 0.75 and p, = 0.50,
0.25, 0. The values of p, under the alternative are chosen such that the param-
eter (8) that governs the distance from the null is equal to 0.25, 0.50, and 0.75,
respectively. Table 2 reports the power results. Our test is more powerful than
Hamilton’s for all cases. Our power gains increase with the degree of temporal
dependence and the distance of the alternative from the null. The difference in
the rejection rate can be as high as 38%.

TABLE 2. Power properties (5%) of our test and Hamilton test (LM):
First experiment (200 observations)

P P2 [p2 — pil 2 3 5 LM

0 0.25 0.25 0.236 0.224 0.222 0.118
0.50 0.50 0.653 0.646 0.645 0.361

0.75 0.75 0.849 0.846 0.846 0.682

0.25 0.5 0.25 0.237 0.227 0.226 0.128
0.75 0.50 0.583 0.576 0.575 0.413

—0.50 0.75 0.947 0.945 0.944 0.666

0.50 0.25 0.25 0.261 0.247 0.246 0.123
0 0.50 0.725 0.715 0.713 0.360

—0.25 0.75 0.967 0.965 0.964 0.652

0.75 0.50 0.25 0.312 0.298 0.295 0.160
0.25 0.50 0.797 0.785 0.781 0.411

0 0.75 0.979 0.976 0.975 0.673
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The second experiment corresponds to an alternative for which the data-
driven optimal test is specially designed. The alternative models have the
following form:

p
Yz:PYt—l"‘;f(Yt—l/T)"'en 4.1)

where f(y/7) = (1/N27o?) X exp(—(1/202)(y/7)?), 02 = 1/(1 — p?), and
€, is i.i.d. N(0,1). Figure 1 shows the function f(-) for 7 = 1, 0.50, and 0.25,
p = 0.50, and values of ¥, between —10 and 10. The function f(-) is symmetric
around zero and more concentrated for smaller values of 7. The function is
bounded between zero and one, with (0) = 1 and lim,_, .., f(x) = 0. We can
easily show that the alternative (4.1) respects the drift condition of Fan and
Yao (2003, Thm. 2.4) for geometric ergodicity. This alternative is then compat-
ible with the assumptions in this paper.

We examine the sensitivity of the tests to the narrowness of the peak and
temporal dependence. We consider the parameter values 7 = 25, 0.50, 0.75 and
p = 0.25, 0.50, 0.75. Table 3 shows the results of the experiment. For 7 = 1,

0-8 T T T T T T T T T

0.7}

0.6

0.4

0.3

0.1f

4 6 8 10

010 8 6 4

o
o

FiGURE 1. Alternative model (p = 0.50). Dashed line, 7 = 0.25; thick line, 7 = 0.50;
and solid line, 7 = 1.
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TABLE 3. Power properties (5%) of our test and Hamilton test (LM):
Second experiment (200 observations)

T p 2 3 5 LM
1 0.25 0.168 0.161 0.161 0.056
0.50 0.426 0.421 0.420 0.072
0.75 0.564 0.555 0.553 0.105
0.50 0.25 0.245 0.233 0.231 0.080
0.50 0.639 0.605 0.595 0.213
0.75 0.758 0.716 0.699 0.477
0.25 0.25 0.301 0.263 0.254 0.278
0.50 0.751 0.664 0.622 0.716
0.75 0.857 0.764 0.702 0.776

Hamilton’s test is close to the nominal size. For 200 observations, our test rejects
at a rate of 17% for p = 0.25 and 56% for p = 0.75. For 7 = 0.50, our test also
clearly dominates the test proposed by Hamilton for all cases. For a narrow
peak (7 = 0.25), the rejection rate of both tests is quite similar. The better per-
formance of the Hamilton test for this alternative compared to the one with a
wider peak is probably due to the specification of the variance-covariance func-
tion of the random field underlying the test statistic. See Hamilton (2001) for
further details on the construction of this test.

5. CONCLUDING REMARKS

This paper proposes a new adaptive rate-optimal specification test for time series.
As in the maximum approach of Fan (1996) or Horowitz and Spokoiny (2001),
the test combines several statistics to achieve adaptive rate-optimality. More
specifically, the test builds on series regression chi-square statistics with increas-
ing orders. A data-driven selection procedure, in the spirit of Guerre and
Lavergne (2005), uses a penalty term proportional to the square root of the
number of Fourier coefficients to choose the test statistic. Under the null, the
retained statistic is, with high probability, a statistic with a distribution close to
a chi-square. Therefore, standard chi-square critical values can be used, allow-
ing for better control of the size of the test. This contrasts with the maximum
approach, where using a null limit distribution performs poorly, as noted in
Fan (1996), or is out of reach, as in Horowitz and Spokoiny (2001). Hence, the
maximum approach necessitates the use of simulated critical values, limiting
the scope of applications to time series models that can be easily simulated. A
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simulation experiment confirms the good level properties of the proposed test,
which shows interesting power improvements compared to a simpler test using
a single statistic such as that of Hamilton (2001). We also examine the power
of the test that is adaptive rate-optimal and detects local alternatives approach-
ing the null at a faster rate than in Horowitz and Spokoiny (2001). The simu-
lation experiment shows that the choice of the penalty term has a moderate
impact on the power. This positively illustrates the interest of our approach,
which builds on the fact that the combination mechanism inherent to adaptive
testing can also be designed to achieve a level close to the nominal size.

Although our results are stated for Fourier series methods, our approach also
applies to wavelets or polynomial series regression. As noted in Guerre and
Lavergne (2005), the series construction of the test statistic easily can be mod-
ified to cope with additive alternatives that are not affected by the curse of
dimensionality. Obtaining an accurate size in the case of kernel or local poly-
nomial methods is theoretically feasible. The scope of applications of the new
data-driven selection procedure can also be extended as discussed in Hart (1997)
for earlier adaptive procedures or as in Tjgstheim (1994) and Fan and Yao (2003)
in the time series context, in addition to many other specification hypotheses of
econometric interest.

6. PROOFS OF MAIN RESULTS

The proofs are organized as follows. Important intermediate results and proofs
of the main statements are given in Section 6. Proofs of auxiliary results are
gathered in Appendixes A and B. We now introduce some notation and conven-
tions. All functions can be set to 0 outside A without loss of generality. We set

—y =>L .., =0.The symbol a; = b; means that the two sequences ar, by
with the same sign are such that c|ay| = |by| = Clay| for some 0 < ¢ =
C < oo and T = 1. Constants are denoted by the generic letter C and vary from
expression to expression.

For notational convenience, we reindex the trigonometric functions (2.1) as
{f.(-)}ren+ and set cx = k. We assume that the new ordering is such that ¥, =
[¢1,...,¢.] and uses the notation P, for Wx. Here ¢, k € N*, is a column
vector with . = [(X,),. .., (X7)]” € RT. Therefore ¥, is a T X « matrix
and k = K?. With little abuse of notation, ;- denotes both the set of admissi-
ble K or k with k between K, = 2"n? and K, = 2’m=¢, The term K" cor-
responds to K. The variance estimation rate in Assumption V is such that vy =
0(Kenax/In T).

Let | -|| be the euclidean norm of R” or R, that is, if u = [u,,...,u,.]" € R,
lul = (25—, uP)V? = (w'u)V?. If m = [m(X,),...,m(Xs)]" where m(-) maps
R? to R, |m| = T'?sup,cge|m(x)|. Under Assumption E, || = Op(T"/?).
For a k X k matrix % = [3¢]i=t¢=c, 2] is the spectral radius |2] =
sup,oere | 2u|/|ul. Recall that [Su| = [Z[{ul, [uiSu| = [Z]uil]usl. 1t
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follows that the entries of Su are bounded by «'/?|S|max,—j=.|u|. If S is a
symmetric matrix, |3] = supy,|- 1|u EuI is the largest eigenvalue in absolute
value of 3. Because O~ "2W (¥ O~ 'w )" w ()72 is the orthogonal projec-
tion on the space spanned by the columns of Qv 20, we have

' QW (WA W)W O | = | O 2u? and
|02 (10 ) = 1

In what follows, we bound variance of sums using the Wolkonski—Rozanov
inequality (see Fan and Yao, 2003, Prop. 2.5(ii)), which states that

|C0V(81(X) g (X, n))‘ = 4a(n) SuP |g1(x)| SUP |g2(JC)\

xER?

for any real-valued bounded g,(-) and g,(-). This gives

Var(% é g(X,))

1 " T—n
;(Var(g(Xl))+22 T COV(g(X]),g(Xn]))>

n=1

8
— sup [g(x)]? 2 a(n). (6.1)

TXER n=0

A

6.1. Estimation Errors

We consider first the parametric and variance estimation errors induced by
07 — 67 and 0 (-) — o (-), respectively. For Ar(-) = us(-) — m(x;6;7), set U =
Az + & and let Q2 be the T X T diagonal matrix with entries o (X,). Set

s - E[ qf;(x,)\lfx(x,)] _ [E<¢k(xt)¢e(x,)>] |
JZ(X’) JZ(X,) 1=k, (=xk

where
LX)g(X) 1 ET) (X ) e(X,)
a2(X) TS 6%Xx,)
sothat TS, =¥/ 0~'"w, and R, =U'Q"'¥_(TS,)"'wO'U.

PROPOSITION 1. Consider a departure from the null such that
supyea| A7(x)| = O[EY2(Ar(X,)/0(X,))?]. Under Assumptions E, M, V, and
X, and if Kmin = 00, Kmax = O(T'3/In?T), we have
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R, — &' Q "W (TS,) "W O e — 20, Q0 "W (TS ) "W O e — A QW (TS) W O 1A,
1/2

max
KEK T K

T1/2 AI(Xr) 2
=0p| ;B — :
Kmin U(Xt)

Proof of Proposition 1. See Appendix A.

6.2. Proof of Theorem 1

The next proposition is the key tool to establish Theorem 1.

PROPOSITION 2. Assume that H, holds, that is, A;(-) = 0. Then under
Assumptions E, K, M, V, and X, make the following assumptions.

(i) Let x(k) be a chi-square variable with k degree of freedom. Then, for
any k = kr in Kr,

. QW (TE,) 'V O e —k
su =7z
zeg \/2K

(k) — K
()
N2k
and
I/ékmi“ ~ Kmin (Kmin) ~ Kmin
sup ]P’(— = z) — IP’(X— = z) =o0(1).
ZER 2Kmin 2Kmin

(ii) Assume that (3.4) holds, that is, that for some € > 0, y; = (1 + €)

N2 In Card IC. Then
I/él( - Iéxmm - (K - Kmin)
P{ max =y, | =0(1).

KEK A\ Kiin} 2(k — K

min)
Proof of Proposition 2. See Appendix A.

Proof of Theorem 1. Equation (3.2) and Proposition 2(ii) yield

P(RY # R, ) =P(R? # Kppin)
éK - ﬁkmi“ - (K - Kmin)
=P max =y, | =o(l).

KEK P\ Kpmin} 2(K - Kmin)
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Then the definition of z, in (2.6) and Proposition 2(i) yield

A

]%7 ~ Kmin RKmm ~ Kmin
Pl———=z, | =P —2——=27,] +0(1)
2Kmin 2Kmin

(X(Kmin) -

Kmin
P —ZZQ)‘FO(l)—)a. u

2K

6.3. Proof of Theorems 2 and 3

The next lemma is crucial for the consistency properties of the test and is used
for the item R, in (2.3).

LEMMA 1. Consider a departure from the null such that sup,e,|Ap(x)| =
O[E'2(Ar(X,)/0(X,)?]. Assume that Assumptions E, V, and X hold and that
Kk = Ky diverges with k = o(T"3/In?T).

Then there exists a constant Cs > 0, depending upon s, L, and A, such that
for any k € K, any A(-) from A to R in C(L,s), we have

[ QW (T, Q1) 1w O A, ] 2

Ar(X)\ i
= [El/z (%) = Csk ™ (14 0p(1)), (6.3)
g4,

A QW (WO )T O g

=T20 [E”z (M)z + Kfs/d_. (6.4)
’ o(X,) i

Proof of Lemma 1. See Appendix A.

Proof of Theorem 2. Let s =< d(2/C,; — 1) and L be some unknown smooth-
ness indexes. Let K, be as in (3.6), so that K, corresponds to a «, in the new
indexation. Observe that this k.. is such that

Tic 20 = Tt = (NI T) /050 T80 <y 1V2 = 3o, o),

(6.5)

because the exact order of y; is In"/?InT, s > 0, and K.y, is smaller than a
power of InT.

Consider now a sequence of alternatives uz(-) in H,(Cs.py) with C3pr >
2Csk; ¥, where Cs is from Lemma 1. This gives that E'/2(A4(X,)/0(X,))? —
Csk; ¥ = IRY2(A7(X,)/o(X,))? and that TE(Ap(X,)/o(X,))? diverges.
Hence Lemma 1 gives
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ALQTT, (W QT )T O A,

. Ar(X)I(X, € M)\
2<Z+”“’(”>TE( o (X,) )

A O, (W QTN )T O e

-0 [TI/ZIEW(W)Z}
o o(X)

= op(DAL Q' (W, Q7' )WL O A,
Observe also that Proposition 2(i) shows that
QO (WO )T O e — Ky

OIP’(K;/z) = OP(l)(YT VZ(K* - Kmin))

op(NALQ MW, (W Q71w )7Twr 1A,

Hence, (6.5), applying Proposition 1 for 7 = {k,} (s0 that K. = Kypin = K7),
and substituting yield

Iéx* Ky T 7T\/2(KT — Kinin) — Za\IZKmin
= [A,Tﬁﬂ \Ifk*(\lf,:*ff] \I’x*)il \I’;:*QHAT = ¥eN2(ky = Kpin) 1(1 + 0p(1))

_ [1E<AT(X,)H<X,EA))2_ 2]1 1
=T 1 _U'(Xt) CPT ( +0]P’( ))

2
2Tp2<&—c>(1+0 (1) 5 + oo
T 4 P

provided Cj is large enough. The lower power bound (2.8) then shows that
Theorem 2 is proved. u

Proof of Theorem 3. Because the proof of Theorem 3 is similar to the proof
of Theorem 2 up to the fact that detection is achieved through ki, we just
give the main steps. Expression (2 7) yields that RY — Kpin = kam Kpmin, SO
that it is sufficient to show that R o — Kmin — N 2Ky, diverges to +oo in prob-
ability. Building on Propositions 1 and 2(i) and Lemma 1 as for Theorem 2
now gives, because ki, =< K&, — 0,
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éKmil! — Kmin — VZKmin
= r2 Ay O, (WL O, )T O A (1 + 0p(1) — Op(k)2)

min

AOT(XI)H(Xt € A) >

=Tr7|E — Csk (1 + 0p(1)) — Op(k1/2)
a(X,)
=Tr2 — 0:(K¥2) 55 + o
provided Tr? diverges with lim, , K%2/(Tr?) = 0 as assumed in
Theorem 3. |
NOTES

1. Using other series approximation methods, as, for instance, polynomial functions or wave-
lets, is possible but leads to a more involved theoretical study. Indeed, the Fourier system satisfies
SUPezd SUPyen | (X)| < o0, a condition that simplifies algebraic manipulations under dependence
mixing conditions. Another interest of Fourier methods is that using wavelets may limit the scope
of applications to alternatives with a maximal smoothness given by the choice of the wavelet basis;
see the wavelet tests considered in Spokoiny (1996) and Theorem 2.4 therein.

2. Assume that Hy is 4 (-) = 0 and that o (-) is known so that A(-) = u(-) and the choice 6 (-) =
o (+) is possible. In the case of Gaussian i.i.d. &, independent of the X;,’s, Rk would be an (0, R x) =
OP(IQ’,‘;(Z), which can be neglected with respect to Rix when this variable diverges. Note also that
the distribution of Rsx coincides with its chi-square approximation for such A(), 6(+), and e.

3. Note that Ry — cx is a better misspecification indicator than Ry, which is affected by an
additional systematic bias term cg. Guerre and Lavergne (2005) proposed a different bias correc-
tion that makes asymptotic inference less accurate in finite sample, so that the bootstrap is used.

4. This continues to hold in the dependent setup where the bound (B.9) in Appendix B gives a
more complicated error term, which is K2¢/T '/ at best. A normal approximation would be affected
with a bigger K24/T"? + K9 error term.

5. A second distinctive feature of the selection procedure (2.5) is standardization with g in
the critical region {RY = Ckn T 2a’N2Ck,, 13 See (2.6). Because KY = Kpin asymptotically, an
alternative a-level critical region would use cg» in place of ¢, . . But such a choice would asymp-
totically reduce power because cz» + za\/ 2cpy = Crpn T Za 2c,(mm. This also contrasts with a
maximum procedure that would use the test statistic (Rg- — czg+)/\2cg- = maxKE,CT(RK —cx)/
\/T‘K with a cg« larger than cg_ . The simulation experiments of Guerre and Lavergne (2005)
revealed that such a construction of the critical region (2.6) gives a test that improves on its adap-
tive rate-optimal competitors.

6. Spokoiny (1996) studied the continuous time white noise model (CTWN) Y, (1) = m(t) dt +
(o/Nn)dw(t), t € [0,1], where {W(t)}e[0,17 is a standard Brownian motion. Although this model
is mainly of theoretical interest, results established for the CTWN model extend to more common
models through model equivalence; see Brown and Low (1996).

7. Results for the normal distribution are only reported here because the results for the two
other distributions are very similar. Of course, those results can be obtained upon request.
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APPENDIX A:
Proofs of Propositions 1 and 2
and Lemma 1

A.l. Preliminary Lemmas. We begin with the estimation errors Sy — Sx (see (6.2))
and preliminary bounds. Define

ll}k() =, () — \I,Kmi"(.)271 E

Kmin

|: ll/k(Xz)\I,;:mi“(Xt) :|
o?(X,) ’

= 'l}k(Xt)lJ;e(Xt)>:|
. =|E\ ——7 , Al
“ [ ( Uz(xr) Kmnin<k, =k ( :

which are used to study the difference R — Iékmm in the proof of Proposition 2(ii). The
next lemmas hold for general orthonormal systems {i;(-)}en Of L?(A,dx) with
SUPgen SUPyea | (x)| < oo. Recall that vy is such that sup,es|F(x) — o (x)| = Op(vy)

with v = 0(k,2/2/InT); see Assumption V.

LEMMA A.1. Let S, S, be as in (6.2) and {’Zk(‘)}bkmi": S as in (A.1). Then, under
Assumptions E, V, and X,

(i) super max(S LIS D) < oo supe, supen G| < CkYZ and
superes max (|, 1,12, ) < oo.

(ii) If kKmax = 0(T V/?), the matrices 3., 1 = k = Kmax, have an inverse with a prob-
ability tending to 1 and

. . K2 \172
max max[[[X, — 3, [,[2" = 2] = 0p[< ;q> + Kmaxvr] = op(1).

KEK T

(iii) If Kmax = 0(T"/?), max, -, max(|2,[,[2:]) = Os(1).
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LEMMA A.2. Let my(-) and wr(-) from R? to R be some functions with support A.
Then, under Assumptions E, V, and X and if Card K7 = O(InT), kpmax = 0o(T /3/In?3 T),

max | w0, (B )T g = [0 2 10y (4.2)
K T

| w0 "e|
max

KEK T \/ﬁ

le'Q e (WO e ) WO e — ' QT W (TS,) T WO g

= Card2K,0p(1), (A3)

ma
KEK); Kl/2
K3, 1/2
= Card /CTOP[<$> + K;{EXUT] = 0(1), (A4)
[mf Q' W (WO )T O e
max
praye k2

T1/2 o mT(Xt) 2 .
R Op| E + (mf sup|my(x) — 7 (x)| + vy sup[my(x)] |.

O-(Xz) 7()E,,,, xEA XEA

(A.5)

The functions my(-) and ur(-) may depend upon (X,,€,),...,(Xr,er) in (A.2) but not
in (A.5).

Proofs of Lemmas A.1 and A.2. See Appendix B.

The next lemma is used for Proposition 2. It is stated for general maps ¢(-) from R?
to R, k = 1. Consider the row vector ®.(X,) = [¢(X,),...,0(X,)] and the k X T
matrix @, = [®,(X,),...,P(X7)"]". Define

[@;(X»d»x(x,)]
V.=E| ——— |[.
o(X,)

We make the following assumption.

Assumption B. The matrices V, have an inverse with sup,cy- |V, '| < oo, and the
functions ¢, (-) are such that max (sup,—;—, Sup,cr?| @ (X)[,1) = @, < co.

Define

I o(X,) e 0 0 Tﬁ]S}ST_K T71|‘ST‘|2_K
= o(X) o(Xx,) ! “r N2k N2k '

Sp = Ser = V;:l/z

We now study the tail probability of Q7.
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LEMMA A.3. Let Q7 = Q,r be as before. Then, under Assumptions E, X(i), B, and
Kk = Kk = o(T TGN ke the following assumptions.

(i) Let x(k) be a chi-square variable with k degree of freedom. Then

lim sup
T—oo yER

X (k) — K B

(ii) Consider € > 0. Then there exists a constant C., which does not depend upon k
and vy, such that for any y > € and K,

PO, = ) = 1 o (_(7—6)2>
N7 TS R 2

+ Ce[ @8 k2T -G/ +a/5+30)] 4 L]
K

Proof of Lemma A.3. See Appendix B.
A.2. Proof of Propositions 1 and 2.

Proof of Proposition 1. For brevity of notation, the proof is made for p = dim 6 = 1.
Define

e(0) =[e,(0),...,e;(0)]" where e, =m(X,;60;) — m(X,;6;) sothat U= U+ e(9).
This gives

R, =U'Q"w(TS)'"w.O'U+2A, +B,

with A, = U'Q" "W (TS,)"' ¥ .0 "e(0)

and B, =¢e(0) Q"W (TS,) "W O "e(0).

Under Assumption M, max,—,~7|e,;(8)] = Op(T ~"/?), which gives [e(8)| = Op(1) and
max,ci,|B,| = Op(1), so that max,—,, k ?|B,| = Op(ki{?). Consider now A,.

Under Assumption M, the Taylor formula gives

om(X,;0 1 . 9°m(X,;6%
(X, r)+_(07‘_0r)2 (X,50;7)

e () = (0, —6;) 90 5 220

. I .
so that e(0) = (0, — 6,)m, + > (6 — 0,)%m,,
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with a 0/ between 67 and éT and where m, and m, are R” column vectors with bounded
entries given by the first- and second-order derivatives. Because U = Ay + &, this gives

1 A . .
A=A+ A, + 5A3K withA,, = ¢ (0)Q ' ¥ (TS,) "W O 1A,
A2K = (éT - BT)m’l ‘()71 lI’K(Ti‘r<)7l q’;ﬁ7187
Ay = (0, 6,)2mb O ' W (TS,) W O e

The Cauchy—Schwarz inequality gives |A | = |e(0)]||A7| with |e(8)] = Op(1), so that

A (1A T AX)Y
— — /2 2 7
E;E}CXT Kk!? = Or K12 = Or Kl/zE o(X,) ’

min min

because |Ar|?> = Op(T)E(A4(X,)/o(X,))? by the Markov inequality and Assump-
tion E. Because T '/?(6; — 67) = Op(1) and under Assumption M, applying (A.5) for
A, and the Cauchy—Schwarz inequality for As, give

|A2K|
2‘% Pz Op (Kot ?),

Al o Imal el = O ()
max —— ;- = T m el = K, . .
pr=ye K]/z P TKrln/li 2 P\ ™ min

Substituting in the expression of A, and R, give

b _77'O—! $ VI O -1 2
IR, —U'Q W (T2 )" WO 'U| 1 OP[HT,/ZE,/z(AT(X,))]'

max = —
KEK K12 172 o(X,)

min

(A.6)
But
UQ "W (TS, ) ' w 0 'U=e0"v(TS,) ' v O e
+ 20, 07w (TS, )W O e
+ A QW (TS, )T WO TIA,
so that substituting (A.4) in the preceding equation and (A.6) give the desired result. B

Proof of Proposition 2. Define

RY=¢e'Q7' W (T3,)7' Q' and Q0= Q% =
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Under the null, Proposition 1 yields
R — Ry

max —————— = op(1) or, equivalently, max

KEKX K 172 KEK

R.—«
\2k

Hence Proposition 2(i) follows from taking k = K, in Lemma A.3(i) and (A.7). Con-
sider now Proposition 2(ii). Let € be as in (3.4), so that y; = \2InCard K + € for T
large enough. Therefore (A.7) yields that Proposition 2(ii) is a consequence of

Rg - Rgmm - (K - Kmin)
P max =\2InCard K, +€ | =o(1). (A.8)

KEK T\ Kmin 2(K - Kmin)

- 07| =0:(1). (A7)

To prove (A.8), we first rewrite RY — R_ as a suitable quadratic form. For k,k >
Kmin, let (-) and S, be as in (A.1) and consider the row vectors vr (X)) =

[l)[jK“]ln+|(Xf)’""l/;K(XT)]9 :
V(X)) = [¥,,.(X,), ¥ (X)] =V (X,)B, sothat ¥, =V,

min Kmin

for some regular k X « matrix . Elementary algebra gives

PR
R;’:T‘s'n'irK[O ¥ 'e and

$-1
. 0]

R =T7lg'Q™ ', Q7 e,

min 0 0

Hence

Kmin -1 Kmin Kmin

_lo o 7. e~
R°—R° :Tls'QI«IfK[O ]\If;ﬂ'szT‘e’Q‘W S JaTte

K
= VZ(K - Kmin)QK + K- Kmin+

We now verify that the quadratic form Q, obeys the conditions of Lemma A.3.
Lemma A.1(i) yields that sup, sup,cg«| i, (x)] = Ck /2, so that Assumption B holds tak-
ing o, = O(k!2) = 0(In“>¥? T). Recall that k — Ky, = 274 — 2/mad by the definition

(3.1) of K7. Hence Lemma A.3(ii) yields, for (A.8),

]P’< max 0, = ZInCardICT+e>

KELT\{Kmin}

= > PO.,=N2InCardK, +¢€)

KEK\{Kmin}

exp(~In Card £7) + Cob ST (k= Ky 2T~/ a)/5430)]

" 27\2InCard K, 7o KEK PN K}

+C E (K - Kmin)71/2

KEK 7\ Kmin}

= Card €

+oo
= 0(1) + C’, Card Ky kg T~ F/DNH/G+30] 4 €0~ thnin2 3 27502 = (1), W
Jj=1
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A.3. Proof of Lemma 1. In this proof, we apply Lemmas A.1 and A.2 for K =
{k}, which is such that Kk = Kpyin = Kmax = 0(T"/3/In?T). The Jackson theorem (see
Timan, 1994, eqn. (8), p. 278) yields that there is a trigonometric polynomial function
I(-) = M,, (-) with degree = k'/* such that

II(x) = i Bith (x)I(x € A) such that sup|A,(x) — II(x)| = Cx ™/ (A9)
=1 xEA

Because & (+) is bounded away from 0 over A in probability, (A.9) implies that

AT(Xt) - H(Xt)

= Op(k™*).
(%) e

1=t=T

Note that |m'Q ™' ¥ (V. Q' w )W O 'm| = HmH = T'/zsupxemi\m(x)\ Let IT
[I1(X,),...,I1(X7)]", which is such that II' QO (WO W)W O = QT =
HQ’I/ZHH because V211 is in the space spanned by the columns of Q~1/2W,. Hence
the triangular inequality and (A.9) give

(A Q' (T W) e OTTAL Y2
=[Oy (v O ) e O ]2
— [ = A)Q "W (v O W) W O (T - A)] Y2
= Hﬁ—l/zl—[” — CT V20,

In the expression (A.9) of TI(-), write 8 = [B1,...,B,]’, so that the definitions of 3,
3, in (6.2) and Lemma A.1(ii) give

T 2
o2 = (E e

=1 &2(X1)

K2 1/2
=T(,8’EKB)”2(1+OP[<F) +KUT]>

e ) e PRATEEL ) ey
o(X,) e o(X,) ‘

1/2
) =(18'2,.B)"?

Substituting shows that (6.3) is proved. Equation (6.4) follows from (A.5) and Assump-
tion V, which gives

-1 rH-1 —1qr H-1 1/2 1/2 Ar(X) ’ —s/d
AL QM (WO ) O e | = TY20, | B2 —— | + 174 . u
a(X,)
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APPENDIX B: Proof of Lemmas A.1-A.3

B.1. Proof of Lemma A.1. We begin with Lemma A.1(i), sup.ey
max(HE;l H’HEKH) < oo. Because M/EKIA = ]E(E;le Mkwk(Xt)/a'(Xt))25 ”EK” is the larg'
est eigenvalue of the symmetric 3, and |3, '] is the inverse of the smallest eigenvalue
of >,. Hence

< k(Xr) 2 1 < k(Xt) 2
|3, = sup E (Zuklp ) S f <E v >

=1 \i=1 = o(X,) & a(x,)

Because f(-) and o (-) are bounded away from 0 and infinity over A by Assumptions E
and X (ii), and because {,(-)},+ is an orthonormal system of L?(A, dx), we have uni-

formly in «
< (X)) N “ > ) « .
s( S0 0] = [(Zuntn) L2 ac [ (S uneo) ac=p:
k= U'(X) ANk=1 ( ) ANk=1
This gives sup,.cpmax ([ 1,II2.) < oo, and we now prove that sup,cy

max (|S 112, ) < oo. Let W5 (X,) = [¢h. +1(X,),...,¥.(X,)] and note that

< (/’k(Xt)lp(’(Xr)
2= |:E< Uz(Xr) >]Kmin<k,€<K

( Kmm<xw;m<x>) ) <~If:m(x>~1f;m,n<x,>>
B\ ———— |3 E|l———— |
o2(X,) a2(X,)

It then follows that 3, < [Ed(X) (X))o (X )], <k 0=« Where A < B means that
A — B is a symmetric nonnegative matrix. This gives that |3, = ||3.] because the
upper bound is a diagonal block submatrix of 3. Observe that 3! is also a diagonal
block of 3! by the partitioned inverse formula, so that [S.'| = |=.'|. This gives
supycre- max (S, [L1,1) < oo. To show that sup,..,,, sup,c| ()] < oo, note that

v, ()3 Ely (X)) Km.,,(X )/a?(X,)] is the L,(A, f(x)dx/o?(x))-orthogonal pro-
jection of ¢ (+) on 4,(-),..., 4,  (-). The Pythagore inequality gives, uniformly in k =
17

E( X E[wk(X)\If;m(X>]> <E[¢g<x,)]<
o(X,) T o*(X,) o (X) 1

Therefore, the Cauchy—Schwarz inequality gives for all x and k =1,

X, W’ X,
[(x)] = sup suplyr ()] + supl £, 2, (0]|x,)/2 [M]H

Kmin Kmin Kmin

k=1 xEA Z(X)
(X )Y, (X,) Y (X)W (X))
— 1/2 |/2 min —1 ‘min
= C+CI2 2 ki |:—02(X,) ] ”'“'"]E[—az(x,) ]

= CrolnBY(X,) = Cryf.

min
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Consider now Lemma A.1(ii) and (iii). Define

. U (X) i (X) _}
%o = 2d0) = [ 200

Assumptions E and X (i) and (6.1) give

(X)X,
. [«p( J(X,)

- Cc 2
g'z(X) :| = 2/((7 Var(Eke) ; g a(n),

and then, by the Cauchy—Schwarz inequality

Kmax 2
E . max ”EK - EKHZ = E”EK,W - EK,W *=E sup [ E < 2 - Eke)“() :|
SK=Kna Jul=1 -
Kmax Kmax B K 2 )
= sup > D E(S —3)ul? = 0<—> (B.1)
lul=1 =1 ¢=1 T

and then max,—, -, |3, — S, = Op(k2,,/T)"?, and we now bound max,—,,
I3, — S.|. We have, uniformly in k = Kpax,

W (O -0
T

1 T K 2 1 1
EE(E ”k‘”k“”) (&%x» B a2<Xl>>‘

T Kmax

1
= 0 (max |6:(X) = e (X)) 7 3 3 92 (X) = Op(Kasr).

12, = Sl = sup

HuH 1

Because Ko = K&, Assumption V and «2,,./T = o(1) yield

K2. 1/2
s 6500 (5) e ]
ISKSKITH!X

Therefore the smallest eigenvalue of 3, is bounded away from O and these matrices
have an inverse for 1 = k = kp,x With a probability tending to 1. The order of
3.1 =31 comes from the series expansion

MAX | < e e,

(OPE Nk

IS =3 = I3 [Md + B, =203 ) —1d, ]| =

n=1

= i iK—EK n 2 1 n+1
Py H (sup I u)

which ends the proof of Lemma A.1(i) and (iii) because sup, |3, '] < oo. u
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B.2. Proof of Lemma A.2. Let us recall some results from an empirical process
useful to establish some preliminary bounds. Consider the class of functions Gy from A
to R with

a°g(x)

— > |l=Mm
= My
9%x,...9%x,

Gr = {g( ): %11p|g(X) —o(x)| =My, sup

for all d-uple with €, + --- +€d:€},

with € as in Assumption V. Under Assumption V, there is an My = vy such that
liminf,,, P(6 2(-) € G;) =1—¢, foranye.
Then, to establish Lemma A.2, we can view & 2(-) as a member of a Gy. Consider

now a sequence of functions from A to R and define the empirical process Z&(-) =
{Z1(¢),8 € Gr} as

Z;c"(g) T1/2 2 (mT(Xz)l//k(Xt)g(Xl) - E[mT(Xt)lvbk(Xt)g(Xt)]) or
Zi(g) = T 2 2 mr(X ) (X)g(X,)e,.

Modifications of bounds (8.3), (8.7), and (8.9) in Rio (2000) to account for multiplica-
tion by mz(-) and ¢ (-) with sup,ea|ir(x)| = 1 show that

sup IE( sup | Z%(g) — Z’}(o-’z)|2> =0(v3) sg]i)|mT(x)|2. (B.2)

=1 \geCs
Define
e (&) =V (A —Q e, e (m) =¥ (0" —Q my, e (3)=3"-3",

so that W 0 'e = W .0 e + ele), V.O 'my = V.0 \my + e(my), and 371 =
3.+ e(3). The Chebyshev inequality, (B.2), and Lemma A.1(ii) give

lec(a)l*
« Ll lEN

KEK Tk KE)C
T

2 <T1/2 > (X)) (X,) — o (X, ))8’>

= 0:(1) E Z (T‘/Z 2 (X)) (g(X,) — o 2(X, ))8,>

EXr

= 0p(v2 Card Kp), (B.3)
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le(m)]?
X 2

weky Tk KEKT K =1 8(VEGr

1 2
= Op(1) max — E max (T 2 mr(X) (X)) (g(X,) — o (X, )))

1 T 2
= OIP’(I) E E max |:<; 2 ]E[mT(Xr)‘pk(Xr)(g(Xt) - Uz(Xr))]>

k€K, K k=18€91

(Zk(g) Zﬁ(a‘z))z]

T1/2
= Op(v3Card K;) sup|m(x)|? (B.4)
XEA
KZ, 1/2
maxllex(2)||=0p[<ﬂ> + Ky ] (B.5)
KEK T
Observe also that the martingale structure of the g,’s, Assumption E, and (6.1)
yield that
v QO le|? 1 (X,)e
E[max [0 "] ]_ s L 2E<Ewk2 ,
preye Tk wery Tk =1 \i=1 0°(X,)
= CCard K,
T.Q 'my — E[V.Q Mm% T mpe (X)) (X,)\
E[maxl T 7l -y L EVr 5 M Zt% :
KEKy Tk weky TK (=1 =1 a*(X,)

= CCard K, sup|m,(x)|%
XEA

It follows that

% 0" e
max ————

KEK \/ﬁ

= Op(Card"? KC;),

”\I’KQﬂmT - E[\Ifkﬂilmr]”
max

KEK \/T_K

= O0p(Card"? IC;) sup|m,(x)]|. (B.6)
XEA

Note that (A.2) is due to Cauchy—Schwarz inequality and |~ "2® (¥ Q¥ )"
W' ()"12| = 1. Expression (A.3) follows from (B.3) and (B.6). We now prove (A.4).
We have
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g QW (VAT )W O e
(e'Q7' W + e (8)(E" + e (D)W Qe + e, (e)

T
QI O le N 26’07 3 e () + &' QW e (3)V O e
a T T
N 26’07 W e, (3e(e) +el(e)3 e () +el(e)e (S)e.(g)
T .

By (B.3), (B.5), (B.6), Lemma A.1(i), Assumption V, k. = o(T'/3/In?>3T), and
Card 7 = O(InT), we have
[e'Q7 "W e (2)V.Q lg| e’ Q7 "W e (2)W Qe
max = K,L/ai max
KEK, Tk /2 KEK Tk
ro—1 2
B XS A

T ek, Tk

|0 'e|?
o w2t 1

KEK Tk

3 \172
—0P|:<ﬁ) +K31/32XUT:|CardICT—0P(1),

le'Q' | le.(e)l
= 0p(k /%) max X max
KE

" ek, ATk N

= Op(Kmax V7 Card K1),

X max e, ()]
KEKy

le’0” ' W3 e, (o)
max

KEK Tk 1/2

the other remainder terms being negligible. This gives (A.3).

We now turn to (A.5). Let 7,(-) = 7, 7(-) be a trigonometric polynomial function
of I, with supyeq|my(x) — 7(x)| = 2inf_(yeq, sup,.eq|my(x) — 7(x)|. Because
Qv 27, is a linear combination of the columns of Q7129 for all k = Ky, it fol-

lows that 7, Q7' W, (P Q"W ) ' W Qe = Q7 'e. This gives
mp QW (WO )T O e =7, O7le + (mp -, )OI O(TS,) T WO e

(B.7)
with
(my — kai“)rﬁ—l \IfK(TiK)_1 \If,:f)_]e
(mp—a, )OO~ 'Y,
=E S waTle
T
(mT - Wxn,;")’971 \I,Kmm A ~
+E T Erva -3 two e
(my =) Q7" (mp = VO W\,
+ T -E po SO e (B.8)
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()] <

Kmin

Consider first the leading term W;m‘nfl"s of (B.7). Because sup,. . sup,c, |7
oo and taking ¢ (-) = 1 gives, in (B.2),
(€3]

Kmin Kmin

|7 (' = Q el = 0(T"?v,) sup|ar
XEA

= 0c(T o) (suplmy ()] + suplmr(x) = 7., (x)] ).
XEA XEA

The definition of 7,  (-) yields, under Assumption E,

Kmin

E(m!

Kmm

Qe =E(#x. QO 'w )

Kmm Kmin

_TE< in ,)> T<E1/2< T ,)> . B )2
= cx) )= o (X) sup|my (x) =, ()] |

This gives, for the leading term of (B.7),
Tl/z mT(Xr) )2

= Op | EV2\ ——— | +(1+v
P [ ( oixy ) T

X inf  sup|my(x) — 7 (x)| + vp sup|mT(x)|].
()€, xEA XEA

’ Q—l

Kmin

&

max
KEK s

K

For the first item of (B.8), note that Assumption E gives that Var(¥.Q 'g) = T3, =
E[V.Q ¥ ]; see (6.2). Because orthogonal projection decreases the mean squared
norm, this gives, for the first term in (B.3),

< [(mr ) O, ] )2
E|E S0
T

1
=7 E[(my; —m, ) OQ "¢ J[E(Y, Q7" V)| ' E[V, Q" (my — 7, )]
1 1
= ; E[(mr Kmm) Q- (mT Kmm)]
_ E(’"T(Xr) - 7TK“““(X[)> . | ( ) ( )‘
- s (X,) = e T T M s
so that
max | — > E[(m; — 7, ) Q" Ly 131w le
KEK

7()EM, . xEA

) Card'? K,
= inf sup|mT(x) 7(x)|Op —

min
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For the second term in (B.8), observe that

(mT - WK",i“),Q71WK '
E Tl/2

2 2

(mT - Wkn,i“),‘()‘71 \I,K '
=C||3.°E

T1/2

C
=7 E[(my =, ) QO I[E(FQ W]

XE[Y,.Q '(my — 7, )]

(mT(Xf) - mmm(Xt)>2
=CE
o(X,)

= Csup|my(x) — 7, (x)|, and then
XEA

Kmin

(mT - WK.nin)/Qil lI,Kmm & ~
E = SO -3 o )e

Csuplmp(x) =, ()]

XEA

T (2 == v el + 12 e (@)l

Therefore Lemma A.1, (B.3), and (B.6) yield

1
max ——
ke, k2

(my =, ) Q"
E

= }(i;lwx'()l —-3'wa e

K2 \12
= inf sup|mT(x)—7T(x)|O]p[< max) +Kmava]Cardl/leT.

w()EI, . xEA T

For the last item of (B.8), (B.3), (B.4), (B.6), and Lemma A.1 give that

My — T, 0 my— 1, ) Q~ R .

( ) W ( ) ¥,

-E w0 e
T T

1
max ——

KEK s \/;

= inf sup|my(x) — 7(x)|k)/2 Op(v; Card"/? K;)

7()EM,,,, xEA

X ATk Op[(1 + v;) Card 2 K ]

inf  sup|my(x) — 7(x)|T"20p (k2 v, Card ;).

max
()€, xEA

https://doi.org/10.1017/50266466606060282 Published online by Cambridge University Press


https://doi.org/10.1017/S0266466606060282

580 ALAIN GUAY AND EMMANUEL GUERRE

Substituting in (B.8) and (B.7) yields

|mf QW (WO )T O e
1/2

max
KEK K

= l/20 E'/2 M 2+(1+v ) inf  sup|my(x) — 7w (x)]
172 ¥ o(X,) T roen,, xea

——
XEA

+ inf  sup|mgy(x) — 7(x)|0p
m()EM,,,, xEA

2

1/2
K X
X |:<Kmiln/2 + (%) + ;<m,(vT>C.alrd‘/2 Ky + T"V?k!2 v, Card ICT]

B T1/2 L mT(Xt) 2 .
=, 0| E ——— | + inf sup|my(x) — 7(x)| + vy sup|my(x)] |.

a2 a(X,) 7()EM, . xEA xEA

B.3. Proof of Lemma A.3. Abbreviate V. /2 ®.(X,)e, into 7,. Consider a sequence
{7 };en of i.i.d. N(0,1d,) variables independent of {&,},ex and {X,},en, where Id, is the
identity matrix of dimension x X k. Let Z(-) be a three time differentiable real
function. Define S, = X/ ,. 7, Or = (T '|S7|®> — o*k)/N2k. The proof of
Lemma A.3 is divided into three steps. The main step aims to establish that for C(Z) =
max (1,sup.egr|Z'(z)|,sup.cr|Z"(z)|) and some C > 0 independent of k and 7,

[E[Z(Q)] — E[Z(0,)]] = C-C(T)-gfw>T /D30 (B.9)

Step 1. Proof of (B.9). We build on arguments used in the proof of the Lindeberg
central limit theorem as given in Billingsley (1968, Thm. 7.2); see Horowitz and Spokoiny
(2001, Lem. 10) for a similar approach in the context of adaptive testing. It consists of
successive changes of the 7, into their Gaussian counterparts 7),, as seen from (B.10),
which follows. However, a important difference is due to the use of nonparametric series
methods and dependence. Define

. TS (n) S, (m) — &
Se(m) =S +0+8L,, Q) =— ¢§ ,

Jr(m) = Z(Q;r(n)) forn € RS

This gives

[E[Z(Qr)] = E[Z(O)]] = [E[Frr(nr)] = ELTi7(71)]] = Z (E[Tr(n)] = ELT(5,)])

= 2 [E[Tr ()] = ELT (@] (B.10)
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Define, for z € R and n € R*, Jz(z;m) = Jir(zn). A third-order Taylor expansion of
Jir(z;m) with integral remainder yields

dJrO;m,) 1 d*Tp(03m,) (P (1 =2)? d*Fr(zm,)
+ = + d

Jir(n,) = T (0) = 7 ST N 7z z,
with
( dj”fg"’) - Tjﬁ 28,0 (0)T (0,1 (0)),
M’;f: ) sz_K Im 12" (0. (0)) + ﬁ (0! 5:2(0)°Z" (Q,1(0)), (B.11)
\ %f") = T—O I, 27; S (20 ) T (Qur(zm,) + TL/ (0! S (21" (Qr(zm,)).

Let  be the sigma field generated by ...,7;-2,M—1,Tii+1, Ti+2, - - - and note that S,(0)
and Q,7(0) are F;-measurable. Because 7, and 7, are centered given F,, we have

E[dZT(O;n,) B d.ZT(O;ﬁ,)] _ E[

) _
- p T_\/z_K S (0)Z'(Qr () E[(m, — n,)ﬁ]} =0

Substituting the Taylor expansion in (B.10) yields

1z > Jr0;m,)  d* T (0;9,)
BIZ@)] - BTG = 5 3 [ e ] ‘ (B.12)
= z d*z
1 Lot &> Tr(zm,)
— _ 2
2 ; fo S HE d’z ‘
d3 .«
+ ‘IE —”7”52’"’) ’ ] dz, (B.13)
d’z

and we now bound each of these two sums.

We begin by establishing a preliminary inequality. Let n; and n, be two positive real
numbers with 2 < n; + n, = 8. Then for any ¢, ' and z € [0,1],
max (B[S (zn)I" [0, 1" EIS 7 (z@i) 1" |9,]72) = Coi*macmer2pm /2, (B.14)
|

We give a proof for E|S,;(zn,)|" [n,/]", the other bound being similarly established.

The Holder inequality implies that
E|Sr(zn )™ |n |7 = B/t S, (zm, )|t meB /) [, |1

= BN (1S, + ] + 1T e

(ny+n3)/2
<”V 1/2”n21Env/('l|+"z)|:2 G (X )8 :| >

< pmtnm—l (]EV!,/(nl+nz) ” Sr + an”n'ﬂlz + Em/(mtna) ” grﬁl ||n|+r12)

X (V21 ke P/ g ),
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Because 7, is an N(0,021d,), it is easily seen that E™/0utm)|ST |mtn <
Co™*™(kT)™’?, and we now bound E™/n*m)|§ + zq ["+% We have, by con-
Vexity, the Burkholder inequality (see Chow and Teicher, 1988, p. 396, noticing that
Ef Lo (X)) e; + zor(X;) e, is a sum of difference of martingale), and the Minkowski
inequality

E[S, + zn,[ """

1« [t-1 (ny+ny)/2
= |VK—1/2|n|+n2K(n|+ng)/2E|:_ E (E éDk(X,-)S,- +Z§Dk(X,)8,> :|
K

k=1 \i=1
—1 nl+n2]111+n2

E e (X)) e + 2o (X, ) g,

K
= HVK*]/ZHnl‘FnZK[(nl‘Fnz)/z]*l 2 I:IEI/("‘+"2)
i=1

k=1

= HVK—l/zHn,+nzK[(n1+n2)/2]—1

—1 (ny+ny)/2 7 (ny+ny)/2
X C 2 I:IEZ/(”‘“'Z’ (E e (X)) e} + 229k (X, )28,> :|

k=1 i=1

K t (ny+ny)/2
= C” V’:l/Z ”n|+n2K[(n|+nz)/2]7l E |:E E2/(n1+n2) |¢I?(Xi)si2|(n|+nz)/2 :|

k=1L i=1
= C” V,:l/z ”nl+nZ(KT)('ll+”2)/2§0:ol+n2E‘ g, ‘nl+nz'
This gives B™"/m*m) | § + zm,|"+™ < C(kT)" /2@ and then (B.14).

We now return to (B.13). The expression (B.11) of the third derivative of Jr(z;7;)
and (B.14) yield

d* T (z3m,)
d3z

d3z

o d*Jr (23,
s (1—z)2H]E +‘IE jT(“’)Hdz
=10

! 10
<C(I)2 (l—z) { ZJE[HTI,II 1S Gzl + 121 18- (273,)11]

=1

8
b Bl 1S eI+ 1115 () d

K3 1/2
= C-08-C(T) (k-T2 + k¥2.T"V2) = c-go:o-c(I)<7> . (B.15)
To study (B.12), let @(X,) = V. ®(X,) = [&1(X,), ..., 8(X)]', Sy = S,(0) =

[Sizse.osSer]’s O = Q,(0). The definitions of 7,, 7j,, and F, show that E[9,n¢ —

ﬁkrﬁer\f] eu(X)@e(X,) — Ik =€) = &u(X,) Pe(X,) — E[@(X,) §¢(X,)]. Therefore
because Q,; and S, are F, measurable, conditioning with respect to ; yields, using the
expression of the second-order derivative of J7(0;7,) given in (B.11),
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[dZZT(O;n,) dzer(O;’;h):l
E
d*z d*z

> EL@HX,) —EGHX NI (0]
TN2k =1

4
+ T_ E[(@k(Xz)QBe(X[) - E[@k(X;)@e(Xz)])SktTSezTI”(QzT)]

K 1=k t=

2 K
=2 ’
—eT ZICOV(%(X,),I Q1))

4
+ E Cov(g(X,)@¢(X,), SerSeir " (Osr)).

T2k 1=k {=k
Let n be an integer and define

— T
SIT - Sr—nfl + SH—l’

o = Tl — ot 28008 = Sy ) H IS, = Sl
" N2« o N2k ’

,My—n—1, Which are n + 1

The variables QtT and 5,7 depend upon 7;+1,...,77r and ny,...
o (0] =

time periods far from the @Z(X,)’s. Because sup,ep¢|@;(x)| = sup,cge
V.-Y2| o Vk, the Wolkonski—Rozanov inequality yields
K q Yy

> Cov(g;(X,), 7' (0r))
k=1

=4CDIV, 2 Pe2ka(n), (B.16)

Z COV[@k(Xt)ae(Xt)’5kt1‘§€t7‘1//(ét7‘)]
1=k, €=k
=8C(DIV, " Peira® (n) X B[Sy Serl*
1=k, {=k

=8C(DV, P2 ke (n) > EVASIPEVE S,
1=k, {=k

=C-C(D)|V,"?|*o2 k3 Ta**(n), (B.17)

by first integrating out with respect to the 7,4, ..., )7, which are independent from the
1,’s, and using (B.14). Note that Eg(X,)* = |V, V2|22 kEg,(X,)? = |V.7 2|02 k
and Var'2(g2(X,)@2(X,)) = (Eg¢(X,)EE{(X,)"* = |V, ?|@,Nk. This together
with the definition of O, and (B.14) gives
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kz Cov[@2(X,),T'(Qr) — T'(Qr)]

= C(/—I) iE[‘ng(X)*”(Z”g 18— =, |+1S_,—S 12)]
= NP = k t 1T t—1 t—n—1 —1 t—n—1
C(T) & _
= DEVIGX) - 117
TN2k k=1

XEVHS* X EVA|S, .y = S,y [* + EV2|S,y = S, |*)

C(1)
=C K X @ k2 X (@ \ KT o\ Kkn + ¢2 kn
T@( ® (¢ ® ¢ kKn))
\/Tn +n
=C-C(I)@pr> ——,

T

2€ COV[@k(Xr)ﬁae(Xt)v S{’tTSktT(I” (QtT) - I”(QvtT))]
1=k, €=k

C(I) /8¢ 8 1/8 8 1/4 8
= T\/ﬂ (IE ”SzT” E ”St—l - Sl—n—l” +E ”St—l - S!—n—l” )
X Var'2 (&7 (X,) &7 (X,)E/3S5 B V2SS,
1=k, €=k
C(I)

=C = ko2 (NTn +n) X K2 NkeZT=C-C(I)-¢>x*(\NTn + n),
K

2 COV[@(X:)QB«(XJ, (SetT - SerT)(SktT - gkrT)I,,(QVrT)]

1=k, €=k

=C(T) 2 Var'2(GX)EIXDE (S = Seer) B (St — Siar)*

1=k, {=k

=C-C(T)-¢2 k> n,

Cov[g,(X,)@.(X,), SkrT(S{/tT - 5{/:7)1” (QtT)]

1=k, €

=C(T) 3 Var'2(HX) G (X )EASEY(Ser = Ser)?

1=k, €=k

=C-C(T) -2 k>*\nT.
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Therefore, (B.16), (B.17), and these inequalities give

g} Cov(@(X,),Z'(Q,r)) ‘

= C~C(Z)-¢>;K<ax(n) + K@)

Cov(@(X,)@(X,), SirSerr L"(Qi7) ‘
1=k, €=k

= 1S§SKCov[¢k(x,>¢e(x,),§k,Ts},Tz~<Q“,T)]|
+ N Cov[ @, (X,)B0(X,), Sisr Ser (T (Qyr) — I”(er))]‘
+2 >y Cov[ @, (X)) 3e(X,), Seur(Serr — §€tT)Z,,(Q;T)]|
n

COV[Q_D;((X,)Q_D((X,), (S(,/tT - g(rT)(SktT - SktT)Z”(QutT)] ‘
1=k, €=k
=C-C(I) @3 k> (Tay*(n) + \/n_T +n)-

Summing over ¢ gives in (B-12)

>

=1

[dZJ,T(O;n,) dzZr(O;ﬁ,)] ‘
IE —
d?*z d?*z

= C-C(I)'¢;\/;<ax(") tx (\/T_Y;—Jrrl))
()63 S (T NT + )
= C-C(D)-¢3 [ Vicay(n) + e/ (n) + (V2 + %) (\/ETH)]
= c-C(I)-wiK2<a§/4(") + @)

=C-C(I) -3 k? (n(3/4)(1+a) 4 (—anT-i-n)>’

under Assumption M(i). An optimal choice of the order of n in (B.18) is T2/5+3a),
which gives the upper bound C-C(Z)- @3 k>T /2 +@/5+30]  Therefore (B.18) and

(B.12), (B.15), and (B.13) yield that (B.9) is proved.
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Step 2. Proof of Lemma A.3(i). Now choose a three time continuously differentiable
Z.(z) with Z.(z) = 0 if z = —e, Z.(z) = 1 if z > 0. This gives, for any y € R,

l(z=zy)=Z(z—y)=l(z=y —e), (B.19)
and then, by (B.9),
P(Q;=y) SET(Q; —y) SEL(Q; —y) + Corpl T~ ¥/2HIT/GH0] - (B.20)
=P(Qr=y—e) +o(l),
P(Qr=7y)=EZL(Qr —y—€) =EL(0r — v —¢) to(l)
=P(Q, =7y +e€)+o(l).

Note that Oy is a (x (k) — K)/VZK that has a continuous density and converges in dis-
tribution to a standard normal if k goes to infinity. Therefore taking e small enough
gives Lemma A.3(i).

Step 3. Proof of Lemma A.3(ii). The proof is done by bounding EZ.(Q7 — v) in
(B.20). Observe that O has the same distribution as

1= 21

where the {;’s are i.i.d. N(0,1) random variables. As established in the proof of Theo-
rem 7.2 of Billingsley (1968) and changing the ({7 — 1)/~2 into standard N(0,1) vari-
ables, there is a constant C, with

€

Then (B.19) and (B.20) show
P(Qr=y) SPINO,1) =y =€) + C [>T~ 2N a/830] + (1/4]))].

Applying the Mill’s ratio inequality (see Shorack and Wellner, 1986, p. 850) to P(N(0,1) =
v — €) shows that Lemma A.3(ii) is proved. n
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