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Introduction

In this paper, we construct explicitly endoscopic representations of S̃p2n, the metaplectic
cover of a symplectic group of rank n. We do this in the automorphic case, and also in
the local case, over a p-adic field. In more detail, let K be a number field, and let A

denote the adele ring of K. Respectively, let F denote a local non-archimedean field (of
characteristic zero). Fix a non-trivial character ψ of K\A (respectively, of F ).

Global Case. Let τ1 . . . τr be pairwise inequivalent, irreducible, automorphic, cuspidal
and self-dual representations of GL2m1(A), . . . ,GL2mr (A), respectively; n = m1 + · · · +
mr. Assume, for each 1 � i � r, that LS(τi, Λ

2, s) has a pole at s = 1, and that
L(τi,

1
2 ) �= 0.

Main (global) theorem. There exist irreducible, automorphic, cuspidal (genuine) rep-
resentations σ of S̃p2n(A), which have a non-trivial ψ-Whittaker coefficient, such that the
(weak) ψ-functorial lift of σ to GL2n(A) is the Eisenstein series, induced from τ1⊗· · ·⊗τr

(evaluated at (0 · · · 0)).

Recall that there is no canonical way to associate to σν , at a place ν, where σν is
unramified, a conjugacy class of unramified parameters. We have to first fix a choice
of a non-trivial character of Kν . We choose ψν . The ψν-unramified parameters of σν

are the unramified parameters of θψν (σν), the unramified representation of SO2n+1(Kν),
obtained from σν , by the local theta correspondence θψν .
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Main (local) theorem. Let τ1, . . . , τr be pairwise inequivalent, irreducible, super-
cuspidal and self-dual representations of GL2m1(F ), . . . ,GL2mr

(F ), respectively; n =
m1 + · · · + mr. Assume that, for each 1 � i � r, L(τi, Λ

2, s) has a pole at s = 0. Then
there exists a unique, irreducible, supercuspidal (genuine) representation σ of S̃p2n(F ),
which has a ψ−1-Whittaker model, such that (the local gamma factor) γ(σ ⊗ τi, s, ψ) has
a pole at s = 1, for each 1 � i � r.

Our two main theorems justify, in each case, the title ‘endoscopic’ for σ, and we note
that σ is a ψ−1-generic member of ‘the endoscopic L-packet on S̃p2n(A) (respectively,
S̃p2n(F )) determined by τ1 ⊗ · · · ⊗ τr’.

The construction of the representation σ is by the method developed in [5–7]. We
review this in the beginning of § 1. In brief, starting with an irreducible, automor-
phic, cuspidal representation τ of GL2n(A), such that LS(τ, Λ2, s) has a pole at s =
1 and L(τ, 12) �= 0, we considered a certain Fourier–Jacobi coefficient, stabilized by
S̃p2n(A), on Ress=1 Eτ,s, where Eτ,s is the Eisenstein series on Sp4n(A), induced from
τ ⊗|det ·|s−(1/2), on the Siegel parabolic subgroup. This Fourier–Jacobi coefficient affords
an S̃p2n(A)-automorphic module σψ(τ), which we proved to be non-trivial, cuspidal and
ψ−1-generic. Moreover, σψ(τ) is a multiplicity free representation, and each of its sum-
mands is ψ−1-generic and ψ-weakly lifts to τ . Any genuine, irreducible, automorphic, cus-
pidal, ψ−1-generic representation which ψ-weakly lifts to τ has a non-trivial L2-pairing
with a (unique) summand of σψ(τ). In particular, if Vπ is an irreducible space of gen-
uine cusp forms, orthogonal to the space of σψ(τ), where the corresponding automorphic
representation π, ψ-weakly lift to τ , then Vπ has zero ψ-Whittaker coefficient. We con-
jecture that σψ(τ) is actually irreducible. In this paper, we use the same construction,
only now, we apply it not to a cuspidal τ , but rather to an Eisenstein series on GL2n(A),
induced from τ1 ⊗ · · · ⊗ τr (evaluated at (0, . . . , 0).) The generalization is not automatic.
In § 1, we point out the new problems that we have to face and how to solve them. The
analogous local theorem is similar in nature, and is proved in § 5. In future publications,
we hope to generalize the results of this paper and those of [5–7] to a general classical
group.

Finally, let us review some of the notation we use in the paper. The elements of the
symplectic group Sp2k are written with respect to

(
wk

−wk

)
, where wk =

 1

. .
.

1


(k × k matrix). Vk (respectively, Zk) denotes the standard maximal unipotent subgroup
of Sp2k (respectively, GLk). We let Pk denote the Siegel parabolic subgroup of Sp2k. The
elements of the Levi part of Pk have the form

m(a) =

(
a

a∗

)
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for a ∈ GLk, where a∗ = wk
ta−1wk. The elements of the unipotent radical have the form

	(x) =

(
Ik x

Ik

)

where wkx is a symmetric (k × k) matrix. We also put

	(x) =

(
Ik

x Ik

)
.

If r1 + r2 + · · · + re = k, we denote by Qr1,r2,...,re
(respectively, Pr1r2,...,re

) the standard
parabolic subgroup of Sp2k (respectively, GLk), with Levi part isomorphic to GLr1 × · · ·×
GLre , consisting of the elements m(a) (respectively, a), where

a =

g1
. . .

ge

 , gi ∈ GLri
.

We also use the notation Qr̄ (respectively, Pr̄) where r̄ = (r1, r2, . . . , re).
Let F be a local field, and ψ a non-trivial character of F . Denote by ψk the character

of Vk(F ) defined by

ψk(v) = ψ

( k∑
i=1

vi,i+1

)
, v ∈ Vk(F )

ψk is the standard non-degenerate (Whittaker) character of Vk(F ) corresponding to ψ.
When we speak of a ψ-Whittaker functional, or a ψ-generic representation of Sp2k(F )
(or S̃p2k(F )), we refer to ψk. Similarly, for a number field K and its ring of adeles A,
starting with a non-trivial character ψ of K\A, we define ψk on Vk(A) (trivial on Vk(K)),
as before, and for an automorphic form f on Sp2k(A) (or S̃p2k(A)), the ψ-Whittaker
coefficient of f is ∫

Vk(K)\Vk(A)
f(n)ψk(n) dn.

As f varies in the space of an automorphic representation η, we view the last integral as
a linear functional on (the space of) η.

If U is a unipotent group, with points in a p-adic field, and χ is a character of U ,
we denote by JU,x the corresponding Jacquet functor. We also denote JU = JU,1. For
a representation τ of a group G, we denote by Vτ a space of its realization. If τ has a
central character, we denote it by ωτ .

1. Some preliminaries and statement of the main global theorem

1.1. A review

In [5–7] we constructed explicitly the inverse to the functorial lift from S̃p2n to GL2n.
More precisely, let τ be an irreducible, automorphic, cuspidal representation of GL2n(A),
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such that LS(τ, Λ2, s) has a pole at s = 1 and L(τ, 12) �= 0. Here A is the adele ring
of a number field K. Fix a non-trivial character ψ of K\A. Then we gave an explicit
construction of an automorphic (non-trivial) cuspidal representation σψ(τ) of S̃p2n(A),
which is the direct sum of all (up to isomorphism) ψ−1-generic automorphic, irreducible,
cuspidal representations σ of S̃p2n(A), such that at almost all places ν, the ψν-unramified
parameters of σν are those of τν . Note that there is no canonical way to associate to such
σν a conjugacy class of unramified parameters. We have to fix first a choice of a non-trivial
character ψν of Kν (see [4, § 3.1]). Denote by θψν

(σν) the unramified representation of
SO2n+1(Kν), associated to σν by the local theta correspondence θψν

, with respect to
ψν , from S̃p2n(Kν) to SO2n+1(Kν). Then the ψν-unramified parameters of σν are the
unramified parameters of θψν

(σν). Thus, one should think of the L-group of S̃p2n as
that of SO2n+1, i.e. Sp2n(C). The ψ-weak lifting of σ above to τ is with respect to the
standard embedding of L groups Sp2n(C) ⊂ GL2n(C).

The construction of Vσψ(τ), the space of σψ(τ) is as follows. Let P2n be the Siegel
parabolic subgroup of Sp4n. Consider the representation

ρτ,s = IndSp4n(A)
P2n(A) τ ⊗ | det ·|s−(1/2), (1.1)

where we use normalized induction. Let ϕτ,s be a holomorphic section in ρτ,s. We think
of ϕτ,s as a complex function on Sp4n(A) × GL2n(A), such that r �→ ϕτ,s(g; r) is a cusp
form in the space of τ and

ϕτ,s

((
a ∗
0 a∗

)
g, r

)
= | det a|s+nϕτ,s(g; ra). (1.2)

Put
fτ,s(g) = ϕτ,s(g; I2n). (1.3)

Consider the Eisenstein series

Eτ,s(g) = E(g, ϕτ,s) =
∑

g∈P2n(K)\ Sp4n(K)

fτ,s(γ, g).

The series converges absolutely for Re(s) > n+1, and admits a meromorphic continuation
to the whole plane. The assumptions on τ imply that Eτ,s has a simple pole at s = 1 [5,
Proposition 1]. Denote

Eτ,1 = Ress=1 Eτ,s.

The elements of Vσψ(τ) are certain Fourier–Jacobi coefficients of Eτ,1. For this, we have to
introduce more notation. Consider the following unipotent subgroups (these are unipotent
radicals of standard parabolic subgroups)

Ni =


z ∗ ∗

I2i ∗
z∗

 ∈ Sp4n | z ∈ Z2n−i

 , (1.4)
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where Zm is the standard maximal unipotent subgroup of GLm. Here 0 � i < 2n. Let
χk be the following character of Nk+1(A)

χk(v) = ψ

(2n−k−1∑
j=1

vj,j+1

)
, v ∈ Nk+1(A). (1.5)

This is the restriction to Nk+1(A) of the standard generic character defined by ψ. Consider
the following subgroup of Nk,

Hk =


h =


I2n−k−1

1 x z

I2k x′

1
I2n−k−1

 ∈ Sp4n


. (1.6)

Hk is isomorphic to the Heisenberg group Hk on the 2k-dimensional row vector space
over K, equipped with the symplectic form defined by

2

(
wk

−wk

)
, where wk =

 1
. .

.
1

 .

The isomorphism is given by
jk(x; z) = h, (1.7)

for h, x, z as in (1.6).
Let ω

(k)
ψ be the Weil representation of Hk(A) � S̃p2k(A), which corresponds to the

character (0, z) �→ ψ(z) of the centre of Hk(A). ω
(k)
ψ acts on S(Ak), the space of Schwartz–

Bruhat functions on Ak. Denote, for φ ∈ S(Ak), the corresponding theta series

θφ
ψ,k(h · (g, ε)) =

∑
xj∈K

ω
(k)
ψ (h · (g, ε))φ(x1, . . . , xk), (1.8)

for ∈ Hk(A), (g, ε) ∈ S̃p2k(A). Extend jk to an embedding of Hk � Sp2k inside Sp4n by

jk(g) =

I2n−k

g

I2n−k

 , g ∈ Sp2k . (1.9)

Let Vσψ,k(τ) be the space of automorphic forms on S̃p2k(A) generated by

pk(g, ε) = pk((g, ε), ϕτ,1, φ)

=
∫

Hk(K)\Hk(A)

∫
Nk+1(K)\Nk+1(A)

θφ
ψ−1,k(h · (g, ε))

× Ress=1 E(vjk(h · g), ϕτ,s)χ−1
k (v) dv dh. (1.10)
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Here 0 � k < 2n. For k = 0, we define

S̃p0 = {I}, H0 =

{(
1 t

0 1

)}
, ω

(0)
ψ = ψ.

Note that Nk = jk(Hk)Nk+1. Denote by σψ,k(τ) the representation by right translations
of S̃p2k(A) on Vσψ,k

(τ). We computed in [5, Theorem 8, (2.44)] the constant term of pk

along the unipotent radical

Rp =


Ip x y

I2(k−p) x′

Ip

 ∈ Sp2k

 , 1 � p � k.

Take φ to be of the form φ1 ⊗ φ2, where φ1 ∈ S(Ap), φ2 ∈ S(Ak−p). Then we proved
(see [5]) the following theorem.

Theorem 1.1. In the above notation,∫
Rp(k)\Rp(A)

pk((r, 1), ϕτ,1, φ1 ⊗ φ2) dr

=
∑

γ∈Zp(k)\ GLp(k)

∫
LA

pk−p(1, γ̂xβ · ϕτ,1, φ2)φ1(j(x)) dx. (1.11)

Here, for γ ∈ GLp(K),

γ̂ =

γ

I4n−2p

γ∗

 .

β is the following Weyl element

β =


Ip

I2n−k

I2(k−p)

I2n−k

Ip

 .

L is the following subgroup

L =


x =


Ip

L I2n−k

I2(k−p)

I2n−k

L′ Ip

 ∈ Sp4n


and, for x ∈ L,

j(x) = (L2n−k,1, . . . , L2n−k,p).
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From Theorem 1.1, we conclude the following theorem.

Theorem 1.2 (the tower property). Assume that σψ,k(τ) = 0 for all k < 	. Then
σψ,�(τ) is either zero or cuspidal. Moreover, if 	 is the first index such that σψ,�(τ) �= 0,
then σψ,k(τ) is non-cuspidal, for k > 	.

In [5, Chapter 3], we proved the following theorem.

Theorem 1.3. We have, for all k < n,

σψ,k(τ) = 0.

The proof of this theorem was based on the fact that Eτ,1 (the residue representation)
has a non-trivial period along Sp2n × Sp2n, that is, if we let H denote the image in Sp4n

of the direct sum embedding of Sp2n × Sp2n, then∫
Hk\HA

Ress=1 E(g, ϕτ,s) dg �≡ 0. (1.12)

See [5, Corollary 3]. We showed in [5, Theorem 17] that the existence of the period (1.12)
‘negates’ the Fourier–Jacobi model defining σψ,k(τ). In this paper, we will present another
proof for the vanishing of σψ,k(τ), k < n, this time using just the self-duality of τ . This
will allow us to conclude Theorem 1.3, for a larger class of automorphic representations
τ . The exact details will appear right after this section.

In [6, § 5], we proved that our theory is not vacuous, and showed that σψ,n(τ) �= 0.
Our proofs there stand in a larger generality, and we summarize them as follows (see
Theorems 1 and 2 and Lemmas 1 and 2 in [6, § 5]). For this, let us first extend the
definition of σψ,k and apply it not only to the residue representation Eτ,1, but rather to
any automorphic module E of Sp4n(A). Thus σψ,k(E) is the automorphic representation
of S̃p2k(A), acting by right translations in the space Vσψ,k(E) generated by the Fourier
Jacobi coefficients (1.10), i.e. by

pk(g, ε) = pk((g, ε), ξ, φ)

=
∫

Hk(K)\Hk(A)

∫
Nk+1(K)\Nk+1(A)

θφ
ψ−1,k(h · (g, ε))ξ(vjk(h · g))χ−1

k (v) dv dh.

(1.13)

for ξ in the space of E . For α ∈ K∗, let σψ,k,α(E) be the module generated by pk,α(g, ε),
where pk,α(g, ε) is given by (1.13) only that in θφ

ψ−1,k we replace ψ−1 by ψ−α. Thus, we
denote σψ,k,1(E) = σψ,k(E). The only property of Eτ,1 used in the proof of Theorem 1
in [6, § 5] is the fact that σψ,k,α(τ) = 0, for all k < n and all α ∈ K∗ (Theorem 1.3).

Definition 1.4. Let E be an automorphic representation of Sp4n(A). We say that E
satisfies the vanishing property, if

σψ,k,α(E) = 0, for all 0 � k < n and all α ∈ K∗.

https://doi.org/10.1017/S1474748002000026 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748002000026


84 D. Ginzburg, S. Rallis and D. Soudry

Consider the unipotent subgroup E2n of Sp4n, defined in (4.1) of [6], and consider the
character ψ(2n) of E2n(K)\E2n(A) (also defined in [6]). Their actual definition will not
be needed in this paper except for the formulae that will soon be recalled. Then, if E has
the vanishing property, (5.16) of [6] is valid, i.e.∫

E2n(K)\E2n(A)
ξ(v)ψ(2n)(v) dv =

∫
χ0(A)

∫
Z2n(K)\Z2n(A)

ξU2n(m(z)	(x)ν0)χψ(z) dz dx

(1.14)
for ξ ∈ VE .

Here ξU2n is the constant term of ξ along U2n, the unipotent radical of P2n, the Siegel
parabolic subgroup. Z2n is the standard maximal unipotent subgroup of GL2n and for
z ∈ Z2n(A),

χψ(z) = ψ(z12 + z23 + · · · + zn,n+1 − zn+1,n+2 − · · · − z2n−1,2n),

χ0 =

{
x :

(
I2n x

I2n

)
∈ Sp4n and x is nilpotent and upper triagular

}
.

 (1.15)

ν0 is a certain fixed element of Sp4n(K) (ν0 = νa, where a and ν and defined in (4.8),
(4.9) of [6]). (See the introduction for m(z), 	(x).) From Theorem 2 and Lemmas 1 and 2
of [6, § 5], we conclude the following theorem.

Theorem 1.5. Let E be an automorphic representation of Sp4n(A). Assume that E
satisfies the vanishing property. If∫

χ0(A)

∫
Z2n(K)\Z2n(A)

ξU2n(m(z)	(x))χψ(z) dz dx �≡ 0,

as ξ varies in VE , (this is the right-hand side of (1.14)), then σψ,n(E) �= 0. Moreover
σψ,n(E) has a non-trivial ψ-Whittaker coefficient, i.e.∫

Vn(K)\Vn(A)
pn((v, 1), ξ, φ)ψn(v) dv �≡ 0.

1.2. Statement of the main (global) theorem

The main goal of this paper is to extend the results above to the case where τ is replaced
by an Eisenstein series as follows. Let τ1, τ2, . . . , τr be pairwise different irreducible, auto-
morphic, cuspidal and self-dual representations of GL2m1(A), . . . ,GL2mr (A), respectively.
Assume, for each 1 � i � r, that LS(τi, Λ

2, s) has a pole at s = 1, and that L(τi,
1
2 ) �= 0.

Let s1, . . . , sr be complex numbers. Put s̄ = (s1, . . . , sr), n = m1 + m2 + · · · + mr. Put
also m̄ = (m1, . . . , mr). Let Q2m̄ = L2m̄ � U2m̄ be the standard parabolic subgroup of
Sp4n, whose Levi part L2m̄ is isomorphic to GL2m1 × · · · × GL2mr . Denote

ρτ̄ ,s̄ = IndSp4n(A)
Q2m̄(A) τ1| det ·|s1−(1/2) ⊗ · · · ⊗ τr| det ·|sr−(1/2),

and consider the corresponding Eisenstein series

E(g, ϕτ̄ ,s̄) =
∑

γ∈Q2m̄(K)\ Sp4n(K)

fτ̄ ,s̄(γg). (1.16)
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Here, as in (1.2), (1.3), ϕτ̄ ,s̄ is a KSp4n
-finite holomorphic section of ρτ̄ ,s̄, regarded as

a complex valued function on Sp4n(A) × L2m̄(A) such that for each g ∈ Sp4n(A), the
function

(e1, . . . , er) �→ ϕτ̄ ,s̄(g; e1, . . . , er),

on GL2m1(A) × · · · × GL2mr (A) is a cusp form which lies in the space of τ1 ⊗ · · · ⊗ τr

(i.e. the space spanned by the products ϕ1(e1) · · · · · ϕr(er), where ϕi is a cusp form in
τi). Finally, fτ̄ ,s̄(g) = ϕτ̄ ,s̄(g; I2m1 , . . . , I2mr

). The series (1.16) converges absolutely in
a domain of the form Re(s1) 	 Re(s2) 	 · · · 	 Re(sr) 	 0 and it has a meromor-
phic continuation in s̄. We will prove in the next section that this Eisenstein series
has a ‘simple pole’ at (1, . . . , 1) in the sense that for each g ∈ Sp4n(A) the func-
tion (s1 − 1)(s2 − 1) · · · · · (sr − 1)E(g, ϕτ̄ ,s̄) is holomorphic and not identically zero at
1 = (1, . . . , 1). Denote the resulting residual representation (at 1) by Eτ̄ ,1.

Remark 1.6. Let P2m1,...,2mr
be the standard parabolic subgroup of GL2n, where the

Levi part is isomorphic to GL2m1 × · · · × GL2mr
. Using induction by stages, we could

replace ρτ̄ ,s̄ by the representation of Sp4n(A) induced from the Siegel parabolic subgroup
and the representation of the Levi part GL2n(A), given by the Eisenstein series which
corresponds to

IndGL2n(A)
P2m1,...,2mr (A) τ1| det |si−(1/2) ⊗ · · · ⊗ τr| det ·|sr−(1/2).

Our main global result says that the construction described in § 1.1 can be applied to
Eτ̄ ,1.

Theorem 1.7 (main (global) theorem). σψ,n(Eτ̄ ,1) is a non-trivial automorphic,
cuspidal (genuine) representation of S̃p2n(A). It is a multiplicity free direct sum of irre-
ducible, automorphic, cuspidal (genuine) representations σ of S̃p2n(A), which have a non-
trivial ψ-Whittaker coefficient and such that at almost all places ν, the ψν-unramified
parameters of σν are those of the unramified constituent of

IndGL2n(Kν)
P2m1,...,2mr (Kν) τ1,ν ⊗ · · · ⊗ τr,ν .

Moreover, an irreducible, automorphic, cuspidal (genuine) representation σ of S̃p2n(A),
with a non-trivial ψ-Whittaker coefficient has a non-trivial L2-pairing with a summand
of σψ,n(Eτ̄ ,1), if and only if

LS
ψ(σ ⊗ τi, s) has a pole at s = 1, for all 1 � i � r.

Remark 1.8. The irreducible summands of σψ,n(Eτ̄ ,1) are up to isomorphism (given
through a non-trivial L2-pairing) the ψ−1-generic representatives of the ‘ψ-endoscopic’
L-packet which lifts to

IndGL2n(A)
P2m1,...,2mr (A) τ1 ⊗ · · · ⊗ τr.

One of the main tools for the proof of this theorem will be the lemma of the next
section, which gives a simple proof of a quite general nature for the vanishing property
of Eτ̄ ,1 (see Theorem 1.3 and the definition right after (1.13)). This lemma will also be
used in calculating the unramified parameters, at almost all places, of each summand of
σψ,n(Eτ̄ ,1).
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1.3. A lemma on Fourier–Jacobi models

Let F be a local non-archimedean field. Let ψ be a non-trivial character of F . (There
will be no confusion with overlapping notation in the global case.) Let π be a smooth
representation of Sp4n(F ), acting in a space Vπ. For α ∈ F ∗, we can define smooth
representations σψ,k(π) and σψ,k,α(π) of S̃p2k(F ), for 0 � k < 2n, in complete analogy
with (1.13).

σψ,k,α(π) = JHk(F )(JNk+1(F ),χk
(π) ⊗ ω

(k)
ψ−α). (1.17)

Here ω
(k)
ψ−α denotes the Weil representation of Hk(F ) � S̃p2k(F ). Note that Hk(F ) acts

on the Jacquet module

JNk+1(F ),χk
(π) (= JNk+1(F ),χk

(Vπ))

through the embedding (1.7), and, similarly, Sp2k(F ) acts on JNk+1(F ),χk
(π) through the

embedding (1.9).
Let Q2� be the standard parabolic subgroup of Sp4n, with Levi part isomorphic to

GL2� × Sp4(n−�).

Lemma 1.9. Let η and ρ be smooth representations of GL2�(F ) and Sp4(n−�)(F ), respec-
tively. Fix α ∈ F ∗. Assume that

σψ,k,α(ρ) = 0, for all 0 � k < n − 	. (1.18)

Then
σψ,k,α(IndSp4n(F )

Q2�
η ⊗ ρ) = 0, for all 0 � k < n − 	. (1.19)

Moreover, if, in addition to assumption (1.18), σψ,n−�,α(ρ) �= 0, then

σψ,n−�,α(IndSp4n(F )
Q�(F ) η ⊗ ρ) �= 0 ⇔ JZ2�(F ),ψ(η) �= 0. (1.20)

(In (1.20), we keep denoting by ψ the standard generic character of Z2�(F ) defined by
ψ.)

This lemma is very crucial for this paper. It is a special case of a more general lemma,
where Sp4n is replaced by any symplectic, orthogonal or unitary group and Q2� by a
standard maximal parabolic subgroup. The Fourier–Jacobi model is replaced in some of
the other cases by a Bessel model (see [5]). The proof of the general case will appear in
another work of ours, which is now under preparation. For completeness sake, we bring
a sketch of the proof in our present case.

Proof (sketch). We have seen in [6, Lemma 3.2] that

σψ,k,α(IndSp4n(F )
Q2�(F ) η ⊗ ρ) = 0 ⇔ JN(k)(F ),χ(k),α

(IndSp4n(F )
Q2�(F ) η ⊗ ρ) = 0, (1.21)

where N (k) is the product of Nk+1 and the centre C of Hk embedded in Sp4n through
(1.7). χ(k),α|Nk+1 = χk and χ(k),α(jk(0; t)) = ψ(αt) (see (1.7)). Note that Nk+1 is the
unipotent radical of Q2n−k−1. We then first restrict

IndSp4n(F )
Q2�(F ) η ⊗ ρ
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to Q2n−k−1(F ). The Jordan–Holder decomposition of this restriction has quotients, which
are parametrized by Q2�\ Sp4n /Q2n−k−1. We can pick the following representatives,

wr1,r2 =



Ir1

0 I2�−r1−r2

0 I2n−m 0 0
Im−2�+r2 0 0 0

0 0 0 Im−2�+r2

0 0 I2n−m 0
−I2�−r1−r2 0

Ir1


,

where m = 2n − k − 1, 0 � r2 � k + 1, r1 + r2 � 2	.
The corresponding quotient is

Γr1,r2 = IndcQm(F )

w−1
r1,r2Q2�(F )wr1,r2∩Qm(F )(δ

1/2
Q2�

· η ⊗ ρ)wr1,r2

(unnormalized and compact induction).

The group w−1
r1,r2

Q2�wr1,r2 ∩ Qm is isomorphic to

Lr1,r2 =



r1

m − 2	 + r2

2	 − r1 − r2

r2

2(2n − m − r2)



a1 a12 a13 0 x1 x2 0 y1 y2

a2 a23 0 x3 x4 0 y3 y′
1

a3 0 0 0 0 0 0
b e u 0 x′

4 x′
2

c e′ 0 x′
3 x′

1

b∗ 0 0 0
a∗
3 a′

23 a′
13

a∗
2 a′

12

a∗
1


∈ Sp4n

r2

2	 − r1 − r2

m − 2	 + r2

r1



,

and the action of (δ1/2
Q2�

· (η ⊗ ρ))wr1,r2 is

(
| det a1|
| det a3|

| det b|
)2n−�+(1/2)

η

a1

a∗
3

b

 ⊗ ρw′

a2 x3 y3

c x′
3

a∗
2

 , (1.22)

where

w′ =


I2n−m−r2

Im−2�+r2

Im−2�+r2

I2n−m−r2

 .

Denote the representation (1.22) of Lr1,r2(F ) by π
(r1,r2)
η,ρ . Thus, we have to compute

JN(k)(F ),χ(k),α
(IndcQm(F )

Lr1,r2 (F ) π(r1,r2)
η,ρ ).
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Restrict
IndcQm(F )

Lr1,r2 (F ) π(r1,r2)
η,ρ

to V2n(F ), where V2n is the standard maximal unipotent subgroup of Sp4n. The corre-
sponding Jordan–Hölder series is parametrized by Lr1,r2\Qm/V2n. For a Weyl element
w in the last space, denote by γw the corresponding subquotient. Using (1.22), it turns
out that JN(k)(F ), χ(k),α(γw) = 0, unless r1 = 0, and then, w must be of the form

w = wr2,ε =


Im−2�+r2

I2�−r2

ε

I2�−r2

Im−2�+r2

 , (1.23)

where ε is a Weyl element of Sp2k+2 of the form

ε = r2+1→



0
...
0
1 ∗
0
...
0


.

Recall that
γw = IndcV2n(F )

w−1Q2n(F )w∩V2n(F )(π
(r1,r2)
η,ρ )w.

Computing the stabilizer w−1Q2mw ∩ V2n, for w of the form (1.23), we see that (using
(1.21)) JN(k),χ(k),α

(γw) = 0, if σψ,k−r2,α(ρ) = 0. Thus, for 0 � k < n − 	, assumption
(1.18) implies that JN(k),χ(k),α

(γw) = 0. This proves (1.19). If k = n − 	, then k − r2 <

n−	, unless r2 = 0. Thus, the only contribution to the Jacquet module, may come from w

as in (1.23) with r2 = 0, and now (1.2) can be derived by the same methods as before. �

Corollary 1.10. Let Q(2) be the standard parabolic subgroup of Sp4n with Levi part
isomorphic to (GL2)n. Let z̄ = (z1, . . . , zn) ∈ Cn and consider

πn(z̄) = IndSp4n(F )
Q(2)(F ) | det ·|z1 ⊗ · · · ⊗ |det ·|zn . (1.24)

Then σψ,k,α(πn(z̄)) = 0, for all 0 � k < n, and α ∈ F ∗.

Proof. We use induction on n. If n = 1, then σψ,0,α(π1(z̄)) �= 0, if and only if π1(z̄) has
a non-trivial Whittaker model (it depends on α), which is false. Assume, by induction,
that σψ,k,α(πn−1(z1, . . . , zn−1)) = 0 for 0 � k < n − 1 and zj ∈ C. Write

πn(z̄) = IndSp4n(F )
Q2(F ) | det ·|s1 ⊗ πn−1(z2, . . . , zn),

https://doi.org/10.1017/S1474748002000026 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748002000026


Endoscopic representations of S̃p2n 89

and apply the last lemma with 	 = 1, τ = | det ·|z1 (on GL2(F )) ρ = πn−1(z2, . . . , zn)
(on Sp4(n−1)(F )). Then, from the inductive assumption and from (1.16), it follows that
σψ,k,α(πn(z̄)) = 0, for k < n − 1. For k = n − 1, we use the end of the proof of
the last lemma, where only r2 = 0 contributes to the Jacquet module, and then we
must have that JZ2�,ψ

(η) �= 0. In our case η is a character of GL2(F ) (| det ·|z1) and
hence it does not have a Whittaker model. This shows that σψ,n−1,α(πn(z̄)) = 0, as
well. �

We can use Corollary 1.10 to give another proof to Theorem 1.3, where, in the notation
of Theorem 1.3, only the self-duality of τ and the fact that ωτ = 1 are used (even the
cuspidality of τ is not necessary) and thus the vanishing statement of Theorem 1.3
applies to a much larger class of automorphic forms. Still, the idea of our first proof
of Theorem 1.3, i.e. the use of the period (1.12), is useful, and, at this point, we do
not know how to do without it when we deal with the analogous local theory (see [6,
§ 3.3]).

A second proof of Theorem 1.3. We go back to the notation of Theorem 1.3 (global
set-up). We want to show that σψ,k,α(Eτ,1) = 0, for k < n. Let π � ⊗πν be an irreducible
summand of Eτ,1. Note that all such summands are nearly equivalent. At almost all
places, πν is the unramified constituent of ρτν ,1 (notation analogous to (1.1)). Since τν

is self-dual and ωτν
= 1, there are unramified (quasi) characters χ1,ν , . . . , χn,ν , such that

πν is the unramified constituent of the representation of Sp4n(Kν) induced from the
standard Borel subgroup and the following character of the torus

diag(t1, t2, . . . , t2n; t−1
2n , . . . , t−1

1 )

�→ χ1,ν

(
t1
t2n

)
χ2,ν

(
t2

t2n−1

)
· · · · · χn,ν

(
tn

tn+1

)
|t1 · t2 · · · · · t2n|1/2. (1.25)

This character can be conjugated, using a Weyl element of Sp4n, to

diag(t1, t2, . . . , t2n; t−1
2n , . . . , t−1

1 )

�→ χ1,ν(t1t2)
∣∣∣∣ t1t2

∣∣∣∣1/2

χ2,ν(t3t4)
∣∣∣∣ t3t4

∣∣∣∣1/2

· · · · · χn,ν(t2n−1t2n)
∣∣∣∣ t2n−1

t2n

∣∣∣∣1/2

. (1.26)

See [7, § 2]. Thus, πν is the unramified constituent of πn(z̄χ,ν), where χi,ν(t) = |t|zi

and z̄χν = (z1, . . . , zn). If σψ,k,α(Eτ,1) is non-zero, for k < n, we may assume that
σψ,k,α(π) �= 0 and then clearly σψν ,k,α(πν) �= 0 (see [5, § 3.3]). By exactness of Jacquet
functors, σψν ,k,α(πn(z̄χ,ν)) �= 0. This contradicts the last lemma. �

Remark 1.11. Note again that the last proof is valid for any automorphic representation
of the form τ = ⊗τν , where, for almost all ν, τν is unramified, self-dual and ωτν = 1.
Therefore, we have the following corollary.
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Corollary 1.12. Let τν be an irreducible, unramified, self-dual representation of
GL2n(Kν). Assume that ωτν

= 1. Let πτν
be the unramified constituent of ρτν ,1. Then

σψν ,k,α(πτν
) = 0, for k � n − 1 and α ∈ K∗

ν ,

i.e. πτν satisfies the vanishing property.

We conclude, in the notation of § 1.2, the following theorem.

Theorem 1.13. Let τ1, . . . , τr be pairwise different, irreducible, automorphic, cuspidal,
self-dual automorphic representations of GL2m1(A), . . . ,GL2mr (A), respectively. Assume
that, for each i � r, LS(τi, Λ

2, s) has a pole at s = 1 and L(τi,
1
2 ) �= 0. Then Eτ̄ ,1 satisfies

the vanishing property, i.e. σψ,k,α(Eτ̄ ,1) = 0, for all k � n − 1 and all α ∈ K∗.

1.4. A preliminary lemma on Eisenstein series

The following lemma can be derived from [8] and we bring it for completeness sake
and as a preparation for the next section. Here K is a number field as in §§ 1.1 and 1.2.

Lemma 1.14. Let τ1, . . . , τr be irreducible, automorphic, cuspidal, unitary represen-
tations of GL�1(A), . . . ,GL�r (A). Assume that for i �= j, there is no x ∈ C, such that
τj = τi ⊗ |det ·|x. Then the Eisenstein series on GLn(A), n = 	1 + · · · + 	r, correspond-
ing to the representation induced from τ1| det ·|z1 ⊗ · · · ⊗ τr| det ·|zr is holomorphic at
(z1, . . . , zr), if Re(z1) � · · · � Re(zr).

Proof. Let P�1,...,�r be the standard parabolic subgroup of GLn whose Levi part L is
isomorphic to GL�1 × · · · × GL�r . By the general theory of Eisenstein series, it is enough
to show that, at (s1, . . . , sr) = (z1, . . . , zr) as above, all intertwining operators M(w), on

IndGLn(A)
P�1,...,�r (A) τ1| det ·|s1 ⊗ · · · ⊗ τr| det ·|sr ,

are holomorphic, for all w ∈ W (L). W (L) is the set of Weyl elements w of GLm, of
minimal length, modulo the Weyl group of L, such that wLw−1 is a standard Levi
subgroup of GLn. (We use the notation of [9, II.1.7].) We have

W (L) =
{

w ∈ WGLn

∣∣∣∣ w(α) > 0, for all positive roots α inside L and
wLw−1 is a standard Levi subgroup of GLn

}
. (1.27)

(WGLn denotes the Weyl group of GLn.)
W (L) is in bijection with the permutation group Sr. If w ∈ W (L) corresponds to the

permutation ε ∈ Sr, then

w

g1
. . .

gr

 w−1 =

gε−1(1)
. . .

gε−1(r)

 , gi ∈ GL�i .
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It is easy to see, from (1.27), that if we write w ∈ W (L) in the form w = (w1, w2, . . . , wr),
where wi has 	i columns, then wi has the form

0
...
0
I�i

0
...
0


,

i.e. wi has the block I�i appearing somewhere. (We realize first WGLn
as permutation

matrices.) The permutation ε ∈ Sr is defined such that

wε−1(1) =


I�ε−1(1)

0
...
0

, wε−1(2) =


0

I�ε−1(2)

0
...
0



}�ε−1(1)

, wε−1(3) =


0

I�ε−1(3)

0
...
0



}�ε−1(1)+�ε−1(2)

,

. . . , wε−1(r) =


0
...
0

I�ε−1(r)


�ε−1(1)+···+�ε−1(r−1). (1.28)

Denote (as in [8, p. 607]), for w corresponding to ε,

inv(w) = {(i, j) | 1 � i < j � r and ε(i) > ε(j)}.

Let ϕ(s̄) = ⊗ϕν(s̄) be a holomorphic decomposable KGLn-finite section for

IndGLn(A)
P�1,...,�r (A) τ1| det ·s1 ⊗ · · · ⊗ τr| det ·|sr (s̄ = (s1, . . . , sr)).

Let S be a finite set of places, outside which all τi are unramified and ϕν is the standard
unramified section. Then

M(w)ϕ(s̄)(1) =
∏
ν∈S

Mν(w)ϕν(s̄)(1)
∏

(i,j)∈inv(w)

LS(τi ⊗ τ̂j , si − sj)
LS(τi ⊗ τ̂j , si − sj + 1)

=
∏
ν∈S

M∗
ν (w)ϕν(s̄)(1)

∏
(i,j)∈inv(w)

L(τi ⊗ τ̂j , si − sj)
L(τi ⊗ τ̂j , si − sj + 1)

. (1.29)

Here

M∗
ν (w) =

∏
(i,j)∈inv(w)

L(τi,ν ⊗ τ̂j,ν , si − sj + 1)
L(τi,ν ⊗ τ̂j,ν , si − sj)

Mν(w).
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Our assumptions imply that at the point in question (si = zi),

L(τi ⊗ τ̂j , si − sj)
L(τi ⊗ τ̂j , si − sj + 1)

is holomorphic at z̄, for i < j (since then Re(zi − zj) � 0 (see [8, Appendix]). By [8,
Proposition I.10], M∗

ν (w)ϕν(s̄)(1) is holomorphic at z̄, for all ν ∈ S. This shows that
M(w)ϕν(s̄)(1) is holomorphic at z̄, for all w ∈ W (L). �

2. The residue representation and its constant terms

2.1. The Eisenstein series

Let τ1, . . . , τr be pairwise different, irreducible, automorphic, cuspidal and self-dual rep-
resentations of GL2m1(A), . . . ,GL2mr

(A), respectively. Assume that for each 1 � i � r,
LS(τi, Λ

2, s) has a pole at s = 1, and L(τi,
1
2 ) �= 0. Recall, from [5, Proposition 1] that

these conditions imply that the Eisenstein series on Sp4mi
(A), induced from the corre-

sponding Siegel parabolic subgroup and τi ⊗ |det ·|s−(1/2) has a (simple) pole at s = 1.
We consider the induced representation ρτ̄ ,s̄ of Sp4n(A) (n = m1 + · · · + mr) and the
corresponding Eisenstein series E(g, ϕτ̄ ,s̄) (1.16). The main result of this section is the
following theorem.

Theorem 2.1. Under the above assumptions (and in the notation of § 1.2) (s1 −1)(s2 −
1) · · · · · (sr − 1)E(g, ϕτ̄ ,s̄) is holomorphic and not identically zero at s̄ = 1 = (1, 1, . . . , 1).

Proof. We will show this property for the constant terms of the Eisenstein series along
all unipotent radicals Uk, 1 � k � 2n, of the standard maximal parabolic subgroups
Qk = Mk � Uk of Sp4n:

Qk = Mk � Uk =


g ∗ ∗

h ∗
g∗

 ∈ Sp4n | g ∈ GLk, h ∈ Sp4n−2k

 .

Denote the constant term of E(g, ϕτ̄ ,s̄) along Uk by EUk(g, ϕτ̄ ,s̄). We have (see [9, II.1.7]),
for g ∈ Sp4n(A) (fixed)

EUk(hg, ϕτ̄ ,s̄) =
∑

w∈W (L2m̄,Mk)

EMk
(h, M(w)(g · ϕτ̄ ,s̄)), (2.1)

for h ∈ Mk(A). Here EMk
(h, M(w)(g ·ϕτ̄ ,s̄)) is the Eisenstein series on Mk(A), built from

M(w)(g · ϕτ̄ ,s̄)|Mk(A), which lies in

IndMk(A)
wL2m̄(A)w−1 w(τ1| det ·|s1−(1/2) ⊗ · · · ⊗ τr| det ·|sr−(1/2)).
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M(w) is the intertwining operator corresponding to the Weyl element w and w lies in
the following set

W (L2m̄, Mk)

=

w ∈ WSp4n

∣∣∣∣∣∣
(i) w(α) > 0, for all positive roots α inside L2m̄,

(ii) w−1(α) > 0, for all positive roots α inside Mk,

(iii) wL2m̄w−1 is a standard Levi subgroup inside Mk

 . (2.2)

2.2. Description of W (L2m̄, Mk)

We realize the Weyl elements of Sp4n as symplectic permutation matrices, where the
non-zero elements in each row are ±1. The non-zero elements in either the upper 2n

rows or in columns 2n + 1 up to 4n are +1, and otherwise, they are −1. Denote the set
of simple roots of L2m̄ (which correspond to upper unipotent root subgroups) by ∆L2m̄ ,
and the corresponding positive roots by φ+

L2m̄
. Similarly, consider ∆Mk

and φ+
Mk

. Let w

be in W (L2m̄, Mk). For α ∈ ∆L2m̄ , (i) and (iii) in (2.2) imply

w(α) =
∑

β∈∆Mk

aββ, for some integers aβ � 0.

Thus,
α =

∑
β∈∆Mk

aβw−1(β). (2.3)

By (ii) of (2.2), w−1(β) > 0, for β ∈ ∆Mk
. Since α is simple, (2.3) implies that

w(α) ∈ ∆Mk
. We showed that w(∆L2m̄) ⊂ ∆Mk

. Since the elements of ∆L2m̄ have the
same length, it is clear that w(∆L2m̄) also lies inside the set of (simple) roots inside the
Levi part (GL2n) of P2n, the Siegel parabolic subgroup. Consider the simple roots in
∆L2m̄

which lie in

Lmi =




I2(m1+···+mi−i)

g

I4(mi+1+···+mr)

g∗

I2(m1+···+mi−1)

 | g ∈ GL2mi


.

(2.4)
Denote these roots by ∆i = {αi,1, . . . , αi,mi−1}. Since ∆i is a connected subset in the
Dynkin diagram, so is w(∆i) inside ∆Mk

. This shows that wLmiw
−1 is of the form

L′
i =





Ie

g

1
. . .

1
g′

Ie


| g ∈ GL2mi


⊂ Mk,
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for some appropriate e, and hence the following composition

GL2mi

∼−→ Lmi → wLmiw
−1 ∼−→ GL2mi

(of the natural isomorphism of GL2mi
and Lmi , conjugation by w and the natural isomor-

phism of L′
i and GL2mi

) is the identity on GL2mi . We conclude that w has the following
form

w = (w1, . . . , wr, wr+1, . . . , w2r),

where w1, . . . , wr have 2m1, . . . , 2mr columns, respectively, and wr+1, . . . , w2r have
2mr, . . . , 2m1 columns, respectively. Each wi has the form

0
...
0

±I2m∗
i

0
...
0


,

where

m∗
i =

{
mi, i � r,

m2r+1−i, i > r.
(2.5)

Note that the block ±I2m∗
i

in wi is either in the upper 2n rows or in the lower 2n rows.
(It does not ‘cross’ from row 2n to row 2n + 1, since then w will not be a symplectic
permutation matrix.) Since wL2m̄w−1 ⊂ Mk, we can find 1 � t1, . . . , tj � 2r, such that

wt1 =


I2m∗

t1

0
...
0

 , wt2 =


0

I2m∗
t2

...
0


}2m∗

t1

, wt3 =


0

I2m∗
t3

...
0


}2m∗

t1
+2m∗

t2

,

. . . , wtj
=


0

I2m∗
tj

...
0


}2m∗

t1
+···+2m∗

tj−1

, (2.6)

and

2m∗
t1 + · · · + 2m∗

tj
= k. (2.7)
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In particular, k is even. We have (in the notation (2.4)) for i � j,

wLm∗
ti

w−1

=





I2m∗
t1

+···+2m∗
ti−1

g

1
. . .

1
g∗

I2m∗
t1

+···+2m∗
ti−1


| g ∈ GL2m∗

ti


.

(2.8)

Let us show that
t1 < t2 < · · · < tj . (2.9)

For this, we use property (ii) in (2.2). Consider the subgroup



I2m∗
t1

+···+2m∗
ti−1

I2m∗
ti

x

I2m∗
ti+1

1
. . .

1
I2m∗

t+1
x′

I2m∗
ti

I2m∗
ti

+·+2m∗
ti−1



∈ Sp4n


of Mk, which is generated by positive roots in Mk. Its inverse image under w lies in
V2n, the standard maximal unipotent subgroup of Sp4n. This forces ti < ti+1, for i =
1, . . . , j − 1. Similarly, let 1 � ai � 2r, i = 1, . . . , e, be such that

wa1 =


0

I2m∗
a1

0
...
0



}k

, wa2 =


0

I2m∗
a2

0
...
0



}k+2m∗
a1

, . . . , wae =


0

I2m∗
ae

0
...
0



}k+2m∗
a1

+···+2m∗
ae−1

(2.10)
and

2m∗
a1

+ · · · + 2m∗
ae

= 2n − k. (2.11)

As before,
a1 < a2 < · · · < ae. (2.12)
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Considering the inverse image under w of the subgroup


I2n−2m∗
ae

I2m∗
ae

x

I2m∗
ae

I2n−2m∗
ae

 ∈ Sp4n


of Mk and requiring (by (2.2) (ii)) that it lies in V2n, we conclude that ae < 2r + 1 − ae,
i.e.

ae � r. (2.13)

From (2.6), (2.7), (2.9)–(2.13), we see that w has the following form

w =



I2m∗
t1

I2m∗
t2

·
·

·
I2m∗

tj

I2m∗
a1

I2m∗
a2

I2m∗
ae

∗ ∗



. (2.14)

Let 0 � i � j be the last integer, such that ti � r (i.e. the block I2m∗
ti

lies in the left half
of w, while the block I2m∗

ti+1
lies in the right half of w). Put

2m∗
t1 + · · · + 2m∗

ti
= 2b = 2bw,k. (2.15)

Denote

L′
2m̄ =


g1

. . .
gr

 ∈ GL2n

∣∣∣∣ gi ∈ GL2mi ,

i = 1, . . . , r

 .

We can find w̃ ∈ WGL2n(L′
2m̄) (notation of § 1.4) such that for

w′ =

(
w̃

w̃∗

)
,

ww′ =


I2b

0 0 Ik−2b

0 I4n−2k 0
−Ik−2b 0 0

I2b

 . (2.16)
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Thus,

w =



I2b

Ik−2b

I2n−k

I2n−k

Ik−2b

I2b



×


I2b+2n−k

Ik−2b

−Ik−2b

I2b+2n−k

 w′
1, (2.17)

where

w′
1 =

(
w̃1

w̃∗
1

)
, w̃1 =

I2b

I2n−k

Ik−2b

 , w̃−1 ∈ WGL2n
(L′

2m̄). (2.18)

2.3. Continuation of the proof of Theorem 2.1

By [9, IV.4.1], we have for w ∈ W (L2m̄, Mk) as in (2.17),

M(w) = M



I2b

Ik−2b

I2n−k

I2n−k

Ik−2b

I2b



◦ M


I2b+2n−k

Ik−2b

−Ik−2b

I2b+2n−k

 ◦ M(w′
1). (2.19)

By the lemma in § 1.4 and by (2.18), M(w′
1) is holomorphic at (1, . . . , 1). M(w′

1)
permutes τ1| det ·|s1−(1/2) ⊗ · · · ⊗ τr| det ·|sr−(1/2) on L2m̄(A) to

τt1 | det ·|st1−(1/2) ⊗· · ·⊗ τti
| det ·|sti

−(1/2) ⊗ τa1 | det ·|sa1−(1/2) ⊗· · ·⊗ τae
| det ·|sae −(1/2)

⊗ τ2r+1−ti+1 | det ·|s2r+1−ti+1−(1/2) ⊗ · · · ⊗ τ2r+1−tj | det ·|s2r+1−tj
−(1/2). (2.20)

Put
t′i+1 = 2r + 1 − ti+1, . . . , t

′
j = 2r + 1 − tj .

https://doi.org/10.1017/S1474748002000026 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748002000026


98 D. Ginzburg, S. Rallis and D. Soudry

We will repeatedly use the identity
Iα

Iβ+γ

−Iβ+γ

Iα



=


Iα+γ

Iβ

−Iβ

Iα+γ





Iα

Iγ

Iβ

Iβ

Iγ

Iα



×


Iα+β

Iγ

−Iγ

Iα+β

 . (2.21)

We first use it for γ = 2m∗
tj

, β = 2m∗
tj−1

, α = 2n − (β + γ). We know from [5,
Proposition 1] that

(stj
− 1)M


Iα+β

Iγ

−Iγ

Iα+β


is holomorphic and non-zero at (1, . . . , 1). (Note that the inducing data come now from
(2.20)). This operator (evaluated at (1, . . . , 1)) replaces, in (2.20), τt′

j
by τ̂t′

j
= τt′

j
and

st′
j
− 1

2 by −st′
j
+ 1

2 . We keep using [9, IV.4.1] (whose conditions are easily seen to be
satisfied). The next Weyl element in (2.21) gives a holomorphic intertwining operator (at
(1, . . . , 1)) by Lemma 1.14 (where now z1 = · · · = zr−1 = 1

2 , zr = − 1
2 , and the inducing

data are given by (2.20) except that stj − 1/2 is replaced by −st′
j

+ 1
2 ). This operator

switches the order of

τt′
j−1

⊗ |det ·|st′
j−1

−(1/2)
and τt′

j
⊗ | det ·|−st′

j
+(1/2)

in the inducing data (which appears in the last parenthesis). Next consider the third
Weyl element on the right-hand side of (2.21). Again, from [5, Proposition 1] we know
that

(st′
j−1

− 1)M


Iα+γ

Iβ

−Iβ

Iα+γ


is holomorphic and non-zero at (1, . . . , 1). Now apply (2.21) on intertwining operators
(using [9, IV.4.1] at each stage) for γ = 2m∗

tj−1
+2m∗

tj
, β = 2m∗

tj−2
and α = 2n− (β +γ),
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and then again for γ = 2m∗
tj−2

+2m∗
tj−1

+2m∗
tj

, β = 2m∗
tj−3

and α = 2n− (β +γ) and so
on. Note that in each step Lemma 1.14 is applicable. This shows that for w as in (2.14)

(st′
i+1

− 1)(st′
i+2

− 1) · · · · · (st′
j−1)M


I2b+2n−k

Ik−2b

−Ik−2b

I2b+2n−k

 M(w′
1)

(2.22)
is holomorphic and non-zero at (1, . . . , 1). This operator, evaluated at (1, . . . , 1), takes
the inducing data (2.20) to

τt1 | det ·|st1−(1/2) ⊗· · ·⊗ τti | det ·|sti
−(1/2) ⊗ τa1 | det ·|sa1−(1/2) ⊗· · ·⊗ τae | det ·|sae −(1/2)

⊗ τt′
j
| det ·|−st′

j
+(1/2) ⊗ τt′

j−1
| det ·|−st′

j−1
+(1/2) ⊗ · · · ⊗ τt′

i+1
| det ·|−st′

i+1
+(1/2)

. (2.23)

Now apply the operator

M



I2b

Ik−2b

I2n−k

I2n−k

Ik−2b

I2b


,

which is holomorphic by Lemma 1.14, and from (2.19), we conclude that

M ′(w) = (st′
i+1

− 1)(st′
i+2

− 1) · · · · · (st′
j
− 1)M(w)

is holomorphic and non-zero at (1, . . . , 1). (2.24)

M ′(w) permutes the inducing data τ1| det ·|s1−(1/2) ⊗ · · · ⊗ τr| det ·|sr−(1/2) on Mk(A) to

τt1 | det ·|st1−(1/2) ⊗· · ·⊗τti | det ·|sti
−(1/2) ⊗τt′

j
| det ·|−st′

j
+(1/2) ⊗τt′

j−1
| det ·|−st′

j−1
+(1/2)

⊗ · · · ⊗ τt′
i+1

| det ·|st′
i+1

+(1/2) ⊗ τa1 | det ·|sa1−(1/2) ⊗ · · · ⊗ τae | det ·|sae −(1/2) (2.25)

on w(Mk)(A). It remains to examine EMk
(h, M(w)(ϕτ̄ ,s̄)) (see equation (2.1)) on Mk(A)

at (1, . . . , 1). EMk
(·, M ′(w)(ϕτ̄ ,s̄)) is a sum of products of Eisenstein series on GLk(A),

induced from

τt1 | det ·|s̃t1 ⊗ · · · ⊗ τti | det ·|s̃ti ⊗ τt′
j
| det ·|

˜̃−st′
j ⊗ · · · ⊗ τt′

i+1
| det ·|

˜̃−st′
i+1 , (2.26)

where

s̃t = st + 2n − 1
2k, ˜̃−st = −st + 2n − 1

2k + 1
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and Eisenstein series on Sp4n−2k(A), induced from the adele points of the parabolic
subgroup of Sp4n−2k

Q′
2ā =





g1
. . . ∗

ge

g∗
e

. . .
g∗
1


∈ Sp4n−2k

∣∣∣∣ gi ∈ GL2ai ,

i = 1, . . . , e


,

and the representation τa1 | det ·|sa1−(1/2) ⊗ · · · ⊗ τae | det ·|sae −(1/2). The Eisenstein series
on GLk(A) induced from (2.26) is holomorphic at (1, . . . , 1) by Lemma 1.14. The Eisen-
stein series on Sp4n−2k(A) is holomorphic at (1, . . . , 1), after being multiplied by (sa1 −
1) · · · · ·(sae −1). For this we use induction. We conclude that (st′

i+1
−1) · · · · ·(st′

j−1)(sa1 −
1) · · · · · (sae

− 1)EMk
(h, M(w)ϕτ̄ ,s̄) is holomorphic at (1, . . . , 1). In particular (see (2.1)),

(s1 − 1)(s2 − 1) · · · · · (sr − 1)EUk(h, ϕτ̄ ,s̄)

is holomorphic at (1, . . . , 1) for all k. We also conclude the following corollary.

Corollary 2.2. In the above notation, if b > 0 (see (2.15)), then

lim
s̄→1

(s1 − 1)(s2 − 1) · · · · · (sr − 1)EMk
(h, M(w)ϕτ̄ ,s̄) = 0.

Thus, only w ∈ W (L2m̄, Mk), with b = 0 contribute to

lim
s→1

(s1 − 1)(s2 − 1) · · · · · (sr − 1)EMk
(h, M(w)ϕτ̄ ,s̄).

To conclude that (s1 − 1) · · · · · (sr − 1)E(·ϕτ̄ ,s̄) is not identically zero at (1, . . . , 1), we
consider the case k = 2n of the Siegel parabolic subgroup. Let w ∈ W (L2m̄, M2n) (of the
form (2.14)) with b = 0. From (2.14) we conclude that

w =

(
I2n

−I2n

)
.

Thus, only

M

(
I2n

−I2n

)
contributes to

lim
s̄→1

(s1 − 1) · · · · · (sr − 1)EU2n(h, ϕτ̄ ,s̄),

and we get from (2.1),

lim
s̄→1

(s1 − 1) · · · · · (sr − 1)EU2n(h, ϕτ̄ ,s̄)

= EM2n

(
h, M ′

(
I2n

−I2n

)
ϕτ̄ ,1

)
, h ∈ M2n(A). (2.27)
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The right-hand side of (2.27) is non-zero. It is | det ·|n times an Eisenstein series on
GL2n(A) induced from τr ⊗ · · · ⊗ τ1 evaluated at (0, . . . , 0). This completes the proof of
Theorem 2.1. �

We denote
Eτ̄ ,1(g, ϕτ̄ ,1) = lim

s̄→1
(s1 − 1) · · · · · (sr−1)E(g, ϕτ̄ ,s̄).

3. The tower property of Eτ̄ ,1

We keep the notation of §§ 1.2 and 2.

3.1. A small summary

Our goal in this section is to prove Theorem 1.1 for Eτ̄ ,1, i.e. prove the identity (1.11)
for Eτ̄ ,1. We will do this only for k � n. (This will suffice.) Recall that we have, at this
stage, Theorem 1.13 at hand, i.e. Eτ̄ ,1 satisfies the vanishing property, which means that
σψ,k,α(Eτ̄ ,1) = 0, for all k � n − 1 and all α ∈ K∗.

3.2.

Theorem 3.1. For 1 � p � k � n, φ1 ∈ S(Ap), φ2 ∈ S(Ak−p) and an automorphic form
ξ in the space of Eτ̄ ,1, we have for each α ∈ K∗,∫

Rp(K)\Rp(A)
pk,α((r, 1), ξ, φ1 ⊗ φ2) dr

=
∑

γ∈Zp(K)\ GLp(K)

∫
LA

pk−p,α(1, γ̂xβ · ξ, φ2)φ1(j(x)) dx. (3.1)

Here we use the notation of Theorem 1.1 and pj,α is defined as explained right after
(1.13).

Proof. We follow the proof of Theorem 8 of [5]. From this, it follows that for any
automorphic form ξ on Sp4n(A), we have (in the notation of (1.13))∫

Rp(K)\Rp(A)
pk,α((r, 1), ξ, φ1 ⊗ φ2) dr

=
∫

LA

φ1(j(x))
∫

Hk−p(K)\Hk−p(A)

∫
N∗

k−p,p(K)\N∗
k−p,p(A)

θφ2
ψ−α,k−p(h)

× ξ(vjk−p(h)xβ)χ−1
k−p(v) dv dh dx. (3.2)

See Theorem 1.1 for the notation (L, j(x), etc.). Here

N∗
i,j =


v =


Ij a b c d

z e f c′

I2(i+1) e′ b′

z∗ a′

Ij

 ∈ Sp4n

∣∣∣∣ z ∈ Z2n−i−j−1
a has zero first column


.
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We use (3.2) for ξ = lims̄→1(s1−1) · · · · ·(sr −1)E(·, ϕτ̄ ,s̄). Consider the Fourier expansion
of the following function on Kp\Ap:

t �→
∫

Hk−p(K)\Hk−p(A)

∫
N∗

k−p,p(K)\N∗
k−p,p(A)

θφ2
ψ−α,k−p(h)ξ(vjk−p(h)t̃xβ)χ−1

k−p(v) dv dh,

(3.3)
where

t̃ =


Ip t

1
I4n−2p−2

1 t′

Ip

 ∈ Sp4n .

We claim that the trivial character contributes zero to the Fourier expansion of (3.3).
Indeed the corresponding coefficient of (3.3) involves, as an inner integral, the constant
term of ξ along Up(K)\Up(A). (Note that in [5, Theorem 8], this constant term was
automatically zero since Up is different from the Siegel radical, and there we induced
from a cusp form on GL2n(A).) From (2.1) Corollary 2.2 in § 2.3. and from (2.26) we
know that, first, p must be even and, second, lims̄→1(s1 − 1) · · · · · (sr − 1)EUp(·, ϕτ̄ ,s̄)
is a sum parametrized by Weyl elements w ∈ W (L2m̄, Mp), such that the corresponding
sum 2bw,β in (2.15) is zero, and for each such w (appearing in (2.14)) the corresponding
summand is a sum of products of the following form: the first factor is the value of
the Eisenstein on GLp(A) induced from τt′

j
| det ·|zt′

j ⊗ · · · ⊗ τt′
1
| det ·|z

′
t1 evaluated at

(zt′
j
, . . . , zt′

1
) = −(2n + 1 − 1

2p)(1, . . . , 1). The second factor has the form

Eτ̄ ′ = lim
s̄′→(1,...,1)

(sa1 − 1) · · · · · (sae − 1)Eτ̄ ′,s̄′ , (3.4)

where s̄′ = (sa1 , . . . , sae) and Eτ̄ ′,s̄′ is an Eisenstein series on Sp4n−2p(A) induced from
τ̄ ′ = τa1 | det ·|sa1−(1/2) ⊗ · · · ⊗ τ

sae−(1/2)
ae (using a holomorphic section). The notation

t1, . . . , tj , a1, . . . , ae, etc. (for the element w) is explained in (2.7), (2.11), (2.14), (2.15).
Thus, the contribution of the trivial character in the Fourier expansion of (3.3) is a linear
combination of terms of the form∫

Hk−p(K)\Hk−p(A)

∫
N

(2n−p)
k−p+1 (K)\N

(2n−p)
k−p+1 (A)

θφ2
ψ−α,k−p(h)

× Eτ̄ ′(vj
(2n−p)
k−p (h))(χ(2n−p)

k−p )−1(v) dv dh. (3.5)

(Note that in (3.3) x ∈ LA is fixed.) Eτ̄ ′ is of the form (3.4). The superscript (2n − p)
marks the fact that the corresponding object is for Sp4n−2p. Thus,

N
(2n−p)
k−p+1 =

v =

z ∗ ∗
I2(k−p+1) ∗

z∗

 ∈ Sp4n−2p | z ∈ Z2n−k−1

 . (3.6)
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For h = (x, z) ∈ Hk−p,

j
(2n−p)
k−p (x, z) =


I2n−k−1

1 x z

I2(k−p) x′

1
I2n−k−1

 . (3.7)

For v ∈ N
(2n−p)
k−p+1 (A) as in (3.6)

χ
(2n−p)
k−p (v) = ψ

(2n−k−1∑
j=1

vj,j+1

)
. (3.8)

Note that the integral (3.5) is the evaluation at the identity of pk−p,α(g̃, Eτ̄ ′ , φ2) in
the notation of (1.13). Denote by Eτ̄ ′ the representation of Sp4n−2p(A) generated by the
elements Eτ̄ ′ of (3.4). The automorphic functions on S̃p2(k−p)(A), g̃ �→ pk−p,α(g̃, Eτ̄ ′ , φ2),
constitute the space σ

(2n−p)
ψ,k−p,α(Eτ̄ ′). Again, the superscript (2n − p) is to mark that we

start with Sp4n−2p (p is even). Write p = 2p′. Then, since k � n,

k − p < n − p′.

By Theorem 1.13, we conclude that

σ
(2n−p)
ψ,k−p,α(Eτ̄ ′) = 0. (3.9)

We have shown that in the Fourier expansion of (3.3) only non-trivial characters con-
tribute. Thus the value of (3.3) at t̃ = 0 is∑

γ∈D(K)\ GLp(K)

∫
Hk−p(K)Hk−p(A)

∫
N∗

k−p,p−1(K)\N∗
k−p,p−1(A)

θφ2
ψ−α,k−p(h)

× ξ(vjk−p(h)γ̂xβ)χ−1
k−p(v) dv dh, (3.10)

where D is the subgroup {(
g x

0 1

)
∈ GLp

}
of GLp. We continue in the same way for each summand of (3.10), and consider the
Fourier expansion of the following function on Kp−1\Ap−1

t �→
∫

Hk−p(K)\Hk−p(A)

∫
N∗

k−p,p−1(K)\N∗
k−p,p−1

θφ2
ψ−α,k−p(h)ξ(v, jk−p(h)t̃γ̂xβ)χ−1

k−p(v) dv dh,

where

t̃ =


Ip−1 t

1
I4n−2p

1 t′

Ip−1

 . (3.11)

https://doi.org/10.1017/S1474748002000026 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748002000026


104 D. Ginzburg, S. Rallis and D. Soudry

The same argument as before shows that the trivial character does not contribute to
the Fourier expansion of (3.11). Here the coefficient of (3.11) corresponding to the triv-
ial character contains, as an inner integrand, the constant terms of ξ along Up−1. As
before, p − 1 must be even (otherwise the constant terms of ξ along Up−1 is zero).
This constant term has the form lims̄→1(s1 − 1) · · · · · (sp − 1)EUp−1(·, ϕτ̄ ,s̄) and hence
is parametrized by w ∈ W (L2m̄, Mp−1) such that bw,p−1 = 0 (in (2.15)) and has the
form (2.14). Thus, we get, as before, a linear combination of terms, which are evalu-
ations at the identity of elements of σ

(2n−(p−1))
ψ,k−p,α (Eτ̄ ′), where Eτ̄ ′ is the representation

of Sp4n−2(p−1)(A) generated by the elements lims̄′→(1,...,1)(sa1 − 1) · · · · · (sae
− 1)Eτ̄ ′,s̄′ ,

similar to (3.4) only that Eτ̄ ′,s̄′ is the Eisenstein series on Sp4n−2(p−1)(A) induced from
τ̄ ′ = τa1 | det ·|sa1−(1/2) ⊗ · · · ⊗ τae

| det ·|sae −(1/2), where (a1, . . . , ae) are determined by w

(2.14) above. Since k − p < n − 1
2 (p − 1), we can apply the theorem at the end of § 1.3

and conclude that the trivial character does not contribute to the Fourier expansion of
(3.11). We continue in this way, following the steps of the proof of [5, Theorem 8], until
we get (3.1). �

Corollary 3.2. For α ∈ K∗, the representation σψ,n,α(Eτ̄ ,1) of S̃p2n(A) is cuspidal (in
the sense that the constant terms of the elements of σψ,n,α(Eτ̄ ,1) along unipotent radicals
of parabolic subgroup are identically zero).

Proof. We use (3.1) for k = n, and then use the theorem in § 1.3 which guarantees
that σn−p,ψ,α(Eτ̄ ,1) = 0, for 1 � p � n, so that the right-hand side of (3.1) is zero
(term-wise). �

4. Endoscopic representations of S̃p2n(A)

We are ready to prove our main (global) theorem. We keep the notation and assumptions
of the previous section.

Theorem 4.1. We have
σψ,n(Eτ̄ ,1) �= 0,

and the representation σψ,n(Eτ̄ ,1) of S̃p2n(A) has a non-trivial ψ-Whittaker coefficient.

Proof. Since Eτ̄ ,1 satisfies the vanishing property, it remains, by Theorem 1.5, to show
that the following integral is not identically zero∫

χ0(A)

∫
Z2n(K)\Z2n(A)

ξU2n(m(z)	(x))χψ(z) dz dx, (4.1)

as ξ varies in Eτ̄ ,1. We have already computed ξU2n in (2.27). It is an element of

IndSp4n(A)
Q2n(A) EGL2n

(τ̄ , ō)| det ·|−1/2,

where EGL2n(τ̄ , ō) is the Eisenstein series on GL2n(A) induced from τr ⊗ · · · ⊗ τ1. The
dz-integration in (4.1) realizes it inside

IndSp4n(A)
Q2n(A) E

χψ

GL2n
(τ̄ , ō)| det ·|−1/2,
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where E
χψ

GL2n
(τ̄ , ō) is the χψ-Whittaker model of EGL2n

(τ̄ , ō) (χψ is the Whittaker char-
acter (1.15)). Now, we can use Lemma 2 at the end of Chapter 5 of [6] to conclude that
(4.1) is not identically zero. �

4.1. The unramified parameters of σψ,n(Eτ̄ ,1)

So far, we know that σψ,n(Eτ̄ ,1) is a non-trivial cuspidal (genuine) representation
of S̃p2n(A), which admits a non-trivial ψ-Whittaker coefficients. The construction of
σψ,n(Eτ̄ ,1) is such that it has a non-trivial L2-pairing with all irreducible, automorphic,
cuspidal (genuine) representations σ of S̃p2n(A), which admit a non-trivial ψ-Whittaker
coefficient, and such that at almost all places ν, the ψν-unramified parameters of σν are
those of the unramified constituents of

IndGL2n(Kν)
P2m1,...,2mr (Kν) τ1,ν ⊗ · · · ⊗ τr,ν .

This follows exactly as in Remark 1 at the end of Chapter 2 of [5]. We note also that
each irreducible summand of σψ,n(Eτ̄ , 1) has a non-trivial ψ-Whittaker coefficient. This
follows as in [5, Proposition 11]. This also implies that σψ,n(Eτ̄ ,1) is a multiplicity free
representation. Indeed, if σ and σ′ are two isomorphic summands, acting in the subspaces
Vσ and Vσ′ , respectively, then we may choose an isomorphism T : Vσ → Vσ′ such that
the ψ-Whittaker coefficient is identically zero on W = {T (v) − v | v ∈ Vσ}. This follows
from the uniqueness of the ψ-Whittaker model. However, W is an irreducible summand
of σψ,n(Eτ̄ ,1), and hence must have a non-trivial ψ-coefficient. This is a contradiction,
unless W = 0, i.e. T = id and so Vσ = Vσ′ . Note that for the last two assertions, we have
to use the theory of [4], where in the global integrals for S̃p2n × GL2n we replace the
Eisenstein series (induced from Q2n and a cusp form on GL2n(A)) by Eτ̄ ,s̄. The theory
and results of [4] remain the same without change. To complete the proof of the main
global theorem, it remains to prove the following theorem.

Theorem 4.2. Let σ be an irreducible summand of σψ,n(Eτ̄ ,1). (We know that σ is
cuspidal and admits a non-trivial ψ-Whittaker coefficient.) Then at almost all places ν,
the ψν-unramified parameters of σν are those of the unramified constituents of

IndGL2n(Kν)
P2m1,...,2mr (Kν) τr,ν ⊗ · · · ⊗ τr,ν .

Proof. The proof already lies in [7] almost without change. We just have to make one
remark. In [7] we used the fact that at almost all places ν the unramified constituent
πν of ρτν ,1 (where we assumed that τ is cuspidal on GL2n(A)) had a non-trivial H(Kν)-
invariant functional, where H is the direct sum embedding of Sp2n × Sp2n inside Sp4n.
However, we needed this just to ensure that πν satisfies the vanishing property. In our
case, if πτ̄ν denotes the unramified constituent of ρτ̄ν ,1ν

then we know that it satisfies
the vanishing property by Corollary 1.12 at the end of § 1.3. Now we can repeat the
proof of [7]. The starting point of the proof in [7] was Theorem 3 (in [7]), which resulted
from [6, Corollary 4.4], where again the existence of the H(Kν) invariant functional
was used just to ensure the vanishing property, which we now have. Thus, Theorem 3
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of [7] is valid for πτ̄ν
as well. Next, Theorem 4 in [7] used just the self-duality of the

GL2n-representation (and triviality of the central character) and hence it, as well as its
corollary, Theorem 5 (of [7]) are valid for πτ̄ν . The material of [7, § 3] clearly applies
to πτ̄ν word for word. (We replace τν there by IndGL2n(Fν)

P2m1,...,2mr
(Kν)τ1,ν ⊗ · · · ⊗ τr,ν .) This

completes the proof of the theorem. �

Corollary 4.3. For each irreducible summand σ of σψ,n(Eτ̄ ,1), the partial L-function
LS

ψ(σ ⊗ τi, s) has a pole at s = 1, for i = 1, . . . , r.

Remark 4.4. Let σ be an irreducible, automorphic, cuspidal (genuine) representa-
tion of S̃p2n(A), such that it admits a non-trivial ψ-Whittaker coefficient. Assume that
LS

ψ(σ ⊗ τi, s) has a pole at s = 1, for i = 1, . . . , r. Then σ has a non-trivial L2-pairing
with a summand of σψ,n(Eτ̄ ,1).

Proof. As we mentioned in the beginning of this subsection, we can replace in the
Shimura type integrals of [4], the Eisenstein series (induced from Q2n(A) and a cusp form
on GL2n(A)) by Eτ̄ ,s̄, and these integrals will represent LS

ψ(σ⊗τ1, s1) · · · · ·LS
ψ(σ⊗τr, sr),

up to a denominator which is holomorphic and non-zero at (1, . . . , 1). The assumption on
σ, means, by the structure of these Shimura integrals that the space of σ has a non-trivial
L2-pairing with the space of σψ,n(Eτ̄ ,1). This is the same argument as in the introduction
of [5,6].

5. Endoscopic representations of S̃p2n: the local case

We present, in this section, the analogue, over a non-archimedean local field, of the global
theory studied in the previous section.

5.1. Some preliminaries

Let F be a non-archimedean local field of characteristic zero. Let τ1, . . . , τr be irre-
ducible, supercuspidal, self-dual representations of GL2m1(F ), . . . ,GL2mr

(F ), respec-
tively. Assume that these representations are pairwise inequivalent, and that L(τi, Λ

2, s)
has a pole at s = 0, for i = 1, . . . , r. Here, it will be convenient to denote

τ = IndGL2n(F )
P2m1,...,2mr (F ) τ1 ⊗ · · · ⊗ τr. (5.1)

This is an irreducible, self-dual tempered representation of GL2n(F ). Denote

ρτ,s, = IndSp4n(F )
Q2n(F ) τ | det ·|s−(1/2). (5.2)

Let πτ be the Langlands quotient of ρτ,1. Note that ρτ,1 is reducible, since

IndSp4n(F )
Q2ni

(F ) τi| det ·|1/2

is reducible, by [11]. The last representation has two irreducible constituents: one generic
subrepresentation and one (non-generic) irreducible quotient. Clearly, πτ is not generic.
Our goal in this section is to study the following S̃p2n(F )-module

σψ,n(πτ ) = JHn(F )(JNn+1(F ),χn
(πτ ) ⊗ ω

(n)
ψ−1). (5.3)
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Here, ψ is a fixed non-trivial character of F . Hn(F ) and Nn+1(F ) are as in the previous
sections (see (1.4), (1.6)) and χn is defined by (1.5). ω

(n)
ψ−1 is the Weil representation of

S̃p2n(F ). Recall that JU (respectively, JU,χ) denotes the Jacquet functor with respect
to the unipotent group U and the trivial character (respectively, the character χ). We
studied this module in [6] for the case r = 1, and there we showed the following theorem.

Theorem 5.1. In the above notation, assume that r = 1. Then σψ,n(πτ ) is a non-
trivial, irreducible, supercuspidal, genuine and ψ−1-generic representation of S̃p2n(F ). It
is the unique such representation σ, such that γ(σ × τ, s, ψ) has a pole at s = 1.

Our goal in this section is to prove this theorem for r > 1 as well. Our proof will follow
the steps of [6].

5.2. Existence of a pole of order r at s = 1 of γ(σ × τ, s, ψ)

Let σ be an irreducible, supercuspidal, genuine and ψ−1-generic representation of
S̃p2n(F ). The global Shimura-type integrals of [4] yield a corresponding local theory,
which centres around the local functional equation (τ is self dual)

γ(σ × τ, s, ψ)J(W, φ, ϕτ,s) = L(τ, Λ2, 2(1 − s))J̃(W, φ, M∗
s (ϕτ,s)). (5.4)

Here we use the notation of [6, (1.16)]. Let us recall this. W is a Whittaker function in the
ψ−1-Whittaker model of σ. φ is a Schwartz–Bruhat function on Fn. ϕτ,s is a holomorphic
section for ρτ,s, realized as a smooth, complex function on Sp4n(F )×GL2n(F ), such that
for a ∈ GL2n(F ).

ϕτ,s

((
a ∗
0 a∗

)
g, I2n

)
= | det a|s+nϕτ,s(g, a),

and a �→ ϕτ,s(g, a) lies in the Whittaker model of τ with respect to the character given
by [6, (1.2)]. Ms is the local intertwining operator on ρτ,s, defined with respect to the
Weyl element

w̃2n =

(
I2n

−I2n

)
,

and

M∗
s =

ε(τ, s − 1
2 , ψ)ε(τ, Λ2, 2s − 1, ψ)
L(τ, Λ2, 2s − 1)

Ms. (5.5)

The local Λ2 − L and ε-factors are those defined by Shahidi (see [10,11]). We have

J(W, φ, ϕτ,s) =
∫

Vn(F )\ Sp2n(F )
W (g)Jψ,n(ω(n)

ψ (g)φ, ρτ,s(jn(g))ϕτ,s) dg (5.6)

(jn(g) is given by (1.9)). The precise form of Jψ,n is given in [6, (1.11)]. Suffice it to say
that Jψ,n(φ, ϕτ,s) is given by an integral which stabilizes on large compact open subgroups
(of a certain unipotent subgroup, and hence is holomorphic in s) [6, Proposition 11], and
that

Jψ,n(ω(n)
ψ (u · h)φ, ρτ,s(vjn(u · h))ϕτ,s) = ψn(u)χ−1

n (v)Jψ,n(φ, ϕτ,s), (5.7)
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for v ∈ Nn+1(F ), h ∈ Hn(F ), v ∈ Vn(F ). ψn is the standard non-degenerate char-
acter of Vn(F ) defined by ψ. J̃(W, φ, ϕτ,s) has the form (5.6), with J̃ψ,n (ω(n)

ψ (g)φ,

ρτ,1−s(jn(g))M∗
s (ϕτ,s)) replacing Jψ,n(· · · ). J̃ψ,n(φ, ϕ̃τ,1−s) has exactly the same struc-

ture as Jψ,n, except for a very slight modification (to adjust a certain Whittaker charac-
ter), so that J̃ψ,n(φ, ϕ̃τ,1−s) is holomorphic and satisfies (5.7).

Proposition 5.2. J(W, φ, ϕτ,s) and J̃(W, φ, M∗
s (ϕτ,s)) are holomorphic.

Proof. Since σ is supercuspidal, W (g) has a support which is compact module Vn(F ).
The integral (5.6) is then absolutely convergent and holomorphic, since Jψ,n(ω(n)

ψ (g)φ,

ρτ,s(jn(g))ϕτ,s) is holomorphic and smooth. The same proof works for J̃(W, φ, M∗
s (ϕτ,s)),

provided we know that M∗
w(ϕτ,s) is holomorphic. This is indeed the case by Theorem 5.1

of [3]. (Note that the conditions of this theorem are satisfied in our case (see, for example,
[3, Theorem 3.4]).) �

Corollary 5.3. Assumptions are as above. The only possible poles of γ(σ×τ, s, ψ) occur
among those of L(τ, Λ2, 2(1 − s)), i.e. on the line Re(s) = 1. γ(σ × τ, s, ψ) has a pole of
order r at s = 1, if and only if∫

Vn(F )\ Sp2n(F )
W (g)J̃ψ,n(ω(n)

ψ (g)φ, ρτ,0(jn(g))M∗
1 (ϕτ,1)) dg �≡ 0. (5.8)

Proof. From the last proposition, the only poles of the right-hand side of (5.4) lie among
those of L(τ, Λ2, 2(1 − s)) (τ is self-dual). We showed in [4, Proposition 6.6] that data
(W, φ, ϕτ,s) can be chosen so that J(W, φ, ϕτ,s) = 1, for all s. The first assertion follows
now from the functional equation (5.4). Note that (see [10])

L(τ, Λ2, z) =
∏

1�i<j�r

L(τi × τj , z)
r∏

i=1

L(τi, Λ
2, z) =

r∏
i=1

L(τi, Λ
2, z),

since, by our assumption L(τi × τj , z) = 1 for i �= j. Thus L(τ, Λ2, z) has a pole of order
r at z = 0. This implies the second assertion. �

As in [6, (1.21)], we consider the following space of functions on S̃p2k(F ) (k < 2n). Let θ

be an irreducible, generic representation of GL2n(F ), and let π(θ) be a subrepresentation
of ρθ,(1/2). Then we consider

Vσ̃ψ,k(π(θ)) = Span
{

(g, ε) → Jk,ψ(ω(k)
ψ (g, ε)φ, ρθ,(1/2)(jk(g))ϕ)

∣∣∣∣ φ ∈ S(F k),
ϕ ∈ Vπ(θ)

}
(5.9)

(jk is defined in (1.9)). As in (5.7) this is a space of Whittaker functions, with respect to
ψk,on S̃p2k(F ). It affords a representation σ̃ψ,k(π(θ)) of S̃p2k(F ) (by right translations).
Clearly, we have a surjective S̃p2k(F )-morphism

σψ−1,k(π(θ)) = JHk(F )(JNk+1(F ),χ−1
k

π(θ) ⊗ ω
(k)
ψ ) → σ̃ψ,k(π(θ)), (5.10)

(Nk+1, χk and Hk are defined in (1.4), (1.5), (1.6)). This follows from (5.7). It will be
convenient to introduce σψ−1,k,α and σ̃ψ,k,α of π(θ), by replacing ω

(k)
ψ by ω

(k)
ψα in (5.9),
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(5.10) (see (1.17)). The case which interests us is θ = τ ⊗ | det ·|−1/2 and π(θ) = πτ ,
which is the unique irreducible subrepresentation of ρθ,(1/2) = ρτ,0. πτ is the image of
M∗

1 applied to ρτ,1. We know from [6, Theorem 1.3] that σ̃ψ,n(π(θ)) �= 0, and hence
σψ−1,n(π(θ)) �= 0. Replacing ψ by ψ−1, we get σψ,n(π(θ)) �= 0, for any θ as above. In
particular,

σψ,n(πτ ) �= 0. (5.11)

Since σ is supercuspidal, it is projective, and then condition (5.8) says that γ(σ × τ, s, ψ)
has a pole of order r at s = 1, if and only if σ̂ is a summand of σ̃ψ,n(πτ ). This corollary
is valid if we replace n by k < 2n, and we conclude the following corollary.

Corollary 5.4. Let σ be an irreducible, supercuspidal, genuine and ψ−1-generic repre-
sentation of S̃p2k(F ) (k < 2n). Then, for τ as above, the only possible poles of γ(σ ×
τ, s, ψ) occur among those of L(τ, Λ2, 2(1 − s)), i.e. on the line Re(s) = 1. γ(σ × τ, s, ψ)
has a pole of order r at s = 1, if and only if σ̂ is a summand of σ̃ψ,k(πτ ).

Remark 5.5. Although we did not prove the multiplicativity of gamma factors for
S̃p2k × GLm, it certainly is true with proof similar to the case SO2k+1 × GLm as in [12].
In our case here, by embedding σ in a global automorphic cuspidal (compatibly) generic
representation of S̃p2k(A) which is unramified at all finite places except that of F , and
by embedding each τi in a global automorphic representation of GL2mi(A), which is
unramified at all finite places, except that of F , we can compare, as we did in [6, § 6.3],

γ(σ × IndGL2n(F )
P2m1,...,2mr (F ) τ1| det ·|si−(1/2) ⊗ · · · ⊗ τr| det ·|sr−(1/2), 0, ψ)

and
∏r

i=1 γ(σ × τi, si, ψ) and obtain that they are equal at least up to an exponential.
Thus, γ(σ × τ, s, ψ) has a pole of order r at s = 1, if and only if, for all 1 � i � r,
γ(σ × τi, s, ψ) has a (simple) pole at s = 1.

5.3.

Theorem 5.6 (the main local theorem). Let τ1, . . . , τr be irreducible, pairwise
inequivalent, supercuspidal, self-dual representations of GL2m1(F ), . . . ,GL2mr (F ), re-
spectively. Assume that L(τi, Λ

2, s) has a pole at s = 0, for each 1 � i � r. Let τ be
as in (5.1). Then σψ,n(πτ ) is a non-trivial, irreducible, supercuspidal (genuine) and ψ−1-
generic representation of S̃p2n(F ), such that γ(σψ,n(πτ ) × τ, s, ψ) has a pole of order r at
s = 1. σψ,n(πτ ) is unique with these properties, i.e. if σ is an irreducible, supercuspidal,
genuine and ψ−1-generic representation of S̃p2n(F ), such that γ(σ × τ, s, ψ) has a pole
of order r at s = 1, then σ ∼= σψ,n(πτ ).

5.4. Main steps of the proof

The proof goes along the same lines of the proof for the case r = 1 in [6]. We will
prove the following theorem.

Theorem 5.7. We have, for α ∈ F ∗ and 0 � k < n,

σψ,k,α(πτ ) = 0.
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Here the idea is similar to [6, Chapter 3]. We will show that ρτ,1 admits non-trivial
Sp2n(F )×Sp2n(F ) invariant functionals. We do not know how to give here another proof,
which is ‘uniform’ as Theorem 1.13 (end of § 1.3).

Theorem 5.8. The representation σψ,n(πτ ) is supercuspidal.

Here, we will compute Jacquet modules of σψ,n(πτ ) along unipotent radicals of para-
bolic subgroups of Sp2n(F ). We will see that these Jacquet modules depend on σψ,k(πτ ),
for k < n, and on certain Jacquet modules of πτ along unipotent radicals of parabolic
subgroups of Sp4n(F ). We will prove that these are zero, using an analysis similar to
that in § 2. This together with Theorem 1.1 will prove the theorem. (Recall, from (5.11),
that σψ,n(πτ ) is non-trivial.) The irreducibility and ψ−1-genericity of σψ,n(πτ ) will now
follow almost exactly as in [6] using analysis of Jacquet modules of πτ .

5.5. Proof of Theorem 5.7

We denote by H the image of Sp2n×Sp2n inside Sp4n under the direct sum embedding.
We first prove the following proposition.

Proposition 5.9. The representation ρτ,1 admits non-trivial H(F )-invariant functionals.

Proof. We will show that τ (in (5.1)) admits a non-trivial GLn(F ) × GLn(F )-invariant
functional, where GLn × GLn is embedded in GL2n by

(g1, g2) �→
(

g1

g2

)
.

Once we have this, the argument is exactly the one used in the end of [6, Theorem 3.3.2].
(Let 	 be such a functional on τ . Then 	 defines a non-trivial H(F )-morphism

T� : ρτ,1 → IndSp2n(F )×Sp2n(F )
Pn(F )×Pn(F ) δ

1/2
Pn×Pn

(normalized induction) by T�(f)(g1, g2) = 	[f(g1, g2)], thinking now of elements f of the
space of ρτ,1, as Vτ -valued functions on Sp4n(F ). Here Pn is the Siegel parabolic subgroup
of Sp2n. Since 1Sp2n(F )×Sp2n(F ) is a quotient of

IndSp2n(F )×Sp2n(F )
Pn(F )×Pn(F ) δ

1/2
Pn×Pn

,

we get, by composition with T�, an element of HomH(F )(ρτ,11H(F )), which is easily seen
to be non-trivial.) We will show that τ admits non-trivial GLn(F ) × GLn(F )-invariant
functionals by induction on r. We know this for r = 1. This is the heart of the proof
of [6, Theorem 3.3.2]. Let

τ ′ = IndGL2n′ (F )
P2m1 ,...,2mr−1

τ1 ⊗ · · · ⊗ τr−1.

Assume by induction, that Vτ ′ admits a non-trivial GLn′(F ) × GLn′(F )-invariant func-
tional T ′. Again, by the case r = 1, Vτr admits a non-trivial GLmr (F ) × GLmr (F )-
invariant functional T ′′. Think of τ as

ρ′
τ ′,τr

= IndGL2n(F )
P2n′,2mr

(F ) τ ′ ⊗ τr.
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An element f in Vρ′
τ′,τr

is a smooth Vτ ′ ⊗ Vτr
-valued function on GL2n(F ), such that

f

((
a1 x

0 a2

)
h

)
=

| det a1|mr

| det a2|n′ (τ ′(a1) ⊗ τr(a2))(f(h)), (5.12)

where a1 ∈ GL2n, (F ), a2 ∈ GL2mr
(F ). Consider the following embedding i of GLn(F )×

GLn(F ) in GL2n(F ). Write hi ∈ GLn(F ), i = 1, 2, as

hi =

(
ai xi

yi bi

)
,

where ai ∈ Mn′×n′(F ), xi ∈ Mn×mr (F ), yi ∈ Mmr×n′(F ), bi ∈ Mmn×mr
(F ). Then

i(h1, h2) =


a1 x1

a2 x2

y2 b2

y1 b1

 .

Define for f ∈ Vρ′
τ′,τr

, and (h1, h2) ∈ GLn(F ) × GLn(F )

L(f)(h1, h2) = (T ′ ⊗ T ′′)(f(i(h1, h2))).

Then, from (5.12)

L(f)

((
a1 x1

0 b1

)
,

(
a2 x2

0 b2

)
(h1, h2)

)

= (T ′ ⊗ T ′′)

f


a1 x1

a2 x2

b2

b1

 (h1, h2)


=

| det a1a2|mr

| det b1b2|n′ L(f)(h1, h2)

=
| det a1|mr

| det b1|n′ · | det a2|mr

| det b2|n′ L(f)(h1, h2),

for ai ∈ GLn′(F ), bi ∈ GLmr (F ), xi ∈ Mn′×mr (F ). This shows that L defines an
i(GLn(F ) × GLn(F ))-map

ρ′
τ ′,τr

→ IndGLn(F )
Pn′,mr

(F ) δ
1/2
Pn′,mr

⊗ IndGLn(F )
Pn′,mr

δ
1/2
Pn′,mr

. (5.13)

The right-hand side of (5.13) has 1GLn(F )×GLn(F ) as a quotient, and composition with
the quotient map gives an i(GLn(F )×GLn(F ))-invariant functional on ρ′

τ ′,τr
, and hence

on τ , which is easily seen to be non-trivial. Since i(GLn(F )×GLn(F )) is conjugate within
GL2n(F ) to {(

g1

g2

)
| gi ∈ GLn(F )

}
,

our assertion is proved. �
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We now conclude the proof of Theorem 5.7. Frobenius reciprocity and Proposition 5.9
imply the existence of a non-trivial morphism ρτ,1 → IndSp4n(F )

H(F ) 1, and dualizing this
map, we get a non-trivial morphism

R : IndcSp4n(F )

H(F ) 1 → ρτ,0.

Since πτ is the unique irreducible subrepresentation of ρτ,0, and R is non-trivial, it is
clear that πτ is a subrepresentation of Im(R). By exactness of Jacquet functors, it follows
that if σψ,k,α(πτ ) �= 0, for k < n (and α ∈ F ∗), then σψ,k,α(Im R) �= 0, and hence

σψ,k,α(IndcSp4n(F )

H(F ) 1) �= 0.

This is impossible by [5, Theorem 16]. We conclude that σψ,k,α(πτ ) = 0, for all k < n.
This completes the proof of Theorem 5.7. �

5.6. Proof of Theorem 5.8

We have to show that JRp(F )(σψ,n(πτ )) = 0, for all 1 � p � n. Here

Rp =


Ip z y

I2(n−p) x′

Ip

 ∈ Sp2n

 .

We have seen in [6, Proposition 2.3.1] that there is a vector space isomorphism

JRp(F )(Vπτ ) ∼= JDp(F ),χn−p−1(Vπ∗
τ
). (5.14)

Here

Dp =


v =


Ip u ∗ ∗ ∗

z ∗ ∗ ∗
I2(n−p) ∗ ∗

z∗ u′

Ip

 ∈ Sp4n

∣∣∣∣∣∣
z ∈ Zn and
the first column
of u is zero


, (5.15)

χn−p−1 is defined by (1.5): for v ∈ Dp(F ), as in (5.15)

χn−p−1(v) = ψ

(n−1∑
j=1

zj,j+1

)
.

The representation π∗
τ of Dp(F ) acts on Vπτ ⊗ S(Fn−p) by

π∗
τ (v)(ξ ⊗ φ) = πτ (v)ξ ⊗ ω

(n−p)
ψ−1 (v′)φ, (5.16)

where, for v ∈ Dp(F ), as in (5.15)

v′ = (vn+p,n+p+1, vn+p,n+p+2, . . . , vn+p,3n−p+1) ∈ Hn−p(F ). (5.17)
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Note that the isomorphism (5.14) is valid even if we replace πτ by any smooth represen-
tation of Sp4n(F ). See Remark 1 at the end of § 2.3 in [6]. (Note also the isomorphism
appearing right after (2.9) in [6].) We continue as in [6] right after (2.23). Consider the
right-hand side of (5.14) as an E-module, where

E =




m x

1
I2(2n−p−1)

1 x′

m∗

 ∈ Sp4n(F )


.

E is isomorphic to the parabolic subgroup of GLp+1(F ) of type (p, 1) (the so-called mira-
bolic subgroup). By [1] the Jordan–Hölder decomposition over E of JDp(F ),χn−p−1(Vπ∗

τ
)

is expressed through Jacquet modules of πτ along the unipotent radicals Up−� in Sp4n,
where 0 � 	 < p. (See [1] for the notion of derivatives of smooth representations of the
mirabolic subgroup of GLp+1(F ).) The one derivative of JDp(F ),χn−p−1(Vπ∗

τ
), which does

not involve a Jacquet module (with respect to the trivial character) along a unipotent
radical of Sp4n is

IndcE

Zp+1(F )(JZp+1(F ),ψ(JDp(F ),χn−p−1(Vπ∗
τ
))), (5.18)

where Zp+1(F ) is embedded naturally in Eby z �→

z

I2(2n−p−1)

z∗




and ψ still denotes the standard generic character of Zp+1(F ), defined by ψ. By definition,
(5.18) is isomorphic to

IndcE

Zp+1(F ) Vσψ,n−p(πτ )

which is zero by Theorem 5.7. The derivative which involves JUp−�(F )(Vπτ ), 0 � 	 < p,
has the following form

IndcE

Z′
�+1

(JZ′
�+1,ψ′(JDp(F ),χn−p−1(Vπ∗

τ
))), (5.19)

where Z ′
�+1(F ) is the image in E of the following subgroup of Zp+1(F ){

v =

(
Ip−1 ∗

z

)
∈ Zp+1(F )

}
, (5.20)

and for v of the form (5.20), ψ′(v) = ψ(z12 + z13 + · · · + z�,�+1). It is clear from the
definitions that the space (5.19) is isomorphic to

IndcE

Z′
�+1

[(1 ⊗ σ
(2n−(p−�))
ψ,n−p )(JUp−�(F )(πτ ))]. (5.21)

Here, when we consider JUp−�(F )(πτ ) as a representation of GLp−�(F ) × Sp2(2n−(p−�))(F ),
1 ⊗ σ(2n−(p−�))(·) means that we apply the Jacquet functor σ

(2n−(p−�))
ψ,n−p to the second
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factor and do not touch the first factor. The superscript (2n − (p − 	)) in σ
(2n−(p−�))
ψ,n−p

marks the fact that this Jacquet functor is applied to a representation of Sp2(2n−(p−�))(F ).
Thus, it remains to show that

(1 ⊗ σ
(2n−(p−�))
ψ,n−p )(JUp−�(F )(πτ )) = 0, (5.22)

for 0 � 	 < p.
Put, for short, k = p − 	. Of course, 1 � k � p � n. We have to analyse JUk(F )(πτ ).

We will prove the following theorem.

Theorem 5.10. JUk(F )(πτ ) is non-zero, if and only if k is of the form k = 2(mi1 +mi2 +
· · · + mit), for 1 � i1 < i2 < · · · < it � r. In this case the semisimplification (ss) of
JUk(F )(πτ ) is as follows

ss JUk(F )(πτ )

=
⊕

1�i1<...<it�r
k=2(mi1+···+mit )

[| det ·|2n−(k/2)(IndGLk(F )
P2(mi1

,...,mit
)(F ) τi1 ⊗ · · · ⊗ τit) ⊗ πτ (i1, . . . , it)].

(5.23)

Here πτ (i1, . . . , it) is the representation of Sp4n−2k(F ), which is the Langlands quotient
of

Ind
Sp4n−2k(F )
Q2n−k(F ) τ(i1, . . . , it) ⊗ | det ·|1/2,

where
τ(i1, . . . , it) = IndGL2n−k(F )

P2(mj1
,...,mj�

)(F ) τj1 ⊗ · · · ⊗ τj�
,

and {j1, . . . , j�} is the complement of {i1, . . . , it} inside {1, . . . , r}.

Once we have this theorem, then the semisimplification of the left-hand side of (5.22)
becomes ⊕

1�i1<···<it�r
k=p−�=2(mi1+···+mit )

[| det ·|2n−(k/2)(IndGLk(F )
P2(mi1

,...,mit
)(F ) τi1 ⊗ · · · ⊗ τit)

⊗ σ
(2n−k)
ψ,n−p (πτ (i1, . . . , it))]. (5.24)

Each summand of (5.24) is zero, since σ
(2n−k)
ψ,n−p (πτ (i1, . . . , it)) = 0. This follows from The-

orem 5.7, since n − p < n − 1
2k. This will achieve the proof of Theorem 5.8.

5.7. Proof of Theorem 5.10

We first prove a special case.

Proposition 5.11. We have

JU2n(F )(πτ ) ∼= | det ·|nτ. (5.25)
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Proof. We prove (5.25) by induction on r. For r = 1, we know [11] that ρτ,1 has
exactly two irreducible constituents: the Langlands quotient πτ and an irreducible generic
subrepresentation. A direct computation (which we will soon repeat in larger generality)
shows that JU2n(F )(ρτ,1) has two constituents: | det ·|n+1τ and | det ·|nτ . (Here we use
the supercuspidality of τ , in case r = 1, and the fact that τ is self-dual.) Since πτ is the
image of the intertwining operator M∗

1 , (5.25) becomes clear. Assume now that r > 1.
Recall that πτ (1) denotes the irreducible representation of Sp4(n−m1)(F ), which is the
Langlands quotient of

Ind
Sp4(n−m1)

Q2(m2,...,mr)
τ2| det ·|1/2 ⊗ · · · ⊗ τr| det ·|1/2.

πτ (1) is also the unique irreducible subrepresentation of

Ind
Sp4(n−m1)(F )
Qr(m2,...,mr)(F ) τ2| det ·|−1/2 ⊗ · · · ⊗ τr| det ·|−1/2.

Clearly πτ is the unique irreducible subrepresentation of

βτ1 = IndSp4n(F )
Q2m1 (F ) τ1| det ·|−1/2 ⊗ πτ (1).

We first compute JU2n(F )(βτ1). As usual, we consider the restriction βτ1 |Q2n(F ), which has
a filtration parametrized by Q2m1\ Sp4n /Q2n. This set of double cosets can be described
by the Weyl elements

wj =


Ij

0 0 I2m1−j

0 I4(n−m1) 0
−I2m1−j 0 0

Ij

 .

The corresponding quotients in the filtration above are

Γj = IndcQ2m(F )

w−1
j Q2m1 (F )wj∩Q2n(F )(δ

1/2
Q2m1

·τ1·| det |−1/2⊗πτ (1))wj (unnormalized induction).

We have

Lj = w−1
j Q2m1wj ∩ Q2n

=



j

2 − m1 − j

2(n − m1)



a1 a12 a13 y11 y12 y3

a2 0 0 0 y′
12

a32 a3 y31 0 y′
11

a∗
3 0 a′

13

a′
32 a∗

2 a∗
12

a∗
1


∈ Sp4n(F )


. (5.26)

The representation (δ1/2
Q2m1

τ1 · |1/2 ⊗ πτ (1))wj sends an element of the form (5.26) in
Lj(F ) to (

| det a1|
| det a2|

)2n−m1

τ1

(
a1 y12

a∗
2

)
⊗ πτ (1)

(
a3 y31

a∗
3

)
. (5.27)
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It is clear, from (5.27), that JU2n(F )(Γj) = 0, unless j = 2m1 or j = 0. This follows
from the supercuspidality of τ1. If j = 2m1, then w2m1 = I4n, and

L2m1 =


2m1

2(n − m1)


a1 a13 y11 y13

a3 y31 y′
11

a∗
3 a′

13

0 a∗
1

 ∈ Sp4n

 = Q2(m1,n−m1).

By induction on r,
JU2(n−m1)(F )(πτ (1)) ∼= | det ·|n−m1τ(1).

(Recall that τ(1) = Ind
GL2(n−m1)(F )
P2(m2,...,mr)(F ) τ2 ⊗ · · · ⊗ τr.) We conclude from (5.27) that (and

now writing induction in normalized form)

JU2n(F )(Γ2m1) ∼= | det ·|n IndGL2n(F )
P2(m1,n−m1 )(F ) τ1 ⊗ τ(1) ∼= | det ·|nτ. (5.28)

If j = 0, then

L0 =


2m1

2(n − m1)


a2 0 0 0
aj2 a3 y31 0

a∗
3 0

a′
32 a∗2

 ∈ Sp4n

 ,

and we get, as before, (writing induction in normalized form)

JU2n(F )(Γ0) ∼= | det ·|n IndGL2n(F )
P2(m1,n−m1)(F ) τ1| det ·| ⊗ τ(1). (5.29)

Thus, the semisimplification of JU2n
(F )(βτ1) has two irreducible constituents: (5.28) and

(5.29). Since each irreducible subquotient of ρτ,0 has a non-trivial Jacquet module along
U2n(F ) (see [13, Remark 3.5]), we conclude that βτ1 has at most two irreducible con-
stituents. If βτ1 is irreducible, then it equals πτ . This is impossible, since then JU2n(F )(πτ )
will have (5.28) and (5.29) as its two irreducible constituents. But, we could repeat the
same calculation with

βτ2 = IndSp4n(F )
Q2m2 (F ) τ2| det ·|−1/2 ⊗ πτ (2)

instead of βτ1 (πτ is the unique irreducible subrepresentation of βτ2) and get that the
constituents of JU2n(F )(πτ ) are | det ·|nτ and

| det ·|n IndGL2n(F )
P2(m2,n−m2)

τ2| det ·| ⊗ τ(2),

which is clearly not isomorphic to (5.29). This is a contradiction. We conclude from
this that βτ1 has two irreducible constituents and that (5.28) captures JU2n(F )(πτ ), i.e.
JU2n(F )(πτ ) ∼= | det ·|nτ . This proves the proposition. �

As a corollary from the proof, we get the following proposition.
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Proposition 5.12. The representation IndSp4n(F )
Q2m1 (F ) τ1| det ·|−1/2 ⊗ πτ (1) has exactly two

irreducible constituents: one irreducible subrepresentation, which is πτ and an irreducible
quotient wτ1 . We have

JU2n(F )(πτ ) = | det ·|nτ

and
JU2n(F )(wτ1) = | det ·|n IndGL2n(F )

P(m1,n−m1)(F ) τ1| det ·| ⊗ τ(1).

We are now ready to start proving Theorem 5.10. Since τ1, . . . , τr are supercuspidal,
the Weyl elements, representing Q2(m1,...,mr)\ Sp4n /Qk, which parametrize the quotients
of the standard filtration of

ResQk(F )(IndSp4n(F )
Q2(m1,...,mr)(F ) τ1| det ·|−1/2 ⊗ · · · ⊗ τr| det ·|−1/2) (5.30)

need to be taken only in W (L2m̄, Mk) described in § 2.2. For a Weyl element w repre-
senting a coset of Q2m̄\ Sp4n /Qk, the corresponding quotient of (5.30) is

Γw = IndcQk(F )

w−1Q2m̄(F )w∩Qk(F )(δ
1/2
Q2m̄

· (τ1| det ·|−1/2 ⊗ · · · ⊗ τr| det ·|−1/2))w

(unnormalized induction).

The following set is a set of representatives of Q2m̄\ Sp4n /Qk (see [2, Proposition 2.7.3])

W̃ (L2m̄, Mk) =
{

w ∈ WSp4n

∣∣∣∣ w(α) > 0, for all positive roots α inside L2m̄,
w−1(α) > 0, for all positive roots α inside Mk

}
.

It is easy to see that for w∈W̃ (L2m̄, Mk)\W (L2m̄, Mk), we have JUk(F )(Γw) = 0, due
to the supercuspidality of τ1, . . . , τr. From (2.7), we see that k must have the form
2(mi1 + · · · + mit), for 1 � i1 < · · · < it � r. From now on, we assume that k is
of this form. We will prove (5.23) by induction on r. If r = 1, then k = 2m1 = 2n,
and (5.23) is a special case of (5.25). Assume that r > 1. We may assume that m1 =
min{m1, . . . , mr} (otherwise, we rearrange the indices 1, . . . , r). We start by considering
JUk(F )(βτ1). Consider again ResQk(F ) βτ1 and its standard filtration, whose quotients
are parametrized by Q2m1\ Sp4n /Qk. The representatives of these double cosets can be
chosen to be the Weyl elements wr1,r2 as in § 1.3, i.e.

wr1,r2 =



Ir1

0 I2m1−r1−r2

0 I2n−k 0 0
Ir2+k−2m1 0 0 0

0 0 0 Ir2+k−2m1

0 0 I2n−k 0
−I2m1−r1−r2 0

Ir1


,

(5.31)
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where
0 � r1 � 2m1, 0 � r2 � 2n − k, r1 + r2 � 2m1. (5.32)

The corresponding quotient (in the above filtration) is

Γr1,r2 = IndcQk(F )

Lr1,r2 (F )(δ
1/2
Q2m1

· τ1| det ·|1/2 ⊗ πτ (1))wr1,r2 (unnormalized induction),

where
Lr1,r2 = w−1

r1,r2
Q2m1wr1,r2 ∩ Qk.

The elements of Lr1,r2 have the form

r1

2m1 − (r1 + r2)
r2 + k − 2m1

r2

4n − 2k − 2r2

r2

r2 + k − 2m1

2m1 − (r1 + r2)
r1



a1 a12 a13 x11 x12 x13 y11 y12 y13

0 a2 0 0 0 x23 0 0 y′
12

0 a32 a3 0 x32 x33 y31 0 y′
11

b e u x′
33 x′

23 x′
13

c e′ x′
32 0 x′

12

b∗ 0 0 x′
11

a∗
3 0 a′

13

a∗
32 a∗

2 a′
12

0 0 a∗
1


. (5.33)

The action of
πr1,r2 = (δ1/2

Q2m1
· τ1| det ·|−1/2 ⊗ πτ (1))wr1,r2

on the element in Lr1,r2(F ), of the form (5.33) is given by

(
| det a1|
| det a2|

| det b|
)2n−m1

τ1

a1 y12 x11

0 a∗
2 0

0 x′
23 b

 ⊗ πτ (1)w′

a3 x32 y31

c x′
32

a∗
3

 , (5.34)

where

w′ =


I2n−k−r2

Ir2+k−2m1

Ir2+k−2m1

I2n−k−r2

 .

It is now clear, due to the supercuspidality of τ1, that JUk(F )(Γr1,r2) = 0, unless r1 = 2m1,
or r1 = 0. Let us examine each case.

Assume that, r1 = 2m1. From (5.32), we must have r2 = 0. Note that

L2m1,0 =



2m1

k − 2m1

4n − 2k


a1 a13 x12 y11 y13

0 a3 x32 y31 y′
11

c x′
32 x′

12

a∗
3 a′

13

0 a′
1




, (5.35)
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and π2m1,0 is given by (in the notation of (5.35))

| det a1|2n−m1τ1(a1) ⊗ πτ (1)w′

a3 x32 y1

c x′
32

a∗
3

 . (5.36)

By induction,

ss JUk−2m1 (F )(πτ (1))

=
⊕

k−2m1=2(mi′
1
+···+mi′

t′
)

2�i′
1<···<i′

t′ �r

[(| det ·|2(n−m1)−((k−2m1)/2) · IndGLk−2m1 (F )
P2(m

i′
1

,...,m
i′
t′

)(F )
τi′

1
⊗ · · · ⊗ τi′

t′ )

⊗ πτ (1, i′1, . . . , i
′
t′)]. (5.37)

We conclude from (5.36) and (5.37) that

ss JUk(F )(Γ2m1,0)

=
⊕

k=2(m1+mi′
1
+mi′

1
+···+mi′

t′
)

2�i′
1<···<i′

t′ �r

[(| det ·|2n−(k/2) · IndGLk(F )
P(2m1,k−2m1)(F )

× (τ1 ⊗ IndGLk−2m1 (F )
P2(mi′

1
,...,mi′

t′
)(F ) τi′

1
⊗ · · · ⊗ τi′

t′ )) ⊗ πτ (1, i′1, . . . , i
′
t′)]

=
⊕

k=2(mi1+···+mit )
1=i1<i2<···<it�r

[(| det ·|2n−(k/2) · IndGLk(F )
P2(mi1

,...,mit
)(F ) τi1 ⊗ · · · ⊗ τit) ⊗ πτ (i1, . . . , it)].

(5.38)

Assume that r1 = 0. Again, from the supercuspidality of τ1 and (5.34), we must have
r2 = 0, or r2 = 2m1. In case r1 = r2 = 0, we have

L0,0 =



2m1

k − 2m1

4n − 2k


a2 0 0 0 0
a32 a3 x32 y31 0

c x′
32 0

a∗
3 0

a∗
32 a∗

2

 ∈ Sp4n


, (5.39)

and π0,0 is given by (in the notation of (5.39))

| det a2|−(2n−m1)τ∗
1 (a2) ⊗ πτ (1)w′

a3 x32 y31

c x32

a∗
3

 . (5.40)
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Here τ∗
1 (a2) = τ1(a∗

2). Since τ1 is self-dual, τ∗
1

∼= τ1. Using induction, we calculate that

ss JUk(F )(Γ0,0)

∼=
⊕

k−2m1=2(mi′
1
+···+mi′

t′
)

2�i′
1<···<i′

t′ �r

[| det ·|2n−(k/2) IndGLk(F )
P̄2(m1,k−2m1)

× (τ1| det ·| ⊗ IndGLk−2m1 (F )
P2(mi′

1
,...,mi′

t′
)(F ) τi′

1
⊗ · · · ⊗ τi′

t′ ) ⊗ πτ (1, i′1, . . . , i
′
t′)]

∼=
⊕

k=2(mi1+···+mit )
1=i1<i2<···<it=�r

[(| det ·|2n−(k/2) · IndGLk(F )
P2(mi1

,...,mit
)(F ) τ1| det ·| ⊗ τi2 ⊗ · · · ⊗ τit)

⊗ πτ (i1, . . . , it)]. (5.41)

Finally, assume that r1 = 0 and r2 = 2m1. Here,

L0,2m1 =



k

2m1

4n − 2k − 4m


a3 0 x32 x33 y31

b e u x′
33

c e′ x32′

b∗ 0
a∗
3

 ∈ Sp4n


, (5.42)

and (in the notation of (5.42)) the action of π0,2m1 is given by

| det b|2n−m1τ1(b) ⊗ πτ (1)w′

a3 x32 y31

c x′
32

a∗
3

 .

Using induction, we calculate,

ss JUk(F )(Γ0,2m1) ∼=
⊕

k=2(mi′
1
+···+mi′

t′
)

2�i′
1<···<i′

t′ �r

[(| det ·|2n−(k/2) · IndGLk(F )
P2(m

i′
1

,...,m
i′
t′

)(F ) τi′
1
⊗ · · · ⊗ τi′

t′ )

⊗ (Ind
Sp4n−2k(F )
Q2m1 (F ) τ1| det ·|−1/2 ⊗ πτ (1, i′1, . . . , i

′
t′))]. (5.43)

By Proposition 5.12 (in this section)

Ind
Sp4n−2k(F )
Q2m1 (F ) τ1| det ·|−1/2 ⊗ πτ (1, i′1, . . . , i

′
t′)

has two irreducible constituents: the irreducible subrepresentation πτ (i′1, . . . , t
′
t′) and the

irreducible quotient, denote it now by wτ1(i
′
1, . . . , i

′
t′). Recall, also that

JU2n−k(F )(wτ1(i
′
1, . . . , i

′
t′))

= | det ·|n−(k/2) IndGL2n−k(F )
P2(m1,n−(1/2)k−m1)(F ) τ1| det ·| ⊗ τ(1, i′1, . . . , i

′
t′). (5.44)
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Thus, ss JUk(F )(Γ0,2m1) is the sum of the following two sums:⊕
k=2(mi1+···+mit )

2�i1<···<it�r

[(| det ·|2n−(k/2) IndGLk(F )
P2(mi1

,...,mit
)(F ) τi1 ⊗ · · · ⊗ τit) ⊗ πτ (i1, . . . , it)] (5.45)

and ⊕
k=2(mi1+···+mit )

2�i1<···<it�r

[(| det ·|2n−(k/2) IndGLk(F )
P2(mi1

,...,mit
)(F ) τi1 ⊗· · ·⊗τit

)⊗wτ1(i1, . . . , it)]. (5.46)

We have proved that ssJUk(F )(βτ1), which is also ss JUk(F )(πτ ) ⊕ ss JUk(F )(wτ1), is the
sum of (5.38), (5.41), (5.45) and (5.46). It remains to show that ssJUk(F )(wτ1) is the
sum of (5.41) and (5.46), and ssJUk(F )(πτ ) is the sum of (5.38) and (5.45). To see this,
let us take a further Jacquet module with respect to the Siegel radical U

(2n−k)
2n−k (F ) on

the Sp4n−2k(F ) factor. By Proposition 5.12, we should then replace πτ (i1, . . . , ik) in
(5.38), (5.41) and (5.45) by | det ·|n−(k/2)τ(i1, . . . , it), while in (5.46), we should replace
wτ1(i1, . . . , it) by (5.44),

J
U

(2n−k)
2n−k (F )(JUk(F )(βτ1)) = JV(k,2n−k)(F )(JU2n(F )(βτ1)), (5.47)

where

V(k,2n−k) =




Ik x

I2n−k

I2n−k x′

Ik

 ∈ Sp4n

 .

Again, by Proposition 5.12,

ss(JU2n(F )(βτ1)) = | det ·|nτ ⊕ |det ·|n IndGL2n(F )
P2(m1,n−m1)(F ) τ1| det ·| ⊗ τ(1),

and (5.47) shows that

J
U

(2n−k)
2n−k (F )(πτ ) = JV(k,2n−k)(F )(| det ·|nτ)

(we identify V(k,2n−k) and its image in GL2n). This easily implies what we want, and the
proof of Theorem 5.10 is now complete. �

5.8. Conclusion of the proof of the main local theorem

It remains to prove that σψ,n(πτ ) is irreducible and ψ−1-generic. This follows exactly
as in the outline given in § 4.2 of [6]. Indeed, Theorem 4.2.1 in [6] is valid for πτ , in
our case, since in the proof (given in [6, § 4.3]), we use the fact that σψ,k,α(πτ ) = 0, for
0 � k < n, which is Theorem 5.7. (Note that although we require in [6, Theorem 4.3]
that the representation π admits non-trivial Sp2n(F )×Sp2n(F )-invariant functionals, we
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use this just to ensure that σψ,k,α(π) = 0, for 0 � k < n.) Thus, for the unipotent group
E2n and its character ψ(2n) introduced in (4.1), we have

JE2n,ψ(2n)(πτ ) ∼= JV2n(F ),ψ̃(πτ ), (5.48)

where V2n is the standard maximal unipotent subgroup of Sp4n, and ψ̃ is the character of
V2n(F ), which is trivial on U2n(F ) and is the standard non-degenerate character defined
by ψ on m(Z2n(F )). Using Proposition 5.7.1, we conclude that dimJV2n(F ),ψ̃(πτ ) = 1,
and hence

dim JE2n,ψ(2n)(πτ ) = 1. (5.49)

The next step is to see that Proposition 4.2 and its proof in [6] hold here as well without
any change (except that here we take ψ−1 instead of ψ). Thus, we see that each irreducible
summand of σψ,n(πτ ) is ψ−1-generic. (Note that Theorem 6.2(c) in [6] applies for any
τ .) Next, Theorem 4.2.2 in [6] is completely general (see the proof in [6, § 4.4]). This
theorem implies, using (4.6) of [6], that the dimension of the space of ψ−1-Whittaker
functions on Vσψ,n(πτ ) equals dim JE2n,ψ(2n)(πτ ), which is 1, by (5.49). This proves the
irreducibility of σψ,n(πτ ) (and of course the ψ−1-genericity of σψ,n(πτ )).

We conclude, as in [6] that (see (5.9), (5.10))

σψ,n(πτ ) ∼= σ̃ψ−1,n(πτ ) (5.50)

and hence Corollary 1.12 in § 5.2 shows that there is a unique irreducible, supercuspidal,
genuine representation σ of S̃p2n(F ), which is ψ−1-generic, and such that γ(σ × τ, s, ψ)
has a pole of order r at s = 1. σ is the representation σψ,n(πτ ). The proof of the main
local theorem is now complete. �
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