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A Laser Scanning aided Inertial Navigation System (LSINS) is able to provide highly accurate
position and attitude information by aggregating laser scanning and inertial measurements under
the assumption that the rigid transformation between sensors is known. However, a LSINS is
inevitably subject to biased estimation and filtering divergence errors due to inconsistent state
estimations between the inertial measurement unit and the laser scanner. To bridge this gap, this
paper presents a novel integration algorithm for LSINS to reduce the inconsistences between
different sensors. In this new integration algorithm, the Radial Basis Function Neural Networks
(RBFNN) and Singular Value Decomposition Unscented Kalman Filter (SVDUKF) are used
together to avoid inconsistent state estimations. Optimal error estimation in the LSINS integra-
tion process is achieved to reduce the biased estimation and filtering divergence errors through
the error state and measurement error model built by the proposed method. Experimental tests
were conducted to evaluate the navigation performance of the proposed method in Global Nav-
igation Satellite System (GNSS)-denied environments. The navigation results demonstrate that
the relationship between the laser scanner coordinates and the inertial sensor coordinates can be
established to reduce sensor measurement inconsistencies, and LSINS position accuracy can be
improved by 23·6% using the proposed integration method compared with the popular Extended
Kalman Filter (EKF) algorithm.
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1. INTRODUCTION. Autonomous navigation has attracted considerable attention in
the indoor, underground mining, subway, railway, underwater and tunnel industries. How-
ever, Global Navigation Satellite System (GNSS) signals are not always available in these
areas (Hesch et al., 2016; Allotta, et al., 2014). In order to estimate the positions of mov-
ing objects in GNSS-denied environments, it is necessary to use other sensors to measure
the displacements of the moving objects. For this reason, an Inertial Measurement Unit
(IMU) that senses three Degrees Of Freedom (DOF) linear accelerations as well as three
DOF rotational velocities of a moving object has been widely used in attitude measurement.
However, IMU measurements are often corrupted by background noise, and the consequent
biased estimation and filtering divergence errors will result in unreliable position and atti-
tude estimation during autonomous navigation (Allotta et al., 2012). Furthermore, due to
drift over time, an IMU will accumulate measurement errors (Wang et al., 2015; Markham
et al., 2012). Although an IMU’s drift can be bounded within an acceptable arrange to
improve measurement accuracy, IMUs are generally too expensive for practical everyday
use (Lehtola et al., 2016). For practical applications, some alternative sensors, such as Light
Direction And Ranging (LiDAR), laser scanning or cameras, have been applied to calculate
the position and attitude of moving objects in GNSS-denied environments. As a laser scan-
ner can provide both the distance and azimuth information for IMUs with high accuracy
and efficiency, it has been commonly utilised in moving object navigation (Lauterbach et
al., 2015; Bosse et al., 2012).

Recent work has demonstrated that a Laser Scanning aided Inertial Navigation System
(LSINS) can obtain highly accurate position and attitude information for moving object
navigation. This combination of laser scanning and inertial measurements assumes prior
knowledge on the rigid transformation between different sensors (Soloviev and Uijt De
Haag, 2010; Tang et al., 2015; Shi et al., 2015). However, inconsistencies are usually found
between laser scanning and inertial measurements, and hence the combination has not
delivered satisfactory results in existing LSINS. Biased estimation and filtering divergence
errors are consequently generated and decrease the navigation accuracy (Xiong et al., 2009;
Liu et al., 2013; Kim et al., 2012). For example, Hesch et al. (2016) presented an Extended
Kalman Filter (EKF) to fuse information from an IMU and a Two-Dimension (2D) laser
scanner to concurrently estimate the six DOF position and attitude of a moving object
with respect to a Three-Dimension (3D) map of the environment. However, without bias
correction, the IMU measurement accumulated attitude estimation errors until divergence.
Aghili and Su (2016) achieved a robust six DOF relative navigation solution by combin-
ing an Iterative Closest Point (ICP) registration algorithm and a noise Adaptive Kalman
Filter (AKF) in a closed-loop configuration. The measurements from a laser scanner and
an IMU were processed by the ICP-AKF method in autonomous navigation. Although
the proposed ICP-AKF was sensitive to local minima and outliers in the sensory mea-
surements, without proper initial attitude information, the method converged slowly and
then diverged. Baglietto et al. (2011) developed a system for mapping and self-localisation
based on a six DOF IMU and a laser scanner. The sensory measurements were fed into an
Unscented Kalman Filter (UKF)-based Simultaneous Localisation And Mapping (SLAM)
algorithm, and experimental results shown that the UKF-based approach failed to integrate
multi-sensory data for position estimation.

Literature review indicates that EKF, AKF or UKF algorithms used for LSINS in GNSS-
denied environments (Wu et al., 2014; Kong et al., 2016; Sun et al., 2015) can suffer from
inconsistencies between different sensors. That is, the error model of LSINS will greatly
influence the inconsistent state estimation results, and consequently accumulate biased
estimation and filtering divergence errors. Therefore, a priori knowledge about the error
model of LSINS is required to eliminate state estimation inconsistencies. In the course
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Figure 1. Coordinate frames {L}, {I}, {O} and {W} of LSINS.

of LSINS state estimation, the EKF or UKF-based integration algorithms cannot solve
the filtering divergence, which may directly affect the measuring accuracy of LSINS (Tan
et al., 2015; Chen et al., 2015). Although recent research attempted to control the filter
error using a Singular Value Decomposition Unscented Kalman Filter (SVDUKF), singu-
lar value decomposition only improves the stability of the state covariance matrix of the
UKF algorithm while the state estimation bias caused by measurement uncertainty remains
unsolved (Gao et al., 2010). Fortunately, Radial Basis Function Neural Networks (RBFNN)
are able to model arbitrary nonlinear dynamic systems and identify system uncertainty
(Deng and Zhang, 2013; Jwo and Huang, 2004; Ma et al., 2018; Zhan and Wan, 2006). It
is possible to utilise RBFNN to discover the state estimation bias in SVDUKF processing
to reduce the biased estimation and filtering divergence errors. However, RBF improved
SVDUKF has not yet been investigated in autonomous navigation.

In order to bridge the aforementioned research gap in autonomous navigation, this paper
proposes a novel RBF-improved SVDUKF to reduce the biased estimation and filtering
divergence errors in the process of LSINS integration. First, the relationship between laser
scanner coordinates and inertial sensor coordinates is established to build the error state
vector and measurement error model of LSINS. Second, a RBFNN is employed to opti-
mise the model parameters of SVDUKF to improve LSINS position accuracy. In addition,
instead of unscented transformation, a RBFNN algorithm can be used to reduce SVDUKF
and will be adopted to suppress negative definite variation in the a priori covariance matrix
of UKF. Lastly, experimental tests are implemented to demonstrate the effectiveness of the
proposed method in GNSS-denied environments.

The remainder of this paper is organised as follows. Section 2 describes the error model
of LSINS. The proposed error control approach, RBF-improved SVDUKF, is presented in
Section 3. An evaluation of the proposed error control method using experimental tests is
presented in Section 4 and Section 5 concludes the paper.

2. ERROR MODELLING OF LSINS. Generally, an LSINS contains four basic coordi-
nate frames: the laser scanner frame {L}, the inertial measurement unit frame {I}, the object
frame {O} and the world frame {W}. Figure 1 depicts the relationships of these four frames.

2.1. Transformation between {L} frame and {I} frame. To effectively integrate the
measurements of the laser scanner and IMU, we should first calculate the relative positions
and orientations between these sensors.
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Assuming that the point WP in the {W} frame corresponds to the point LP in the {L}
frame, the relationship between the {W} and {L} frames can be calculated as (Liu, 2017):

LP = RL W
W P + LTLW (1)

where RL
W represents a 3 × 3 orthonormal rotation matrix between the {W} and {L} frames;

LTLW is the translation vector. The success of the coordinate transformation depends on
finding a suitable RL

W and LTLW.
In order to calculate RL

W and LTLW, the coordinate transformation can be obtained by
observing the laser scanning to the calibration plane. A geometric constraint is calculated
between the laser scanning points and the calibration planes. As the laser scanning point
clouds lie on the calibrating planes, we have:

Wr · WP = d (2)

where Wr denotes the normal vector to the plane and d represents the distance between the
{W} frame and calibrating plane. Equation (1) can be re-written as:

WP =
(
RL

W

)−1 (LP − LTLW) (3)

Substituting Equation (3) into Equation (2) yields:

Wr · (RL
W

)−1 (LP − LTLW) = d (4)

For a given laser scanning point and a calibration plane position, RL
W and LTLW have to

satisfy the constraint in Equation (4), which can be solved by the following steps.
Step 1: Linear solution. Let us assume that in the {L} frame, the coordinates of the

laser scanning point can be defined as LP = [LPx
LPy 0]T. Therefore, Equation (4) can be

rewritten as:

Wr · (RL
W

)−1

⎛
⎝
⎡
⎣LPx

LPy
0

⎤
⎦− LTLW

⎞
⎠ = Wr · (RL

W

)−1

⎡
⎣1 0 0

0 1 −LTLW
0 0 0

⎤
⎦
⎡
⎣LPx

LPy
1

⎤
⎦ = d (5)

Define Z = (RL
W)−1

⎡
⎣1 0 0

0 1 −LTLW
0 0 0

⎤
⎦, then Equation (5) can be simplified as:

Wr · Z · LP = d (6)

where Z denotes the parameters to be calculated, that is, the unknown RL
W and LTLW. The

Least Squares (LS) method is adopted to estimate Z in this paper.
To obtain the optimal estimation of Z, multiple calibration planes are used in the coor-

dinate transformation process. It is assumed that the total numbers of calibration planes
are N , and the i-th plane Wri = [ri,1 ri,2 ri,3] contains Mi(i = 1, . . . , N ) laser scanning points.

Let us define Z =

⎡
⎣z11 z12 z13

z21 z22 z23
z31 z32 z33

⎤
⎦ for Wri, the distance between Wri and the {W} frame
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origin di, and the j-th (j = 1, 2, . . . , Mi) laser scanning point in Wri
LPij = [LPij ,x

LPij ,y 1]T.
Equation (6) can be then rewritten as:

(ri,1z11 + ri,2z21 + ri,3z31) · LPij ,x + (ri,1z12 + ri,2z22 + ri,3z32)

· LPij ,y + (ri,1z13 + ri,2z23 + ri,3z33) = di (7)

As can be seen in Equation (7), each laser scanning point can be described as a linear
equation, and hence, the LS method can be applied to solve Z from the equations. RL

W and
LTLW can be then calculated from Z.

Let Ri be the i-th row of RL
W, then (RL

W)−1 = (RL
W)T = [RT

1 RT
2 RT

3 ], and we can obtain:

Z = [RT
1 RT

2 RT
3 ]

⎡
⎣1 0 0

0 1 −LTLW
0 0 0

⎤
⎦ = [RT

1 RT
2 −(RL

W)T LTLW] (8)

As the columns of RL
W are orthogonal to each other, according to Equation (8) we derive:

RL
W = [Z1 Z2 Z1 × Z2]T (9)

where Zi represents the i-th column of Z. In Equation (8) we note that Z3 = −(RL
W)−1 LTLW,

which can be re-written as:

LTLW = −RL
WZ3 = [Z1 Z2 Z1 × Z2]T Z3 (10)

Thus, by solving the combination of Equations (9) and (10), RL
W and LTLW can be

obtained.
Step 2: Nonlinear solution. The linear solution can be calculated using the LS method

to minimise the algebraic distance between the laser scanning points and the calibration
plane. In order to eliminate the difference between the measuring distance and algebraic
distance, the nonlinear solution is employed.

In Equation (5) there are two types of distances, that is, the algebraic distance d between
the calibration plane and the {W} frame and the measured distance Wr · (RL

W)−1(LP − LTLW).
The differences of these two distances represent the distance errors between the laser scan-
ning points and the calibration plane. The goal of the nonlinear solution is to eliminate the
distance errors using the following object function:

arg min
Z

f = arg min
Z

⎡
⎣ N∑

i=1

Mi∑
j =1

(
Wri · (RL

W

)−1 (LPij − LTLW
)− di

)2

⎤
⎦ (11)

In this work, Equation (11) is minimised by the nonlinear LS method (Pulford, 2010).
The nonlinear LS performs optimisation processing via an initial guess of RL

W and LTLW to
output the optimal estimation of RL

W and LTLW. Then the geometric relationships between
the laser scanner and IMU can be established to complete the coordinate transformation.
The IMU usually consists of three gyros and three accelerometers. The gyros can provide
the changes of Euler angles, while the accelerometers can give the specific forces. After
integrating the outputs of accelerometers and gyros, the rotation and translation matrix
between the {W} frame and the {I} frame can be obtained. Defining the rotation matrix as
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RW
I and the translation vector as I TWI , a point in the {I} frame can be projected into the {W}

frame through:
WP = RW

I
I P + I TWI (12)

where I P represents the point in the {I} frame, WP denotes the point in the {W} frame.
Substituting Equation (1) into Equation (12), the relationship between the {I} frame and

the {L} frame can be expressed by Equation (13).

LP = RL
W

(
RW

I
I P + I TWI

)
+ LTLW (13)

2.2. Error Modelling of LSINS. The kinematic model of LSINS is Ẏ = F(y, u), where
y = [OTWO

OV �]T is the state vector and u is the input parameter. The LSINS kinematic
model can be calculated as: ⎧⎪⎨

⎪⎩
OṪWO = RW

O · OV
OV̇ = OaO − (�O

IL + �O
IO) · OV

�̇ = �−I
E · OωWO

(14)

where OṪWO denotes the translation vector from the {W} frame origin to the {O} frame
origin; OV represents the velocity of the moving object in the {O} frame; � = [α β θ ]
denotes the roll, pitch and yaw of the moving object; RW

O represents the rotation matrix
from the {O} frame to the {W} frame; OaO = f O + gO is the moving object’s acceleration in
the {O} frame, f O and gO denote the specific force and local gravity vectors of the object in
the {O} frame, respectively, and OωWO denotes the angle rate of the origin of the {O} frame
to the {W} frame. �−1

E can be defined as:

�−1
E =

⎡
⎣1 sin α tan β sin α tan β

0 cos α − sin α

0 sin α/ cos β cos α/ cos β

⎤
⎦ (15)

where α and β are the roll and pitch angle of the moving object.
The standard form of localisation equations can be expressed as B̂ = F(b̂, û), where B̂ is

the estimated value of the state b̂, and û is the measured input. The localisation equations
of LSINS can be calculated as (Huang, 2010):

⎧⎪⎪⎨
⎪⎪⎩

O ˙̂TWO = R̂W
O · OV̂

O ˙̂V = OâO − (�̂O
IL + �̂O

IO) · OV̂
˙̂
� = �̂−I

E · Oω̂WO

(16)

where Oω̂WO = Oω̂IO − Oω̂IW, Oω̂IW = R̂O
W · Wω̂LW with Wω̂LW = ωIL[cos α̂ 0 − sin α̂] and α̂

is the measured attitude. OâO is computed as:

OâO = f O + gO + γa + ba (17)

where γa is the measurement noise with Gaussian distribution and ba is the random noise.
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The error state vector includes the position velocity and attitude errors.

(1) The position errors: the errors of position are computed as:

δ(WṪWO) = RW
O · OV − R̂W

O · OV̂ = R̂W
O · δ(OV) − WV̂ · ρ (18)

where RW
O = R̂W

O (I + ρ), I = (RL
W)T · RL

W, ρ is the tilt error of the calibration plane, and
OV = OV̂ + δ(OV).

(2) The velocity errors: the errors of velocity can be calculated as:

δ(OV̇) = OV̇ − O ˙̂V = OaO − (�O
IL + �O

IO) · OV − OâO + (�̂O
IL + �̂O

IO) · OV̂

= R̂W
O

((
∂
(
gW
)

∂
(

WTWO
) + WV̂ · ∂

(
WωIL

)
∂
(

WTWO
)
)

δ
(WTWO

)

+
(

gW + WωIL

(
WV̂
)T

− (WωIL
)T · WV̂ · I

)
ρ

)

− (�̂O
IL + �̂O

IO)δ(OV) − δba − OV̂ · δbg − γa − OV̂ · γg (19)

where gW represents the local gravity vector of the moving object in the {W} frame, bg
is the gyro bias due to random plus noise, γg represents the white Gaussian measuring
noise and WωIL in the {W} frame represents the angular rate from the origin of the {L}
frame to the {I} frame.

(3) The attitude errors: the attitude error is given in Equation (20):

δ(�̇) = �̇ − ˙̂
� = �−1

E · Wω̂IW − δ(WωIW) − R̂W
I (δbg + γg) (20)

where δ(WωIW) is computed as:

δ(WωIW) = −ωIL ·
⎡
⎣sin α

0
cos α

⎤
⎦ · ∂�

∂(WRIW)
· δ(WRIW) (21)

The error state vector can be expressed as a function of the position velocity and attitude
errors in Equation (22):

⎧⎪⎨
⎪⎩

x = [δ(WTWO) δ(OV) δ� δba δbg]T

b = [ba bg]T

γ = [γa γg]T

(22)

where x, γ and b denote the error state vector, measuring noise vector and process noise
vector.
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Based on Equations (18), (19), (20) and (22), the measurement error model of LSINS is
obtained as:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

δ(WṪWO)

δ(OV̇)

δ�̇

δω̇ba

δωbg

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R̂W
O

∂(gW)
∂(WTWO)

R̂W
O −WV̂ 0 0

0 −
(
�̂O

IL + �̂O
IO

)
−R̂W

O gW −I −OV̂

0 0 �̂−1
E 0 −R̂W

O

0 0 0 0 0

0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

δ(WTWO)

δ(oV)

δ�

δωba

δωbg

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−I 0 0 0

0 −OV̂ 0 0

0 −R̂W
O 0 0

0 0 I 0

0 0 0 I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎣

γa
γg
ba
bg

⎤
⎥⎥⎦ (23)

2.3. LSINS Navigation Processing. In the LSINS aided navigation process, the IMU
can be applied to measure the position and orientation of moving objects, while the laser
scanner can provide accurate distance and azimuth information to a landmark. SVDUKF
can be used to combine the IMU and the laser scanner to predict the position of moving
objects. The observation functions of SVDUKF are given by Equation (24):

Xk =
[

pn
IMU − pn

LiDAR
εn

IMU − εn
LiDAR

]
= Hkxk + bk + γk (24)

where Xk is a measurement vector of LSINS, pn
IMU is the predicted position from the IMU

mechanisation, pn
LiDAR is the observed position from LiDAR and εn

IMU and εn
LiDAR are the pre-

dicted and observed angles, respectively. The LiDAR observed angle can be obtained from
LiDAR scan matching. Hk is the designed matrix that describes the relationship between
the state vector and the measurement vector of LSINS.

The LSINS navigation process can be carried out as the following two steps. The first
step is time propagation, which aims to integrate the outputs of the IMU and to obtain the
estimations of current states. The second step is measurements updating. The laser scanner
measurements are used to correct the states estimations in step 1.

Step 1: Time propagation.

(1) In time tk, obtain X +
k and P+

k from the IMU, and incorporate into Ẋ = f (X , u) over
t ∈ (tk, tk+1) to get X −

k+1.
(2) Calculate P−

k+1 = 
P+
k 
T + Qd, where Qd = GQGTT, T = tk+1 − tk and 
 = eHT with

‖HT‖ � 1.

Step 2: Measurement updating.

(1) In time tk predict Y−
k+1 = h(X −

k+1).
(2) The measurement residual is δYk+1 = Yk+1 − Y−

k+1.
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(3) The correction gain is Kk+1 = P−
k+1H T

k+1(Hk+1P−
k+1H T

k+1 + Rk+1)−1.
(4) Correct the state X +

k+1 = X −
k+1 + δYk+1Kk+1.

(5) Update the error covariance P+
k+1 = Kk+1Rk+1KT

k+1 + (I − Kk+1Hk+1)P+
k+1

(I − Kk+1Hk+1)−1.

3. OPTIMAL ESTIMATION USING RBF-IMPROVED SVDUKF. After the error
state vector and error measurement model of LSINS are established, the optimal estimation
procedure of RBF-improved SVDUKF is conducted to improve the position accuracy of
LSINS.

3.1. SVDUKF algorithm. Assume that the error state vector and the error measure-
ment equation of LSINS are of discrete-time nonlinear systems:{

xt+1 = f (xt) + bt

yt = h(xt) + γt
(25)

where f (·) is the nonlinear error state updating function and h(·) is the error measurement
function. The estimation procedure of SVDUKF includes the following four steps:

(1) Initialisation: {
x̂0 = E[x0]
S0 = E[(x0 − x̂0)(x0 − x̂0)T]

(26)

(2) Calculate the sigma points with corresponding weight coefficients:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

St−1 = Ut−1 · �t−1 · CT
t−1 = Ut−1 ·

[
Gt−1 0

0 0

]
· CT

t−1

χi,t−1 = x̂t−1 + (Ut−1
√

�t−1(m + λ))i, (i = 1, . . . , m)

χi,t−1 = x̂t−1 − (Ut−1
√

�t−1(m + λ))i−m, (i = m + 1, . . . , 2m)

Wm
0 =

λ

m + λ

Wc
0 =

λ

m + λ
+ 1 + ε2 − η

Wm
i = Wc

i =
λ

2(m + λ)
, (i = 1, . . . , 2m)

(27)

where St−1 is the covariance matrix of the state vector; χ is a matrix of state
sigma points; �t−1 is a diagonal fading factor matrix; Gt−1 = diag(g1, g2, · · · , gr),
g1 ≥ g2 ≥ · · · ≥ gr ≥ 0, g1, g2, · · · , gr is the singular value of St−1; r is the rank of
St−1; χt−1 ∈ Rm×(2m+1) is a matrix of state sigma points; Ut−1 and CT

t−1 are the left and
right singular vectors of St−1, respectively; λ = ε2(m + k) − m is a scaling parameter;
ε(0 ≤ ε ≤ 0·5) is the pre-setting distance between the sigma point and St−1, deter-
mining the spread rate of the sigma points around the mean of state x; k is a secondary
scaling parameter, which is usually set to 3 − m and η denotes the prior knowledge
of the distribution of x.
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(3) Time updating equation:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

χt|t−1 = f (χt−1)

x̂t|t−1 =
2m∑
i=0

Wm
i χi,t|t−1

St|t−1 =
2m∑
i=0

Wc
i (χi,t|t−1 − x̂t|t−1) · (χi,t|t−1 − x̂t|t−1)T + bt

yt|t−1 = h(χt|t−1)

ŷt|t−1 =
2m∑
i=0

Wm
i yi,t|t−1

(28)

where x̂t|t−1 is the predicted state value and St|t−1 is the predicted covariance matrix
of the state vector.

(4) Error measurement updating equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sytyt = σi

2m∑
i=0

Wc
i (yi,t|t−1 − ŷt|t−1) · (yi,t|t−1 − ŷt|t−1)T + γt

Sxtyt = σi

2m∑
i=0

Wc
i (χi,t|t−1 − x̂t|t−1)(yi,t|t−1 − ŷt|t−1)T

κt = Sxtyt · S−1
ytyt

x̂t = x̂t|t−1 + κt(yi,t|t−1 − ŷt|t−1)

St = σiSt|t−1 − κtSytytκ
T
t

Dt = yi,t|t−1 − ŷt|t−1

σi =

⎧⎪⎨
⎪⎩

1, (tr(DtDT
t ) ≤ tr(Sxtyt ))

tr(Sxtyt )
tr(DtDT

t )
, (tr(DtDT

t ) ≤ tr(Sxtyt ))

(29)

where σi represents the multiple fading factors and κt is the gain matrix.

3.2. Optimisation using RBFNN. According to Equation (29), to incorporate with
the optimisation processes of Sytyt , Sxtyt and St, it is important to eliminate the influences
of the gross errors, system errors and disturbances in measurement. RBFNN is one of the
most popular intelligent computing methods, has a significant ability to approximate any
non-linear function to a designed accuracy and also has the ability to eliminate the gross
errors, system errors and disturbances more effectively and quickly. Therefore, this paper
will adopt RBFNN to optimise Sytyt , Sxtyt and St.

Figure 2 shows the structure of a three layers RBFNN, consisting the input layer, the
hidden layer and the output layer. We use Sytyt , Sxtyt , St to denote the input and Fl

i to express

https://doi.org/10.1017/S037346331800084X Published online by Cambridge University Press

https://doi.org/10.1017/S037346331800084X


NO. 3 LASER SCANNING AIDED INERTIAL NAVIGATION SYSTEM 751

Figure 2. RBFNN architecture.

Figure 3. Flow chart of the RBFNN aiding SVDUKF procedure.

the output of the i-th node in the l-th layer. To clearly explain the signal propagation and
the mathematical function in each layer, the functions of RBFNN can be represented as
follows.

Input layer: Every node in the input layer corresponds to one input variable � = Sytyt or
Sxtyt or St, and transmits the input values directly to the next layer, it is written as (Liu and
Li, 2017):

�1
i = F1

i , (i = 1, 2, · · · , t) (30)

Hidden layer: Every node in the hidden layer corresponding to the input layer is
calculated as:

�2
i =

t∑
i=1

F1
i , (i = 1, 2, · · · , t) (31)
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Figure 4. Experimental site: (a) 3D model of the experimental site; (b) floor map of the fourth floor.

According to the non-linear transfer function the output of each node is calculated as:

F2
i = ξi =

1

1 + e−�2
i
, (i = 1, 2, · · · , t) (32)

Output layer: Each node in the output layer connects to all output nodes of the hidden
layer. The output of each node in the output layer is computed via the weighted sum:

ϒj = F3
j = �3

j =
t∑

j =1

Oij · F2
j =

t∑
j =1

Oij · ξj , (i = 1, 2, · · · , n) (33)
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Figure 5. Experiment layouts.

The adjustable parameter vectors of O, ξ and ϒ in RBFNN can be defined as follows:

O =

⎡
⎢⎢⎢⎣

O11 O12 · · · O1t
O21 O22 · · · O2t

...
... · · · ...

On1 On2 · · · Ont

⎤
⎥⎥⎥⎦ , ξ =

⎡
⎢⎢⎢⎣

ξ1
ξ2
...
ξk

⎤
⎥⎥⎥⎦ , ϒ =

⎡
⎢⎢⎢⎣

ϒ1
ϒ2
...

ϒn

⎤
⎥⎥⎥⎦ (34)

Thus, the output vector of RBFNN can be modified as follows:

ϒ = OTξ (35)

Using the great approximation ability of RBFNN, the uncertain function H that defines
an optional neural network structure is calculated as:

H = OTξ (�) + q (36)

where q ∈ R denotes a minimum approximation errors vector. The RBFNN approximation
errors, uncertainties and other unmoulded dynamics are bounded, that is, there exists a
positive constant, such as ‖q‖ ≤ ρ. The corresponding estimation F̂ can be expressed as:

F̂ = ÔTξ (�) (37)

where Ô is the tuning parameter matrix of RBFNN and it is adjusted in the learning process.
Therefore, based on Equations (27), (28), (29) and (37), the optimal estimation of LSINS

can be calculated.
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Table 1. The specifications of the IMU and laser scanner.

Performance parameters Accuracy

IMU Horizontal Position Accuracy 0·5 m
Vertical Position Accuracy 0·8 m
Roll & Pitch Accuracy 0·01◦
Heading Accuracy 0·05◦
Bias Instability 0·05◦/hr
Output Data Rate 100 Hz

Laser scanner Range accuracy ±3 cm
Vertical FOV 30◦
Horizontal FOV 360◦
Measuring range 100 m
Output Data Rate 300,000 pts/sec

Figure 6. The measured trajectory using LSINS and optical measuring system.

3.3. Implementation of the RBFNN aiding SVDUKF procedure. As shown in
Figure 3, the RBF-SVDUKF procedure (see Appendix) can be implemented using the
following steps.

Step 1: Based on the established errors state vector and error measurement model, cal-
culate the sigma points at time step t, and carry out SVD analysis on the obtained sigma
points.

Step 2: Update the measurements of the sigma points, predict the matrix of Sytyt , Sxtyt

and St and compare the predictions with the threshold (1% in this study is satisfactory). If
satisfactory, output the position and attitude of the system; otherwise, go to the RBFNN
optimisation procedure in Step 3.

Step 3: Implement the RBFNN training procedure to optimise Sytyt , Sxtyt and St. Repeat
Step 2 and Step 3 until the threshold requirement is met.
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Figure 7. The positioning error using EKF and RBFNN aiding SVDUKF algorithm.

4. EXPERIMENTS AND DISCUSSION. To evaluate the effectiveness of the proposed
method, field experiments were carried out at the floor of a building in the China University
of Mining and Technology (see Figure 4). Figure 5 shows the experiment layouts. The
experiments were conducted with a VLP-16 laser scanner and a Spatial Fibre Optic Gyro
(FOG) IMU. The specifications of the IMU and laser scanner are given in Table 1.

As shown in Figure 5, we conducted the experiments in a GNSS-denied indoor environ-
ment. The total length of LSINS trajectory was 100 m and the 3D trajectory was covered
in the fourth floor of the building. The LSINS was driven along the hallway of the build-
ing to evaluate the position precision. The position ground-truth values were provided by
the optical measuring system, which can measure the position of LSINS with an accuracy
level up to 0·1 mm. A software platform programmed with C++ was designed to record and
process the raw data.
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During the experiments, the proposed algorithm was evaluated from starting point to
destination point along a trajectory 100 m in length. Figure 6 shows the original measure-
ments of the LSINS (red line) and the optical measuring system (black line). As can be
seen in the figure, a significant error was observed between the ground-truth and the LSINS
navigation without the filter processing.

Figures 7(a), 7(c) and 7(e) show the positioning errors in the east, north and up
coordinate directions using the EKF method and Figures 7(b), 7(d) and 7(f) show the posi-
tioning errors using the proposed RBF-SVDUKF method. The Root Mean Square (RMS)
of the navigation errors using EKF were 0·076 m/s, 0·126 m/s and 0·275 m/s in the east,
north and up directions, respectively. However, the RMS using the proposed method was
0·026 m/s, 0·047 m/s and 0·095 m/s in the three directions, respectively. The experimental
results demonstrate that the position accuracy of the proposed method was improved by
23·6% compared with that of the EKF method.

As mentioned above, the proposed RBF-SVDUKF method achieved significant
improvement compared with the EKF in terms of position accuracy, reliability and accu-
mulated error. As a result, the proposed method has great potential in practical navigation
in GNSS-denied environments.

5. CONCLUSIONS. In order to effectively extract and integrate the measurements from
inertial sensors and laser scanners, an optimal estimation algorithm is proposed based on
RBF-improved SVDUKF. The coordinate transformation between laser scanner frame and
inertial sensor frame was established to model the state vector and measurement errors in
LSINS. The error estimation optimisation procedure using RBF-SVDUKF was applied to
improve the position accuracy of LSINS. Experimental tests were conducted to evaluate
the performance of the proposed method. The analysis results demonstrate that the local-
isation accuracy of the proposed method has been improved by 23·6% when compared
with that using the EKF method. Future research will focus on improving the calcula-
tion efficiency of the proposed RBF-SVDUKF for practical applications. We also plan to
explore applications of the proposed RBF-SVDUKF in other types of multi-sensor data
fusion problems.

ACKNOWLEDGEMENTS

This project was supported by National Key R&D Program of China (2018YFC0604503), the
National Natural Science Foundation of Jiangsu Province (BK20150202), the National Natural
Science Foundation of China (U1610251) and the Priority Academic Program Development (PAPD)
of Jiangsu Higher Education Institutions. The authors would like to express their sincere thanks to
them.

REFERENCES

Aghili, F. and Su, C.-Y. (2016). Robust Relative Navigation by Integration of ICP and Adaptive Kalman Filter
Using Laser Scanner and IMU. IEEE/ASME Transactions on Mechatronics, 21(4), 2015–2026.

Allotta, B., Costanzi, R., Meli, E., Pugi, L., Ridolfi, A. and Vettori, G. (2014). Cooperative localization of a team
of AUVs by a tetrahedral configuration. Robotics and Autonomous Systems, 62(8), 1228–1237.

Allotta, B., Pugi, L., Ridolfi, A., Malvezzi, M., Vettori, G. and Rindi, A. (2012). Evaluation of odometry algorithm
performances using a railway vehicle dynamic model. Vehicle System Dynamics, 50(5), 699–724.

https://doi.org/10.1017/S037346331800084X Published online by Cambridge University Press

https://doi.org/10.1017/S037346331800084X


NO. 3 LASER SCANNING AIDED INERTIAL NAVIGATION SYSTEM 757

Baglietto, M., Sgorbissa, A., Verda, D. and Zaccaria, R. (2011). Human navigation and mapping with a 6DOF
IMU and a laser scanner. Robotics and Autonomous Systems, 59(12), 1060–1069.

Bosse, M., Zlot, R. and Flick, P. (2012). Zebedee: Design of a spring-mounted 3-D range sensor with application
to mobile mapping. IEEE Transactions on Robotics, 28(5), 1104–1119.

Chen, G., Meng, X., Wang, Y., Zhang, Y., Tian, P. and Yang, H. (2015). Integrated WiFi/PDR/smartphone using
an unscented Kalman filter algorithm for 3D indoor localization. Sensors, 15(9), 24595–24614

Deng, Z.H. and Zhang, Y.Q. (2013). AN improved RBF neural network model based on hybrid learning algorithm.
Advanced Materials Research, 718, 2202–2207.

Gao, S.S., Wang, J.C. and Jiao, Y.L. (2010). Adaptive SVD-UKF algorithm and application to integrated
navigation. Journal of Chinese Inertial Technology, 18(6), 737–742.

Hesch, J.A., Kottas, D.G., Bowman, S.L. and Roumeliotis, S.I. (2016a). Consistency Analysis and Improvement
of Vision-aided Inertial Navigation. IEEE Transactions on Robotics, 30(1), 158–176.

Hesch, J.A., Mirzaei, F.M., Mariottini, G.L. and Roumeliotis, S.I. (2016b). A Laser-Aided Inertial Navigation
System (L-INS) for human localization in unknown indoor environments. IEEE International Conference on
Robotics and Automation, 5376–5382.

Huang, L. (2010). LIDAR, Camera and Inertial Sensors Based Navigation Techniques for Advanced Intelligent
Transportation Systems. Ph.D. dissertation, University of California, California, USA.

Jwo, D.-J. and Huang, H.-C. (2004). Neural Network Aided Adaptive Extended Kalman Filtering Approach for
DGPS Positioning. The Journal of Navigation, 57(3), 449–463.

Kim, H.-S., Baeg, S.-H., Yang, K.-W., Cho, K. and Park, S. (2012). An enhanced inertial navigation system based
on a low-cost IMU and laser scanner. Proceedings of SPIE - The International Society for Optical Engineering,
8387, 1–10.

Kong, J., Mao, X. and Li, S. (2016). BDS/GPS dual systems positioning based on the modified SR-UKF algorithm.
Sensors, 16(5), 1–15.

Lauterbach, H.A., Borrmann, D., He, R., Eck, D., Schilling, K. and Nüchter, A. (2015). Evaluation of a backpack-
mounted 3D mobile scanning system. Evaluation of a backpack-mounted 3D mobile scanning system, 7(10),
13753–13781.

Lehtola, V.V., Virtane, J.-P., Vaaja, M.T., Hyyppä, H. and Nüchter, A. (2016). Localization of a mobile
laser scanner via dimensional reduction. ISPRS Journal of Photogrammetry and Remote Sensing, 121,
48–59.

Liu, W. (2017). LiDAR-IMU Time Delay Calibration Based on Iterative Closest Point and Iterated Sigma Point
Kalman Filter. Sensors, 17, 539.

Liu, W.L. and Li, Y.W. (2017). A novel method for improving the accuracy of coordinate transformation in
multiple measurement systems. Measurement Science & Technology, 28(9), 095002.

Liu, W.L., Wang, Z., Wang, S. and Li, X. (2013). Error Correction for Laser Tracking System Using Dynamic
Weighting Model. Advances in Mechanical Engineering, 5(3), 869406.

Ma, Y., Li, Z., Malekian, R., Zhang, R., Song, X. and Sotelo, M. (2018). Hierarchical fuzzy logic-based vari-
able structure control for vehicles platooning. IEEE Transactions on Intelligent Transportation Systems,
99, 1–12.

Markham, A., Niki Trigoni, N., Macdonald, D.W. and Ellwood, S.A. (2012). Underground Localization in 3-D
Using Magneto-Inductive Tracking. IEEE Sensors Journal, 12(6), 1809–1816.

Pulford, G.W. (2010). Analysis of a nonlinear least squares procedure used in global positioning systems. IEEE
Transactions on Signal Processing, 58(9), 4526–4534.

Shi, Y., Ji, S., Shao, X., Yang, P., Wu, W., Shi, Z. and Shibasaki, R. (2015). Fusion of a panoramic camera
and 2D laser scanner data for constrained bundle adjustment in GPS-denied environments. Image and Vision
Computing, 40, 28–37.

Soloviev, A. and Uijt De Haag, M. (2010). Monitoring of moving features in laser scanner-based navigation. IEEE
Transactions on Aerospace and Electronic Systems, 46(4), 1699–1715.

Sun, T., Chu, H., Zhang, B., Jia, H., Guo, L., Zhang, Y. and Zhang, M. (2015). Line-of-Sight Rate Estimation
Based on UKF for Strapdown Seeker. Mathematical Problems in Engineering, 2015(1), 1–14.

Tan, X., Wang, J., Jin, S. and Meng, X. (2015). GA-SVR and Pseudo-position-aided GPS/INS Integration during
GPS Outage. The Journal of Navigation, 68(4), 678–696.

Tang, J., Chen, Y., Niu, X., Wang, L., Chen, L., Liu, J., Shi, C. and Hyyppä, J. (2015). LiDAR scan matching
aided inertial navigation system in GNSS-denied environments. Sensors, 15(7), 16710–16728.

Wang, J., Hu, A., Liu, C. and Li, X. (2015). A floor-map-aided WiFi/pseudo-odometry integration algorithm for
an indoor positioning system. Sensors, 15(4), 7096–7124.

https://doi.org/10.1017/S037346331800084X Published online by Cambridge University Press

https://doi.org/10.1017/S037346331800084X


758 W.I . LIU AND OTHERS VOL. 72

Wu, Q., Jia, Q., Shan, J. and Meng, X. (2014). Angular velocity estimation based on adaptive simplified spherical
simplex unscented Kalman filter in GFSINS, Proceedings of the Institution of Mechanical Engineers, Part G:
Journal of Aerospace Engineering, 228(8), 1375–1388.

Xiong, C., Han, D. and Xiong, Y. (2009). An integrated localization system for robots in underground
environments. Industrial Robot, 36(3), 221–229.

Zhan, R. and Wan, J. (2006). Neural network-aided adaptive unscented Kalman filter for nonlinear state
estimation. IEEE Signal Processing Letters, 13(7), 445–448.

APPENDIX: RBFNN AIDING SVDUKF ALGORITHM

Input: the state parameter (position, velocity and attitude measured by IMU and laser
scanner) initialization error state vector and measurement model of LSINS (see
Equation (19) and Equation (20))

Initialization x̂0 and S0 (see Equation (22))
Calculate the sigma points χ (see Equation (23))
Update x̂t|t−1 and St|t−1 (see Equation (24))
Predicted St (see Equation (25))

while St 	=old St
if δSt 	=0·01 then

update Sytyt , Sxtyt

output state parameters
else

set to RBFNN procedure
training Sytyt , Sxtyt and St

check δSt
end if

update Sytyt , Sxtyt

output state parameters
end while

https://doi.org/10.1017/S037346331800084X Published online by Cambridge University Press

https://doi.org/10.1017/S037346331800084X

	APPENDIX: RBFNN AIDING SVDUKF ALGORITHM

