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Interaction of sedimenting spheres with multiple
surface roughness scales

By YU ZHAO AND ROBERT H. DAVIS†
Department of Chemical Engineering, University of Colorado, Boulder, CO 80309-0424, USA

(Received 9 July 2002 and in revised form 25 April 2003)

The interaction of a pair of spherical particles of different densities and/or sizes with
microscopic surface roughness sedimenting due to gravity in a viscous fluid is analysed
by theory and experiment. The surface topography is modelled as a combination of
small uniformly distributed bumps of uniform height and larger bumps that are more
sparsely distributed. The existence of these surface asperities allows the spheres to
physically contact each other, so that both hydrodynamic and solid-contact forces
are important. When the angle between the line of centres and vertical is small,
the spheres may rotate as a rigid body because they are not able to roll up and
over a large bump. As this angle increases, however, the heavy sphere rolls and
slips past the lighter sphere, and the separation between the nominal surfaces of the
spheres varies between the heights of the small and large asperities. When considering
many encounters, there is a distribution of nominal separations at each angle due to
the distribution of initial conditions and surface topography. The average nominal
separation generally increases with increasing angle between the line of centres and
vertical because the normal component of gravity, which drives the spheres close
together after an encounter with a large bump lifts them apart, decreases as this angle
increases.

1. Introduction
The behaviour of non-colloidal particles suspended in a viscous fluid at low

Reynolds numbers is of great interest to many branches of technology. While
lubrication forces prevent contact of perfectly smooth particles in a continuum fluid
under the action of a finite force (Reynolds 1886), real particles in a viscous fluid can
make direct solid–solid contacts due to their microscopic surface roughness.

The existence of contact forces has caused many experiments to exhibit results
which differ from theoretical predictions for smooth spheres. In the case of shear
flow, it was found that the particles may rotate as a pair when in contact, and then
separate (Arp & Mason 1977). Furthermore, Parsi & Gadala-Maria (1987) found that
the pair-distribution function for sheared suspensions is higher on the approaching
side of a reference sphere than on the receding side, and Rampall, Smart & Leighton
(1997) presented further evidence that contact forces break the fore-and-aft symmetry
predicted for sheared suspensions of smooth spheres. In sedimentation, Zeng, Kerns &
Davis (1996) and Zhao & Davis (2002) also showed that the relative trajectory of
two unequal spheres loses the fore-and-aft symmetry predicted for smooth spheres,
when contact occurs due to microscopic surface roughness.

† Author to whom correspondence should be addressed: robert.davis@colorado.edu
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102 Y. Zhao and R. H. Davis

To describe the interaction of contacting particle pairs in a dilute suspension,
Davis (1992) proposed two models: the stick/rotate model, where the spheres lock
together and rotate like a rigid body, as observed by Arp & Mason (1977) in a
shear flow, and the roll/slip model, where one sphere rolls with or without slipping
around the surface of the other, as observed by Zeng et al. (1996) and Zhao & Davis
(2002) for sedimenting particles. In both models, the contact forces are assumed to
be compressive but not tensile, so that relative motion along the line of centres is
prevented by contact when the spheres are pushed together but not when they are
pulled apart.

The presence of hydrodynamic surface roughness and the irreversible nature of the
contact forces affect the rheological properties of suspensions. For example, Davis
(1992) and da Cunha & Hinch (1996) examined the effects of pairwise contact
interactions on hydrodynamic diffusion in dilute suspensions. Wilson & Davis (2000,
2002) calculated the effective viscosity and normal stress differences in dilute and
concentrated suspensions of rough spheres during simple shear flow by using the
roll/slip model to describe the pairwise interactions of particles in contact.

In related work, a rough sphere moving down an inclined plane was examined by
Smart, Beimfohr & Leighton (1993) and Prokunin (1998), who considered a single
scale of surface roughness. Galvin, Zhao & Davis (2001) and Zhao, Galvin & Davis
(2002) subsequently explored multiple roughness scales by considering the sphere
or plane to be covered by bumps of two different sizes. A key finding is that the
average separation between the nominal surface of the sphere and plane increases
with increasing inclination of the plane from horizontal, with the smaller bumps being
most important at small angles and the larger bumps most important at large angles,
as suggested previously by King & Leighton (1997).

In this paper, we consider gravitational interaction of two unequal spheres with
multiple scales of microscopic bumps on the surface of one of the spheres. There
is a low coverage of large bumps which are well separated by a higher coverage of
small bumps. We are particularly interested in the average separation between the
nominal surfaces of the two spheres as they move around each other, because this
separation is expected to influence the rheological properties of suspensions. In § 2,
a physical model is provided to describe the behaviour of two spheres experiencing
both hydrodynamic and solid–solid interactions. In § 3, the experimental materials
and method are described. In the next section, a discussion of the model results is
presented, and then these results are compared with those from the experiments in
§ 5. Concluding remarks are given in § 6.

2. Theoretical development
Consider the motion of two unequal solid spheres of radii a1 and a2 and densities

ρ1 and ρ2 falling due to gravity at low Reynolds number through a viscous fluid of
viscosity µ and large extent. The spheres are large enough that Brownian motion and
colloidal forces are negligible, but they are small enough that inertia is not important.
Sphere 1 has a higher terminal velocity (due to its greater density and/or size) and
falls past sphere 2. If the initial horizontal offset is sufficiently small, then the surfaces
of the spheres may make physical contact due to microscopic surface roughness. As
shown in figure 1, the microscopic roughness is assumed to reside on the heavy sphere
and to be characterized by a combination of large bumps of height δL � min(a1, a2)
and small bumps with height δS < δL. The large bumps are assumed to be very sparse,
so that they are encountered individually; they may have a distribution of heights, but
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Figure 1. Coordinate system and sketch of (a) two interacting spheres and (b) close-up of
contact interaction.
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104 Y. Zhao and R. H. Davis

for simplicity we primarily consider large bumps of a single height. The separation
between the nominal surfaces of the two spheres varies as they roll up and over
the contact point on a large bump. In contrast, the small bumps have a somewhat
higher surface coverage and keep the nominal surfaces at nearly constant separation
δS when in contact on the small bumps. Depending on the initial orientation of the
heavy sphere, contact may first occur on a large bump or on the small bumps.

Let θ be the angle between the line of centres and the gravity vector, with θ = θ0

when contact first occurs at t = t0. Further, let β1 be the angle between the line of
centres and the line joining the centre of the heavy sphere with the closest large bump
at the time of contact, with β1 =β0 when contact first occurs. The rate of change of
the angle β1(t) plays a key role in the progression of the two-sphere interaction after
contact occurs. Its variation is given by

dβ1

dt
= ω1 − ω, (2.1)

where ω1 is the (clockwise) rotational rate of the heavy sphere and ω = dθ/dt is the
rotational rate of the line centres. For equal-size spheres, ω is usually larger than ω1

(several special cases are discussed later), which leads to dβ1/dt < 0, indicating that
the second large bump to be encountered is located clockwise from the first large
bump.

The translational (u1 and u2) and rotational (ω1 and ω2) velocities of two spherical
particles in response to the applied forces (F1 and F2) and torques (L1 and L2) may
be written as linear superpositions for viscous interactions at low Reynolds number
(Jeffrey & Onishi 1984):

u1 =
F1

6πµa1

·
[
xa

11er er + ya
11(I − er er )

]
+

F2

3πµ(a1 + a2)
·
[
xa

12er er + ya
12(I − er er )

]
− yb

11 L1 × er

4πµa2
1

− yb
21L2 × er

πµ(a1 + a2)2
, (2.2)

u2 =
F1

3πµ(a1 + a2)
·
[
xa

21er er + ya
21(I − er er )

]
+

F2

6πµa2

·
[
xa

22er er + ya
22(I − er er )

]
− yb

12 L1 × er

πµ(a1 + a2)2
− yb

22 L2 × er

4πµa2
2

, (2.3)

ω1 =
yb

11 F1 × er

4πµa2
1

+
yb

12 F2 × er

πµ(a1 + a2)2
+

L1

8πµa3
1

·
[
xc

11er er + yc
11(I − er er )

]
+

L2

πµ(a1 + a2)3
·
[
xc

12er er + yc
12(I − er er )

]
, (2.4)

ω2 =
yb

21 F1 × er

πµ(a1 + a2)2
+

yb
22 F2 × er

4πµa2
2

+
L1

πµ(a1 + a2)3
·
[
xc

21er er + yc
21(I − er er )

]
+

L2

8πµa3
2

·
[
xc

22er er + yc
22(I − er er )

]
, (2.5)

where er = r/r is the unit vector along the line of centres, r is centre-to-centre vector
of magnitude r , I is the unit second-order tensor, and the x- and y-coefficients are
dimensionless two-sphere mobility functions which depend only on the size ratio
λ= a2/a1 and the dimensionless centre-to-centre separation s = 2r/(a1 + a2). The two-
sphere mobility functions are expected to be valid, despite the presence of microscopic
surface roughness, provided that the nominal surface-to-surface separation is large
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Interaction of sedimenting spheres with multiple surface roughness scales 105

compared to the roughness heights or the fractional coverage by bumps is small
compared to unity (Smart & Leighton 1989). The applied forces and torques, and the
resulting motion, depend on whether the spheres are touching on the large or small
bumps, or not at all, as considered in the following subsections.

2.1. Motion without contact

When the two spheres are not in physical contact, which may occur prior to first
contact or after contact with a large bump ends, the only applied forces are the net
gravitational forces:

Fg

1 = 4
3
πa3

1(ρ1 − ρ)g = 6πµa1u0
1, (2.6)

Fg

2 = 4
3
πa3

2(ρ2 − ρ)g = 6πµa2u0
2, (2.7)

where ρ is the fluid density, g is the gravitational acceleration, and u0
1 and u0

2 are
the Stokes settling velocities of the individual spheres when isolated. There are no
applied torques in this case. Then, inserting (2.6) and (2.7) in (2.2)–(2.5) yields

u1 = u0
1 cos θ

(
xa

11 + xa
12

2λ3γ

1 + γ

)
er + u0

1 sin θ

(
ya

11 + ya
12

2λ3γ

1 + λ

)
eθ , (2.8)

u2 = u0
1 cos θ

(
2

1 + λ
xa

21 + λ2γ xa
22

)
er + u0

1 sin θ

(
2

1 + λ
ya

21 + λ2γya
22

)
eθ , (2.9)

ω1 =
u0

1 sin θ

a1

(
3
2
yb

11 + yb
12

6λ3γ

(1 + λ)2

)
eφ, (2.10)

ω2 =
u0

1 sin θ

a1

(
6

(1 + λ)2
yb

21 + 3
2
λγyb

22

)
eφ, (2.11)

where eθ is the unit vector in the direction of increasing θ , eφ = eθ × er , and γ =
(ρ2 − ρ)/(ρ1 − ρ).

It is common to examine the relative translational velocity of two sedimenting
spheres (Batchelor & Wen 1982):

dr
dt

= u2 − u1 =
(
u0

2 − u0
1

)
· (Ler er + M(I − er er )), (2.12)

where the two-sphere relative mobility functions along and normal to the line of
centres, respectively, are

L =

(
xa

11 − 2(1 − λ3γ )

1 + λ
xa

12 − λ2γ xa
22

)/
(1 − λ2γ ), (2.13)

M =

(
ya

11 − 2(1 − λ3γ )

1 + λ
ya

12 − λ2γya
22

)/
(1 − λ2γ ), (2.14)

using the identities xa
21 = xa

12 and ya
21 = ya

12. The rotational velocity of the line of centres
is

ω = ωeφ =
u0

1 sin θ

a1

(
2(1 − λ2γ )M

(1 + λ)s

)
eφ, (2.15)

as follows from (2.12) and the kinematic relation rω =(u1 − u2) · eθ .
We restrict our attention to surface roughness elements which are sufficiently small

and well spaced that they do not significantly modify the mobility functions of smooth
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spheres, except when contact occurs (Smart & Leighton 1989). Then, the relative
hydrodynamic mobility functions for non-touching spheres in near contact have the
limiting forms (Jeffrey & Onishi 1984)

L = L1ξ + O(ξ 2 ln ξ−1), (2.16)

M =
M0(ln ξ−1)2 + M1 ln ξ−1 + M2

(ln ξ−1)2 + e1 ln ξ−1 + e2

, (2.17)

where the constants L1, M0, M1, e1 and e2 depend only on λ and γ , and ξ =2δ/

(a1 + a2) = s − 2 is the dimensionless separation between the nominal sphere surfaces.
When the spheres are close but not touching, then the normal component of their

relative motion toward one another is resisted by a lubrication force of magnitude
(Reynolds 1886)

FL =
−6πµa2(u2 − u1) · er

δ
=

−6πµa2

δ

dδ

dt
, (2.18)

where a = a1a2/(a1 + a2) is the reduced radius. As written, this force is positive when
the nominal separation δ is decreasing, and it acts in the positive er -direction on
sphere 2 and in the opposing direction on sphere 1. It is part of the hydrodynamic
forces on the two spheres and balances the rest of the hydrodynamic forces (i.e. the
drag forces on the falling particle pair away from the near-contact region) and the
applied gravitational forces. Combining (2.12), (2.16) and (2.18) gives

FL =
12πµa1u

0
1λ

2(1 − λ2γ )L1 cos θ

(1 + λ)3
. (2.19)

2.2. Contact with a large bump

When a bump on the heavy sphere makes contact with the relatively smooth surface
of the light sphere, then an equal and opposite contact force is exerted between the two
spheres. The contact force includes a compressive component (Fn) that acts normal to
the contact surface and a frictional component (Ft ) that acts tangent to the contact
surface. These forces on the heavy sphere are shown schematically in figure 1(b)
for contact involving a single large bump; note that the direction of Fn is that of the
outward normal to the surface of the smooth sphere and at angle β2 to the line of
centres, where geometrical constraints require that

a2 sinβ2 = (a1 + δL) sin β1 or β2 ≈ β1/λ. (2.20)

For simplicity we consider only large bumps that are located on or near the equator
of the heavy sphere, so that the motion of the sphere centres remains in a single
vertical plane. Then, the applied forces consisting of gravitational and contact forces
on the two spheres are

F1 =
(
F

g

1 cos θ − Fn cos β2 +Ft sinβ2

)
er +

(
F

g

1 sin θ − Fn sinβ2 − Ft cosβ2

)
eθ , (2.21)

F2 =
(
F

g

2 cos θ + Fn cos β2 − Ft sinβ2

)
er +

(
F

g

2 sin θ + Fn sinβ2 + Ft cos β2

)
eθ . (2.22)

The contact forces also result in applied torques about the sphere centres:

L1 = (a1 + δL)(Fn sin(β1 + β2) + Ft cos(β1 + β2))eφ, (2.23)

L2 = a2Ft eφ. (2.24)
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Using (2.20)–(2.24) in (2.2)–(2.5) and employing the approximations δL � a1,
cos β2 ≈ 1, cos(β1 +β2) ≈ 1, sin β2 ≈ β2 and sin(β1 + β2) ≈ (1 + λ)β2 yields

u1 ≈ u0
1 cos θ

(
xa

11 + xa
12

2λ3γ

1 + λ

)
er + u0

1 sin θ

(
ya

11 + ya
12

2λ3γ

1 + λ

)
eθ

+
Ft

6πµa1

(
−y11 +

2

1 + λ
ya

12 + 3
2
yb

11 +
6λ

(1 + λ)2
yb

21

)
eθ

+
β1Fn

6πµa1λ

(
−ya

11 +
2

1 + λ
ya

12 + 3
2
(1 + λ)yb

11

)
eθ , (2.25)

u2 ≈ u0
1 cos θ

(
2

1 + λ
xa

21 + λ2γ xa
22

)
er + u0

1 sin θ

(
2

1 + λ
6a

21 + λ2γya
22

)
eθ

+
Ft

6πµa1

(
− 2

1 + λ
ya

21 +
1

λ
ya

22 +
6

(1 + λ)2
yb

12 +
3

2λ
yb

22

)
eθ

+
β1Fn

6πµa1λ

(
− 2

1 + λ
ya

21 +
1

λ
ya

22 +
6

(1 + λ)
yb

12

)
eθ , (2.26)

ω1 ≈ u0
1 sin θ

a1

(
3
2
yb

11 + yb
12

6λ3γ

(1 + λ)2

)
eφ

+
Ft

6πµa2
1

(
− 3

2
yb

11 +
6

(1 + λ)2
yb

12 + 3
4
yc

11 +
6λ

(1 + λ)3
yc

12

)
eφ

+
β1Fn

6πµa2
1λ

(
− 3

2
yb

11 +
6

(1 + λ)2
yb

12 + 3
4
(1 + λ)yc

11

)
eφ, (2.27)

ω2 ≈ u0
1 sin θ

a1

(
6

(1 + λ)2
yb

21 + 3
2
λγyb

22

)
eφ

+
Ft

6πµa2
1

(
− 6

(1 + λ)2
yb

21 +
3

2λ2
yb

22 +
6

(1 + λ)3
yc

21 +
3

4λ2
6c

22

)
eφ

+
β1Fn

6πµa2
1λ

(
− 6

(1 + λ)2
yb

21 +
3

2λ2
yb

22 +
6

(1 + λ)2
yc

21

)
eφ. (2.28)

In deriving (2.25) and (2.26), the identity xa
11 = 2xa

12/(1 + λ) = 2xa
21/(1 + λ) = xa

22/λ for
two touching spheres (Jeffrey & Onishi 1984), correct to O(ξ ), was invoked. The rate
of rotation of the line centres is determined from the relative velocity normal to the
line of centres:

ω=
(u1 − u2) · eθ

r
≈ u0

1 sin θ

a1(1 + λ)

(
ya

11 − 2

(1 + λ)
(1 − λ3γ )ya

12 − λ2γya
22

)

+
Ft

6πµa2
1(1+λ)

[
−ya

11 +
4

(1+λ)
ya

12 + 3
2
yb

11 +
6λ

(1+λ)2
yb

21 − 1

λ
ya

22 − 6

(1+λ)2
yb

12 − 3

2λ
yb

22

]

+
β1Fn

6πµa2
1λ(1 + λ)

(
−ya

11 +
4

(1 + λ)
ya

12 + 3
2
(1 + λ)yb

11 − 1

λ
ya

22 − 6

(1 + λ)
yb

12

)
. (2.29)

The components of the contact force in (2.25)–(2.29) may be found by first noting
from geometric considerations that

cos β1 =
a1 + δ + 	

a1 + δL

and cosβ2 =
a2 − 	

a2

, or β1 ≈ [λ(ξL − ξ )]1/2, (2.30)
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by expanding the terms and using β2 =β1/λ, β1 � 1, δ/a1 � 1, 	/a2 � 1 and δL/a1 � 1,
where ξL = 2δL/(a1 + a2), as long as the two spheres remain in contact via the large
bump. Here, 	 is the small distance from the edge of sphere 2 to the line passing
through the contact point and normal to the line of centres When dβ1/dt < 0 and
β1 > 0, the separation δ increases with decreasing β1 as the interaction proceeds and
the heavy sphere ‘pole vaults’ upward from the surface of the light sphere using the
large bump as the pole. When β1 = 0, the maximum separation of δ = δL between the
nominal surfaces is reached, and then δ decreases with decreasing β1 < 0 as the heavy
sphere descends back toward the light sphere due to gravity. The component of this
relative motion along the line of centres gives rise to a lubrication force that, when
combined with the component of the contact force acting along the line of centres,
plays the same role as the force for non-touching spheres and balances the remainder
of the drag force and the net gravitational force on each of the two spheres. Hence,
using (2.18) and (2.19),

−6πµa2

δ

dδ

dt
+ Fn cos β2 − Ft sinβ2 =

12πµa1u
0
1λ

2(1 − λ2γ )L1 cos θ

(1 + λ)3
. (2.31)

From (2.30) and (2.1),

dδ

dt
= −(a1 + δL) sinβ1

dβ1

dt
− a2 sin β2

dβ2

dt
≈ −a1β1(1 + 1/λ)(ω1 − ω),

and so (2.31) becomes

Fn − β1Ft/λ =
12πµa1u

0
1λ

2(1 − λ2γ )L1 cos θ

(1 + λ)3
− 6πµa3

1λβ1(ω1 − ω)

(1 + λ)δ
. (2.32)

Equation (2.32) provides one relationship involving the unknown components of
the contact force, Fn and Ft . When the friction force is sufficiently large to prevent
slipping, then a second relationship follows from the requirement that the surface
velocities of the two spheres must be equal at the point of contact:

u1 + (a1 + δL)ω1 × (cosβ1er − sinβ1eθ ) = u2 − a2ω2 × (cosβ2er + sinβ2eθ ). (2.33)

Taking the dot product of this constraint with eθ and employing (2.18) and the limit
δL � min(a1, a2) yields

(a1 + a2)ω ≈ a1ω1 + a2ω2. (2.34)

Substituting (2.27)–(2.29) into (2.32) and (2.34), and eliminating small terms of
O(β2

1 ) = O(ξL − ξ ), allows determination of the individual components of the contact
force:

Ft

6πµa1u
0
1

≈
(
(1 + λ)3α1 + 2β2

1 (1 + λ)(α1α8 + α5α6)/ξ
)
sin θ − 2β1α5λ(1 − λ2γ )L1 cos θ

(1 + λ)3α2 + (1 + λ)3β2
1α5/λ2 + 2β2

1 (1 + λ)(α2α8 + α5α7)/ξ
,

(2.35)

Fn

6πµa1u
0
1

≈

2

(
(1 − λ2γ )λ2L1 cos θ − β2

1 (1 + λ)
α6

ξ

)
sin θ + β1

(
2(1 + λ)

α7

ξ
+

(1 + λ)3

λ

)
Ft(

6πµa1u
0
1

)
(1 + λ)3 + 2β2

1 (1 + λ)α6/ξ
,

(2.36)
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where

α1 = (1 + λ)k7 − k1 − λk4, α2 = k2 + λk5 − (1 + λ)k8, α3 = k6 − k4, (2.37a, b, c)

α4 = k2 − k5, α5 = k3 + λk6 − (1 + λ)k9, α6 = k1 − k7, (2.37d, e, f )

α7 = k8 − k2, α8 = k3 − k9, α9 = k4 − k1, (2.37g, h, i)

and

k1 = 3
2
yb

11 + yb
12

6λ3γ

(1 + λ)2
, (2.38a)

k2 = − 3
2
yb

11 +
6

(1 + λ)2
yb

12 + 3
4
yc

11 +
6λ

(1 + λ)3
yc

12, (2.38b)

k3 = − 3
2
yb

11 +
6

(1 + λ)2
yb

12 + 3
2
(1 + λ)yc

11, (2.38c)

k4 =
6

(1 + λ)2
yb

21 + 3
2
λγyb

22, (2.38d)

k5 = − 6

(1 + λ)2
yb

21 +
3

2λ2
yb

22 +
6

(1 + λ)3
yc

21 +
3

4λ2
yc

22, (2.38e)

k6 = − 6

(1 + λ)2
yb

21 +
3

2λ2
yb

22 +
6

(1 + λ)
yc

21, (2.38f )

k7 =
1

1 + λ

[
ya

11 − 2

(1 + λ)
(1 − λ3γ )ya

12 − λ2γya
22

]
, (2.38g)

k8 =
1

1+λ

[
−ya

11+
4

(1+λ)
ya

12+
3
2
yb

11+
6λ

(1+λ)2
ya

21 − 1

λ
ya

22 − 6

(1+λ)2
yb

12 − 3

2λ
yb

22

]
, (2.38h)

k9 =
1

1 + λ

[
−ya

11 +
4

(1 + λ)
ya

12 + 3
2
(1 + λ)yb

11 − 1

λ
ya

22 − 6

(1 + λ)
6b

12

]
. (2.38i)

All of the above functions are evaluated at the dimensionless centre-to-centre separa-
tion s = 1 + ξ .

Rolling without slipping is limited to small angles θ � θs , so that the friction force
Ft does not exceed its maxmum value of µf Fn, where µf is the coefficient of rolling
friction. Typical values for µf are in the range 0.05–0.4 (Galvin et al. 2001). From
(2.35) and (2.36), the angle at which slipping first occurs is

θs ≈ tan−1

(
c1 + µf c2

c3 + µf c4

)
, (2.39)

where

c1 = 2β1α5λ(1 − λ2γ )L1

(
(1 + λ)3 + 2β2

1 (1 + λ)α8/ξ
)
, (2.40a)

c2 = 2(1 − λ2γ )L1γ
(
λ(1 + λ)3α2 + (1 + λ)3α5β

2
1

/
λ2 + 2(1 + λ)β2

1 (α2α8 + α5α7)/ξ

− β2
1α5(2λ(1 + λ)α7/ξ + (1 + λ)3/λ)

)
, (2.40b)

c3 =
(
(1 + λ)3 + 2β2

1 (1 + λ)α8/ξ
)(

(1 + λ)3α1 + 2(1 + λ)β2
1 (α1α8 + α5α6)/ξ

)
, (2.40c)

c4 =(2β1λ(1+λ)α6/ξ )
(
(1+λ)3α2 +(1+λ)3α5β

2
1

/
λ2 +2(1+λ)β2

1 (α2α8 +α5α7)/ξ
)

− β1

(
(1 + λ)3α1 + 2(1 + λ)β2

1 (α1α8 +α5α6)/ξ
)
(2λ(1 + λ)α7/ξ + (1 + λ)3/λ). (2.40d)
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For θ > θs , slipping in addition to rolling occurs. Then, (2.34) no longer holds. Instead,
from (2.32),

Ft

6πµa1u
0
1

=
µf Fn

6πµa1u
0
1

≈ µf (2(1 − λ2γ )λ2L1 cos θ − 2β1λ(1 + λ)α6 sin θ/ξ )

(1 + λ)3(1 − β1µf /λ) − 2β1λ(1 + λ)(µf α7 − β1α8/λ)/ξ
, (2.41)

where µf is now the coefficient of sliding friction. Finally, loss of contact with the
large bump occurs when Fn given by (2.41) with slipping, or (2.34) without slipping,
is no longer positive.

2.3. Contact with small bumps

Geometrical constraints require that

ΦL = ΦL,min ≈

√
2
(
δA
L − δS

)
a1(1 + 1/λ)

+

√
2
(
δB
L − δS

)
a1(1 + 1/λ)

, (2.42)

for the spheres to simultaneously make contact on the small bumps and two adjacent
large bumps, where ΦL is the angle between two successive large bumps along the
equator of sphere 1 and the heights of the two large bumps are δA

L and δB
L . If ΦL is

smaller than that given by (2.42), then the two spheres are not able to contact via
the small bumps. For the special case where the two large bumps are identical (δA

L =
δB
L = δL), contact with the small bumps can occur only if

ΦL � ΦL,min ≈ 2
√

λ(ξL − ξS). (2.43)

When the above constraint is satisfied, and the separation between the nominal
surfaces decreases to δ = δS , then the two spheres make contact via the small bumps
and the normal component of the contact force is directed along the line of centres.
This case was analysed by Davis (1992) and Zhao & Davis (2002), except that the
previous work was restricted to when the light sphere is neutrally buoyant. The
modified equations for the present case follow directly from those in the previous
subsection, but with β1 = β2 = 0 and ξ = ξS = 2δS/(a1 + a2).

2.4. Simultaneous contact with the small bumps and a large bump

In the work of Galvin et al. (2001) for a sphere moving down an inclined plane, a
special case occurs when the angle of inclination of the plane from horizontal is small
enough that the sphere is not able to rotate over a large bump. A similar situation
may occur for two spheres in contact at small angle θ . Suppose two spheres in contact
with small bumps and rotating with dβ1/dt < 0 encounter a large bump. If ω1 > ω, as
calculated from (2.27) and (2.29) with Fn and Ft from (2.35) and (2.36) for no slipping
or (2.41) for slipping, then (2.1) indicates that the spheres are not able to ascend the
second large bump and so do not lose contact with the small bumps. Therefore, the two
spheres will contact each other simultaneously with the small bumps and the large
bump. To remain in this condition, the two spheres must move in rigid-body
motion (ω = ω1 =ω2), or the heavy sphere must slide along the light sphere without
pivoting (ω = ω1 �= ω2). The forces and torques acting on the two spheres must be
modified from (2.21–2.24) to include contact forces from both the large and small
bumps:

F1 =
(
F

g

1 cos θ − F L
n cos β2 + F L

t sinβ2 − F S
n

)
er

+
(
F

g

1 sin θ − F L
n sinβ2 − F L

t cosβ2 − F S
t

)
eθ , (2.44)
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F2 =
(
F

g

2 cos θ + F L
n cosβ2 − F L

t sinβ2 + F S
n

)
er

+
(
F

g

2 sin θ + F L
n sinβ2 + F L

t cosβ2 + F S
t

)
eθ , (2.45)

L1 = (a1 + δL)
(
F L

n sin(β1 + β2) + F L
t cos(β1 + β2)

)
eφ + (a1 + δS)F

S
t eφ, (2.46)

L2 = a2

(
F L

t + F S
t

)
eφ, (2.47)

where the superscripts L and S refer to contact on the large and small bumps, res-
pectively.

The translational and rotational velocities of the two spheres can be found through
(2.25)–(2.29), but using F L

t cos β2 + F S
t ≈ F L

t + F S
t in place of Ft , and F L

n in place of
Fn (F S

n does not affect the translational and rotational velocities, since this force
component is along the line of centres). Because δ = δS is constant, the force balance
along the line of centres from (2.31) yields

F L
n + F S

n − β1F
L
t

/
λ ≈ 12πµa1u

0
1λ

2(1 − λ2γ )L1 cos θ

(1 + λ)3
. (2.48)

Equations (2.33)–(2.34) still hold for small angles when friction is sufficiently large to
prevent slipping. In this case, substituting (2.25)–(2.29) into the relations ω = ω1 = ω2,
and eliminating small terms of O(β2

1 ) = O(ξL − ξ ), allows the determination of the
relevent components of the contact force:

F L
n

6πµa1u
0
1

≈ λ

β1

(α4α6 − α9α7) sin θ

(α3α7 − α4α8)
, (2.49)

F L
t + F S

t

6πµa1u
0
1

≈

β1

λ

F L
n

6πµa1u
0
1

α3 + α9 sin θ

α4

=
(α3α6 − α9α8) sin θ

(α3α7 − α4α8)
. (2.50)

The solid-body rotation without slipping ends when the θ reaches the critical angle
θs , with the combined friction force F L

t +F S
t equal to µf (F L

n + F S
n ). From (2.48) and

(2.50), the angle at which slipping first occurs is

θs ≈ tan−1

{[
2λ2(1−λ2γ )L1µf

(1+λ)3

]/[(
α3α6 −α9α8

α3α7 −α4α8

)(
α8 −α7µ

2
f

α8µf

)
+

α6

α8

µf

]}
. (2.51)

During slipping, ω = ω1 �=ω2, and the relevant components of the contact forces are

F L
t + F S

t

6πµa1u
0
1

≈
[
2λ2(1 − λ2γ )L1 cos θ

(1 + λ)3
− α6

α8

µf sin θ

]/(
α8 − α7µ

2
f

)
, (2.52)

F L
n

6πµa1u
0
1

≈ λ

β1

α7

(
F L

t + F S
t

)
− α6 sin θ

α8

. (2.53)

Finally, loss of contact with the small bumps occurs when F S
n calculated from

(2.48) and (2.49) or (2.53) is no longer positive as θ increases beyond a certain value.
Then, since the contact is not able to impart a tensile force, the nominal separation
increases from δS as the heavy sphere ‘pole vaults’ away from the light sphere using
the large bump as a pivot.

2.5. Simultaneous contact with two large bumps

If the constraint given by (2.42) or (2.43) is not met, then the two spheres may make
simultaneous contact via two large bumps. This case will occur when a second large
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bump is encountered before contact is lost with the first large bump. For simultaneous
contact with two large bumps to continue, dβ1/dt= 0, and the spheres are not able to
ascend the second large bump. Instead, they stay together and rotate like a rigid body
(ω = ω1 = ω2) or slide along each other (ω =ω1 �= ω2). Following a similar analysis as
in § 2.4, the forces and torques on the two spheres are

F1 =
(
F

g

1 cos θ − F A
n cosβ2 − F B

n cos β2 + F A
t sinβ2 − F B

t sinβ2

)
er

+
(
F

g

1 sin θ − F A
n sinβ2 + F B

n sinβ2 − F A
t cos β2 − F B

t cosβ2

)
eθ , (2.54)

F2 =
(
F

g

2 cos θ + F A
n cosβ2 + F B

n cos β2 − F A
t sinβ2 + F B

t sinβ2

)
er

+
(
F

g

2 sin θ + F A
n sinβ2 − F B

n sinβ2 + F A
t cos β2 + F B

t cosβ2

)
eθ , (2.55)

L1 = (a1 + δL)
(
F A

n sin(β1 + β2) − F B
n sin(β1 + β2)

+ F A
t cos(β1 + β2) + F B

t cos(β1 + β2)
)
eφ, (2.56)

L2 = a2

(
F A

t + F B
t

)
eφ, (2.57)

where the superscripts A and B refer to the two large bumps, which are located
at angles β1 =ΦL/2 and −ΦL/2, respectively, along the equator of sphere 1 from
the line of centres. For simplicity, we assume here that the two large bumps are of
equal height. From (2.2)–(2.5) and (2.54)–(2.57), it is seen that the resulting motion for
simultaneous contact via two large bumps is the same as that for simultaneous contact
via the small bumps and the large bump, except that F A

n + F B
n replaces F L

n + F S
n in

(2.48), F A
n − F B

n replaces F L
n in (2.49) and (2.53), and F A

t + F B
t replaces F L

t +F S
t in

(2.50) and (2.51).
The simultaneous contact with two large bumps ends when the contact force via

the first large bump is zero or, equivalently, if the analysis of § 2.2 gives rise to
dβ1/dt = ω1 − ω < 0 for contact with the second large bump only. Then, the spheres
will lose contact with the first large bump and be able to asecnd the second large
bump.

3. Experimental materials and methods
The experiments were carried out at room temperature (22 ◦C–25 ◦C) in a vessel

made of Plexiglas, and filled with a Newtonian fluid consisting of 97.4% polyalkylene
glycol and 2.6% tetrabromoethane by weight. From Zhao & Davis (2002), the
kinematic viscosity of the fluid is ν = 363 cm2 s−1 at 22 ◦C and ν = 308 cm2 s−1 at 25 ◦C.
The fluid density is ρ = 1.112 g cm−3 at 22 ◦C and ρ = 1.111 g cm−3 at 25 ◦C. The vessel
was fixed on a two-dimensional stand and could be rotated about a horizontal axis.
A teflon sphere (ρ1 = 2.154 g cm−3, a1 = 0.318 cm) was used as the heavy sphere, and
a nylon sphere (ρ2 = 1.134 g cm−3, a2 = 0.318 cm) was used as the light sphere. Two
distinct roughness sizes were created by using the natural roughness for the small
bumps and then adding artificial roughness to the heavy sphere for the large bumps.
Covered with a thin layer of instant glue, the teflon sphere was rolled on a sand glass
on which a few glass beads with diameter of about 0.1 mm were sparsely distributed.
The glass beads stuck to the surface of the teflon sphere and created the large
surface roughness elements (figure 2). As described by Smart & Leighton (1989), the
hydrodynamic roughness of a sphere can be measured by allowing it to settle onto
a smooth plane in a viscous fluid and then inverting the plane and measuring the
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0.1 cm

Figure 2. Scanning electron micrograph of artificially roughened teflon sphere with small
glass beads on its surface.

times ta and td for it to fall one radius and one diameter, respectively, from the plane.
The initial separation between the nominal surfaces of the sphere and plane is then
determined using

δ/a = 2 exp

(
2 − td

(td − ta)
(1 + ln 2)

)
. (3.1)

Using this method, the natural roughness size of the nylon sphere was measured at
8 µm, and that of the teflon sphere (with a thin layer of dried glue) was measured
at 10 µm. To verify the size of the large roughness elements on the teflon sphere, the
method of Galvin et al. (2001) was used. The teflon sphere was allowed to move due
to gravity in a viscous fluid down a smooth plane inclined only a few degrees from
vertical. The plane was then inverted to horizontal (facing down), and (3.1) was used
to find the large bump size, which was 95 µm. Finally, scanning electron micrographs
(e.g. figure 2) yield an average value for the angle between two adjacent large bumps
of ΦL =29◦.

For the two-sphere interaction experiments, the two spheres were sequentially
introduced into the vessel. Two digital camcorders (Canon ELURA) were used to
observe and record the motion of the spheres from both the top and side of the vessel
(figure 3), and image analysis was performed as described by Zhao & Davis (2002).
Translational and rotational motions of the spheres with natural roughness only were
reported in our previous work (Zhao & Davis 2002), showing considerable scatter in
the data, but with at least qualitative agreement with the theory and verifying the
roll/slip model for the contact interaction with a single bump size. In the present
work, the focus of the experiments is on how the nominal separation between the two
spheres changes after contact is made when there are multiple roughness scales.

After the spheres were allowed to contact each other and rotate to a specified angle
θ , the whole system was rotated about a horizontal axis to a position so that the line
of centres was vertical (with the heavy sphere directly below the light one). The heavy
sphere then fell away from contact with the light sphere. By integrating (2.31), the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

03
00

56
52

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112003005652


114 Y. Zhao and R. H. Davis

Heavy sphere

Light sphere

Video

V
ideo

Computer

Figure 3. Schematic of the experimental setup.

dimensionless nominal separation between the two spheres at the time when system
was inverted is

ξ0 =
t1 ln ξ2 − t2 ln ξ1

t1 − t2
, (3.2)

where t1 and t2 are the times for the dimensionless nominal separation to increase from
ξ0 to ξ1 and ξ2, respectively. The values of ξ1 and ξ2 were selected to be much less than
unity (e.g. ξ ≈ 0.05 and ξ2 ≈ 0.10), so that (2.31) is accurate. The experiments were
repeated many times, allowing the distributions of apparent hydrodynamic roughness
to be found for several values of θ .

4. Model results and discussion
4.1. Different stages of contact

The theory described in § 2 was used to analyse the different contact stages
which two spherical particles with microscopic surface roughness experience during
sedimentation in viscous fluid. To reduce the number of parameters, we restrict our
attention to equal-size spheres where the lighter one is nearly neutrally buoyant sphere
(as also done in the experiments), and to large roughness elements of single size and
spacing.

Figure 4 shows the dimensionless hydrodynamic separation and the rotational
velocities of the heavy and light spheres versus the angle between the line of centres
and vertical, starting from θ0 = 10◦ and β0 = 0◦ at t = 0, with ξL = 0.06, ξS =0.012,
ΦL = 45◦, γ = 0.02, λ=1, and µf =0.15 (Galvin et al. 2001). For comparison with
the roll/slip model with only one bump size, ξ = 0.012 was used as the dimensionless
single bump height. Arrows are used to represent the transitions between the different
contact stages, and figure 5 illustrates the relative positions of the two spheres at
these transitions.

At the initial contact (IC) point (θ =10◦, β1 = 0◦ and ξ =0.06), the two spheres are
assumed to contact each other at the apex of a large bump. Under the action of both
hydrodynamic and contact forces, the spheres subsequently descend from the large
bump by rotating clockwise with ω2 > ω > ω1 > 0. Hence, dβ1/dt = ω1 − ω < 0, and
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Figure 4. The dimensionless hydrodynamic separation (dashed line) and the rotational
velocities of the heavy (solid line) and light (dotted line) spheres versus the angle between the
line of centres and vertical for the roll/slip model for one bump height (thin lines) and the
current model for two bump heights (thick lines), starting from initial conditions of θ = 10◦,
β1 = 0◦ at t = 0, with ξL = 0.06, ξS = 0.012, µf = 0.15, ΦL = 45◦, γ =0.02 and λ= 1; for the
thin lines, ξ =0.012 was used as the dimensionless bump height. S indicates where slipping
begins. See the caption of figure 5 for definitions of the other transition labels. The rotational
velocities may be made dimensionless by dividing by u0

1/a1 = 0.2 s−1 for the conditions of the
experiments.

so the rotation of the heavy sphere about the contact point is counterclockwise. As
the heavy sphere descends from the apex of the large bump, however, a lubrication
force develops and reduces the normal component of the contact force and, hence,
the maximum value of the friction force is also reduced, which causes the rotational
velocities of heavy and light spheres to decrease and increase, respectively. At the
slipping (S) position (θ = 14.6◦, β1 = −2.3◦ and ξ = 0.059), the friction force between
the spheres reaches its maximum value. After that, the spheres exhibit a combination
of rolling and slipping, and the rotational velocity of the heavy sphere decreases
further to a minimum value and then increases again, whereas the rotational velocity
of the light sphere increases to a maximum value and then decreases. Indeed, for
17.6 ◦ < θ < 26.4◦, we find ω1 < 0, indicating that the heavy sphere rotates counter-
clockwise about its centre for a brief period.

At the loss-of-contact (LC) point (θ = 29.0◦, β1 = −17.3◦ and ξ = 0.015), the
lubrication force resisting the relative approach of the nominal surfaces of the two
spheres is sufficiently strong that it balances gravity and the additional hydrodynamic
forces, so that the normal component of the contact force becomes zero and the
two spheres lose physical contact. During the period of no contact, the separation
continues to decrease until the spheres contact the small bumps (CS, with θ =30.0◦,
β1 = −17.9◦ and ξ = 0.012). Due to the frictional contact forces introduced via the
small bumps, the rotational velocities of both spheres are increased. We assume that
the small bumps are of equal size and distributed with sufficient density on the
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IC LC CS

CSL CL

θ = 10° θ = 29.0 ° θ = 30.0°

β
1
 = 0°

β
1
 = 17.3 °Φ

L

β
1
 = –17.9°

θ = 51.2°

β
1
 = –27.3°

θ = 47.6°

β
1
 = –27.3°

Figure 5. Sequential configurations for the different contact stages of two spheres with the
same initial conditions and parameters as in figure 4; IC= initial contact with a large asperity,
LC= loss of contact, CS = contact with small asperities, CSL= contact with small asperities
and a second large asperity, CL= ascending the second large asperity with loss of contact with
small asperities. Stage C2L is contact with two large asperities, which is not possible with the
parameters of figure 4.

sphere surfaces to maintain ξ = ξS = 0.012. The interaction during this contact stage
is then identical to that analysed previously for a single bump size (Davis 1992; Zeng
et al. 1996; Zhao & Davis 2002). In the present case, the two spheres roll and slip
around each other (the critical angle for slipping to begin is only 20 ◦) with a constant
separation (ξ = ξS = 0.012) until they encounter a second large bump.

Point CSL (θ = 47.6◦, β1 = 27.3◦, ξ = 0.012) represents the beginning of the contact
with a second large lump, which we assume here to be the same size as the first large
bump, with simultaneous contact with the small bumps. From figure 1, the contact
forces through the second large bump favour the clockwise rotation of the heavy
sphere and reduce the clockwise rotation of the light sphere, as verified in figure 4.
Immediately following point CSL, the velocities of the heavy sphere and the line of
centres are equal (ω = ω1), which implies that the spheres continue to simultaneously
make contact with the small bumps and the large bump. However, the rotational
velocities of the heavy and light spheres are not same (ω = ω1 �= ω2), which means
that the spheres in this case undergo a sliding motion rather than locking together in
rigid-body motion.

With increasing angle θ , the normal component of the contact force via the second
large bump decreases. At point CL (θ = 51.2◦, β1 = −27.3◦, ξ = 0.012), it reaches zero
and the spheres are able to begin rising away from contact via the small bumps and
ascend the second large bump. After that, the nominal separation between the two
spheres increases. However, for the current parameter values, the apex (ξ = ξL) of

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

03
00

56
52

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112003005652


Interaction of sedimenting spheres with multiple surface roughness scales 117

0

0.01

0.02

0.03

0.04

LC

CS CSL CL

IC

β1

ξ

H
yd

ro
dy

na
m

ic
 s

ep
ar

at
io

n,
 ξ

 
0

10

–40

A
ngle relative to a large bum

p, 
β

1  (deg.)

20 40 60 80

Angle between line of centres and vertical, θ (deg.)

AL

–30

–20

–10

Figure 6. Effect of varying the friction coefficient on the dimensionless hydrodynamic
separation (dashed lines) and the angle between the line of centres and the line connecting
the centre of the heavy sphere and a large bump (solid lines) versus the angle between line
of centres and vertical, starting from an initial condition of θ = 10◦ and β1 = 0◦ at t = 0, with
ξL = 0.036, ξS =0.008, ΦL = 30◦, γ =0.02, λ= 1 and µf =0.10, 0.15 and 0.20 (left to right).
The arrows are for µf = 0.15 and correspond to the stages described in the caption of figure 5,
but with AL= reaching the apex of the second large bump.

the second large bump is not reached before the line of centres becomes horizontal
(θ = 90◦) and the heavy sphere falls away from the light sphere.

Compared with the roll/slip model of Davis (1992) for a single bump size, the
current model for two bump sizes predicts a much more complex contact behaviour.
Besides the nominal separation varying between the small and large bump heights,
the rotational velocities exhibit discontinuities when bumps of a different size are
encountered. The changes in rotational velocities are most pronounced for the sphere
on which the large asperities reside.

4.2. Effects of varying parameter values

The interaction of two spheres with multiple roughness scales is strongly affected by
several parameters, including the coefficient of friction, µf , the bump sizes, ξL and
ξS , the angle between two adjacent large bumps, ΦL, and the initial conditions θ0

and β0. Figure 6 shows the dimensionless hydrodynamic separation and the angle
between the line of centres and the line connecting the centre of the heavy sphere and
a large bump versus the angle which the line of centres makes with the gravity vector,
starting from an initial condition of θ0 = 10◦ and β0 = 0◦, with ξL = 0.036, ξS = 0.008,
ΦL = 30◦, γ =0.02 and λ=1, and friction coefficients of µf =0.10, 0.15 and 0.20. The
overall behaviour is similar to that shown in figures 4 and 5. The spheres experience
five contact stages: descending from initial contact with the first large bump, loss of
contact, contact with small bumps, contact simultaneously with small bumps and a
second large bump, and ascending the second large bump with loss of contact with
the small bumps. In this case, however, the apex of the second large bump (point AL
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Figure 7. The angle through which the line of centres rotated (solid line) and the angles
through which the heavy (dotted line) and light (dashed line) spheres rotated versus
dimensionless time since the contact occurred for the same conditions as in figure 6 with
µf = 0.15.

in figure 6) is reached before the point where θ = 90◦ and the spheres separate. At
point AL, β1 is redefined to be the angle between the line of centres and the second
large bump and so jumps back to 0◦. Changing the coefficient of friction has only a
modest influence on the results. Increasing µf generally leads to an increase in the
angle θ for each transition point, because the normal components of gravity and the
contact force must become smaller to achieve the same frictional force.

The angles through which the two spheres and their line of centres rotated as
functions of time are displayed in figure 7 for the same conditions as in figure 6 and
µf = 0.15. Here, θi is the angle through which sphere i rotated starting at t =0 when
contact first occurred. The dimensionless time is defined as T = tu0

1/a1. Compared with
the rotation of the light sphere and the line of centres, the heavy sphere rotated less
in the beginning, which is consistent with the above analysis that, when descending
from the first large bump, the normal component of the contact force opposes the
clockwise rotation of the heavy sphere.

The effect of varying the large bump size is shown in figure 8. When the dimen-
sionless large bump height is ξL = 0.02, the spheres make contact via the small bumps
at a smaller θ than for ξL = 0.036 (figure 6). Also, when contact via the second large
bump occurs, the rotational velocity of the heavy sphere shows a clear difference from
that of the line of centres from vertical, which indicates that the spheres are able to
ascend the large bump when ξL =0.02 without remaining in contact with the small
bumps, and so no stage CSL is observed in this case. When the large bump height is
ξL = 005, the spheres are able to make contact with two large bumps simultaneously,
as indicated by (42), and so no contact via the small bumps occurs in this case (stage
CS). Stage C2L in figure 8 for ξL = 0.05 marks the beginning of simultaneous contact
with two large bumps. Since the normal components of the contact forces prevent
the heavy sphere from rolling over the second large bump, the spheres stick together
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Figure 8. Effect of varying the large bump height on (a) the dimensionless hydrodynamic
separation (dashed lines) and the angle between the line of centres and the line connecting
the centre of the heavy sphere and a large bump (solid lines) and (b) the rotational velocities
of the heavy (dotted lines) and light (dashed lines) sphere and the line of centres (solid lines)
versus the angle between the line of centres and vertical, for the same conditions as in figure 6
except µf = 0.15 and ξL = 0.02 (thin lines) and 0.05 (thick lines). S indicates where slipping

begins. The rotational velocities may be made dimensionless by dividing by u0
1/a1 = 0.2 s−1 for

the conditions of the experiments.

and rotate like a rigid body (ω = ω1 =ω2) until slipping begins (point S in figure 8b).
Then, the rotational velocity of the heavy sphere coincides with that of the line of
centres from vertical but not with that of the light sphere (ω = ω1 �= ω2). After that,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

03
00

56
52

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112003005652


120 Y. Zhao and R. H. Davis

when θ is large enough so that the normal components of gravity and the contact
forces are sufficiently reduced, the spheres begin to ascend the second large bump
(stage CL) and the rotational velocity of the heavy sphere differs from that of the
line of centres.

For figure 9, the small bump size is varied. Increasing the size of the small bumps
reduces the possibility of loss of contact (stage LC) and of simultaneous contact via
the small bumps and a large bump (stage CSL). For example, there is no loss of
contact with the first large asperity for ξS =0.024 in figure 9 before the small bumps
are encountered, whereas there is loss of contact with the first large asperity for
ξS =0.002 and 0.008 (figure 8) before the small bumps are encountered. However, when
the spheres are descending from the second large asperity for ξS =0.024 in figure 9,
loss of contact is predicted because the angle θ is much larger than when the spheres
descended from the first larger asperity and so the normal component of gravity is
smaller. Reducing the size of the small bumps also gives other interesting results. For
ξS =0.002, after the spheres experience the period of descending from the first large
bump and then briefly losing contact (LC), they next make contact via a second large
bump (stage CL) instead of via the small bumps (stage CS). Because the normal
component of the contact force at the second large bump drives the heavy sphere to
rotate clockwise, the spheres descend from this second large bump back toward the
small bumps between the first and second large bumps (dβ1/dt = ω1 − ω > 0), rather
than ascending over or sticking to the second large bump. Just after the first point
CL for ξS = 0.002, the heavy sphere shows a slightly higher rotational velocity than
does the line of centres, until point CSL is reached. When contact via both the small
bumps and a second large bump occurs (point CSL), the spheres are still not able
to rotate over the second large bump, and the heavy sphere rotates with the same
rotational speed as the line of centres. Then, the spheres rotate together with slipping
(ω = ω1 �= ω2) until the tangential component of gravity is sufficiently large for the
heavy sphere to rotate over the second large bump (the second point CL), after which
the heavy sphere again rotates slower than the line of centres.

Decreasing the angle between the two adjacent large bumps has a similar effect to
increasing the size of the large asperities. Figure 10 shows that changing the value of
ΦL strongly affects the occurrence of contact via small bumps. When ΦL =24◦, for
which there are 15 large bumps around the equator of the heavy sphere, no contact
between the spheres occurs via the small bumps, and the average hydrodynamic
separation between the two spheres is higher than for less dense coverage of large
bumps. For ΦL =36◦ (10 large bumps around the equator), contact with small bumps
is predicted, and the second large bump is not encountered until the line of centres
has rotated to a sufficiently large angle that the heavy sphere is able to rotate over
the second large bump (stage CL) without simultaneously remaining in contact with
the small asperities (stage CSL, which is present in figure 6 for ΦL = 30◦).

Figure 11 shows the dimensionless hydrodynamic separation and the angle between
the line of centres and the line connecting the centre of the heavy sphere and a
large bump versus the angle between the line of centres and vertical, with β0 = 0◦,
−5◦, −10◦, −15◦, −20◦ and −25◦. The other conditions are the same as in figure 6.
Variation of β0 gives rise to changes in the initial contact position relative to a large
bump. Since ΦL = 30◦, β0 = −15◦, −20◦ and −25◦ are the same as β0 = 15◦, 10◦ and
5◦, respectively, and represent cases where the closest large bump is located clockwise
from the initial contact point. The initial separation initially decreases with decreasing
the β0 until β0 = −15◦, for which the two spheres first contact via the small bumps,
and then it increases with further decrease of β0. Figure 11 also shows that, except for
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Figure 9. Effect of varying the small bump height on (a) the dimensionless hydrodynamic
separation (dashed lines) and the angle between the line of centres and the line connecting
the centre of the heavy sphere and a large bump (solid lines) and (b) the rotational velocities
of the heavy (dotted lines) and light (dashed lines) sphere and the line of centres (solid lines)
versus the angle between the line of centres and vertical, for the same conditions as in figure 6
except µf = 0.15 and ξS =0.002 (thin lines) and 0.024 (thick lines). S indicates where slipping
begins. The rotational velocity may be made dimensionless by dividing by u0

1/a1 = 0.2 s−1 for
the conditions of the experiments.

β0 = −25◦, the motions for the different values of the initial contact angle β0 coincide
after contact is made with the small bumps and θ ≈ 35◦. For β0 = −25◦, contact with
the small bumps does not occur, and there is a much higher nominal separation (on
average) in this case. Note that |β0| <ΦL is required by geometrical constraints.
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Figure 10. Effect of varying the spacing between large bumps on (a) the dimensionless
hydrodynamic separation (dashed lines) and the angle between the line of centres and the line
connecting the centre of the heavy sphere and a large bump (solid lines) and (b) the rotational
velocities of the heavy (dotted lines) and light (dashed lines) sphere and the line of centres
(solid lines) versus the angle between the line of centres and vertical, for the same conditions
as in figure 6 but with µf = 0.15 and ΦL = 24◦ (thin lines) and 36◦ (thick lines). S indicates
where slipping begins. The rotational velocities may be made dimensionless by dividing by
u0

1/a1 = 0.2 s−1 for the conditions of the experiments.

In figure 12, the dimensionless hydrodynamic separation and the angle between the
line of centres and the line connecting the centre of the heavy sphere and a large bump
are plotted versus the angle between the line of centres and vertical, with the initial
conditions of β0 = 0◦ and θ0 = 10◦, 20 ◦, 30 ◦, 40 ◦, 50 ◦, 60 ◦ and 70 ◦. The other
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Figure 11. Effect of varying the initial contact angle β1 on the dimensionless hydrodynamic
separation (dashed lines) and the angle between the line of centres and the line connecting the
centre of the heavy sphere and a large bump (solid lines) versus the angle between the line of
centres and vertical, starting from initial conditions of θ0 = 10◦ and β0 = 0◦, −5◦, −10◦, −15◦,
−20◦ and −25◦, with ξL = 0.036, ξS = 0.008, ΦL = 30◦, γ = 0.02, λ= 1 and µf = 0.15.
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Figure 12. Effect of varying the initial contact location θ0 on the dimensionless hydrodynamic
separation (dashed lines) and the angle between the line of centres and the line connecting the
centre of the heavy sphere and a large bump (solid lines) versus the angle between the line of
centres and vertical, starting from initial conditions of β0 = 0◦ and θ0 = 10◦, 20◦, 30◦, 40◦, 50◦,
60◦ and 70◦ (left to right), with ξL = 0.036, ξS =0.008, ΦL = 30◦, γ = 0.02, λ= 1 and µf = 0.15.
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Figure 13. Dimensionless trajectories of the centre of a heavy sphere relative to a light one
from three experiments (symbols) and theory (curves). The different curves for the upstream
parts are calculated with initial dimensionless offsets of 	ŷ0 = 0.24, 0.28, 0.32, 0.44, 0.48 and
0.52 (left to right), whereas those for the downstream part are for dimensionless roughness
heights of ξ = 0.028, 0.036 and 0.044 (left to right).

parameter values are the same as in figure 6. The ascent of the second large bump is
similar for all θ0 < 30◦. With increasing θ0, representing the angle at which contact is
first made, the period of contact via the small bumps decreases and then disappears
for θ0 > 46◦. This result is because the normal component of gravity (which drives the
spheres together) decreases as θ increases. A practical consequence is that the average
separation is expected to be dominated by the size of the large bumps as the line of
centres approaches horizontal.

5. Experimental results
Figure 13 shows the relative trajectories of the centre of a heavy sphere relative to a

light one for three different experiments. The top part of each trajectory is only affected
by the initial horizontal separation between the centres of the two spheres, whereas the
bottom part depends on the dimensionless nominal separation between the spheres
when they first separate at θ = 90◦. In figure 13, the best-fit of the experimental data
for the upper parts of the trajectories give 	ŷ0 = 2	y0/(a1 + a2) = 0.26, 0.28 and 0.48,
for three experiments with different initial offsets. The best-fit of the experimental
data for the lower parts give ξ ≈ 0.036 at θ = 90◦ for all three experiments. This result
corresponds to a dimensionless value of δ = 115 µm, which is close to the size of the
beads that form the large bumps. Consistent with theory (e.g. figure 11), the nominal
separation at θ = 90◦ is dominated by the size of the large asperities, even though
they are sparsely distributed, and it is not very sensitive to the initial angles when
contact first occurs.
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Figure 14. The angles through which the heavy and light spheres rotated versus dimensionless
time from experiment (symbols) and theory (curves) for the roll/slip model with one bump
height (solid lines) and the current model for two bump heights (dashed lines) The conditions
are θ0 = 20◦, β0 = −6◦, ξL = 0.036, ξS = 0.0057, ΦL = 20◦, γ = 0.02, λ=1 and µf = 0.15. For the
model with one bump height, results are shown for ξ = 0.0057.

In figure 14, the results for the experiment with 	ŷ0 = 0.28 in figure 13 are compared
with the theoretical solutions for both the roll/slip model with one bump size (solid
lines) and the current model with two bump sizes (dashed lines). For this experiment,
the light sphere shows a greater rotation rate than the heavy sphere, especially
for short times. Therefore, the initial contact stage of the two spheres is that of
descending from a large bump (β0 < 0◦), so that the torque exerted on the heavy
sphere by the normal component of the contact force slows its clockwise rotation.
The value β0 = −6◦ was selected to provide the best model fit of the experimental
data. For later times, a second large bump is encountered, and the rotational velocity
of the heavy sphere increases as it ascends the second large bump, due to the torque
exerted by the contact force now aiding its motion. For the light sphere, because the
normal component of the contact force always passes through its centre and provides
no torque, the rotation shows only a slight difference between the model with a single
bump size and the model with two bump sizes.

Figure 15 shows the comparison of the experimental results for the dimensionless
hydrodynamic separation with the model predictions, averaged over a random dis-
tribution of all possible initial angles β0, versus the angle θ between the line of centres
and vertical. The different solid lines are for contact first occurring at θ0 = 5◦, 10◦,
10◦, 30◦, 40◦, 50◦, 60◦ and 70◦ (left to right), whereas the dashed lines are the results
averaged over all 0 <θ0 < θ . In these experiments, the heavy sphere started with a
random placement above the light sphere and then fell until contact was made at
initial angles β0 and θ0, which varied from run to run. The heavy sphere then moved
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Figure 15. Comparison of theoretical (curves) and the experimental (symbols) results for
the dimensionless hydrodynamic separation versus the angle between the line of centres and
vertical. The solid curves are model predictions starting from the initial conditions of θ0 = 5◦,
10◦, 20◦, 30◦, 40◦, 50◦, 60◦, and 70◦ (left to right), averaged over all initial β0, with ξL =0.036,
ξS = 0.0057, ΦL = 29◦, γ = 0.02, λ= 1 and µf = 0.25. The dashed lines are the overall average
separation from equation (5.1) with ξS = 0.0057 (top) and ξS = 0.0034 (bottom). The error bars
represent ± one standard deviation for multiple experiments (29 with θ ≈ 22◦, 43 with θ ≈ 48◦,
49 with θ ≈ 86◦).

around the surface of the light sphere until an angle θ was reached. At this point, the
container was inverted, so that the heavy sphere was directly below the light sphere,
and the nominal separation was determined from (3.2) based on measurements of the
time it took the heavy sphere to fall to a given separation from the light sphere. While
the initial orientation angle β0 for the nearest large bump is randomly distributed, the
distribution of the initial contact angle θ0 has a weight factor of sin θ0 cos θ0, based
on the probability of a particle pair making initial contact at the angle θ0 given a
random initial placement of the heavy sphere far above the light sphere. The factor
sin θ0 comes from the area of a ring-shaped surface element at the angle θ0, and the
factor of cos θ0 comes from the normal component of the relative velocity of the
two spheres due to the component of the gravitational force acting along the line of
centres. Note that the particle pair probability, for a random distribution when well
separated, is independent of the angle θ0 (Batchelor 1982). Thus, the dashed line in
figure 15 is the overall average given by

〈ξ (θ)〉 =

∫ θ

0

∫ 0

−φL

ξ (θ; β0, θ0) dβ0 sin θ0 cos θ0 dθ0

(ΦL sin2 θ)/2
. (5.1)

Both the data and theory in figure 15 show a broad distribution of the nominal
separation between the sphere surfaces, especially at small and moderate values of the
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angle θ , due to the multiple roughness scales. A primary finding from figure 15 is that
the average separation generally increases with increasing angle θ , becoming nearly
equal to the height of the large bumps (ξL =0.036) as the line of centres becomes
horizontal (θ = 90◦). This result occurs because an encounter with a large bump
causes the spheres to lift away from each other to a dimensionless separation ξL, and
the component of gravity which pushes them back together becomes weaker as the
particle pair rotates toward horizontal. The observation that many of the measured
separations are slightly higher than the predicted values as θ → 90◦ is probably due
to the presence of natural surface roughness on the light sphere that is not included
in the model. In contrast, we note that the average measured separation falls below
the average predicted separation at the smallest angles examined (θ ≈ 22◦). In the
model predictions for these angles, the initial contact with a large asperity plays a
large role, as the decrease in the nominal separation from a large bump to the small
bumps is slowed by the lubrication resistance. Moreover, the model is restricted to
axisymmetric motion, with the large asperities projected onto the equator of the heavy
sphere. In the experiments, however, a large asperity may be encountered which is to
one side of the equator. Then, the heavy sphere will not roll directly over this bump
but instead it will also tip sideways, which reduces the nominal separation.

Finally, the lower and upper dashed lines are for ξL = 0.0034 (δS = 10 µm) and
ξS = 0.0057 (δS = 18 µm), corresponding to the small bump height equal to the natural
roughness of the teflon sphere and to the sum of natural roughnesses of the teflon
and nylon spheres, respectively. Clearly, the variation of the small bump size in this
range has little effect on the overall results.

6. Concluding remarks
This work has examined the contact and near-contact interaction of two unequal

spherical particles with multiscale surface roughness, sedimenting due to gravity at low
Reynolds number in a viscous fluid of large extent. Even with microscopic surface
asperities of only two sizes, the behaviour is considerably more complex than for
interactions with a single roughness scale. The influence of microscopic roughness on
the rotational motion of one sphere past the other is expected to affect the rheological
behaviour of a sheared suspension (Wilson & Davis 2000, 2002), in addition to the
separation of species of different sizes or densities in gravitational sedimentation.

Following previous work, the model assumes that the roughness elements are
sufficiently small and sparse that they do not affect the hydrodynamic interactions of
the spheres. The physical contact (which is prevented by lubrication forces for smooth
spheres) occurs when the nominal separation decreases to the local roughness height
as a heavy sphere falls downward onto a lighter (or smaller) sphere. The heavy sphere
will roll and possibly slip around the surface of the light sphere in contact with the
smaller bumps until a larger bump is encountered. If the latter asperity is sufficiently
tall, and the angle between the gravity vector and the line of centres is sufficiently
small, then the heavy sphere will not be able to pivot over this tall bump and so the
two spheres will rotate together in rigid-body motion or, for small friction, the heavy
sphere will slide without rolling around the surface of the light sphere. Eventually,
the line of centres will rotate to where the component of gravity perpendicular to this
line is sufficiently large that the heavy sphere rotates up and over the tall bump. The
heavy sphere is then driven back toward the light sphere by the component of gravity
parallel to the line of centres. However, as the angle between the line of centres and the
vertical increases during the interaction, the component of gravity along the line of
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centres becomes weaker and so the nominal separation tends to remain close to the
height of the large asperities. Indeed, both theory and experiment show that the
nominal surface-to-surface separation when the line of centres approaches horizontal
is essentially equal to the large bump height, independent of the conditions where con-
tact first occurs. Since rheological information such as the pair-distribution function
and hydrodynamic diffusion in dilute suspensions is dependent on the two-sphere
trajectories after contact ends, once the pair becomes horizontal the large bumps can
have a dominant effect.

In contrast, the nominal surface separation at moderate angles between the line of
centres and vertical tends to be much closer to the height of the small asperities, aided
by the period when the two spheres make contact simultaneously via the small bumps
and a large bump and are not able to pivot over the large bump. At small angles,
there is a large variation in the nominal separation and in the rotational motion of
the spheres, with a strong dependence on bump sizes and locations and on the initial
contact location.

The experiments support the model predictions, except that the nominal surface
separation measured experimentally is smaller, on average, than that predicted by
the model when the angle between the line of centres and vertical is small. It is
thought that this difference is caused by sideways tipping of the spheres off a large
asperity in the experiments, which is not accounted for in the axisymmetric model.
Exploration of fully three-dimensional interactions during particle–particle contacts,
and of surface topologies with many roughness heights and spatial distributions, may
be of interest in future work.

This work was supported by the National Science Foundation through grant CTS-
9712604 and by the National Aeronautics and Space Administration through grant
NCC3-796.
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