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Introduction

In this paper, we construct explicitly endoscopic representations of §1;2/n, the metaplectic
cover of a symplectic group of rank n. We do this in the automorphic case, and also in
the local case, over a p-adic field. In more detail, let K be a number field, and let A
denote the adele ring of K. Respectively, let F' denote a local non-archimedean field (of
characteristic zero). Fix a non-trivial character ¢ of K\A (respectively, of F').

Global Case. Let 71 ...7, be pairwise inequivalent, irreducible, automorphic, cuspidal
and self-dual representations of GLay,, (A), ..., GLan, (A), respectively; n = my + -+ +
m,. Assume, for each 1 < i < r, that L°(r;, A%, s) has a pole at s = 1, and that
L(ri,3) #0.

Main (global) theorem. There exist irreducible, automorphic, cuspidal (genuine) rep-
resentations o of Sp,,,(A), which have a non-trivial 1)-Whittaker coefficient, such that the
(weak) 1-functorial lift of o to GLa,, (A) is the Eisenstein series, induced from 71 ®- - - @7,
(evaluated at (0---0)).

Recall that there is no canonical way to associate to o,, at a place v, where o, is
unramified, a conjugacy class of unramified parameters. We have to first fix a choice
of a non-trivial character of K,. We choose v,. The 1, -unramified parameters of o,
are the unramified parameters of 6y, (o, ), the unramified representation of SOgz,,41(XK, ),
obtained from o, by the local theta correspondence 6, .
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Main (local) theorem. Let 71,...,7. be pairwise inequivalent, irreducible, super-
cuspidal and self-dual representations of GLap, (F),...,GLap, (F), respectively; n =
my + -+ + m,.. Assume that, for each 1 < i < r, L(;, A%, s) has a pole at s = 0. Then
there exists a unique, irreducible, supercuspidal (genuine) representation o of Sps,, (F),
which has a 1~ -Whittaker model, such that (the local gamma factor) (o ® 7;, s,1) has
apole at s=1, foreach 1 <1i <r.

Our two main theorems justify, in each case, the title ‘endoscopig’\/for o, and we note
that o is a 1~ !-generic member of ‘the endoscopic L-packet on Sp,,, (A) (respectively,
SpZ(F)) determined by 1 ® - - ® 7.

The construction of the representation o is by the method developed in [5-7]. We
review this in the beginning of §1. In brief, starting with an irreducible, automor-
phic, cuspidal representation 7 of GLg,(A), such that L°(7, A2, s) has a pole at s =
1 and L(7,12) # 0, we considered a certain Fourier-Jacobi coefficient, stabilized by
Sp:(A), on Ress=1 E; 5, where E, ¢ is the Eisenstein series on Spy,(A), induced from
T®|/d\(?£ . \S*(l/ 2) | on the Siegel parabolic subgroup. This Fourier-Jacobi coefficient affords
an Spsy, (A)-automorphic module oy (7), which we proved to be non-trivial, cuspidal and
1~ -generic. Moreover, oy(7) is a multiplicity free representation, and each of its sum-
mands is 1)~ -generic and 1)-weakly lifts to 7. Any genuine, irreducible, automorphic, cus-
pidal, ¥~ !-generic representation which 1-weakly lifts to 7 has a non-trivial L?-pairing
with a (unique) summand of oy (7). In particular, if V; is an irreducible space of gen-
uine cusp forms, orthogonal to the space of oy, (7), where the corresponding automorphic
representation 7, ¥-weakly lift to 7, then V. has zero )-Whittaker coefficient. We con-
jecture that oy (7) is actually irreducible. In this paper, we use the same construction,
only now, we apply it not to a cuspidal 7, but rather to an Eisenstein series on GLa, (A),
induced from 71 ® - - - ® 7, (evaluated at (0,...,0).) The generalization is not automatic.
In §1, we point out the new problems that we have to face and how to solve them. The
analogous local theorem is similar in nature, and is proved in § 5. In future publications,
we hope to generalize the results of this paper and those of [5-7] to a general classical
group.

Finally, let us review some of the notation we use in the paper. The elements of the
symplectic group Sp,,, are written with respect to

1
< wk) ,  Where wy =
—wy, .

(k x k matrix). V}, (respectively, Z;) denotes the standard maximal unipotent subgroup
of Sp,y, (respectively, GLx). We let Py denote the Siegel parabolic subgroup of Spy;. The
elements of the Levi part of P have the form
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for a € GLj, where a* = wjta~'w;,. The elements of the unipotent radical have the form

U(z) = (I’“ 2)

where wgx is a symmetric (k x k) matrix. We also put

l(x) = (I; Ik) .

Ifri+ro+---+re =k, we denote by Qry ry....r. (vespectively, Py r,. ., ) the standard
parabolic subgroup of Sp, (respectively, GLy), with Levi part isomorphic to GL,, X -+ - X
GL,, consisting of the elements m(a) (respectively, a), where

91
a = s gzeGLn

Ge

We also use the notation Q7 (respectively, Pr) where 7 = (rq,r9,...,7¢).
Let F be a local field, and v a non-trivial character of F'. Denote by v the character
of Vi.(F') defined by

In(v) = w(z Gin ) € (P

¥y is the standard non-degenerate (Whittaker) character of V4 (F') corresponding to .
When we speak of a ¢-Whittaker functional, or a t)-generic representation of Spy, (F)
(or Spyy(F)), we refer to 1. Similarly, for a number field K and its ring of adeles A,
starting with a non-trivial character 1 of K'\A, we define ¢ on Vi (A) (trivial on Vi (K)),
as before, and for an automorphic form f on Sp,.(A) (or Spy,(A)), the p-Whittaker

coefficient of f is
/ F )i (m) .
Vi (K)\Vi (4)

As f varies in the space of an automorphic representation 7, we view the last integral as
a linear functional on (the space of) 7.

If U is a unipotent group, with points in a p-adic field, and x is a character of U,
we denote by Jy, the corresponding Jacquet functor. We also denote Jy = Jy,;1. For
a representation 7 of a group G, we denote by V. a space of its realization. If 7 has a
central character, we denote it by w;.

1. Some preliminaries and statement of the main global theorem

1.1. A review

In [5-7] we constructed explicitly the inverse to the functorial lift from Sp: to GLg,.
More precisely, let 7 be an irreducible, automorphic, cuspidal representation of GLa, (A),
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such that L(7, A2, s) has a pole at s = 1 and L(7,12) # 0. Here A is the adele ring
of a number field K. Fix a non-trivial character 1) of K\A. Then we gave an explicit
construction of an automorphic (non-trivial) cuspidal representation o, (7) of Spy, (A),
which is the direct sum of all ng to isomorphism) 1)~ !-generic automorphic, irreducible,
cuspidal representations o of Sp,,,(A), such that at almost all places v, the 1, -unramified
parameters of o, are those of 7,,. Note that there is no canonical way to associate to such
0, a conjugacy class of unramified parameters. We have to fix first a choice of a non-trivial
character 1, of K, (see [4, §3.1]). Denote by 6y, (0,) the unramified representation of
SOQn+1(K/yll/aSSOCiated to o, by the local theta correspondence 6, with respect to
¥y, from Spy, (K,) to SOs,+1(K,). Then the t,-unramified parameters of o, are the
unramified parameters of 6, (0,). Thus, one should think of the L-group of Sp,, as
that of SOg,41, i.e. Spy,, (C). The y-weak lifting of o above to 7 is with respect to the
standard embedding of L groups Sp,,, (C) C GLa,(C).

The construction of V; (;), the space of oy (7) is as follows. Let P, be the Siegel
parabolic subgroup of Sp,,,. Consider the representation

prs = Ind i) 7 @ | det-|*=(1/2), (1.1)

where we use normalized induction. Let ¢, s be a holomorphic section in p, ;. We think
of ¢, s as a complex function on Spy,, (A) x GLa,(A), such that r — ¢, s(g;7) is a cusp
form in the space of 7 and

. ((o ) gﬂ“) = | detal"*"pr..(g:7a). (12)

fﬂs(g) = @7,8(9;12n)~ (13)

Put

Consider the Eisenstein series

ET,S(g) = E(g, QDT,S) = Z fr,s(')/ag)-

9EPon (K)\ Spy, (K)

The series converges absolutely for Re(s) > n+1, and admits a meromorphic continuation
to the whole plane. The assumptions on 7 imply that E. ; has a simple pole at s =1 [5,
Proposition 1]. Denote

E‘r,l = Resg=1 Er,s~

The elements of V,, »(r) are certain Fourier—Jacobi coefficients of E; ;. For this, we have to
introduce more notation. Consider the following unipotent subgroups (these are unipotent
radicals of standard parabolic subgroups)

Z % %
N; = Iy; % S Sp4n ‘ 2 € Lon_i ¢, (14)
Z*
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where Z,, is the standard maximal unipotent subgroup of GL,,. Here 0 < i < 2n. Let
Xk be the following character of Nyy1(A)

2n—k—1

Xk(v)¢< > UMH), v € Nipg1(A). (1.5)

j=1

This is the restriction to Ng41(A) of the standard generic character defined by 1. Consider
the following subgroup of Ny,

Ioy_—1
1 =z z
Hy =< h= Iy, ' S Sp4n . (16)
1
Iankfl

Hj, is isomorphic to the Heisenberg group Hj; on the 2k-dimensional row vector space
over K, equipped with the symplectic form defined by

2 ( wk) ,  where wy =
—wy, .

The isomorphism is given by
Je(z;2) = h, (1.7)
for h,z,z as in (1.6). o
Let wff) be the Weil representation of Hy(A) X Spys(A), which corresponds to the

character (0, z) — 1(2) of the centre of Hy(A). wfpk) acts on S(A*), the space of Schwartz—
Bruhat functions on A*. Denote, for ¢ € S(A*), the corresponding theta series

05 (h-(g,0) = > Wi (h- (€)1, zh), (1.8)

;€K
for € Hi(A), (g,¢) € S/p;;(A) Extend jj to an embedding of H; % Spy;, inside Spy,, by

IQn—k
Je(g) = g ;9 € Spa - (1.9)
IZn—k

e

Let V5, , () be the space of automorphic forms on Spy,(A) generated by

Tk

pk(g7€) = pk((g’€)7@7,1,¢)

/ / 00, L (h-(9.€))
Hi (K)\Hy (A) N1 (K)\Ng41(A)

x Ress—1 E(vji(h - g), pr.5)x; (v)dvdh.  (1.10)
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Here 0 < k < 2n. For k = 0, we define

Spy = {1}, ’Ho—{<(1) i)} o =y,

Note that Ny = jk(Hk)Ng+1. Denote by oy, (1) the representation by right translations
of Spyy(A) on V,, (7). We computed in [5, Theorem 8, (2.44)] the constant term of py,

Ok
along the unipotent radical

I, z Y
Rp = I2(k—p) | € Sp% , 1<p<k.
I

p

Take ¢ to be of the form ¢ ® ¢o, where ¢ € S(AP), ¢ € S(AF~P). Then we proved
(see [5]) the following theorem.

Theorem 1.1. In the above notation,

/ pk((r71)v<p7',1a¢l ®¢2) dr
Rp(K)\Rp(A)

-3 /L ey (1,328 - s 62)n (i) da. (111)

YE€Zp(k)\ GL, (k)

Here, for v € GL,(K),

Y
’3/ = [4717211
,y*
0 is the following Weyl element
Ip
Iank:
8= Iyk—p)
I2n—k:
Ip
L is the following subgroup
I
L I2n—k
L=qx= I2(k7p) € Sp4n
I2n—k'
L I,

and, for x € L,
j(l‘) = (L2n7k717 o aLank,p>-
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From Theorem 1.1, we conclude the following theorem.

Theorem 1.2 (the tower property). Assume that oy ,(7) = 0 for all k < . Then
0y,¢(T) Is either zero or cuspidal. Moreover, if { is the first index such that oy ¢(T) # 0,
then oy 1 (7) is non-cuspidal, for k > (.

In [5, Chapter 3], we proved the following theorem.

Theorem 1.3. We have, for all k < n,

O'w’k(’r) =0.

The proof of this theorem was based on the fact that E. ; (the residue representation)
has a non-trivial period along Sp,,, X Sps,,, that is, if we let H denote the image in Sp,,
of the direct sum embedding of Sp,,, X Sp,,,, then

/ Ress=1 E(g, ¢rs)dg # 0. (1.12)
Hp\Hy

See [5, Corollary 3]. We showed in [5, Theorem 17] that the existence of the period (1.12)
‘negates’ the Fourier—Jacobi model defining o, 1, (7). In this paper, we will present another
proof for the vanishing of oy ;(7), k < n, this time using just the self-duality of 7. This
will allow us to conclude Theorem 1.3, for a larger class of automorphic representations
7. The exact details will appear right after this section.

In [6, §5], we proved that our theory is not vacuous, and showed that oy ,(7) # 0.
Our proofs there stand in a larger generality, and we summarize them as follows (see
Theorems 1 and 2 and Lemmas 1 and 2 in [6, §5]). For this, let us first extend the
definition of oy ; and apply it not only to the residue representation . i, but rather to
any automorphic module £ of Spy, (A). Thus oy, (€) is the automorphic representation
of Spyy,(A), acting by right translations in the space V,  (¢) generated by the Fourier
Jacobi coefficients (1.10), i.e. by

pk(ga 6) = pk((g’ 6)7€a d))
091 1, (h- (9,€)&(vik(h - 9))x; ' (v) dv dh.
(1.13)

; /Hk,(K)\Hk(A) /NM(K)\NW(M

for £ in the space of £. For v € K*, let 0y 1,o(€) be the module generated by pi (g, €),
where pi (g, €) is given by (1.13) only that in H:z,l’k we replace ¥~ ! by ¥»~“. Thus, we
denote oy . 1(E) = 0y k(E). The only property of E;; used in the proof of Theorem 1
in [6, §5] is the fact that oy (7)) =0, for all £ < n and all « € K* (Theorem 1.3).

Definition 1.4. Let £ be an automorphic representation of Spy, (A). We say that &
satisfies the vanishing property, if

oy ka(€)=0, foral0<k<nandal aeK".
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Consider the unipotent subgroup Es,, of Spy,,, defined in (4.1) of [6], and consider the
character ¢)(>®) of Es, (K)\Fa,(A) (also defined in [6]). Their actual definition will not
be needed in this paper except for the formulae that will soon be recalled. Then, if £ has
the vanishing property, (5.16) of [6] is valid, i.e.

/ E()PW (v) dv = / / V2 (m(2)0(x)vo) Xy (2) dz do
Eon(K)\E2,(A) X0 (A) J Z2n (K)\Z2n (A)
(1.14)

for £ € Vg.
Here £U27 is the constant term of & along Uy, the unipotent radical of P, the Siegel
parabolic subgroup. Zs, is the standard maximal unipotent subgroup of GLs, and for

S Zgn(A),

Xd)(z) = ¢(212 + 223+ -+ Znn+l — Endlntd2 — 0 T Z2n71,2n)7
(1.15)

I
Xo = {x : ( an Ix ) € Spy,, and z is nilpotent and upper triagular} .
2n

Vg is a certain fixed element of Sp,,, (K) (v9 = va, where a and v and defined in (4.8),
(4.9) of [6]). (See the introduction for m(z), ¢(z).) From Theorem 2 and Lemmas 1 and 2
of [6, §5], we conclude the following theorem.

Theorem 1.5. Let £ be an automorphic representation of Spy,, (A). Assume that &
satisfies the vanishing property. If

/ / £V (m(2)1(x) s (2) dz da: 20,
X0(A) J Zan (K)\Z2n (A)

as & varies in Vg, (this is the right-hand side of (1.14)), then oy ,(€) # 0. Moreover
oy,n(E) has a non-trivial 1-Whittaker coefficient, i.e.

/ Pa((0,1),€, )b (v) dv 2 0.
Vi (K)\ Vi (A)

1.2. Statement of the main (global) theorem

The main goal of this paper is to extend the results above to the case where 7 is replaced
by an Eisenstein series as follows. Let 7y, 7o, . . ., 7 be pairwise different irreducible, auto-
morphic, cuspidal and self-dual representations of GLay,, (A), ..., GLay,, (A), respectively.
Assume, for each 1 < i <, that L%(7;, A2, s) has a pole at s = 1, and that L(;, 3) # 0.

Let sq,...,s, be complex numbers. Put 5 = (s1,...,8.), n = my + mg + -+ + m,.. Put
also m = (mq,...,m;). Let Qom = Lo X Uss be the standard parabolic subgroup of
Spu,, whose Levi part Lo, is isomorphic to GLay,, X - -+ X GLay,,.. Denote

prs = I ) [ det [ 0/) @ . @ 7, | det |~ (1/2)

)

and consider the corresponding Eisenstein series

E(g,p75) = Z f75(79). (1.16)

YEQ2:m (K)\ Spa, (K)
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Here, as in (1.2), (1.3), pr s is a Kgp, -finite holomorphic section of pz s, regarded as
a complex valued function on Spy, (A) X Lom(A) such that for each g € Spy,,(A), the

function

(€1,...,er) = prs(gser, ... en),
on GLgy,, (A) X -+ x GLay,, (A) is a cusp form which lies in the space of 7 ® -+ ® 7,
(i.e. the space spanned by the products pi(e1) - - - ¢, (e.), where @; is a cusp form in

7). Finally, fz5(9) = ¢7.5(9; l2my,-- -, L2m,.). The series (1.16) converges absolutely in
a domain of the form Re(s;) > Re(s2) > --- > Re(s,) > 0 and it has a meromor-
phic continuation in 5. We will prove in the next section that this Eisenstein series
has a ‘simple pole’ at (1,...,1) in the sense that for each g € Sp,,(A) the func-
tion (s1 —1)(sg —1)----- (sr —1)E(g, 7 5) is holomorphic and not identically zero at
1= (1,...,1). Denote the resulting residual representation (at 1) by E 1.

Remark 1.6. Let Py, .. 2m, be the standard parabolic subgroup of GLg,, where the
Levi part is isomorphic to GLay,, X -+ X GLay,,. Using induction by stages, we could
replace pz s by the representation of Sp,,, (A) induced from the Siegel parabolic subgroup
and the representation of the Levi part GLa,(A), given by the Eisenstein series which
corresponds to

(A) sr—(1/2)

si—(1/2) R ® T’r‘| det -

GLan
Indp2j1 ) 71| det

2m

Our main global result says that the construction described in §1.1 can be applied to
71
Theorem 1.7 (main (global) theorem). oy ,(E; 1) is a non-trivial automorphic,
cuspidal (genuine) representation of Sp,,(A). It is a multiplicity free direct sum of irre-
ducible, automorphic, cuspidal (genuine) representations o of Sp,,, (A), which have a non-
trivial ¢-Whittaker coefficient and such that at almost all places v, the 1,-unramified
parameters of o,, are those of the unramified constituent of

GL27L(KV)
Indpzml _____ o () TLv @ @ Ty

Moreover, an irreducible, automorphic, cuspidal (genuine) representation o of Sp?(A),
with a non-trivial 1-Whittaker coefficient has a non-trivial L?-pairing with a summand
of oy n(E; 1), if and only if

Li(o— ®7i,8) hasapoleats=1, foralll<i<r.

Remark 1.8. The irreducible summands of oy ,(E; 1) are up to isomorphism (given
through a non-trivial L?-pairing) the 1)~ !-generic representatives of the ‘¢-endoscopic’
L-packet which lifts to

Indp, 1O BT

One of the main tools for the proof of this theorem will be the lemma of the next
section, which gives a simple proof of a quite general nature for the vanishing property
of E; 1 (see Theorem 1.3 and the definition right after (1.13)). This lemma will also be
used in calculating the unramified parameters, at almost all places, of each summand of

Opn (E-F,T)-
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1.3. A lemma on Fourier—Jacobi models

Let F be a local non-archimedean field. Let ¢ be a non-trivial character of F'. (There
will be no confusion with overlapping notation in the global case.) Let = be a smooth
representation of Spy, (F), acting in a space Vr. For a € F*, we can define smooth
representations oy () and oy k.o () of Spgy(F), for 0 < k < 2n, in complete analogy
with (1.13).

70k (1) = T () (TN () 30 (1) @ ) (1.17)

Here wfpk_)a denotes the Weil representation of Hy(F') x gB_Q/k(F) Note that Hy(F) acts
on the Jacquet module

JNk+1(F);Xk (7‘(‘) (: JNk+1(F);Xk (Vﬂ'))

through the embedding (1.7), and, similarly, Spo, (F) acts on Jy, (7, (7) through the
embedding (1.9).

Let Q¢ be the standard parabolic subgroup of Sp,,,, with Levi part isomorphic to
GLQ@ X Sp4(n7f).

Lemma 1.9. Let n and p be smooth representations of GLz(F') and Spy(,,_ ) (F), respec-
tively. Fix o € F*. Assume that

Oy kalp) =0, forall0<k<n-—4¢ (1.18)
Then
Uqb’k,a(IndZI;‘Z"(F) n®p)=0, foral0<k<n—{(. (1.19)
Moreover, if, in addition to assumption (1.18), oy n—¢,a(p) # 0, then
Uw,n—z,a(lndsQi%()F) n®p)#0 & Jz,rm)wn) #0. (1.20)
(In (1.20), we keep denoting by 1 the standard generic character of Zsy(F') defined by

¥.)

This lemma is very crucial for this paper. It is a special case of a more general lemma,
where Spy,, is replaced by any symplectic, orthogonal or unitary group and (2, by a
standard maximal parabolic subgroup. The Fourier-Jacobi model is replaced in some of
the other cases by a Bessel model (see [5]). The proof of the general case will appear in
another work of ours, which is now under preparation. For completeness sake, we bring
a sketch of the proof in our present case.

Proof (sketch). We have seen in [6, Lemma 3.2] that

Spy,, (F Spa, (F _
Tura(Idy i n@p) =0 & Jynoe . (A n@p) =0, (1.21)

where N*) is the product of Nj41 and the centre C' of H;, embedded in Spy,, through

(L.7). X),alNps = Xk and X (),a (7 (0;1)) = (at) (see (1.7)). Note that Niyp is the
unipotent radical of Qa,_r_1. We then first restrict

Spyn (F)
Inini(F) nep
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t0 Q2n—k—1(F). The Jordan—Holder decomposition of this restriction has quotients, which
are parametrized by Qar\ Spy,, /Q2n—k—1. We can pick the following representatives,

I,
0 122—7"1 )
0 Inp—m 0 0
Wy ,ry = Im—2€+7’2 0 0 0 )
' 0 0 0 Im—204r,
0 0 | Ly-wm O
_I2€—r1—7"2 0

where m =2n—k—1,0<ro <k+1, r +7r9 <20
The corresponding quotient is

Qm (F)

Iriry = Indw?ﬁ,mz Q2 (F)wry 1y NQm (F)

1/2 Wey
(0gzy, - p)*rivvs

(unnormalized and compact induction).

The group w;.",,Q20wy, v, N Qpy is isomorphic to
1 ay a1z a1z | 0 21 22 | 0 y1 y2
m— 20+ ry as asz | 0 23 x4 | 0 ys o)
20 —r1 — 19 a3 |0 0 O 0 0 O
To be uw |0 zf
Ly r, =1422n—m—12) c e | 0 af ) € SPuan ¢ »
ro |0 0 0
20—71 =19 aj ahs ajs
m — 20+ 1y ay aiy
71 GI
and the action of (53;)/5 -(n®p))¥rire is
2n—£+(1/2) ay az T3 Y3
deta /
M\ det b| n al ® p* c x5, (1.22)
‘ det a3| %
b as
where
12n7m7r2
w/ _ I77L—2€+r2
Im72£+r2

I2n—m—r2

Denote the representation (1.22) of L,, .., (F) by 7T,(7f,1)’r2). Thus, we have to compute

Qm (F) (
c r1,r2)
JN(k)(F)vx(k),a(In Ly vy (F) T )-
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Restrict o)
Indg, " () 7"

to Van (F'), where Vo, is the standard maximal unipotent subgroup of Sp,,. The corre-

sponding Jordan-Hélder series is parametrized by Ly, ,\Qmn/Va,. For a Weyl element

w in the last space, denote by ~,, the corresponding subquotient. Using (1.22), it turns

out that Jya (F), X(k),a(Yw) = 0, unless 71 = 0, and then, w must be of the form

Im—2€+7"2
I2ff'r2
W= Wy, ¢ = € , (1.23)
I2ffr2
Im—2£+r2
where € is a Weyl element of Spy;,,» of the form
0
0
€= ry4+1— 1 *
0
0

Recall that s
cV2n 71,72)\W
Yo = Ind5, 5, (Pywnve, ) (T ™))"

Computing the stabilizer w™!Qg,w N Va,, for w of the form (1.23), we see that (using
(121)) Inw) xp.0 () = 0, 3f 0y k—py a(p) = 0. Thus, for 0 < k < n — ¢, assumption
(1.18) implies that Jyw ., . (Yw) = 0. This proves (1.19). If k =n — ¢, then k —ry <
n—~{, unless 7o = 0. Thus, the only contribution to the Jacquet module, may come from w
as in (1.23) with ro = 0, and now (1.2) can be derived by the same methods as before. O

Corollary 1.10. Let Q® be the standard parabolic subgroup of Sp,,, with Levi part
isomorphic to (GLg)". Let Z = (z1,...,2,) € C" and consider

_ SPan (F 2 .
(%) = Indyysy o) | det |7 @ - @ [ det [, (1.24)
Then oy k.o(m(2)) =0, for all 0 < k < n, and o € F™*.

Proof. We use induction on n. If n = 1, then oy ¢ (m1(2)) # 0, if and only if 71 () has
a non-trivial Whittaker model (it depends on «), which is false. Assume, by induction,
that oy k,a(Tn-1(21,...,2n-1)) =0 for 0 <k <n —1and z; € C. Write

mn(2) = Indpint” [ det | @ w1 (22, 20),
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and apply the last lemma with ¢ = 1, 7 = |det-|[** (on GLa(F)) p = mn-1(22,-..,2n)
(on Spy(,—1)(#)). Then, from the inductive assumption and from (1.16), it follows that
Oy ka(m(Z)) = 0, for £k < n—1. For K = n — 1, we use the end of the proof of
the last lemma, where only ro = 0 contributes to the Jacquet module, and then we
must have that Jz,, (1) # 0. In our case 7 is a character of GLy(F) (]det-|*') and
hence it does not have a Whittaker model. This shows that oy ,—1,4(7.(Z)) = 0, as
well. |

We can use Corollary 1.10 to give another proof to Theorem 1.3, where, in the notation
of Theorem 1.3, only the self-duality of T and the fact that w, = 1 are used (even the
cuspidality of 7 is not necessary) and thus the vanishing statement of Theorem 1.3
applies to a much larger class of automorphic forms. Still, the idea of our first proof
of Theorem 1.3, i.e. the use of the period (1.12), is useful, and, at this point, we do
not know how to do without it when we deal with the analogous local theory (see [6,

§3.3]).

A second proof of Theorem 1.3. We go back to the notation of Theorem 1.3 (global
set-up). We want to show that oy .o (E;1) = 0, for £ < n. Let 7 >~ ®m,, be an irreducible
summand of E. ;. Note that all such summands are nearly equivalent. At almost all
places, 7, is the unramified constituent of p,, 1 (notation analogous to (1.1)). Since 7,
is self-dual and w,, = 1, there are unramified (quasi) characters x1,,, ..., Xn,v, such that
7, is the unramified constituent of the representation of Sp,, (K,) induced from the
standard Borel subgroup and the following character of the torus

diag(ti,ta, .. tanstory . sty h)

t to t
'_>X1,1/<1)X2,u< ) ""'Xn,u( n )|t1-t2---~~t2n|1/2. (1.25)
t2n t2n—1 tn+1

This character can be conjugated, using a Weyl element of Sp,,,, to

diag(ti,ta, .. tanstor, . sty h)
1/2
X2,v(tata)

1/2
e X?’L,u(th—thn)

¢ " 1/2
— X17y(t1t2) t*l 2n—1
2

(1.26)

s
t

t2n

23

See [7, §2]. Thus, 7, is the unramified constituent of m,(Z, ), where x;,(t) = |t
and Z,, = (z1,...,2n). If 0y ka(Er1) is non-zero, for k < n, we may assume that
0y k,a(m) # 0 and then clearly oy, k.o(m) # 0 (see [5, §3.3]). By exactness of Jacquet
functors, oy, k,a(mn(Zy,)) # 0. This contradicts the last lemma. O

Remark 1.11. Note again that the last proof is valid for any automorphic representation

of the form 7 = ®7,, where, for almost all v, 7, is unramified, self-dual and w,, = 1.
Therefore, we have the following corollary.
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Corollary 1.12. Let 7, be an irreducible, unramified, self-dual representation of
GLgy, (K,). Assume that w,, = 1. Let 7., be the unramified constituent of p;, 1. Then

oy, ka(rr,) =0, fork<n-—1andac K},

ie. m,, satisfies the vanishing property.
We conclude, in the notation of §1.2, the following theorem.

Theorem 1.13. Let 7q,...,7,. be pairwise different, irreducible, automorphic, cuspidal,
self-dual automorphic representations of GLay,, (A), ..., GLay,, (A), respectively. Assume
that, for eachi < r, L%(r;, A%, s) has a pole at s = 1 and L(r;, 1) # 0. Then E. 1 satisfies
the vanishing property, i.e. 0y xo(E;1) =0, forallk <n —1 and all « € K*.

1.4. A preliminary lemma on Eisenstein series

The following lemma can be derived from [8] and we bring it for completeness sake
and as a preparation for the next section. Here K is a number field as in §§1.1 and 1.2.

Lemma 1.14. Let 7,...,7,. be irreducible, automorphic, cuspidal, unitary represen-
tations of GLy, (A),...,GL.. (A). Assume that for i # j, there is no x € C, such that
7; = 7; ® | det-|*. Then the Eisenstein series on GL,(A), n = {1 + --- + {,, correspond-
ing to the representation induced from 7i|det-|** ® --- ® 7,.|det-|*" is holomorphic at
(#1y. ., 2r), if Re(z1) = -+ = Re(zy).

Proof. Let P, . . be the standard parabolic subgroup of GL,, whose Levi part L is
isomorphic to GLg, X --- x GL,_ . By the general theory of Eisenstein series, it is enough
to show that, at (s1,...,s,) = (21,..., 2-) as above, all intertwining operators M (w), on

GL,, (A s Sp
G ®) ) maldet [ @ @ | det |,
are holomorphic, for all w € W(L). W(L) is the set of Weyl elements w of GL,,, of
minimal length, modulo the Weyl group of L, such that wLw™! is a standard Levi
subgroup of GL,,. (We use the notation of [9, I1.1.7].) We have

(1.27)

n

w(e) = {we e

w(a) > 0, for all positive roots « inside L and
wLw™? is a standard Levi subgroup of GL,, [

(WaL, denotes the Weyl group of GL,,.)
W (L) is in bijection with the permutation group S,. If w € W (L) corresponds to the
permutation € € S,., then

9 Je—1(1)
w wo = . 9i € GLy, .

gr Ge—1(r)
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It is easy to see, from (1.27), that if we write w € W(L) in the form w = (w1, wa, ..., w,),
where w; has ¢; columns, then w; has the form

0

i.e. w; has the block I, appearing somewhere. (We realize first Wqr,,, as permutation
matrices.) The permutation e € S,. is defined such that

I, 0 o1 0 Hemry ey
—1
0 v Lo Lo 1)
We-1(1) = . y We—1(2) = 0 y We—1(3) = 0 )
0 :
0 0
0

erl<1)+"‘+€e*1(r—1)

ey U}Efl(r) = (1.28)

0
Lo,y
Denote (as in [8, p. 607]), for w corresponding to e,
inv(w) ={(4,7) | 1 <i<j<rande(i) >ey)}
Let ¢(35) = ®¢,(5) be a holomorphic decomposable K, -finite section for

Indg[Ll"(A[)r(A) m|det ' @ @7 det | (5= (s1,...,8))

Let S be a finite set of places, outside which all 7; are unramified and ¢, is the standard
unramified section. Then

S T ’7A'j,8i — Sj
Mw)ee) 1) = [[ M) [[ o )

S oA . o
ves (i,j)einv(w) L (Tl ® TJ, S; 5] + 1)

[ M wemn) [ —amohsi—s) (1.29)

ves (¢,7)€inv(w) L(Ti ® 72j’ Si— 85 + 1) '

Here

M*(w) _ H L(Ti,u®7A_j,1/75i 753‘ +1)M (w)
v (1.7 Eimv(a) L(Tip ® T, 80 — 55) o
%,7)€inv(w
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Our assumptions imply that at the point in question (s; = z;),

L(Ti ®’7A'j,$i — Sj)
L(Ti®7ﬁj,8i — S5+ 1)

is holomorphic at z, for ¢ < j (since then Re(z; — z;) > 0 (see [8, Appendix]). By [8,
Proposition 1.10], M (w)y,(5)(1) is holomorphic at Z, for all v € S. This shows that
M (w)p,(5)(1) is holomorphic at z, for all w € W(L). O

2. The residue representation and its constant terms

2.1. The Eisenstein series

Let 71,..., 7, be pairwise different, irreducible, automorphic, cuspidal and self-dual rep-
resentations of GLap, (A),. .., GLam, (A), respectively. Assume that for each 1 < < r,
L5(7;, A2, s) has a pole at s = 1, and L(7;, 3) # 0. Recall, from [5, Proposition 1] that
these conditions imply that the Eisenstein series on Spy,,,(A), induced from the corre-
sponding Siegel parabolic subgroup and 7; ® |det -|*~(1/2) has a (simple) pole at s = 1.
We consider the induced representation pz s of Spy,(A) (n = mq + --- + m,) and the
corresponding Eisenstein series E(g, ¢75) (1.16). The main result of this section is the
following theorem.

Theorem 2.1. Under the above assumptions (and in the notation of § 1.2) (s1 —1)(s2 —
1)eee-e (sr —1)E(g, ¢s.5) is holomorphic and not identically zero at s =1 = (1,1,...,1).

Proof. We will show this property for the constant terms of the Eisenstein series along
all unipotent radicals Uy, 1 < k < 2n, of the standard maximal parabolic subgroups
Qr = My, x Uy, of Spy,,:

*
Qr =M, xU, = h x| €Spy, | g€ GLi, h€Spy,_o

Denote the constant term of E(g, @5 5) along Uy by EV*(g, = 5). We have (see [9, I1.1.7]),
for g € Spy, (A) (fixed)

EUk(hg7g077,§) = Z EMk(h7M(w)(g'<p?,§))a (21)
wEW (Lam ,My)

for h € My(A). Here Epy, (h, M(w)(g-¢#5)) is the Eisenstein series on M (A), built from
M(w)(g - ¢7,5)| M (a), Which lies in

Indy+ 0w det |2 @@ | det [ (1),
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M (w) is the intertwining operator corresponding to the Weyl element w and w lies in
the following set

W (Lo, M)
(i) w(a) > 0, for all positive roots o inside Lo,
=qw€EWsy, | (i) w'(a) >0, for all positive roots o inside M, . (2.2)
(i) wLomw ™! is a standard Levi subgroup inside M

2.2. Description of W (Las,, My,)

We realize the Weyl elements of Sp,,, as symplectic permutation matrices, where the
non-zero elements in each row are +1. The non-zero elements in either the upper 2n
rows or in columns 2n + 1 up to 4n are +1, and otherwise, they are —1. Denote the set
of simple roots of Loy (which correspond to upper unipotent root subgroups) by Ar,_,
and the corresponding positive roots by (;SJLFM. Similarly, consider Ay, and ¢Lk. Let w
be in W(Lap, My). For a € Ap,_, (i) and (iii) in (2.2) imply

w(a) = Z agf, for some integers ag > 0.
BEAM,

Thus,
a= > agw '(B). (2.3)

By (ii) of (2.2), w™(8) >0, for 3 € Ap,. Since « is simple, (2.3) implies that
w(a) € Apy,. We showed that w(Ayp,. ) C Ay, Since the elements of Ay, have the
same length, it is clear that w(Ayg,, ) also lies inside the set of (simple) roots inside the
Levi part (GLaj,) of P, the Siegel parabolic subgroup. Consider the simple roots in
Ar,. which lie in

I2(m1+“‘+mi—7‘,)

g
g*
]2(m1+-'-+mz‘71)
(2.4)
Denote these roots by A; = {a@;1,...,0im,—1}. Since A, is a connected subset in the
Dynkin diagram, so is w(4;) inside Ay, . This shows that wL,,,w™! is of the form
I,
g
1
L= | g € GLopm, p C My,
1
g/
I.
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for some appropriate e, and hence the following composition
GLaym, = Ly, — WLy, w™" =5 GLa,,,

(of the natural isomorphism of GLg,,, and L,,,, conjugation by w and the natural isomor-
phism of L; and GLay,,) is the identity on GLa,,,. We conclude that w has the following

form
w = (wlv vy Wey Wrgd,y - - 7w2r)7
where wi,...,w, have 2m;,...,2m, columns, respectively, and w,41,...,ws, have
2my., ..., 2m; columns, respectively. Each w; has the form
0
0
tlom: | »
0
0
where
m; 1 <r
m = ’ o (2.5)
M2r41—i, 1>

Note that the block +15,,r in w; is either in the upper 2n rows or in the lower 2n rows.
(It does not ‘cross’ from row 2n to row 2n + 1, since then w will not be a symplectic

permutation matrix.) Since wLomw ™! C My, we can find 1 < t4,. .. ,t; < 2r, such that
Igmzl 0 }27”:1 0 }27”:1 +2mf2
0 IQmZ‘Z I2m,2‘3
wtl = . ) wtz = . ) wt3 = . 9
0 0 0
0 }2m:1+~~+2m:j_1
Ime.
y Wy = . ’ . (2.6)
0
and
2myg, + -+ 2m:j =k. (2.7)
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In particular, k is even. We have (in the notation (2.4)) for i < j,

WLy w™!
IZm;‘I +~~~+2m2‘i71
g
1
= | g€ G'L2m;“1
1
g*
Tomy +t2my,
(2.8)
Let us show that
t <tg <--- <ty (2.9)
For this, we use property (ii) in (2.2). Consider the subgroup
I2m;‘1+---+2mfi_l
Igm;i x
IZm;‘H_l
1
€ Sp4n

’
IZmz‘Jrl x

IQm*
tg

Topr +. x
thi-&- +2mti—1

of Mj, which is generated by positive roots in My. Its inverse image under w lies in
Van, the standard maximal unipotent subgroup of Sp,,,. This forces t; < t;y1, for i =
1,...,7 — 1. Similarly, let 1 < a; < 2r,i=1,...,e, be such that

0 Yk 0 Yet2my 0 Yet2mg +eet2my
IQmZI Iszz I2m;e
Wq, = 0 y; Way = 0 yeeey Wa, = 0
0 0 0
(2.10)
and
2my, 4o+ 2my = 2n—k. (2.11)
As before,
a1 < ag < -+ < Q. (2.12)
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Considering the inverse image under w of the subgroup

I2n72mj;e

Iopx €
“e S Sp4n
IZWLZ;E

Ion—2m:,

of My, and requiring (by (2.2) (ii)) that it lies in V5,,, we conclude that a. < 2r +1 — a,,
ie.
ae <71 (2.13)

From (2.6), (2.7), (2.9)—(2.13), we see that w has the following form

IZmZI

IQm;fz

w = Tomy | (2.14)
I2m*
ay
IQm*
IZm*

ae

* *

Let 0 < @ < j be the last integer, such that ¢; < r (i.e. the block Iy lies in the left half
of w, while the block Igm;_ﬂ lies in the right half of w). Put

2mf1 + -4+ 2mz = 2b=2by i. (2.15)
Denote
g1 L
Ll?'rh = S GLQn g‘i < 2ms>
1=1,...,r
Gr

We can find w € War,, (Lb,;,) (notation of §1.4) such that for

, w
w = |
w

Iy
0 0 Iy 2
ww’ = 0 I4n72k 0 . (216)
—Ij 2 0 0

I
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Thus,
Iy
Iy 2
Iy,
w = 2n—k
IQn—k
I o
Iy
Iopion_k
X T2 W, (2.17)
T2
Iop i on—k
where
- Iay
W . _
wll = 1 s w1 = I2n7k , w ! € WGLG (L/2m) (218)
1 I o

2.3. Continuation of the proof of Theorem 2.1
By [9, IV.4.1], we have for w € W (Lay,, M) as in (2.17),

I
Iy o

Iy —
2n—k

Iy_2p

Io

Iopion—i

Th—av o M(w)). (2.19)
— 12

Iopyon—k

By the lemma in §1.4 and by (2.18), M(w}) is holomorphic at (1,...,1). M(w})
permutes 71| det -[517(/2) @ ... @ 7. det -[** (/2 on Ly (A) to

7, | det P01~ @ @n |det " TV D @1, |det [P~ @ .. @1, |det -|sae =1/
® T2r+1—t;41 | det '|S2T_'—1_tiJrl —/2) Q@ T2r+1-t; | det '|52r+17t'7 _(1/2)’ (220)

Put
tiv1 =2r+ 1 —tigr,...,th=2r+1—t;.
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We will repeatedly use the identity

I,
IﬁJr'y
_Iﬁ+7

Losr I,

(2.21)

Tatp

We first use it for v = 2my , § = 2my,
Proposition 1] that

a = 2n — (8 + ). We know from [5,

-1

Ioc+ﬁ
I
(Stj — I)M _I’Y vy

Inyis

is holomorphic and non-zero at (1,...,1). (Note that the inducing data come now from
(2.20)). This operator (evaluated at (1,...,1)) replaces, in (2.20), Ty, by . =7y, and
Str — % by —sy + % We keep using [9, IV.4.1] (whose conditions are easily seen to be
satisfied). The next Weyl element in (2.21) gives a holomorphic intertwining operator (at
(1,...,1)) by Lemma 1.14 (where now 23 = -+ = 2,1 = %, Zp = —%, and the inducing
data are given by (2.20) except that s;; — 1/2 is replaced by =5 + %) This operator
switches the order of

1/2) s +(1/2)

T, ® |det-|st9*1_( and T ® |det |
in the inducing data (which appears in the last parenthesis). Next consider the third
Weyl element on the right-hand side of (2.21). Again, from [5, Proposition 1] we know
that
Totqy

15
(St/j—l — 1)M

—1Iy
Toiy
is holomorphic and non-zero at (1,...,1). Now apply (2.21) on intertwining operators

(using [9, IV.4.1] at each stage) for v = 2mj,_ +2m; , B =2m; _, and o =2n—(B+7),

2
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and then again for v = 2m;._ +2m; _ +2m;, 3 =2m; _, and a =2n—(8+7) and so
on. Note that in each step Lemma 1.14 is applicable. This shows that for w as in (2.14)

Iopton—k
Iy 2
(s, = D(sp, =1 oo (sy-1)M - M (w})
Dopton—k
(2.22)
is holomorphic and non-zero at (1,...,1). This operator, evaluated at (1,...,1), takes

the inducing data (2.20) to

si;—(1/2) @ Tq, | det .|Sa1—(1/2) @ @Tq, | det .|Sae—(1/2)
,+(1/2) s +(1/2)

71, |det "1~/ @ @7, | det -
=5 +(1/2)

®Tt;|det~| ®Tt371|det'|7st9‘f ®~~~®Tt;+1|det~|_ (2.23)

Now apply the operator

Iy
T2

Io,
M 2n—k

Iank
I _2p
I

which is holomorphic by Lemma 1.14, and from (2.19), we conclude that
M'(w) = (St§+1 — 1)(st;+2 —1)---- (St; - 1)M(w)
is holomorphic and non-zero at (1,...,1). (2.24)

M’ (w) permutes the inducing data 71| det -[*1=(1/2) @ ... @ 7,.| det -|*~(1/2) on M} (A) to

sy H1/2) s, +(1/2)

7y, | det |51 —(1/2) .. @7, | det -
,T(1/2)

sti*(1/2)®7t;‘det.| Tt371|d€t |

® - @7y, |det | ® Tq, | det |51 =D @ .. @ 7, | det [P =(1/2)(2.25)

on w(My)(A). It remains to examine Epy, (h, M (w)(pz5)) (see equation (2.1)) on My (A)
at (1,...,1). Ep, (-, M'(w)(¢7,5)) is a sum of products of Eisenstein series on GLy(A),
induced from

7yl det " @ @7 | det [ @ 7| det | T @ @7y, |det:| e, (2.26)

where

Si=si+2n—3k,  —si=—si+2n—k+1
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and Eisenstein series on Spy,, o4 (A), induced from the adele points of the parabolic
subgroup of Spy,, _ax

g1

g gl S GLQaw
Qb = ° € SPup—_ok | . )
ge 1= 1, -~

*

and the representation 7, |det -[*1 =1/ @ ... ® 1, | det -|*2e ~(1/2) The Eisenstein series
on GLg(A) induced from (2.26) is holomorphic at (1,...,1) by Lemma 1.14. The Eisen-
stein series on Spy,,_ox(A) is holomorphic at (1,...,1), after being multiplied by (sq, —
1)eeeee (Sa. —1). For this we use induction. We conclude that (s, —1)-- - (sy-1)(8a, —
1) (Sa, — 1) En, (hy M(w)pz 5) is holomorphic at (1,...,1). In particular (see (2.1)),

(51 (52 = 1)+ (s = DE% (b, 01,0
is holomorphic at (1,...,1) for all k. We also conclude the following corollary.

Corollary 2.2. In the above notation, if b > 0 (see (2.15)), then
lim (s = 1)(sz = 1)+ (50 = DB, (b, M(w)prs) = 0.
Thus, only w € W (Lo, M), with b = 0 contribute to
lin (51— 1)(s2 = 1)+ (50 = 1B, (O, M(w)r.)

To conclude that (s1 —1)----- (s, — 1)E(-pz5) is not identically zero at (1,...,1), we
consider the case k = 2n of the Siegel parabolic subgroup. Let w € W (Lo, Ma,) (of the
form (2.14)) with b = 0. From (2.14) we conclude that

w = IZn
_IZn .

Thus, only

contributes to

|
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§
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S
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o
3
&
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The right-hand side of (2.27) is non-zero. It is |det-|” times an Eisenstein series on
GL3,(A) induced from 7, ® - -- ® 71 evaluated at (0,...,0). This completes the proof of
Theorem 2.1. g

We denote

3. The tower property of Ex 1

We keep the notation of §§1.2 and 2.

3.1. A small summary

Our goal in this section is to prove Theorem 1.1 for E. 1, i.e. prove the identity (1.11)
for E- 7. We will do this only for k < n. (This will suffice.) Recall that we have, at this
stage, Theorem 1.13 at hand, i.e. F; 1 satisfies the vanishing property, which means that
oy kalEr7) =0, forall k <n—1andall o€ K*.

3.2.

Theorem 3.1. For 1 < p <k < n, ¢; € S(AP), ¢ € S(A*¥~P) and an automorphic form
§ in the space of E; 1, we have for each a € K*,

/ pk,a((rvl)aga(bl ®(;52)d7’
Rp(K)\Rp(A)

= Y[ eellies g onle) e (1)
YEZp(K)\ GLy(K) * £+
Here we use the notation of Theorem 1.1 and pj . is defined as explained right after

(1.13).

Proof. We follow the proof of Theorem 8 of [5]. From this, it follows that for any
automorphic form £ on Spy,, (A), we have (in the notation of (1.13))

/ Pl 1),6, 61 ® 62) dr
R,(K)\Rp(A)

= [ ot [ / O epP)
i Hiemp (K)\Hic—p () I NF_, (NN, (A)

I:—p,p( h—p,p(
X &(vjk—p(h)aB)x; 1, (v) dvdhdz.  (3.2)
See Theorem 1.1 for the notation (£, j(x), etc.). Here

I; a b c d
z e ;o cz
¥ = = . ! / z In—i—j-1
Ni; v Ity e* b/ € Spun a has zero first column
¥ a
I
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We use (3.2) for § = limg_,5(s1—1)----- (s, —1)E(-, p75). Consider the Fourier expansion
of the following function on KP\AP:

trs / 0% . o (Wi p(W)izB)x;, (v) dvd,
Hi—p(K)O\Hi—p(A) IN;_ ), J(E\N_, ,(A)
(3.3)
where
I, t
1
t= Iin—2p—2 € Spy,, -
1 ¢
Ip

We claim that the trivial character contributes zero to the Fourier expansion of (3.3).
Indeed the corresponding coefficient of (3.3) involves, as an inner integral, the constant
term of ¢ along U,(K)\Up,(A). (Note that in [5, Theorem 8], this constant term was
automatically zero since U, is different from the Siegel radical, and there we induced
from a cusp form on GLg,(A).) From (2.1) Corollary 2.2 in §2.3. and from (2.26) we
know that, first, p must be even and, second, lim;_,7(s1 — 1) - -+ (s, — )EYr (-, 07 5)
is a sum parametrized by Weyl elements w € W (La,, M,), such that the corresponding
sum 2b,, g in (2.15) is zero, and for each such w (appearing in (2.14)) the corresponding
summand is a sum of products of the following form: the first factor is the value of
the Eisenstein on GL,(A) induced from Tté\det~|zt3' ® - ® Tt/1|det'|zél evaluated at
(25, 20) =—(2n+1— ip)(1,...,1). The second factor has the form

Er = lim  (sq, —1)-- (84, — 1)Epr o, (3.4)
5 —(1,...,1)
where &' = (sq,,...,8q,) and Ez g is an Eisenstein series on Spy,, 5,(A) induced from

7= 74, det-|*a1~(/2) @ ... @ 7,°¢7/? (using a holomorphic section). The notation
t1,...,t5,a1,...,ae, etc. (for the element w) is explained in (2.7), (2.11), (2.14), (2.15).
Thus, the contribution of the trivial character in the Fourier expansion of (3.3) is a linear
combination of terms of the form

622 (h)
/Hk_pm)\m_pm) /JVS”pﬁ’(K)\NS"pf?(A) vk
x Bz (vjs2 P () (x2" 7)) " (v) dvdh. (3.5)

(Note that in (3.3) x € L4 is fixed.) E7 is of the form (3.4). The superscript (2n — p)
marks the fact that the corresponding object is for Spy,, _5,. Thus,

z * *
2n—
Nk(:fijpl) =3v= IQ(k—P-l-l) * € Sp4n—2p ‘ z € Zop—-1 ¢ - (36)
Z*
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For h = (x,2) € Hi—p,

Iop k1

(2n—
G, 2) = Lnh—yp) (3.7)

— 8w

Iop—_k—1

For v e N7 (A) as in (3.6)

2n—k—1

Xﬁlp_p)(v):¢’< ; Uj,j+1>- (3.8)

Note that the integral (3.5) is the evaluation at the identity of py_p o(G, E7,¢2) in
the notation of (1.13). Denote by £ the representation of Sp,,,_»,(A) generated by the
elements Bz of (3.4). The automorphic functions on Spy;_,(A), § = Pr—p,a(g, E7, ¢2),
constitute the space Uﬁﬁiza(é}/). Again, the superscript (2n — p) is to mark that we

start with Spy,, o, (p is even). Write p = 2p’. Then, since k < n,
k—p<n-—yp.
By Theorem 1.13, we conclude that

o (Ex) = 0. (3.9)

We have shown that in the Fourier expansion of (3.3) only non-trivial characters con-
tribute. Thus the value of (3.3) at £ = 0 is

>

YED(K)\ GLy(K)

¢
/ / . . Ou%eh—p(M)
Hi—p () Hi—p(A) Nkfp,pfl(K)\Nkfp,p—l(A)

x E(ik—p(M)AzB)x; 2, (v) dvdh, (3.10)

{(g f) EGLp}

of GL,. We continue in the same way for each summand of (3.10), and consider the
Fourier expansion of the following function on KP~1\AP~1

where D is the subgroup

ts / 052 o 1oy (WEW, Jrp(M)TATB)x; L, (v) dv dh,
Ho—p (K)\Hi—p(A) IN7_ L (KONNF_,
where
I, t
1
t= Lin—2p . (3.11)
1
I, 1
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The same argument as before shows that the trivial character does not contribute to
the Fourier expansion of (3.11). Here the coefficient of (3.11) corresponding to the triv-
ial character contains, as an inner integrand, the constant terms of £ along Up_;. As
before, p — 1 must be even (otherwise the constant terms of & along U,_1 is zero).
This constant term has the form lim;_,7(s; —1)----- (sp — 1)EY»=1(- 7 5) and hence
is parametrized by w € W (Lay, M,_1) such that b, ,—1 =0 (in (2.15)) and has the
form (2.14). Thus, we get, as before, a linear combination of terms, which are evalu-

ations at the identity of elements of ‘71(/;271::21) ;1))(6}/), where &; is the representation

of Spay,_o(p—1)(A) generated by the elements limg (1 1)(8a, = 1)+ (Sa. — 1) Er 5,
similar to (3.4) only that ET & is the Eisenstein series on Spy,,_s(,— 1)(A) induced from
7 =14, det P21~/ @ ... @ 1, | det -|%ae ~(1/2) where (ay,...,a.) are determined by w

(2.14) above. Since k —p <n — f( — 1), we can apply the theorem at the end of §1.3
and conclude that the trivial character does not contribute to the Fourier expansion of
(3.11). We continue in this way, following the steps of the proof of [5, Theorem 8|, until
we get (3.1). O

Corollary 3.2. For a € K*, the representation oy o(E; 1) of San( ) is cuspidal (in
the sense that the constant terms of the elements of oy 5 o (Ef, ) along unipotent radicals
of parabolic subgroup are identically zero).

Proof. We use (3.1) for k = n, and then use the theorem in §1.3 which guarantees
that 0, y.a(E-7) = 0, for 1 < p < n, so that the right-hand side of (3.1) is zero
(term-wise). O

4. Endoscopic representations of Sp,,, (A)

We are ready to prove our main (global) theorem. We keep the notation and assumptions
of the previous section.

Theorem 4.1. We have
oyn(Er1) #0,

and the representation oy, ,(E; 1) of é\f)gn (A) has a non-trivial 1»-Whittaker coefficient.

Proof. Since £ 1 satisfies the vanishing property, it remains, by Theorem 1.5, to show
that the following integral is not identically zero

/ / £V (m(2)T(x))xp (=) dz dz, (4.1)
X0(A) J Zan (K)\ Zan (A)

as § varies in E; 7. We have already computed €Y2n in (2.27). Tt is an element of

Indgy () Equ,, (7,0)| det | 71/2,

where EgL,, (7,0) is the Eisenstein series on GLgy,(A) induced from 7, @ -+ ® 71. The
dz-integration in (4.1) realizes it inside

S A b _ _
Indgy () B, (7,0)|det | 71/2,

https://doi.org/10.1017/51474748002000026 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748002000026

Endoscopic representations of éBQn 105

where Egf (7,0) is the x,-Whittaker model of Egr,, (7,0) (xy is the Whittaker char-
acter (1.15)). Now, we can use Lemma 2 at the end of Chapter 5 of [6] to conclude that
(4.1) is not identically zero. O

4.1. The unramified parameters of oy, n(Ex 1)

So far, we know that oy ,(E: 1) is a non-trivial cuspidal (genuine) representation
of é{)Qn(A), which admits a non-trivial ¢-Whittaker coefficients. The construction of
oyn(E7 1) is such that it has a non-trivial L2-pairing with all irreducible, automorphic,
cuspidal (genuine) representations o of Sp,,, (A), which admit a non-trivial ¢-Whittaker
coefficient, and such that at almost all places v, the 1, -unramified parameters of o, are
those of the unramified constituents of

TndGlen(Kv)

P2m1 77777 ZmT(KV) 7'1’1/®-..®T,,"l,.

This follows exactly as in Remark 1 at the end of Chapter 2 of [5]. We note also that
each irreducible summand of oy ,,(E7,1) has a non-trivial ¢-Whittaker coefficient. This
follows as in [5, Proposition 11]. This also implies that oy , (£ 1) is a multiplicity free
representation. Indeed, if o and o’ are two isomorphic summands, acting in the subspaces
V, and V,, respectively, then we may choose an isomorphism 7T : V, — V, such that
the 1)-Whittaker coefficient is identically zero on W = {T'(v) — v | v € V., }. This follows
from the uniqueness of the ¥-Whittaker model. However, W is an irreducible summand
of oy n(E- 1), and hence must have a non-trivial ¢-coefficient. This is a contradiction,
unless W =0, i.e. T = id and so V,, = V,/. Note that for the last two assertions, we have
to use the theory of [4], where in the global integrals for gf)zn x GLg, we replace the
Eisenstein series (induced from @2, and a cusp form on GLy,(A)) by Ez 5. The theory
and results of [4] remain the same without change. To complete the proof of the main
global theorem, it remains to prove the following theorem.

Theorem 4.2. Let o be an irreducible summand of oy ,(E-1). (We know that o is
cuspidal and admits a non-trivial 1»-Whittaker coefficient.) Then at almost all places v,
the 1, -unramified parameters of o,, are those of the unramified constituents of

IndGLZn (KV)

P27n1 ,,,,, 277L7v(KV) TT’V ® T ® TT’V.

Proof. The proof already lies in [7] almost without change. We just have to make one
remark. In [7] we used the fact that at almost all places v the unramified constituent
7y, of pr, 1 (where we assumed that 7 is cuspidal on GLgy,(A)) had a non-trivial H (K, )-
invariant functional, where H is the direct sum embedding of Sp,,, X Sp,,, inside Spy,, .
However, we needed this just to ensure that 7, satisfies the vanishing property. In our
case, if w7, denotes the unramified constituent of p; 1, then we know that it satisfies
the vanishing property by Corollary 1.12 at the end of §1.3. Now we can repeat the
proof of [7]. The starting point of the proof in [7] was Theorem 3 (in [7]), which resulted
from [6, Corollary 4.4], where again the existence of the H (K, ) invariant functional
was used just to ensure the vanishing property, which we now have. Thus, Theorem 3
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of [7] is valid for 77, as well. Next, Theorem 4 in [7] used just the self-duality of the
GLy,-representation (and triviality of the central character) and hence it, as well as its
corollary, Theorem 5 (of [7]) are valid for 77,. The material of [7, §3] clearly applies
to 7z, word for word. (We replace 7, there by IndG'L2w (£ )mT (K,)T1, ® -+ ®7p,.) This

completes the proof of the theorem. O

Corollary 4.3. For each irreducible summand o of 0y ,(E: 1), the partial L-function
Li(o@n,s) has a poleat s=1, fori=1,...,r.

Remar/kv 4.4. Let o be an irreducible, automorphic, cuspidal (genuine) representa-
tion of Sp,,, (A), such that it admits a non-trivial )-Whittaker coefficient. Assume that
Li(g ® 7i,8) has a pole at s = 1, for i = 1,...,r. Then o has a non-trivial L2-pairing
with a summand of oy, (E- 7).

Proof. As we mentioned in the beginning of this subsection, we can replace in the
Shimura type integrals of [4], the Eisenstein series (induced from Qa2 (A) and a cusp form
on GLg,(A)) by E7 5, and these integrals will represent Li (c@T1,81) - Li (0@, 8r),
up to a denominator which is holomorphic and non-zero at (1,...,1). The assumption on
o, means, by the structure of these Shimura integrals that the space of o has a non-trivial
L2-pairing with the space of oy.n(E; 7). This is the same argument as in the introduction
of [5,6].

5. Endoscopic representations of §f)2n: the local case

We present, in this section, the analogue, over a non-archimedean local field, of the global
theory studied in the previous section.

5.1. Some preliminaries

Let F' be a non-archimedean local field of characteristic zero. Let 7q,..., 7. be irre-
ducible, supercuspidal, self-dual representations of GLap, (F),...,GLay,, ( ), respec-
tively. Assume that these representations are pairwise 1nequ1valent, and that L(r;, A2, s)
has a pole at s =0, for ¢ = 1,...,r. Here, it will be convenient to denote

GLan (F
r=hdg " me- e (5.1)

This is an irreducible, self-dual tempered representation of GLa, (F'). Denote
pr.s, = Indgpn b0 7| det |2~ (1/2), (5.2)
Let m, be the Langlands quotient of p; ;. Note that p,; is reducible, since
Indgyt () 73] det ['/2

is reducible, by [11]. The last representation has two irreducible constituents: one generic
subrepresentation and one (non-generic) irreducible quotient. Clearly, 7, is not generic.
Our goal in this section is to study the following Sps,, (F')-module

T (2) = Tt (8) (T (1) () @ w5). (5.3)
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Here, 1 is a fixed non-trivial character of F. H,(F') and N,,.1(F) are as in the previous
sections (see (1.4), (1.6)) and xy is defined by (1.5). wfp"_)l is the Weil representation of
Span (F). Recall that Jy (respectively, Jy ) denotes the Jacquet functor with respect
to the unipotent group U and the trivial character (respectively, the character y). We
studied this module in [6] for the case r = 1, and there we showed the following theorem.

Theorem 5.1. In the above notation, assume that r = 1. Then G‘w,n(ﬂ}) is a non-
trivial, irreducible, supercuspidal, genuine and ¢ ~'-generic representation of Spy,, (F). It
is the unique such representation o, such that v(o x 7, s,%) has a pole at s = 1.

Our goal in this section is to prove this theorem for r > 1 as well. Our proof will follow
the steps of [6].

5.2. Existence of a pole of order r at s = 1 of v(o X T,5,%)

__Let o be an irreducible, supercuspidal, genuine and 1~ l-generic representation of
Spa, (F). The global Shimura-type integrals of [4] yield a corresponding local theory,
which centres around the local functional equation (7 is self dual)

V(o % 7,5,90)J(W, 8, ¢:5) = L(1, A%,2(1 — 8)) J(W, ¢, M7 (pr.5))- (5.4)

Here we use the notation of [6, (1.16)]. Let us recall this. W is a Whittaker function in the
1~ 1-Whittaker model of 0. ¢ is a Schwartz—Bruhat function on F™. ¢, , is a holomorphic
section for p; 4, realized as a smooth, complex function on Spy,, (F') x GLg, (F'), such that

for a € GLa, (F).
¢“<G ;>%bﬁ=vmaﬁwm@wm

and a — ¢ 5(g,a) lies in the Whittaker model of 7 with respect to the character given
by [6, (1.2)]. Mj is the local intertwining operator on p. s, defined with respect to the

Weyl element
~ I 2n
Wan = ;
? —1 2n

M* = 6(7-’ s —= %71/})6(77 A272S - lvql))
s L(7, /2,25 — 1)

The local A2 — L and e-factors are those defined by Shahidi (see [10,11]). We have

and

M,. (5.5)

TJ(W, ¢, 0r.5) = W(9) Ty (@1 (9), pr.s(jn(9)) prs) dg (5.6)

/Vn (F)\ Spa, (F)
(4n(g) is given by (1.9)). The precise form of Jy, ,, is given in [6, (1.11)]. Suffice it to say
that Jy » (¢, ¢r,s) is given by an integral which stabilizes on large compact open subgroups
(of a certain unipotent subgroup, and hence is holomorphic in s) [6, Proposition 11], and
that

Jw,n(wz(pn) (u-h)o, Pr,s(an(U ’ h))‘ﬂr,s) = %(U)X#(U)Jw,n(& 907',5)5 (5'7)
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for v € Npyp1(F), h € Hp(F), v € Vo (F). v, is the standard non-degenerate char-
acter of V,(F) defined by v. J(W,¢,¢r,s) has the form (5.6), with Jy, (w{"(9)s,
pri—s(in(9))M:(¢rs)) replacing Jy n(---). Jpn(@, Pr1_s) has exactly the same struc-
ture as Jy n, except for a very slight modification (to adjust a certain Whittaker charac-
ter), so that Jy (¢, Pr.1_s) is holomorphic and satisfies (5.7).

Proposition 5.2. J(W, ¢, ¢- ) and J(W, ¢, Mt (¢r.s)) are holomorphic.

Proof. Since o is supercuspidal, W (g) has a support which is compact module V (F).
The integral (5.6) is then absolutely convergent and holomorphic, since Jy, n(w¢ (9)0,
pr.s(5n(9))¢r.s) is holomorphic and smooth. The same proof works for J(W, ¢, M (¢,.5)),
provided we know that M (¢- s) is holomorphic. This is indeed the case by Theorem 5.1
of [3]. (Note that the conditions of this theorem are satisfied in our case (see, for example,
[3, Theorem 3.4]).) O

Corollary 5.3. Assumptions are as above. The only possible poles of y(o X T, 8,1) occur
among those of L(, A?,2(1 — s)), i.e. on the line Re(s) = 1. (o x 7, 8,v) has a pole of
order r at s = 1, if and only if

/ W () (@06, pro(n(@) M (e 1)) dg 20 (58)
Vi (F)\ Spa,, (F)

Proof. From the last proposition, the only poles of the right-hand side of (5.4) lie among
those of L(7, A%,2(1 — s)) (7 is self-dual). We showed in [4, Proposition 6.6] that data
(W, ¢, prs) can be chosen so that J(W, ¢, v, s) = 1, for all s. The first assertion follows
now from the functional equation (5.4). Note that (see [10])

L(1, A%, 2) = H L(ry x 15,2 HL (i, A%, 2) = HL(TZ',AZ,Z),
1<i<j<r i=1

since, by our assumption L(7; x 7;,2) = 1 for i # j. Thus L(, A2, z) has a pole of order
r at z = 0. This implies the second assertion. O

Asin [6, (1.21)], we consider the following space of functions on g_pE(F) (k< 2n).Let 6
be an irreducible, generic representation of GLa, (F'), and let 7(6) be a subrepresentation
of pg,(1/2)- Then we consider

¢€ S(Fk)’} (5.9)

_ (k) :
Vi n(n(0) = Span{(!k €) = Jip(wy,” (9, €9 po,(172)(Jk(9))#) o € Vio)

(Ji is defined in (1.9)). As in (5.7) this is a space of Whittaker functions, with respect to
Yr,0n Spyy, (F). It affords a representation Gy, (7(6)) of Spyy (£') (by right translations).
Clearly, we have a surjective Spy (F')-morphism

0y-1 k(1(0)) = Toia () (T (1) T(0) © W) = G40 (m(6)), (5.10)

(Nk+1, xx and Hy, are defined in (1.4), (1.5), (1.6)). This follows from (5. 7) It will be
convenient to introduce oy-1j o and Gy .o of 7(6), by replacing ww by w ) n (5.9),
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(5.10) (see (1.17)). The case which interests us is § = 7 ® |det-|~*/2 and 7(0) = 7,
which is the unique irreducible subrepresentation of py (1/2) = pr 0. 7~ is the image of
My applied to pr1. We know from [6, Theorem 1.3] that &y ,(7(f)) # 0, and hence
oy-1.,(m(0)) # 0. Replacing ¢ by ¢!, we get oy ,(7(f)) # 0, for any 6 as above. In
particular,

oypn(mr) # 0. (5.11)

Since o is supercuspidal, it is projective, and then condition (5.8) says that v(o x 7, s, 1)
has a pole of order r at s = 1, if and only if & is a summand of &y (7). This corollary
is valid if we replace n by k < 2n, and we conclude the following corollary.

Corollary 5.4. Let o be an irreducible, supercuspidal, genuine and v~ '-generic repre-
sentation of Spoy(F) (k < 2n). Then, for 7 as above, the only possible poles of (o x
7,8,1) occur among those of L(t, A% ,2(1 — s)), i.e. on the line Re(s) = 1. y(o x T, 8,v)
has a pole of order r at s = 1, if and only if 6 is a summand of &y r(7.).

Remark 5.5. Although we did not prove the multiplicativity of gamma factors for
Spor X GLyy, it certainly is true with proof similar to the case SOax41 X GL,, as in [12].
In our case here, by embedding o in a global automorphic cuspidal (compatibly) generic
representation of Spy, (A) which is unramified at all finite places except that of F', and
by embedding each 7; in a global automorphic representation of GLs,,,(A), which is
unramified at all finite places, except that of F', we can compare, as we did in [6, §6.3],

GL2n(F)

P o () 5—(1/2) o ... 7| det .|srf(1/2)7 0,7)

(o x Ind 71| det -

and [];_, v(o x 7;,s;,9) and obtain that they are equal at least up to an exponential.
Thus, v(o x 7,s,v) has a pole of order r at s =1, if and only if, for all 1 <i<r,
v(o X 74, ,7) has a (simple) pole at s = 1.

5.3.

Theorem 5.6 (the main local theorem). Let 7,...,7. be irreducible, pairwise
inequivalent, supercuspidal, self-dual representations of GLap,, (F),...,GLapy, (F), re-
spectively. Assume that L(r;, A%, s) has a pole at s = 0, for each 1 < i < r. Let 7 be
as in (5.1). Then oy, ,,(7-) is a non-trivial, irreducible, supercuspidal (genuine) and 1o
generic representation of Sp,,, (F'), such that y(oy »(7:) X T,s,1) has a pole of order r at
s = 1. oy n(m;) is unique with these properties, i.e. if o is an irreducible, supercuspidal,
genuine and 1)~ '-generic representation of Sp,, (F'), such that v(o x 7,s,1) has a pole
of order r at s =1, then 0 = oy ,(7;).

5.4. Main steps of the proof

The proof goes along the same lines of the proof for the case r = 1 in [6]. We will
prove the following theorem.

Theorem 5.7. We have, for « € F* and 0 < k < n,

oy ka(mr) = 0.
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Here the idea is similar to [6, Chapter 3]. We will show that p, 1 admits non-trivial
Spa, (F) X Spy,, (F) invariant functionals. We do not know how to give here another proof,
which is ‘uniform’ as Theorem 1.13 (end of §1.3).

Theorem 5.8. The representation oy »(7,) is supercuspidal.

Here, we will compute Jacquet modules of oy, ,(7;) along unipotent radicals of para-
bolic subgroups of Sp,,, (F'). We will see that these Jacquet modules depend on oy (7 ),
for £ < mn, and on certain Jacquet modules of 7, along unipotent radicals of parabolic
subgroups of Spy,, (F). We will prove that these are zero, using an analysis similar to
that in § 2. This together with Theorem 1.1 will prove the theorem. (Recall, from (5.11),
that oy, (7,) is non-trivial.) The irreducibility and ¢ ~!-genericity of oy (7, ) will now
follow almost exactly as in [6] using analysis of Jacquet modules of .

5.5. Proof of Theorem 5.7

We denote by H the image of Sp,,, X Sp,,, inside Spy,, under the direct sum embedding.
We first prove the following proposition.

Proposition 5.9. The representation p, 1 admits non-trivial H(F')-invariant functionals.

Proof. We will show that 7 (in (5.1)) admits a non-trivial GL,,(F) x GL, (F)-invariant
functional, where GL,, x GL,, is embedded in GLs3,, by

(91,92) = <g1 92> .

Once we have this, the argument is exactly the one used in the end of [6, Theorem 3.3.2].
(Let £ be such a functional on 7. Then ¢ defines a non-trivial H(F')-morphism

Spay, (F) XSpa, (F) 61/2

Tex pra = Indp Ty p (75 O, <P,

(normalized induction) by T¢(f)(91,92) = £[f(g1, g2)], thinking now of elements f of the
space of p; 1, as Vy-valued functions on Spy,, (F). Here P, is the Siegel parabolic subgroup
of Spy,,. Since 1sp, (F)xsp,, (F) 18 @ quotient of
Spay, (1) XSpy, (F) ¢1/2
IndPi(F)xPn (pF) Op, %Py

we get, by composition with Ty, an element of Hom g () (pr,115(r)), which is easily seen
to be non-trivial.) We will show that 7 admits non-trivial GL,,(F') x GL, (F)-invariant
functionals by induction on r. We know this for » = 1. This is the heart of the proof
of [6, Theorem 3.3.2]. Let

GL,,,/ (F)

r_
7 =Indp " 2m,

17’1®"'®TT71.

Assume by induction, that V,, admits a non-trivial GL, (F') x GL,(F)-invariant func-
tional 7”. Again, by the case r =1, V, admits a non-trivial GL,,, (F) X GLy,, (F)-
invariant functional T". Think of 7 as

— Tnd Gl ()

/ /
pT/,Tr P,, (F)T Q Tr.

’
2my
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An element fin V,,  is a smooth V» ® V; -valued function on GLs,(F), such that

f ((661 rc) h) _ Ldetal™ Ly @ aa)) (), (5.12)

a9 o | det CLQ‘”/

where a1 € GLay,, (F), a2 € GLay,,.(F'). Consider the following embedding i of GL,, (F') x
GL,(F) in GLg,(F). Write h; € GL,(F), i = 1,2, as

a; T
hi = ’ ’ )
(yi bi)
where a; € My (F), 2; € Mysm, (F), yi € My, xn (F), bi € My, xm, (F). Then
a1 T
as T2

Y2 bo
Y1 b1

Define for f € Vp;,m, and (hi, he) € GL,(F) x GL,,(F)
L(f)(hy, ha) = (T" @ T")(f(i(h1, h2)))-

i(h1,ha) =

Then, from (5.12)
L(f) ((O ”,jj) : (0 jjj) <h1,h2>>

=(TeT") | f

ai L1

az | T2

’

(h17 h2)
b1

| det ajas|™"
=——— L
| det by by |’ (f)(h1,ha)

|det ai|™ | det ag|™
= . L hi,h
[det by | [ det by|" (F)(, he),

for a; € GL/(F), b; € GLp,, (F), ®; € My xm, (F). This shows that L defines an
i(GLy (F) x GL,,(F'))-map

Py = Ind 0 537 @ Imdg 6 (5.13)

mr (F) nmp Enlmg

The right-hand side of (5.13) has 1qr,, (r)xcrL, (7) a8 a quotient, and composition with
the quotient map gives an i(GLy, (F') x GL,(F"))-invariant functional on p’, _ , and hence
on 7, which is easily seen to be non-trivial. Since i(GL,, (F') x GL,,(F)) is conjugate within

GLQn (F) to
() 10ean].

our assertion is proved. O
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We now conclude the proof of Theorem 5.7. Frobenius reciprocity and Proposition 5.9
imply the existence of a non-trivial morphism p;; — Indlf(“lj:)(F) 1, and dualizing this

map, we get a non-trivial morphism

Span (F)

R: Indc H(F) 1— Pr,0-

Since 7, is the unique irreducible subrepresentation of p; o, and R is non-trivial, it is
clear that 7, is a subrepresentation of Im(R). By exactness of Jacquet functors, it follows
that if oy po(77) # 0, for K <n (and a € F*), then oy 1 o(Im R) # 0, and hence

Sp4n(F)

Ok a(IndC ) # 0.
This is impossible by [5, Theorem 16]. We conclude that oy i o(7;) = 0, for all k < n.
This completes the proof of Theorem 5.7. O

5.6. Proof of Theorem 5.8
We have to show that Jg, (r)(0yn(m-)) =0, for all 1 <p < n. Here
1, z Y
R;D = IQ(n—p) x| € Sp2n
Ip

We have seen in [6, Proposition 2.3.1] that there is a vector space isomorphism

JRP(F)(VWT) = JDP(F),Xnipil(Vﬂi). (5.14)
Here
I, u * x ok
z * * 0k z € Z, and
Dy=qv= Iyn—py * * | €Spy, |the first column », (5.15)
25! of u is zero
I,

Xn-p—1 is defined by (1.5): for v € D,(F'), as in (5.15)

Xn—p-1( <Z %3, ]+1>

The representation 7} of D,(F') acts on V. ® S(F™P) by

T (0)(E @) = m- (V) © " ()9, (5.16)
where, for v € D,(F), as in (5.15)

V' = (Vntpntpt1s Untpntpt2s - - > Unpn—p+1) € Hn—p(F). (5.17)
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Note that the isomorphism (5.14) is valid even if we replace 7, by any smooth represen-
tation of Spy,, (F). See Remark 1 at the end of §2.3 in [6]. (Note also the isomorphism
appearing right after (2.9) in [6].) We continue as in [6] right after (2.23). Consider the
right-hand side of (5.14) as an E-module, where

E = IZ(Qn—p—l) € Sp4n(F)

E is isomorphic to the parabolic subgroup of GLy,11(F) of type (p,1) (the so-called mira-
bolic subgroup). By [1] the Jordan-Holder decomposition over E of Jp, (r)x,_,_, (Vaz)
is expressed through Jacquet modules of 7, along the unipotent radicals U,_¢ in Spy,,,
where 0 < £ < p. (See [1] for the notion of derivatives of smooth representations of the
mirabolic subgroup of GL,41(F').) The one derivative of Jp (r)y,_,_,(Vz:), which does
not involve a Jacquet module (with respect to the trivial character) along a unipotent
radical of Spy,, is

CE
Indz . (7)(J2,41(F),0 (IDp#) en 1 (Vaz)); (5.18)
where Z,1(F) is embedded naturally in E

z
by zZ = I2(2n—p—1)

*

z

and v still denotes the standard generic character of Z,11(F'), defined by 7. By definition,
(5.18) is isomorphic to
CE
Indz, ., (7) Vo nop(mr)
which is zero by Theorem 5.7. The derivative which involves Jy,_,r)(Vz,), 0 < £ < p,
has the following form

CE
Indz,  (Jz;, .0 (T, () xnpr (Vaz)); (5.19)

where Z; | (F') is the image in E of the following subgroup of Z,1(F)

{v = (I’” Z) € Z,,H(F)}, (5.20)

and for v of the form (5.20), ¥'(v) = ¥(z12 + 713 + - -+ + 2ge41). It is clear from the
definitions that the space (5.19) is isomorphic to

£ —(p—¢
dg, (1@ ol )y, (7)) (5.21)

Here, when we consider Jy;, _,(r)(7-) as a representation of GLy,—¢(F') X Spaa,_ (p—s)) (£,

1 ®or=(P=0)(.) means that we apply the Jacquet functor afﬁZ:;pJ)) to the second
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factor and do not touch the first factor. The superscript (2n — (p — ¢)) in 01(/)22 ;p )

marks the fact that this Jacquet functor is applied to a representation of Spy(,, _ (,—g)) ('
Thus, it remains to show that

—(p—t
(L@ oin =)y, (7)) =0, (5.22)

for 0 < ¢ < p.
Put, for short, k& = p — £. Of course, 1 < k < p < n. We have to analyse Jy, (p)(7-).
We will prove the following theorem.

Theorem 5.10. Jy, (r)(7,) is non-zero, if and only if k is of the form k = 2(m;, +m;, +
o4 my,), for 1 < iy <ig < -+ < iy < r. In this case the semisimplification (ss) of
Ju,(r)(mr) Is as follows

SS JUk(F) (71'7-)

GLy(F . .
= @ (4TI © e ©m) @)
1< <... <0< " 't
k:2(z711i1+"'ﬁm:,,)

(5.23)

Here 7 (i1,...,it) is the representation of Spy,,_o.(F'), which is the Langlands quotient

of

Sp n—2k(F) .
In d ; :(kF) (Zla"'azt)®|det'|1/27
where
) . GLay—k(F
(i1, 50) = IndPZ(fn ’“(:L () Ty ® - @ Tjy,

and {j1,...,j¢} is the complement of {i1,...,i;} inside {1,...,r}.

Once we have this theorem, then the semisimplification of the left-hand side of (5.22)

becomes
2n—(k/2) GL (F) _ . _
- @ 5 [| det -| (Ind, P () Tit ® - ®T,)
S << KT
k=p—L£=2(m;, +---+m;,) ni
1 @ ol (we (i, .. ir)). (5.24)
Bach summand of (3.24) is zero, since UI(P n— ];)(777(21, ...,it)) = 0. This follows from The-

orem 5.7, sincen —p <n — fk: This will achieve the proof of Theorem 5.8.

5.7. Proof of Theorem 5.10

We first prove a special case.

Proposition 5.11. We have

Ju,, (p)(mr) = | det -|" 7. (5.25)
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Proof. We prove (5.25) by induction on r. For » = 1, we know [11] that p,; has
exactly two irreducible constituents: the Langlands quotient 7. and an irreducible generic
subrepresentation. A direct computation (which we will soon repeat in larger generality)
shows that Jys,, (F)(pr.1) has two constituents: | det-|" "7 and |det-|"r. (Here we use
the supercuspidality of 7, in case r = 1, and the fact that 7 is self-dual.) Since =, is the
image of the intertwining operator M7, (5.25) becomes clear. Assume now that r > 1.
Recall that 7-(1) denotes the irreducible representation of Spy(,,_,,)(f"), which is the
Langlands quotient of

SPy(n—m
IndQ;En%ml’:M) To| det -\1/2 ® - @ 7| det ~|1/2.

(1) is also the unique irreducible subrepresentation of

SP4(n—mq)(F) — _
IndQ:t(mz YYYYY ;T)(F)T2|det.‘ 2@ ... @ 1| det-|71/2.

Clearly 7, is the unique irreducible subrepresentation of
Span (F _
B, = IndQZ‘inl((;) | det-| 72 @ 7, (1).

We first compute Jy,, (7)(3r,). As usual, we consider the restriction -, |q,, (), which has
a filtration parametrized by Qam, \ Spa,, /Q2n. This set of double cosets can be described
by the Weyl elements

1
0 0 Iopm,—j
wj; = 0 I4(n_m1) 0
—Iom,—j 0 0
I

The corresponding quotients in the filtration above are

o Qom (F) 1/2 —~1/2 . . . .
I; = Indfu;Iszl(F)w_,-mQQn(F)((stml - det |7Y2@m,(1))%  (unnormalized induction).
We have
Lj = w;1Q2m1wj N Q2n
J ar a2 613 | Y11 Yz Y3
2—my —j az 0 0 0 Yo
2(n —m a a 0 /
{2 20 L M| esp,,(F)p.  (5.26)
as 0 a3
asy a3 aj,
aj

The representation (5&2/227”171 Y2 @ m,(1))" sends an element of the form (5.26) in

|det ap | Y™ a1 Yi2 as Y1
nel . 5.27
(|deta2 i al @mr(l) a} (5:27)
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It is clear, from (5.27), that Jy, () (Ij) = 0, unless j = 2m; or j = 0. This follows
from the supercuspidality of 7. If j = 2m;, then wa,,, = I4p, and

2my a;  a13 | Y11 Y13
2(n —my) a /
L2’m1 = 2 y3*1 ylll € Sp4n = Q2(m17n—m1)'
as Qi3
0 af

By induction on r,

JU2(nfm1)(F) (FT(]‘)) = |det .|n_m17—(1)'

(Recall that 7(1) = Indl(i;z("”"l)(i;) To ® - ® 7..) We conclude from (5.27) that (and
gty

now writing induction in normalized form)

~ n 1. 1GLan (F ~ n
T (9 (Tomy ) = | det | Ind 5 I{nim)(m mn ® (1) 2| det-|"r. (5.28)
If 7 = 0, then
2my aa 0 0 0
2(n—ma) a; a 0
Lo — j2 3 | Y31 cs ’
0 a§ 0 Pan
aby  axg
and we get, as before, (writing induction in normalized form)
~ n GLan (F
T () = |det P Tnd ") det| @ 7(0). (5:29

Thus, the semisimplification of Jy,, (F)(8;,) has two irreducible constituents: (5.28) and
(5.29). Since each irreducible subquotient of p; o has a non-trivial Jacquet module along
Usn (F) (see [13, Remark 3.5]), we conclude that ., has at most two irreducible con-
stituents. If §,, is irreducible, then it equals 7. This is impossible, since then Jy;, (p(7r)
will have (5.28) and (5.29) as its two irreducible constituents. But, we could repeat the
same calculation with

_ Spyn (F)
Pry = IndQ;n

L(F) ol det -| 72 @ 7, (2)

instead of G3;, (m, is the unique irreducible subrepresentation of f,,) and get that the
constituents of .Jy, () (77) are |det |7 and

| det | Ind 32" }mz) 7o) det | @ 7(2),

which is clearly not isomorphic to (5.29). This is a contradiction. We conclude from
this that 3;, has two irreducible constituents and that (5.28) captures Jy,, (ry(7,), i.e.
Ju,, (Fy(mr) = [ det -|"7. This proves the proposition. O

As a corollary from the proof, we get the following proposition.
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2124“(?) 71| det-|~Y/2 @ 7. (1) has exactly two
my

irreducible constituents: one irreducible subrepresentation, which is 7, and an irreducible
quotient w,,. We have

Proposition 5.12. The representation Ind

i, (py(mr) = | det -|"T
and

n GLa, (F
Tty (7 (wn ) = | det -| Indp(nfli jmn (71l det | @ 7(1).

We are now ready to start proving Theorem 5.10. Since 7, ..., 7, are supercuspidal,
the Weyl elements, representing Qo ,....m,)\ SP4,, /Qk, which parametrize the quotients
of the standard filtration of

geeay

S F _ _
Resq,(p) (Indgn™ oy mldet |12 @ - @ my| det | 71/7) (5.30)

need to be taken only in W (Lo, M) described in §2.2. For a Weyl element w repre-
senting a coset of Qa7 \ Spy, /Qk, the corresponding quotient of (5.30) is

(F)
I, = Indvaflgm(F)ka(F) (652 - (rldet | "V2 @ @7 det [ 71/2))®

(unnormalized induction).

The following set is a set of representatives of Qa7 \ Spa, /Qk (see [2, Proposition 2.7.3])

W(LQm,Mk) = {w S WSp4n

w(a) >0, for all positive roots « inside Loy,
w™(a) >0, for all positive roots a inside M, |-

It is easy to see that for weW(Lgm,Mk)\W(Lgm,Mk), we have Jy, (7 (Iw) = 0, due
to the supercuspidality of 7q,...,7.. From (2.7), we see that k must have the form
2(miy + -+ my,), for 1 < 43 < -+ < 4 < 7. From now on, we assume that k is
of this form. We will prove (5.23) by induction on r. If r = 1, then k¥ = 2m; = 2n,
and (5.23) is a special case of (5.25). Assume that » > 1. We may assume that m; =
min{my,...,m,} (otherwise, we rearrange the indices 1,...,r). We start by considering
Ju,(7)(Br, ). Consider again Resg, () B, and its standard filtration, whose quotients
are parametrized by Qaom, \ Spy, /Qk. The representatives of these double cosets can be
chosen to be the Weyl elements w,, ,, as in §1.3, i.e.

I,
0 I2m17r17r2

0 Loy 0 0
B Ioyii—om, O 0 0

Wrars = 0 0 0 1 ’

ro+k—2mq
0 0 Ion i 0
*I2m1—r1—r2 0
I,
(5.31)
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where
0<r<2mq, 0<ro<2n—k, ri+ry<2mg. (5.32)

The corresponding quotient (in the above filtration) is

Ly = Indcg(ifi)(p) ((5322ml 7| det Y2 @ 7w (1))1 72 (unnormalized induction),

where
_ —1
[’Tlﬂ‘z = wrl,r2Q2m1wr1,r2 N Q.

The elements of L, ,, have the form

1 a; a2 a3z | i1 T2 T13 | Y11 Yi2 Y13
2mq — (7”1 + 7"2) 0 as 0 0 0 T23 0 0 y'12
ro 4+ k —2my 0 as a3 | 0 232 w33 |ys1 O ypy
) b e u | 25y xhy x5

dn — 2k — 2ry c e |ah, 0 iy [.  (5.33)
ry o0 4l
ro +k —2my a3 0 dals
2my — (r1 +72) aj; a3 ay
1 0 0 CLT

The action of
Ty ry = (5612/227”1 - 71| det ,|*1/2 ® mp(1))¥rrr

on the element in £, ,,(F), of the form (5.33) is given by

|deta1| 2n—mq ai y1*2 T11 o az T32 y?1
(|deta2||detb|> |0 a 0 [|®m (1) c  xhe |, (5.34)

0 x4 b aj

where
IQn—k—rz
U}/: Ir2+k72m1
17'2+k—2m1
I2n7kfr2

It is now clear, due to the supercuspidality of 71, that Jy, () (17, ,r,) = 0, unless ry = 2my,
or r1 = 0. Let us examine each case.
Assume that, 11 = 2m;. From (5.32), we must have ro = 0. Note that

2my a1 @13 | Ti2 | Y11 Y13
k —2mq 0 az | x32 | ys1  Yn
£2m1,0 = 4n — 2k c .’1732 :LJIQ ) (535)
aj  ajs
0 df
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and 7o, o is given by (in the notation of (5.35))

az T32 Y

det a1 |** ™ 1y (a1) @ 7, (1) c  Th |- 5.36)
32

By induction,

58 JUk:—?m,l (F) (m-(1))

- —((k— GLg_2m, (F
= @ [(‘ det _|2(n m1)—((k—2m1)/2) .IndPQ(jnj 1(m)/ . Tt @ ®Ti;/)
k—2m1:2(mi,1+..4+mi, ) aoma,
t/

2] < <ih <
nee (1,4, i) (5.37)

We conclude from (5.36) and (5.37) that

ss Ju,, (7) (L 2m;,0)

= D ([det =t/ aZe )
(2mq,k—2m1)
}’€:2(17”L1-i-7n7~/1 +mi/1+---+mi;/) ! !

2] <<y <r

X (7_1 ® IndGLk—2m1 (F)

P2(mi/1 ..... m;r ) (F) i Q-+ Q Ti;/)) ® 7TT(Lillv s 7%’)]
= @ [(|det"2n_(k/2) Snd (F) T ® Q7)) @mr(i1,. .., 0t)]

Po(miysomi,)
k=2(m;, +-+my,)
1=i1 <io<- <4 <7

(5.38)

Assume that r; = 0. Again, from the supercuspidality of 71 and (5.34), we must have
ro = 0, or 79 = 2m;. In case r; = ro = 0, we have

2m aa 0] 0] 0 o0
k —2m, azy a3 | T32 | ys1 0O

Loo =1 4n—2k c | 2hy O | €Spay ¢ (5.39)
az 0
azy a3

and 7o o is given by (in the notation of (5.39))

as  T32 Y31
\deta2|_(2"_m1)rl*(ag)®7TT(1)“’/ c w32 |- (5.40)

*
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Here 71 (a2) = 11 (a3). Since 71 is self-dual, 71 2 7. Using induction, we calculate that

S5 JUk(F)(Foyo)
= @ [| det .‘Qn—(k;/z) Indng(F)

2(my,k—2mq)
k:—2m1:2(mi/1 +»--+mi// )
t

2] <<y <r

GLk_le (F)

x (rildet | @Indp [ 7" ey T @ @ T, ) @ (LY, 0]
i,

1%

— GLy(F
P [(| et = (/2) . e

iy
E=2(mg +-+ma,)
1=y <in <o <ig=<r

\(F) T1|det | @7, @ - @ 74,)

Q (i1, ..., 1)) (5.41)
Finally, assume that 1 = 0 and r5 = 2my. Here,
k az 0 w32 33 Ys1
2my b e u b
£O,2m1 =<{4n — 2k —4m c e x32 | € Sp4n , (542)
b* 0
as

and (in the notation of (5.42)) the action of mg 2., is given by

L[4 T2 Y3
| det b2 =™y (b) @ 7, (1) c Thy
a3

Using induction, we calculate,

~ - GLy(F
sTueyToam) = @ (et Pr-®Dmdg e e
k=2(mi/1 +etmyy ) 1 %
t/
2<i) <<y <r

SPypn 2k (F) _ . .
® (Indgp o6 7y | det [ 2 @ (L)) (5.43)

By Proposition 5.12 (in this section)

SPap 2k (F) - . .
Inszizl(?') Tlldet" 1/2 ®7TT(172/1""’Z;’)

has two irreducible constituents: the irreducible subrepresentation 7, (é},...,t;) and the

irreducible quotient, denote it now by w,, (47, ...,4; ). Recall, also that

JU21L—k(F) (le (lev cee ’i;’))

n— GLap_k(F . .
= [ det "~ mdg ) L ndet | @ T(L L d). (5.44)
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Thus, ss Jy, (7)(L0,2m, ) is the sum of the following two sums:

) [(| det -2n= (/2 g CLe(P) () T @ @7 ) @ (in, . yir)] (5.45)

2y mi,
k=2(mg +-+mi,)
2<ig < <i KT

and

B et PrEDmai" @) @ws, (i, ). (5.46)

(miyemiy,)
k=2(m;, +---+m;, )
20 < <Ay KT

We have proved that ss Jy, (7)(3r,), which is also ss Jy, (ry(7-) @ ss Jy, (r)(ws, ), is the
sum of (5.38), (5.41), (5.45) and (5.46). It remains to show that ssJy, (p)(wr,) is the
sum of (5.41) and (5.46), and ss Jy, (g () is the sum of (5.38) and (5.45). To see this,
let us take a further Jacquet module with respect to the Siegel radical Uéiﬁ;k) (F') on
the Spy,,_ox(F) factor. By Proposition 5.12, we should then replace 7, (iy,...,i;) in
(5.38), (5.41) and (5.45) by |det-|»~*/2)7(iy,... i), while in (5.46), we should replace
wr (i1, .., i) by (5.44),

JU;ZTL_;CM(F)(JU’“(F) (67'1)) = ‘]V(k,’zn—k)(F)(‘]Uzn(F) (67'1))7 (547)
where
Ik. T
IQn—k
Vikon—k) = € Spuy,
(k,2n—k) Iy o P4
Iy,

Again, by Proposition 5.12,

GLan (F)

SS(JUQn(F) (67-1)) = | det .|n7_ @ ‘ det |n IndPQ(an—nn)(F

) 71| det -] @ 7(1),
and (5.47) shows that

Tu@no () (T2) = T () (| det [ 7)
(we identify V(j 2,,—1) and its image in GLg,,). This easily implies what we want, and the
proof of Theorem 5.10 is now complete. O

5.8. Conclusion of the proof of the main local theorem

It remains to prove that oy ,(m,) is irreducible and ¢ ~!-generic. This follows exactly
as in the outline given in §4.2 of [6]. Indeed, Theorem 4.2.1 in [6] is valid for 7, in
our case, since in the proof (given in [6, §4.3]), we use the fact that oy o (7-) = 0, for
0 < k < n, which is Theorem 5.7. (Note that although we require in [6, Theorem 4.3]
that the representation 7 admits non-trivial Sp,,, (F) X Sp,, (F)-invariant functionals, we
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use this just to ensure that oy o(7) = 0, for 0 < k < n.) Thus, for the unipotent group
FEs, and its character 1™ introduced in (4.1), we have

T By pam) () = JV%(FML (7)), (5.48)

where V5, is the standard maximal unipotent subgroup of Spy,,, and 1& is the character of
Van(F), which is trivial on Uy, (F') and is the standard non-degenerate character defined
by ¢ on m(Zzn(F)). Using Proposition 5.7.1, we conclude that dim Jy, p ;(7r) =1,
and hence

dim JE2n,w(2“>(7T‘r) =1. (5.49)

The next step is to see that Proposition 4.2 and its proof in [6] hold here as well without
any change (except that here we take 1)~ ! instead of 1). Thus, we see that each irreducible
summand of oy ,(m,) is ¢~ !-generic. (Note that Theorem 6.2(c) in [6] applies for any
7.) Next, Theorem 4.2.2 in [6] is completely general (see the proof in [6, §4.4]). This
theorem implies, using (4.6) of [6], that the dimension of the space of ¢~ !-Whittaker
functions on V5 (x,) equals dim Jp, e (7), which is 1, by (5.49). This proves the
irreducibility of oy ,(m,) (and of course the 1)~ !-genericity of oy, (,)).
We conclude, as in [6] that (see (5.9), (5.10))

Opn(mr) = Gy-1,(mr) (5.50)

and hence Corollary 1.12 in § 5.2 shows that there is a unique irreducible, supercuspidal,
genuine representation o of §1;2n(F), which is )~ 1-generic, and such that (o x 7, s,)
has a pole of order r at s = 1. ¢ is the representation oy » (7). The proof of the main
local theorem is now complete. (I
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