
Proceedings of the Edinburgh Mathematical Society (2019) 62, 1063–1072

doi:10.1017/S0013091519000075

TOPOLOGICAL RIGIDITY FOR CLOSED HYPERSURFACES OF
ELLIPTIC SPACE FORMS

EDUARDO ROSINATO LONGA AND JAIME BRUCK RIPOLL
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Abstract We prove a topological rigidity theorem for closed hypersurfaces of the Euclidean sphere and
of an elliptic space form. It asserts that, under a lower bound hypothesis on the absolute value of the
principal curvatures, the hypersurface is diffeomorphic to a sphere or to a quotient of a sphere by a group
action. We also prove another topological rigidity result for hypersurfaces of the sphere that involves the
spherical image of its usual Gauss map.
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1. Introduction

In [7], J. H. Eschenburg defines an ε-convex hypersurface Mn immersed in a complete
Riemannian manifold Nn+1, n ≥ 2, ε > 0, as a hypersurface having all the principal
curvatures with the same sign and absolute value at least ε. He then proves that if M is
compact, ε-convex and N has non-negative sectional curvature, then M is the boundary
of a convex body in N ; in particular, M is diffeomorphic to an n-dimensional sphere.
Products of spheres S

j × S
k in S

n+1, j + k = n, show that the hypothesis on the sign of
the principal curvatures is seemingly essential. However, there are examples in which M
is an immersed sphere with nowhere zero principal curvatures and M is not ε-convex (see
Remark 3.3).

Our first result gives a sufficient condition for a closed, connected and oriented hyper-
surface M of the round sphere S

n+1 to be diffeomorphic to a sphere S
n: the principal

curvatures are required to be, in absolute value, greater than a function of the radius of
a ball that contains M .

Theorem 1. Let Mn be a closed, connected and oriented immersed hypersurface of
S

n+1, n ≥ 2, and let R ∈ (0, π) be the radius of the smallest geodesic ball containing M .

c© 2019 The Edinburgh Mathematical Society 1063

https://doi.org/10.1017/S0013091519000075 Published online by Cambridge University Press

mailto:eduardo.longa@ufrgs.br
mailto:jaime.ripoll@ufrgs.br
https://doi.org/10.1017/S0013091519000075


1064 E.R. Longa and J.B. Ripoll

If the principal curvatures λi of M satisfy

inf
p∈M

|λi(p)| > tan
(

R

2

)
, ∀ i ∈ {1, . . . , n}, (1.1)

then M is diffeomorphic to S
n.

In line with Theorem 1, Wang and Xia proved that M is diffeomorphic to a sphere
assuming that the Gauss–Kronecker curvature of M does not vanish at any point and that
M is contained in an open hemisphere of S

n+1 [12, Theorem 1.1]. It is possible to prove
Wang and Xia’s result from Theorem 1 using Beltrami’s map, in a similar way to that
used in [6], and applying a homothetic deformation of the hypersurface (see Remark 3.4
for more details). It should be noted that in Theorem 1, not only do we allow the principal
curvatures of the hypersurface to have different signs (see Remark 3.1, however), but also
we do not impose any restriction on the size of the geodesic ball in which the hypersurface
is contained (the radius R in the theorem can be any number in the interval (0, π)).

Our next result concerns hypersurfaces of an elliptic space form, that is, of a complete
Riemannian manifold of constant sectional curvature equal to 1. The latter are known
to be isometric to the quotient of S

n+1 by a finite group of isometries that acts properly
discontinuously on the sphere (see [5], for example). We give a sufficient condition for the
hypersurface M to be covered by the sphere S

n, in terms of its principal curvatures and
of the distance from M to the cut locus of a certain point.

Theorem 2. Let Γ be a non-trivial group of isometries of S
n+1, n ≥ 2, acting properly

discontinuously, and let π : S
n+1 → S

n+1/Γ be the canonical projection. For x0 ∈ S
n+1/Γ,

let p0 ∈ π−1(x0) and define

r = min
g∈Γ\{e}

d(p0, g(p0)).

Let Mn be a closed and connected hypersurface of S
n+1/Γ and suppose that

d(x,C(x0)) ≤ R, ∀x ∈ M,

where C(x0) is the cut locus of x0 and R ∈ (0, r/2). If the principal curvatures λi of M
satisfy

inf
x∈M

|λi(x)| > tan
(

π − r/2 + R

2

)
= cot

(
r − 2R

4

)
, ∀ i ∈ {1, . . . , n},

and if M̃ := π−1(M) has k connected components, then there is a (|Γ|/k)-to-one covering
map from S

n to M via the action of Γ.

As an immediate consequence of Theorem 2, we have the following topological rigidity
result for hypersurfaces of the projective space RP

n+1.
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Corollary 1. Let Mn be a closed and connected hypersurface of RP
n+1 and sup-

pose that there exists a totally geodesic codimension-1 projective space RP
n of RP

n+1

such that

d(x, RP
n) ≤ R, ∀x ∈ M,

for some R ∈ (0, π/2). If the principal curvatures λi of M satisfy

inf
x∈M

|λi(x)| > tan
(

π/2 + R

2

)
, ∀ i ∈ {1, . . . , n},

then M is diffeomorphic to either S
n or RP

n.

Isometric rigidity results for hypersurfaces with non-negative r-mean curvature of the
sphere S

n+1 have been obtained in a series of papers beginning with De Giorgi [4] and,
independently, Simons [10, Theorem 5.2.1] in the minimal case, then by Nomizu and
Smyth [8, Theorem 2] for constant mean curvature hypersurfaces, and, finally, by Alencar,
Rosenberg and Santos [2] for constant non-negative r-mean curvature hypersurfaces.
Later, a topological rigidity result was obtained by Wang and Xia [12, Theorem 1.2]. In
all these results it is required that the image of the Gauss map is contained in a hemisphere
of the sphere. Unlike these authors, we obtain a topological rigidity theorem allowing the
Gauss image of the hypersurface to lie in a neighbourhood of a great hypersphere.

Theorem 3. Let Mn be a closed, connected and oriented immersed hypersurface of
S

n+1, n ≥ 2, with unit normal η : M → S
n+1. Suppose that there exists a point p0 ∈ S

n+1

such that the spherical image of η lies in a strip of width L around the totally geodesic
hypersphere T = {x ∈ S

n+1 : 〈x, p0〉 = 0} determined by p0, and that M is contained in
the ball of radius R ∈ (0, π) centred at p0. If the principal curvatures λi of M satisfy

inf
p∈M

|λi(p)| >
sin L

1 + cos R
, ∀ i ∈ {1, . . . , n},

then M is diffeomorphic to a sphere.

The technique of our paper is elementary. The results are proved by direct calculations
using a Gauss map constructed from the parallel transport in S

n+1.

2. Gauss map

Let Mn be a closed, connected and oriented hypersurface of S
n+1 with unit normal vector

field η : M → S
n+1, and fix a point p0 ∈ S

n+1 such that −p0 	∈ M . For non-antipodal
points p, q in the sphere, let τ q

p : TpS
n+1 → TqS

n+1 be the parallel transport along the
unique geodesic joining p to q (we agree that τp

p is the identity of TpS
n+1). We define a

Gauss map γ : M → S
n by

γ(p) = τp0
p (η(p)), p ∈ M,

where S
n is the unit sphere of Tp0S

n+1.
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Definition 2.1. Given p ∈ S
n+1 and v ∈ TpS

n+1, define a vector field ṽ on
S

n+1 \ {−p0} by the rule

ṽ(q) = (τ q
p0

◦ τp0
p )(v), q 	= −p0.

Let ∇ be the Riemannian connection of S
n+1. Recall that the shape operator of M in

the direction of η is the section A of the vector bundle End(TM) of endomorphisms of
TM given by

Ap(v) = −∇vη, p ∈ M, v ∈ TpM.

Similarly, we define another section of End(TM).

Definition 2.2. The invariant shape operator of M is the section α of the bundle
End(TM) given by

αp(v) = ∇v η̃(p), p ∈ M, v ∈ TpM.

The proposition below establishes a relationship between γ and the extrinsic geometry
of M .

Proposition 2.3. For any p ∈ M , the following identity holds:

τp
p0

◦ dγ(p) = −(Ap + αp).

Proof. Fix p ∈ M and an orthonormal basis {v1, . . . , vn+1} of TpS
n+1 such that vn+1 =

η(p). The vector fields ṽ1, . . . , ṽn+1 form a global orthonormal referential of S
n+1 \ {−p0},

so that we can write

η =
n+1∑
i=1

aiṽi (2.1)

for certain functions ai ∈ C∞(M). Notice that ai(p) = 0 for i ∈ {1, . . . , n} and that
an+1(p) = 1.

For y ∈ M , we have

γ(y) = τp0
y (η(y)) = τp0

y

( n+1∑
i=1

ai(y)ṽi(y)
)

=
n+1∑
i=1

ai(y)τp0
p (vi).

Therefore, if v ∈ TpM ,

τp
p0

(dγ(p) · v) = τp
p0

( n+1∑
i=1

v(ai)τp0
p (vi)

)
=

n+1∑
i=1

v(ai)vi. (2.2)

From (2.1) and (2.2) we obtain

−Ap(v) = ∇vη =
n+1∑
i=1

∇v(aiṽi) =
n+1∑
i=1

[ai(p)∇v ṽi + v(ai)ṽi(p)]

= ∇v ṽn+1 +
n+1∑
i=1

v(ai)vi = αp(v) + τp
p0

(dγ(p) · v),

which gives the desired result. �
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The next proposition gives explicit formulas for the maps τ q
p , γ and α, obtained by

straightforward computations not presented here.

Proposition 2.4. Let p and q be non-antipodal points in S
n+1, with p ∈ M . In the

above notation, the following formulae hold:

(i)

τ q
p (v) = −

[ 〈v, q〉
1 + 〈q, p〉

]
(q + p) + v, v ∈ TpS

n+1;

(ii)

γ(p) = −
[ 〈η(p), p0〉
1 + 〈p, p0〉

]
(p + p0) + η(p);

(iii)

αp(v) =
[ 〈η(p), p0〉
1 + 〈p, p0〉

]
v, v ∈ TpM.

3. Proofs of the theorems

We begin with Theorem 1.

Proof of Theorem 1. Let η : M → S
n+1 be the unit normal vector field which gives

rise to the orientation of M , and let p0 be the centre of a geodesic ball of radius R
containing M . Define a function c : M → R by

c(p) =
〈η(p), p0〉
1 + 〈p, p0〉 , p ∈ M,

and a vector field E on S
n+1 by

E(p) = p0 − 〈p, p0〉p, p ∈ S
n+1.

Notice that 〈η(p), E(p)〉 = 〈η(p), p0〉 for p in M . Then, using the Cauchy–Schwarz
inequality, we have the following estimate for c:

|c(p)| ≤ ‖η(p)‖‖E(p)‖
1 + 〈p, p0〉 =

√
1 − 〈p, p0〉2
1 + 〈p, p0〉 =

√
1 − 〈p, p0〉
1 + 〈p, p0〉 , ∀ p ∈ M.

Thus,

|c(p)| ≤
√

1 − cos d(p, p0)
1 + cos d(p, p0)

= tan
(

d(p, p0)
2

)
≤ tan

(
R

2

)
, ∀ p ∈ M.

Fix p ∈ M . Choosing an orthonormal basis of TpM that diagonalizes the shape oper-
ator Ap, the matrix of −τp

p0
◦ dγ(p) with respect to this basis is diagonal with entries

λi(p) + c(p) 	= 0 (see Proposition 2.3). Therefore, this map is an isomorphism for each
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p ∈ M , and so is dγ(p). Since M is compact, γ is a covering map, and since M is connected
with n ≥ 2, γ is a diffeomorphism. �

Remark 3.1. It is worth pointing out that, although we allow the principal curva-
tures of the hypersurface to have different signs, there are topological obstructions to the
number of, say, positive principal curvatures. Suppose that Mn ⊂ S

n+1 is an immersed
sphere and has k positive principal curvatures, 0 ≤ k ≤ n. Reversing orientation, we may
suppose that 2k ≤ n. Then [11, Theorem 27.16, p. 144] implies that M admits k con-
tinuous and linearly independent vector fields. But by [1, Theorem 1.1], we must have
k ≤ ρ(n + 1) − 1, where ρ(n + 1) is a number depending only on n. In particular, if n is
even, then all the principal curvatures of M have the same sign.

Remark 3.2. Condition (1.1) does not seem to be sharp. But it is easy to see that if
we require that

inf
p∈M

|λi(p)| > ε tan
(

R

2

)
, ∀ i ∈ {1, . . . , n} (3.1)

for ε ∈ (0,
√

2 − 1), then the result of the theorem may be false. Indeed, taking

Mr = S
1(r) × S

n−1(s) =
{
(x, y) ∈ R

2 × R
n : ‖x‖ = r, ‖y‖ = s

} ⊂ S
n+1,

with s =
√

1 − r2, one may prove that the radius R of the largest open geodesic ball of
S

n+1 that does not intersect Mr is given by

cos R = min{r, s}.
Moreover, the principal curvatures of Mr are λ1 = −√

1 − r2/r and λ2 = · · · = λn =
r/
√

1 − r2. A calculation shows that one can chose r so that the principal curvatures
of Mr satisfy (3.1).

Remark 3.3. We outline here a construction due to Cartan [3] that shows the exis-
tence of immersed 3-spheres into S

4 with non-zero principal curvatures and which are
not ε-convex. Let V be the space of traceless symmetric matrices of order 3 over R, a
vector space of real dimension 5. The group SO(3) acts on V via conjugation: if m ∈ V
and A ∈ SO(3), let A · m = AmA−1. This is an irreducible representation of SO(3), and
the action described leaves invariant the (positive definite) quadratic form

Q(m) = 1
6 tr(m2)

as well as the cubic form

C(m) = 1
2 det(m).

Let S
4 ⊂ V be the unit 4-sphere, defined by tr(m2) = 6. Since every m ∈ V can be

diagonalized by an element of SO(3), one can easily verify that −1 ≤ C(m) ≤ 1 for all
m ∈ S

4. The special immersed 3-spheres found by Cartan are the level sets C(m) = r for
|r| < 1. They are clearly SO(3)-orbits, since the only invariants of a symmetric matrix
under the SO(3)-action are its eigenvalues, which are completely determined by the values
of Q(m) and C(m) (since tr(m) = 0).
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The level set C(m) = 0 is a minimal hypersurface, with one of its principal curvatures
(necessarily constant) equal to 0 and the other two of opposite sign. Meanwhile, as Car-
tan shows, the level sets C(m) = cos(3θ), for 0 < θ < π/6, have three non-zero principal
curvatures (necessarily constant) given by

cot
(
θ − π

3

)
, cot(θ), cot

(
θ +

π

3

)
(the first one is negative and the other two are positive). Since each such orbit is dif-
feomorphic to SO(3)/D, where D ∼= Z2 ⊕ Z2 is the finite group of order 4 consisting of
the diagonal matrices, and since SO(3) is itself double-covered by the 3-sphere, it follows
that the universal cover of each such orbit is diffeomorphic to the 3-sphere. Thus, we get
an immersion of the 3-sphere into S

4 with the properties claimed.

Remark 3.4. Theorem 1 implies Theorem 1.1 of [12], which states that if an immersed
closed and orientable hypersurface Mn (n ≥ 2) of the sphere S

n+1 has non-vanishing
Gauss–Kronecker curvature and is contained in an open hemisphere, then it must be
diffeomorphic to a sphere. We give here a sketch of the proof. To begin with, let p0 be
the north pole of S

n+1 and let S
n+1
+ be the open hemisphere centred at p0. The Beltrami

map B : S
n+1
+ → R

n+1 ∼= Tp0S
n+1 is the diffeomorphism obtained by central projection:

B(p) =
(

p1

pn+2
, . . . ,

pn+1

pn+2

)
, p = (p1, . . . pn+2) ∈ S

n+1
+ .

For t > 0, let Ht : R
n+1 → R

n+1 be the homothety x �→ tx. The map we are interested
in is Ct = B−1 ◦ Ht ◦ B. After a rotation, we may suppose M is contained in S

n+1
+ . By

Theorem 1 (with R = π/2), M would be diffeomorphic to S
n if all its principal curvatures

were bigger than 1 in absolute value. This is not necessarily true. However, defining
Mt = Ct(M), it is possible to show that if t is sufficiently small, then this bound on the
principal curvatures holds for Mt (actually, the absolute value of the principal curvatures
of Mt go to infinity as t goes to zero). So Mt, and hence M , will be diffeomorphic to S

n.

We now prove Theorem 3.

Proof of Theorem 3. Notice that 〈η(p), p0〉 = ± sin d(η(p), T ). So we have the fol-
lowing estimate for the function c defined in the proof of Theorem 1:

|c(p)| =
|〈η(p), p0〉|
1 + 〈p, p0〉 =

sin d(η(p), T )
1 + cos d(p, p0)

≤ sin L

1 + cos R
.

Reasoning analogously as in the proof of that theorem, we conclude that γ : M → S
n

is a global diffeomorphism. �

Before proving Theorem 2, we need some facts about fundamental domains of a group
action, following [9]. Let Γ be a non-trivial group of isometries of S

n+1 and denote Γ \ {e}
by Γ∗. We shall make the assumption that Γ acts on the sphere properly discontinuously,
meaning that each point p ∈ S

n+1 has a neighbourhood U such that U ∩ g(U) = ∅ for
g ∈ Γ∗.
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Definition 3.5. For p 	= q ∈ S
n+1, define the sets

Hp,q = {x ∈ S
n+1 : d(p, x) < d(q, x)}

Ap,q = {x ∈ S
n+1 : d(p, x) = d(q, x)}.

The fundamental domain of Γ centred at p is

Δp =
⋂

g∈Γ∗
Hp,g(p).

We need the following facts.

Proposition 3.6 (Ozols [9, Proposition 3.4]). For each g ∈ Γ∗ and p ∈ S
n+1, we

have that Δp ∩ Δg(p) ⊂ Ap,g(p).

Proposition 3.7 (Ozols [9, Proposition 3.5]). For p ∈ S
n+1,

∂Δp =
⋃

g∈Γ∗
∂Δp ∩ ∂Δg(p).

From these propositions, we prove a series of lemmas.

Lemma 3.8. For p ∈ S
n+1, define

r = min
g∈Γ∗

d(p, g(p)).

Then Br/2(p) ⊂ Δp. In particular, Br/2(p) ∩ ∂Δp = ∅.
Proof. Suppose that this ball is not contained in the fundamental domain centred at

p. Then there exists q belonging to the ball and to ∂Δp. Then, from Proposition 3.7,
there exists g0 ∈ Γ∗ such that q ∈ ∂Δp ∩ ∂Δg0(p). By Proposition 3.6, it follows that
q ∈ Δp ∩ Δg0(p) ⊂ Ap,g0(p). Thus, d(p, q) < r/2 and d(g0(p), q) = d(p, q) < r/2. Hence,

d(p, g0(p)) ≤ d(p, q) + d(g0(p), q) <
r

2
+

r

2
= r,

contrary to the definition of r. �

Let S
n+1/Γ be the quotient space and denote by π : S

n+1 → S
n+1/Γ the canonical

projection. The latter is a Riemannian covering map when we endow S
n+1/Γ with a

suitable metric.

Lemma 3.9. The restriction of π to a fundamental domain Δp is an isometry onto its
image.

Proof. Since π is a local isometry, it suffices to prove that the restriction of π to
Δp is injective. Suppose π(q1) = π(q2), with qi ∈ Δp. Without loss of generality, suppose
d(p, q1) ≤ d(p, q2). There exists g ∈ Γ such that g(q1) = q2. If g 	= e, then we would have

d(p, q2) < d(g(p), q2) = d(g(p), g(q1)) = d(p, q1),

contrary to our assumption. Thus, g = e and q1 = q2. �
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Lemma 3.10. For p ∈ S
n+1, the antipodal point of p does not belong to Δp.

Proof. Suppose the contrary. Then either −p ∈ Δp or −p ∈ ∂Δp. The first case cannot
occur, otherwise

π = d(p,−p) < d(g(p),−p)

for g ∈ Γ∗. So we must have −p ∈ ∂Δp. By Propositions 3.6 and 3.7, there exists g0 ∈ Γ∗

such that −p ∈ ∂Δp ∩ ∂Δg0(p) ⊂ Ap,g0(p). Thus,

π = d(p,−p) = d(g0(p),−p)

which implies that g0(p) = p. This is absurd, since no element of Γ∗ has a fixed point. �

From Lemma 3.10 the next fact, from [9], follows.

Proposition 3.11 (Ozols [9, Corollary 3.11]). If Δp ∩ C(p) = ∅, then C(π(p)) =
π(∂Δp), where C(·) denotes the cut locus.

Lemma 3.12. For p ∈ S
n+1,

π−1(π(∂Δp)) =
⋃
g∈Γ

∂Δg(p).

Proof. This follows from the easily verifiable fact that g(∂Δp) = ∂Δg(p) (see [9,
Proposition 3.2, (3)]). �

We are now ready to prove Theorem 2.

Proof of Theorem 2. Since π is a local isometry, the principal curvatures of M and
M̃ coincide. Due to Theorem 1, it thus suffices to prove that the open ball Br/2−R(p0)
does not intersect M̃ , for then the ball Bπ−r/2+R(−p0) contains any connected com-
ponent of M̃ . We argue by contradiction. Suppose q lies both in Br/2−R(p0) and in M̃ .
Then d(q, p0) < r/2 − R and d(π(q), C(x0)) ≤ R. From Lemmas 3.8 and 3.9, we have that
d(π(q), x0) < r/2 − R. Thus,

d(x0, C(x0)) ≤ d(x0, π(q)) + d(π(q), C(x0))

<

(
r

2
− R

)
+ R

=
r

2
.

So there exists y ∈ C(x0) such that d(x0, y) < r/2. By Lemma 3.9, d(π|−1
Δp0

(y), p0) < r/2,
and by Proposition 3.11 and Lemma 3.12,

π|−1
Δp0

(y) ∈ π−1(y) ⊂ π−1(C(x0)) ⊂ π−1(π(∂Δp0)) =
⋃
g∈Γ

∂Δg(p0).

This contradicts Lemma 3.8, since Br/2(p0) ∩ ∂Δp0 = ∅. This concludes the proof. �
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10. J. Simons, Minimal varieties in Riemannian manifolds, Ann. of Math. (2) 88 (1968),
62–105.

11. N. Steenrod, The topology of fibre bundles (Princeton University Press, Princeton, NJ,
1951).

12. Q. Wang and C. Xia, Rigidity of hypersurfaces in a Euclidean sphere, Proc. Edinburgh
Math. Soc. 49 (2006), 241–249.

https://doi.org/10.1017/S0013091519000075 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091519000075

	1 Introduction
	2 Gauss map
	3 Proofs of the theorems
	References

