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Abstract
In this paper, we present a standardized approach for using cancer incidence and survival data to
account for the timing between a reduction in carcinogen exposure and the subsequent reduction in
cancer risk and fatality.While the estimates for this timing between a reduction in carcinogen exposure
and reduced cancer risk would ideally come from high-quality studies specifically examining this
question, very few such studies are available. Thus, we designed an approach to account for this timing
when sufficient data are not available elsewhere. Our approach can be used in estimating monetized
values for achieving small reductions in the risks for many common specific types of cancer in benefit–
cost analyses of regulatory and non-regulatory policies in the United States that achieve cancer risk
reductions by reducing carcinogen exposures. We provide estimated values for 108 different cancer
sites and for all cancer sites combined. We accompany this paper with a spreadsheet-based tool that
presents our results separately for non-fatal and fatal risks so that results can easily be calculated using
different combinations of discount rates, latency between carcinogen exposure and cancer diagnosis,
values for the willingness-to-pay to avoid fatal and non-fatal cancer risks, and potentially affected
populations.

1. Introduction

In 2020, cancer incidence reached over 1.6 million new cases and mortalities topped
602 thousand (CDC, 2023). The contribution to this disease burden from environmental
and occupational exposure to toxic substances is increasingly the target of government
regulation. For example, in 2016, the Frank R. Lautenberg Chemical Safety for the 21st
Century Act amended the Toxic Substances Control Act (TSCA). Among other updates to
TSCA, the new law created amandatory requirement that the U.S. Environmental Protection
Agency (EPA) conduct risk-based chemical assessments of existing chemicals to determine
whether they pose an unreasonable risk and take regulatory action upon a positive finding.
Recent regulations proposed under authority of TSCA include restrictions on consumer and
occupational use of chemicals including formaldehyde, methylene chloride, asbestos,
trichloroethylene, and perchloroethylene, which collectively have been linked to develop-
ment of cancers, including liver, lung, kidney, laryngeal and nasopharyngeal, ovarian, testis,

© Abt Global LLC, 2025. Published by Cambridge University Press on behalf of Society for Benefit-Cost Analysis.

Journal of Benefit-Cost Analysis (2025), 1–45
doi:10.1017/bca.2024.43

https://doi.org/10.1017/bca.2024.43 Published online by Cambridge University Press

mailto:matthew.lapenta@abtglobal.com
https://doi.org/10.1017/bca.2024.43
https://doi.org/10.1017/bca.2024.43


brain, mesothelioma, and Non-Hodgkin lymphoma.1 Numerous other proposed and final-
ized EPA regulations have targeted environmental exposures to carcinogenic substances
including per- and polyfluoroalkyl substances (PFAS) in drinking water, ethylene oxide in
airborne pollution and pesticides, and air toxics in the transportation sector.

Regulatory agencies must evaluate the costs and benefits of significant regulations and
their regulatory alternatives, as required by Executive Order 12866. A general approach to
estimating the benefits of a regulation that reduces carcinogen exposure may involve
determining the size and characteristics of the exposed population, characterizing expo-
sure patterns among the exposed individuals, developing a dose–response relationship,
assigning a value to the benefit of avoided cancer risk, and appropriately discounting this
value from the time when the avoided risk is realized back to the present time of avoided
exposure.

The valuation of avoided cancer risk in particular has been the subject of much study in
the health and environmental economics fields. Standard practice among regulatory agen-
cies is to apply the value of a statistical life (VSL) to avoided mortality risks. However, there
has been discussion among economists regarding the specific case of valuing cancer risk,
such as whether there is a cancer premium for a VSL derived from labor market studies
(e.g. Alberini & Scasny, 2010; Science Advisory Board (SAB), 2017; SAB, 2011; Viscusi
et al., 2014), whether risk reduction valuations vary for different cancer types and attributes
(e.g. Alberini & Scasny, 2018; Alberini et al., 2023; Cameron&DeShazo, 2013; Hammitt &
Liu, 2004), how to appropriately value cancer morbidity (e.g. Cameron, 2014; SAB, 2024),
and whether valuations are dependent on latency period (e.g. Hammitt & Liu, 2004;
McDonald et al., 2016; Rowell, 2010; SAB, 2001; Van Houtven et al., 2008).

The primary focus of this paper is how to reasonably account for the lag between when
exposure to a toxin is reduced andwhen benefits are realized due to avoided cancer incidence
and avoided mortality at some future point in time. This question is relevant because the
benefit of avoided morbidity and/or mortality does not occur instantly once exposure is
reduced. As Revesz (1999) notes, ideally researchers could determine society’s willingness-
to-pay (WTP) to avoid a latent carcinogenic harm, but given analytical challenges in
obtaining such a value, economists instead typically estimate the value of a future mortality
risk reduction in relation to the value of a mortality risk reduction today. It is standard
practice among regulatory agencies to discount future health benefits. The White House
Office of Management and Budget (OMB) Circular A-4 guidance (OMB, 2023a), OMB’s
Circular A-94 Guidance (OMB, 2023b), EPA’s Guidelines for Preparing Economic Ana-
lyses (EPA, 2014), and the U.S. Department of Health and Human Services (HHS)
Guidelines for Regulatory Impact Analysis (HHS, 2016) all state that future health benefits
should be discounted.

The timing between avoided exposures and reduced cancer risks is generally defined as
either latency or cessation lag, depending on the nature of the avoided exposure (EPA, 2014;
HHS, 2016). Latency is defined as the period of time between exposure to a carcinogen and a
resulting increased risk for disease. Cessation lag is defined as a lag between the reduction of
an existing exposure and the resulting reduction in risk for disease.

1 The completed and in process chemical risk evaluations under TSCA are compiled by EPA at: https://
www.epa.gov/assessing-and-managing-chemicals-under-tsca/ongoing-and-completed-chemical-risk-evaluations-
under
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These two time periods are not necessarily the same. As recommended by EPA’s SAB
(2001), cessation lag is the relevant time period when considering populations with existing
exposures before a policy to reduce exposures takes effect. Alternatively, latency would be
the relevant time period for populations who would never be exposed if the policy being
considered goes into effect. Because both types of populationsmay benefit from a policy that
reduces exposures, the ideal approach would be to account for both the latency and the
cessation lag bymodeling the timing between the cumulative exposures experienced and the
avoided risks for adverse health effects under different scenarios. However, in most cases,
such detailed information is not available.

In order for benefits estimates to be comparable to costs in a benefit–cost analysis, the
estimated values for avoiding cancer risks should be discounted back to the time when costs
for avoiding the risks would be incurred. This is generally the time when exposures would
have otherwise occurred and increased cancer risks. Thus, a critical step in such an analysis is
to determine how much time elapses between these avoided exposures and the avoided
cancer diagnoses. In addition, fatal cancer risks should be discounted from the time of death
to the time at exposure. Thus, the analysis should also estimate how much time elapses
between cancer diagnoses and any resulting deaths.

The primary purpose of this paper is to construct a standardized approach that accounts
for the timing between the reduction in carcinogen exposure following implementation of a
new policy, the subsequent reduction in cancer risk, and any resulting fatalities. Ideally the
estimates for latency and cessation lag would come fromwell-designed high-quality studies.
However, the available data and literature on this topic are very limited, with no information
at all for many cancer sites and carcinogens. Thus, our goal was to design an approach for
accounting for this timing between exposure and cancer risk reduction when sufficient data
are not available in the literature. Our approach has been used in several EPA economic
analyses (see EPA, 2013, 2016, 2017, 2019 and Abt Associates, 2022) and is also the
primary method used to estimate the lag between exposure and diagnosis for non-fatal lung
cancer in EPA’s (2023) BenMAP model, which was recently reviewed in the SAB (2024)
Review of BenMAP and Benefits Methods.2

Our approach establishes distributions for the lag between exposure and diagnosis by
cancer site, sex, and age at exposure based on age-, sex-, and site-specific cancer incidence
distributions starting a minimum number of years after the exposure reduction (see Sec-
tion 2.4 for a discussion of the minimum lag periods we selected). These age-, sex-, and site-
specific cancer incidence distributions reflect cancer diagnoses from all causes. We apply
this approach to sex–age distributions for 21 different U.S. populations. This allows our
approach to be used to estimate monetized values for achieving small reductions in the risks
for many common specific types of cancer in benefit–cost analyses of regulatory and non-
regulatory policies that reduce carcinogen exposures in different U.S. populations (e.g. the
manufacturing sector, the general population). In Appendix A, we compare the results using
our approach with the limited literature on latency between exposure and cancer incidence to
evaluate whether our approach is reasonably consistent with empirical estimates of cancer
latency and cessation lag.

2 The BenMAPmodel uses three different approaches for estimating the lag between exposure and diagnosis, but
the approach described in our paper is the primary approach that they use. The SAB (2024) report did not
recommend making changes to the BenMAP approach, noting that it was reasonable given the lack of available
data for developing a more robust approach.
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Our estimates for the value of reduced cancer risk are provided in our supplementary
spreadsheets.3We provide values for 108 different cancer sites, 21 different populations, and
any number of desired discount rates. Furthermore, our estimates for the value of a cancer
risk reduction have two separate components: (a) reducing the risk of dying from the cancer
and (b) reducing the risk of being diagnosedwith cancer without dying from it. Hereafter, we
refer to the first outcome as fatal and the second as non-fatal. While we provide default
estimates for the WTP to avoid non-fatal and fatal cancer risks based on a review of the
literature, recommending specificWTP values for each cancer site and population is beyond
the scope of this paper. Thus, we provide our results separately for fatal and non-fatal risks,
so that results using different WTP values can be easily calculated.

2. Approach for estimating monetized value of avoiding cancer risks

Our approach for estimating monetized values of avoiding cancer risks is summarized as
follows:

1. Select undiscounted values for avoiding fatal and non-fatal cancer risks
2. Weight and discount the undiscounted values from Step 1 back to the time of avoided

exposure (the time towhichwe discount the future risk reduction values for the purpose of
this analysis) as follows:
a. Estimate the timing between exposure and diagnosis
b. Estimate the probability that the cancer is either fatal or non-fatal
c. In the case of fatal cancer, estimate the timing between diagnosis and death
d. Discount values back to time at exposure

We describe these steps in more detail in the sections that follow.

2.1. Cancer sites considered

Our analysis utilizes data from the National Cancer Institute (NCI)’s Surveillance, Epide-
miology, and End Results (SEER) Program and is based on data retrieved from NCI’s
SEER*Stat software,4 including all sites in SEER*Stat’s Site Recode ICD-O-3/WHO 2008
variable (many of the most common cancer sites). We also include five selected sites from
SEER*Stat’s “Primary Site” variable and two custom sites selected because they are cancer
risks expected to be addressed by upcoming U.S. EPA risk management actions under
the TSCA.

2.2. Populations considered

The time between exposure and diagnosis depends on the sex and age of the exposed
individuals. In turn, the age at diagnosis affects the probability that the cancer is fatal and the

3 The data, modeling programs/files, and results are available for download at: https://1drv.ms/f/s!
AmZ3gngmtmSjiJQqghK0z8LQYjkFpQ?e=8G9tlQ

4 Surveillance Research Program, National Cancer Institute SEER*Stat software (seer.cancer.gov/seerstat)
version 8.4.1.2 – April 17, 2024 release.
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timing between diagnosis and death. Incorporating these variations in timing and probabil-
ities results in estimated values for reducing cancer risks specific to the age and sex makeup
of the population affected.5 We estimate results for several different populations of indi-
viduals that might be considered in a benefits analysis. Since many reductions in exposures
will be from reduced occupational exposures, we calculate separate estimates for each of the
14 major occupational codes in the U.S. Bureau of Labor Statistics’ Current Population
Survey (U.S. Census Bureau, 2014–2023). In addition to these 14 industry-specific popula-
tions, we also included estimates for all employed individuals combined, the entire popu-
lation, the entire adult population, and four child populations (individuals under the age of
18, under the age of 2, ages 2–15, and ages 16–17).

2.3. Undiscounted values used in the analysis

Our estimates for the value of reduced cancer risk provided in supplementary spreadsheets
populate default values for theWTP to avoid fatal and non-fatal cancer risks based on EPA’s
recommended VSL and our review of the literature on the value of non-fatal cancer risk (see
Appendix C). The estimated value for a case of fatal cancer is the value of mortality risk
(VMR). The VMR represents the value of reducing the risk of premature death by
1/1,000,000, also referred to as a micro-risk reduction. We use a default VMR of $13.71
(2023$), which is estimated using EPA’s (2014) recommended VSL of $4.8 million in 1990
dollars, adjusted for income growth and inflation.6 EPA’s recommended value is consistent
with other VSL estimates (e.g. HHS, 2021; U.S.Department of Transportation (DOT), 2024;
Viscusi, 2018).

Our default undiscounted values for a case of non-fatal cancer are based on a literature
review on the WTP for avoiding non-fatal cancer risk (Appendix C). Like the VMR estimate,
the non-fatal risk values are adjusted for income growth and inflation. The non-fatal risk values
may differ by the cancer end point of interest, reflecting differences in treatment costs, pain and
suffering associatedwith treatment, productivity losses during treatment, and any other adverse
consequences related to contraction of a non-fatal case of cancer.

While we provide default values in our supplemental spreadsheets, we recognize that
these are not a comprehensive set of values that will be appropriate for all analyses (see
discussion in Appendix C). Therefore, we disaggregate our results by the fatal and non-fatal
components so that an analyst may input different undiscounted values as desired.

2.4. Estimate the timing between exposure and diagnosis

Data from high-quality studies specifically examining the timing between a reduction in
carcinogen exposure and reduced cancer risk would be the preferred source to estimate the

5 Estimates do not differ by any other factors, including race and ethnicity. However, race and ethnicity can also
affect the timing of diagnosis and the survival probabilities, but we do not include estimates that are specific to the
race and ethnicity characteristics of potentially affected populations because many of the cancer sites do not have
sufficient numbers of observations to develop estimates that are specific to the race and ethnicity characteristics of
potentially affected populations.

6 The $4.8 million in 1990 dollars is adjusted for inflation using the Consumer Price Index (BLS, 2024) and then
adjusted for income growth using real GDP per capita (U.S. Bureau of Economic Analysis, 2024) and EPA’s (2014)
recommended income elasticity of 0.4.
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timing between exposure and diagnosis. If information is available about the mechanism by
which cancer occurs, it is possible to usemodels of cancer formation to estimate the length of
cessation lags (e.g. see Appendix 2.1 of SAB, 2001). However, one shortcoming of using
cancer formationmodels to estimate latency or cessation lag is that they only include the time
between malignant conversion and clinical manifestation or detection. Cancer formation
models do not account for the induction period, the time between exposure and malignant
conversion, which Hicks et al. (2023) notes can be many years.

We conducted a literature review on cancer latency and cessation lag to assess the scope
of existing literature on the lag between exposure and cancer risk, which we include in
Appendix A. Our review revealed several limitations of the existing literature, including
small sample sizes, limited number of recent studies, limited cancer sites and exposure
sources considered, lack of detailed statistics provided by the relevant studies, and limited
detail on exposure concentrations, cancer severity, and ages of individuals at exposure.
Many of these limitations reflect the fact that most of the papers we identified were not
designed for the purpose of estimating latency and cessation lag. In light of these limitations,
we conclude that the existing literature is not robust enough to justify estimating cessation
lags and latencies directly from the literature.

To estimate the timing of avoided cancer for a hypothetical person, we instead assume
that the timing of cancer diagnosiswould follow the distribution of cancer incidence between
the age at a minimum number of years after exposure and either the individual’s life
expectancy age (Bell & Miller, 2015) or age 89, whichever is smaller.7 We use the NCI’s
SEER cancer incidence data (SEER, 2024), which includes the number of cancer diagnoses
by cancer site for 5 year age brackets that range from age 0 to 84 years, and also includes a
bracket for 85 years and older. Our approach does not differentiate between latency and
cessation lag, so they are assumed to have the same timing.

While the available information on minimum latency is very limited (Howard, 2015;
Hicks et al., 2023; SAB, 2024), the minimum latency period is generally thought to be
several years (Hicks et al., 2023). Therefore, we selected minimum lag periods between
exposure and diagnosis based on estimates of minimum latencies from the CDC’s World
Trade Center Health Program (Howard, 2015). By rounding Howard’s (2015) estimates up
to the nearest year, we selected minimum lags of 1 year for childhood cancers, lymphopro-
liferative cancers, and hematopoietic cancers (including all types of leukemia and lym-
phoma), 3 years for thyroid cancer, 11 years for mesothelioma, and 4 years for all other
cancers.8

Table 1 presents an example of how this calculation is performed for individuals who are
age 46 at the time they experience a change in exposure that reduces their risk for cancer
(assuming a 4-year minimum lag between exposure and diagnosis). In this example,
conditional on avoiding a case of cancer because of an exposure reduction that occurred

7 The NCI’s SEER cancer incidence data (SEER, 2024) used in the analysis includes a bracket for 85 years and
older and we assume the cancer incidence for this bracket is distributed across ages 85 through 89.

8 Note that mesothelioma is a cancer where enough studies were identified in the literature review on the timing
between exposure and diagnosis so that estimating latency based on those studies is preferable to using the
incidence-based approach described here. Based on these studies, described in Appendix B, we assume an adjusted
triangular distribution with theminimum of 11 years, maximum of 70 years (or the number of years until age 89, the
max age of diagnosis in our analysis), and a mode of 43 years, which is the estimated mean latency from our meta-
analysis described in Appendix B. The probabilities for the set of values above and below the mode are adjusted so
that the average lag is equal to the mode of 43 years.
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at age 46, there is a 11.9% chance that the avoided cancer would have occurred between ages
50 and 54, a 15.1% chance that it would have occurred between ages 55 and 59, a 17.3%
chance it would have occurred between ages 60 and 64, and so forth. Note that although the
table presents these percentages for the age brackets for which the incidences were available,
we use annual incidence rates estimated by assuming the incidence rates were uniformly
distributed within the age brackets for which they were reported. In the Table 1 example, the
mean lag between exposure and diagnosis would be 21 years, corresponding to an average
age of 67 at the time of diagnosis for an individual with reduced exposure at age 46.

2.5. Estimate the probability that the cancer is either fatal or non-fatal

The value of reducing risk for a given cancer type is estimated as a weighted average of the
value of reducing both fatal and non-fatal risks for that cancer. This analysis uses age and
sex-specific 20-yearmodel-based relative survival rates to apportion the cancer risk into fatal
and non-fatal risk. The 20-year relative survival rate wasmodeled to predict survival rates for
subgroups with incomplete survival data. The log-logistic distribution was chosen because it
provided the best fit across all cancer sites compared to other distributions available in NCI’s
CanSurv software (Gamel et al., 2000; Cansurv, 2017; SEER, 2024). For example, since the
20-year survival rate for liver cancer in males aged 45–64 is 9%, our approach assumes that

Table 1. Distribution of timing of avoided cancer risk: Example for a reduction in
exposure experienced at age 46 with a 4-year minimum lag between exposure and

diagnosis

Age at diagnosis
(1)

Cancer incidence distribution (%)
(2)

Timing of avoided cancer riska

(3)

<1 0.13 n/a
1–4 0.66 n/a
5–9 0.25 n/a

10–14 0.05 n/a
15–19 0.10 n/a
20–24 0.21 n/a
25–29 0.60 n/a
30–34 1.21 n/a
35–39 2.18 n/a
40–44 4.06 n/a
45–49 6.75 n/a
50–54 10.00 11.93%
55–59 12.62 15.06%
60–64 14.46 17.26%
65–69 14.47 17.27%
70–74 11.64 13.89%
75–79 9.04 10.79%
80–84 6.51 7.77%
85+ 5.06 6.04%

aCalculated as Column (2) divided by 83.8%, where 83.8% is the percentage of cancer incidence that occurs at ages 50 or older (the
sum of the grey shaded cells).
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91% of the reductions in liver cancer risk for males aged 45–64 are reductions in mortality
risk and therefore are valued as reductions in the risk for fatal cancer (Gamel et al., 2000;
Cansurv, 2017; SEER, 2024).

2.6. Estimate the timing between diagnosis and death for fatal cancer

In order to account for the elapsed time between diagnosis and death when assigning the
values formortality risk, the analysis estimates the percentage of deaths due to cancer in each
year using the relative survival method, which uses the following steps: (1) calculate the
cumulativemortality rate (1-cumulative survival rate) in each year; (2) for each year, subtract
the previous year’s cumulative rate to calculate the per-year mortality rate; and (3) divide the
per-year mortality rate for each year by the total 20-year mortality rate to estimate the
percentage of deaths that occur in each year (see Table 2).

Table 2. Example showing how timing between diagnosis and death is estimated

Years
since
cancer
diagnosis

Relative
Survival from
SEER*Stat
Databasea(%)

Step 1:
Cumulative
mortality
rate (%)

Step 2: Mortality
rate per year (%)

Step 3: Percentage
of deaths, by year
since diagnosis (%)

(1) (2) (3) = (1) � (2)

(4) = (3) value in
current row � (3)
value in previous

row

(5) = (4) value/92%,
where 92% is the
value of last row in

(3)

0–1 90 10 10 12.50
1–2 85 15 5 6.25
2–3 75 25 10 12.50
3–4 70 30 5 6.25
4–5 65 35 5 6.25
5–6 60 40 5 6.25
6–7 55 45 5 6.25
7–8 50 50 5 6.25
8–9 45 55 5 6.25
9–10 40 60 5 6.25
10–11 30 70 10 12.50
11–12 25 75 5 6.25
12–13 24 76 1 1.25
13–14 24 76 0 0.00
14–15 20 80 4 5.00
15–16 18 82 2 2.50
16–17 15 85 3 3.75
17–18 12 88 3 3.75
18–19 10 90 2 2.50
19–20 8 92 2 2.50
aThe mortality rates are specific to (a) the cancer site, (b) the sex of the individual, and (c) the age category for the individual (0–14,
15–44, 45–64, and 65+).
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2.7. Discount the values back to time at exposure

Risks for dying from cancer are discounted from the time of death to the time of exposure.
Risks for non-fatal cancer are discounted from the time of diagnosis to the time of exposure.

Exposure duration-adjusted estimate for the excess number of cancer cases.When the
duration of the change in exposure due to a policy change is different from the exposure
duration assumed in the risk assessment that quantifies how cancer risk relates to exposure,
an adjustment to account for the differences in the exposure duration may be needed. The
specific output typically provided in risk assessments that are often used to quantify the
relationship between exposure and cancer risk is the inhalation unit risk.9 The interpretation
of the inhalation unit risk relates an upper bound risk to a daily exposure for a lifetime (EPA,
2024). Economic analyses use what we will define as the excess cancer risk, which is a
central cancer risk estimate that relates a central risk estimate to a daily exposure for a
lifetime. The excess cancer risk estimates may be provided directly in the risk assessment,
but sometimes they must be calculated from additional estimates provided in the risk
evaluation. Thus, the typical estimate that relates cancer risk to exposure that is available
for an economic analysis relates risk to exposure over an entire lifetime. However, a new
policy may affect only a shorter duration of exposure, and simply calculating how average
exposure over a lifetime will change may not be sufficient to account for how this shorter
exposure duration and the life stage when it occurs might affect risk.10 As noted in EPA
(2013), “For example, consider someone who is 50 years old in the year of the analysis and
has not yet gotten the cancer. Should the entire excess lifetime risk (the unit risk) be applied
to this individual for the remaining expected years of his life? Or should a modified excess
risk, conditional on his not having gotten the cancer in his first 49 years, be applied? Because
the unit risk provides no information about how excess risk is distributed over the course of a
lifetime, there is no clear answer.”

Our exposure duration-adjusted estimate applies an adjustment to the excess lifetime risk
for cancer to account for the shorter exposure durations being considered and the life stage at
which the changes in exposure occur. The exposure duration adjustment factor is calculated
as the percentage of incidence of cancer that occurs within the age range for which excess
cancer risks are estimated. For example, if 83.8% of cancer cases occur in individuals aged
50 or older, the exposure duration adjustment factor for an individual experiencing a 1-year
change in exposure at age 46 is 83.8% (see Table 1, where 83.8% is the sum of the grey-
shaded cells).11

While estimating the excess lifetime risk is outside the scope of this paper, the exposure
duration adjustment factor affects the value of the risk reductions because it affects the

9 The Integrated Risk Information System Glossary defines inhalation unit risk as “The upper-bound excess
lifetime cancer risk estimated to result from continuous exposure to an agent at a concentration of 1 μg/m3 in air. The
interpretation of inhalation unit risk would be as follows: if unit risk = 2 × 10⁻⁶ per μg/m3, 2 excess cancer cases
(upper bound estimate) are expected to develop per 1,000,000 people if exposed daily for a lifetime to 1 μg of the
chemical per m3 of air.”

10 For example, suppose the excess cancer risk estimated in the risk evaluation is 0.001 per 1 μgm�3. Thus, 1,000
excess cancer cases are expected to develop per 1,000,000 people if exposed daily for a lifetime to 1 μg of the
carcinogen perm3 of air. If these excess risk estimateswere calculated assuming a lifetime of 78 years, then reducing
exposure by 1 μgm�3 for 1 year would result in 12.82 fewer cancer cases per 1,000,000 individuals with that 1 year
of exposure reduction (12.82 = 1000/78).

11 Assuming a 4-year minimum lag between exposure and diagnosis.
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estimated distribution of cancer diagnoses by age. In turn, this affects the percentages of
cancer cases that are fatal and the amount of time between avoided exposures and avoided
cancer diagnoses and deaths. Note that if excess cancer risk estimates reflect shorter duration
exposures, which are possible but not typical, the exposure duration adjustment factor would
be unnecessary.

Weighted average value of a micro-risk reduction for each population and cancer site.
Equation 1 shows how the weighted average value of a micro-risk reduction is calculated for
each cancer site. The estimates are all calculated with and without the exposure duration
adjustment factor described above (the exposure duration adjustment factor is set to 1 to
exclude the adjustment).

P89
j = i + 1

P85
i
ei × gi,s × li,s × di,s,j × 1� f s,j

� �
× VNR

1 + rð Þ j�ið Þ

� �
+ f s,j ×

P20
k = 1

mi,s,j,k × VMR
1 + rð Þ j + k�ið Þ

� �

P89
j = i + 1

P85
i
ei × gi,s × li,s × di,s,j

(1)

Where:
ei = percentage of exposures that occur at age i.
gi,s = percentage of exposures at age i that are experienced by individuals of gender s.
li,s = exposure duration adjustment factor for individuals of gender s exposed at age i (this

factor is set to 1 for estimates that exclude the adjustment).
di,s,j = percentage of diagnoses at age j among individuals of gender s exposed at age i.
mi,s,j,k =Percentage of deaths that occur k years after diagnosis among individuals who die

from cancer of gender s exposed at age i and diagnosed at age j.
fs,j = Percentage of cancer cases that are fatal among individuals of gender s that are

diagnosed at age j.
VMR = Value of mortality micro-risk reduction.
r = Discount rate.
VNR = Value of nonfatal cancer micro-risk risk reduction.

3. Discussion

Our calculations were modeled using SAS 9.4, and the results are included in supplementary
spreadsheets.12,13 The spreadsheets allow users of the data to select: (a) the cancer site,
(b) the affected population, (c) our estimated lags based using all-cause incidence (with or
without an exposure duration adjustment factor) or a fixed lag period between 1 and 47 years,
(d) our default WTP values or any chosen WTP value, and (e) the discount rate.

While the focus of this paper is not on the specific undiscountedWTPvalues used to value
cancer morbidity andmortality, these are obviously important pieces to any benefits analysis
of reduced cancer risk. When selecting an appropriate WTP value to use, analysts will need
to consider whether and how to address valuations of morbidity versus mortality, the effect

12 The data, modeling programs/files, and results are available for download at: https://1drv.ms/f/s!
AmZ3gngmtmSjiJQqghK0z8LQYjkFpQ?e=8G9tlQ

13 The authors implemented quality assurance procedures inwhich a secondmember of the teamwhowas not the
primary author of the SAS code or spreadsheet separately replicated all input data, SAS code, and summary outputs.
Any discrepancies in the code and spreadsheet formulas were documented and reconciled.
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of increasing incomes over time on future WTP values, application of a cancer premium to
standard VSL estimates, and the effect of latency on risk preference.

Themain contribution of our proposed approach is to provide amethod for accounting for
the lag between exposure and diagnosis when there are little or no data available that informs
an assumption for what this timing is likely to be. Our approach also accounts for the timing
between diagnosis and death, estimated using SEER survival data.

However, there are remaining data gaps that we believe lead to future improvements of
this approach. As we noted in our review of cancer latency and cessation lag, we did not
identify any studies with empirical data on cessation lags.While an ideal approach to valuing
cancer benefits resulting from a policy that reduces exposures would account for both
latency and cessation lag, for the time being latency appears to be the best measure available,
regardless of the actual timing of exposures in relation to the policy. Even with regards to
data on cancer latency, there are only sparse data available to validate our approach, which is
compounded by the wide range in typical lags depending on cancer type. For the one cancer
type with more robust latency data –mesothelioma – the estimate for the average cancer lag
derived from our proposed approach departed from the empirical data. While we concluded
that our approach produced lag estimates that were reasonably similar to the empirical data
for the remaining cancer types, it is possible that with more robust latency data we could
further calibrate our approach. It is also possible that cancer lag varies by additional factors,
such as length of exposure, exposure pathway, and type of exposure. We were not able to
account for these factors due to lack of data, but this could be an area for further exploration.
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Appendix A: Literature review on cancer latency and cessation lag

We conducted a literature review to identify studies that provide information about either the
latency between exposure and cancer incidence or mortality or the cessation lag between
reduction of exposure and reduced risk. Our goal for the literature review was to assess the
scope of existing literature on the lag between exposure and cancer risk and whether these
existing data would be a preferable alternative to our approach to estimating cancer lags as
presented in this paper. A second goal was to evaluate whether our approach for estimating
cancer lag as presented in this paper was consistent with the available literature on latency
and cessation lag. We note that the purpose of this review is to provide a general under-
standing of the scope of existing literature on cancer lags, rather than to provide a rigorous
systematic review on the topic. The approach to estimating values of avoided cancer risks
presented in this paper does not rely on the results of this literature review; as such, we
determined that a full systematic review falls outside the scope of our research goals. Given
this less rigorous approach, our review should not be interpreted as fully comprehensive nor
as an indication of the quality of the identified studies.

To reiterate, we use the term “latency” in this paper to refer to the time period between
exposure and cancer diagnosis or mortality.We use “cessation lag” to refer to the time period
between reduction of exposure and reduced cancer risk. And we use “lag” as a general term
to refer to either latency or cessation lag. Understanding these cancer lags is necessary to
properly discount the benefits of avoiding cancer risks back to the time of avoided exposure.
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A.1. Search protocol and methodology

We searched PubMed and Science Direct databases for our literature review. We
structured our search of these databases to include at least one of each timing term, exposure
term, and cancer term (Table A1). We searched titles, abstracts, key words, and full texts for
our terms and compiled the resulting articles using the EndNote reference manager software.
We restricted our results to peer-reviewed journal articles, but otherwise did not place any
other search restrictions. This search was conducted in January 2020 (Abt Associates 2022)
and June 2024.

Table A1. Cancer latency literature review search terms

Timing Exposure Cancer

Latency
Cessation lag

Exposure Cancer
Exposed Carcinoma
Contact Sarcoma
Inhalation Adenoma
Inhaled Lymphoma
Ingestion Melanoma
Ingested Seminoma
Absorption Mesothelioma
Absorbed Leukemia

Table A2. Cancer latency literature review exclusion criteria

Criterion Reason for exclusion and examples

Non-cancer end point Out of scope
Lag not defined as either time between

exposure and diagnosis/mortality or time
between exposure cessation and reduced
risk

For example, lags defined as the time
between exposure and study start date

Lag not measured with respect to the
exposure source

For example:
• Lags reported for an exposure source
determined not to be linked to cancer risk

• Lags defined as time since a medication to
treat cancer was taken

Lag not directly observed For example:
• Study uses a model to predict lags
• Citations to latencies reported in another
study

Lags reported as categorical variable The methodology used to estimate the value
of avoiding cancer risk described in
subsequent sections of this paper requires
a continuous variable
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We identified a final set of relevant articles in two stages:

1. Title and abstract screening. Titles and abstracts were evaluated and either excluded or
flagged for full text screening.

2. Full text screening. The full text of the article was evaluated and either excluded or
included in the final set of relevant articles. For each relevant study, we recorded the
following information: (a) country; (b) sample size; (c) median age of study participants;
(d) mean, minimum, maximum, and standard deviation latency; (e) exposure source; (f)
exposure duration; (g) type of timing (i.e. cessation lag or latency); (h) definition of
timing (e.g. from first exposure to diagnosis); and (i) health end point.

A.2. Review of literature measuring latency and cessation lag

We identified 1,823 articles based on our search protocol described in the previous
section. Among these, we flagged 566 for full text screening, resulting in 84 relevant articles
(Figure A1).

Table A3 presents the number of relevant articles, by cancer site. Tables A4 and A5
summarize the lag estimates for each cancer site shown in Table A5, with the following
exceptions. The studies for adenocarcinoma and low-grade fibromyxoid sarcoma are not
included because they are not one of the 108 cancer sites we estimate values for in this paper
(Section 2.1 describes how the 108 sites were selected). The studies for “all cancers,” “gonad
(testis/ovary),” “leukemia and non-Hodgkins lymphoma (combined),” and one “multiple”
study are not summarized because they aggregate estimates over multiple cancer sites.
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Figure A1. Overview of literature screening and review – Cancer lag.
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Table A3. Number of relevant studies, by cancer site

Cancer site Count of relevant studies

Adenocarcinoma 1
All cancers 2
Bladder 5
Bone 2
Brain 2
Breast 4
Colorectal 1
Leukemia 2
Leukemia and non-hodgkins lymphoma (combined) 1
Liver 3
Low-grade fibromyxoid sarcoma 1
Lung 12
Lymphoma 1
Melanoma 1
Mesothelioma 34
Multiplea 3
Myeloma 2
Nasal 3
Skin 1
Thyroid 3
Total 84
aDurmus et al. (2020) reported latencies for the following cancer sites: bladder, breast, colorectal, gonad (testis/ovary), head
and neck, kidney, leukemia, lung, lymphoma, melanoma, myeloma, prostate, pancreas, skin, stomach, and thyroid.
Marczynski et al. (2000) aggregated latencies for bronchial carcinoma, pleural mesothelioma, prostate, gastrointestinal,
mouth/pharynx/larynx, urinary bladder/kidney, lymphoma, and other cancers. Huh et al. (2022) reported latencies for lung
cancer and mesothelioma.
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Table A4. Summary of cancer lag literature (time between exposure and diagnosis)

Cancer site Study Sample size
Mean/

median age Age definition

Mean
exposure
duration
(years)

Min
lag

(years)

Max
lag

(years)

Standard
deviation
(years)

Mean/
median lag
(years)

Estimated mean lag
(employed
population)a

Bladder Durmus et al. (2020)b 86.0 65 Median age
of

diagnosis

Not reported 4.2 17.4 – 13.2 28.8

Popp et al. (1992) 7 Not reported Not reported 0.7 15 23 – 18.57
Schulte et al. (1985) 13 Not reported Not reported 12.3 4 32 7.9 21.4
Weistenhofer et al.

(2008)
1 87 Not reported Not reported Not reported 5 64 11.7 34.7

Golka et al. (2012) 9 Not reported Not reported 16.9 17 45 7.94 28.8
Bone Nakashima et al.

(2022)
1 59 Age at exposure Not reported – – – 3 23.3

Polednak (1978) 36 Not reported Not reported Not reported – – 13.3 27.1
Brain Smoll et al. (2020) 1028 14 Age at diagnosis Not reported – 44.6 – 9.7 25.1

Roguin et al. (2013) 31 Not reported Not reported 23.5 12 32 5.9 23.5
Breast Koo et al. (2020) 24 20.26 Age at exposure Not reported 9 46 10.26 24.9 25.7

Durmus et al. (2020)b 646 55 Median age of
diagnosis

Not reported 3.3 17.8 – 12.4

Malone (1993) Not reported Not reported Not reported Not reported 20 – – –

Argo (2010) 20000 Not reported Not reported Not reported 26 – – –

Zhao et al. (2021) 7265 15–39 Not reported Not reported – – – 15.5
Colorectal Durmus et al. (2020)b 159 59 Median age of

diagnosis
Not reported 4.1 18.1 – 13.4 26.2

Porzio et al. (2023) 35 69 Age at diagnosis 22 33 66 7.3 45
Head and

neck
Durmus et al. (2020)b 141 58 Median age of

diagnosis
Not reported 3.6 18.1 – 12.9 26.4

Kidney Durmus et al. (2020)b 112 58 Median age of
diagnosis

Not reported 3.6 18.1 – 12.8 25.5
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Table A4. Continued

Cancer site Study Sample size
Mean/

median age Age definition

Mean
exposure
duration
(years)

Min
lag

(years)

Max
lag

(years)

Standard
deviation
(years)

Mean/
median lag
(years)

Estimated mean lag
(employed
population)a

Leukemia Durmus et al. (2020)b 111 59 Median age of
diagnosis

Not reported 0.7 16.8 – 12.4 26.6

Ma et al. (2022) Not reported Not reported Not reported Not reported 10 57 – –

Liver Lelbach (1996) 16 Not reported Not reported 13.3 12 34 5.4 15 26.7
Lung Ahn and Jeong (2014) 179 Not reported Not reported 19.8 – – 9.9 23 28.6

Ahn and Kang (2009) 41 Not reported Not reported 19.2 9 38 6.4 22.1
Archer et al. (2004) 171 Not reported Not reported Not reported – – 4.6 25.3
Barthel (1976) 11 Not reported Not reported Not reported 6 23 6 17.9
Durmus et al. (2020)b 263 64 Median age of

diagnosis
Not reported 3.3 18.1 14 –

Kim et al. (2010) 57 Not reported Not reported 21 – – 8.7 22.8
Warnock and

Isenberg (1986)
35 Not reported Not reported 26 – – 10 38

Hillerdal et al. (1983) 346 Not reported Not reported Not reported 9 60 – 37
Kishimoto et al.

(2010)
152 Not reported Not reported 31 5 71 – 47

Huh et al. (2021) 179 79 Age of cases Not reported – – – 43.2
Huh et al. (2022) 1010 Not reported Not reported Not reported – – 16.3 40.1
Shum et al. (2022)b 173 63 (49.7) Age of

diagnosis
(age at

exposure)

Not reported 3 19 – 13.9

Lymphoma Durmus et al. (2020)b 217 57 Median age of
diagnosis

Not reported 0.9 17.8 – 12 25.9

Lee et al. (2017) 1 Not reported Not reported 6 – – – 25
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Table A4. Continued

Cancer site Study Sample size
Mean/

median age Age definition

Mean
exposure
duration
(years)

Min
lag

(years)

Max
lag

(years)

Standard
deviation
(years)

Mean/
median lag
(years)

Estimated mean lag
(employed
population)a

Melanoma Durmus et al. (2020)b 89 59 Median age of
diagnosis

Not reported 3.2 17.6 – 12.7 25.6

De Guire et al. (1988) 10 Not reported Not reported Not reported 5 38 13.1 21.2
Myeloma Durmus et al. (2020)b 104 60 Median age of

diagnosis
Not reported 3.9 17.8 – 13.9 27.0

Kagan and Jacobson
(1983)

6 Not reported Not reported 22.8 21 37 6.46 30.2

Patel et al. (2021) 109 Not reported Not reported Not reported – – – 6.5
Nasal Wolf et al. (1998) 145 Not reported Not reported ≥15 – – – 40–44 25.9

Andersen et al. (1977) 203 Not reported Not reported Not reported 28 57 – 31–46
Engzell (1979) 44 Not reported Not reported Not reported 22 70 – 44.7

Prostate Durmus et al. (2020)b 494 62 Median age of
diagnosis

Not reported 3.9 18.2 – 12.3 26.0

Pancreas Durmus et al. (2020)b 44 64 Median age of
diagnosis

Not reported 5.7 17.7 – 14.8 28.0

Skin Danieli et al. (2023)b 273 Not reported Not reported Not reported 1 4 – – 25.6
Stomach Durmus et al. (2020)b 46 59 Median age of

diagnosis
Not reported 4.4 17.8 – 13.8 26.9

Thyroid Durmus et al. (2020)b 223 52 Median age of
diagnosis

Not reported 2.7 17.9 – 11.8 20.9

Pacini et al. (1997) 386 Not reported Not reported Not reported 1 10.2 1.9 6.9
Klubo-Gwiezdzinska

(2022)
359 7.3 Age at exposure Not reported – – – 22.5

Zurnadzhy et al.
(2022)

426 Not reported Not reported Not reported – – – 20.5

aLatency as calculated using the methodology described in this paper.
bStudy is evaluating 9/11 as an exposure source; thus, maximum lags will not exceed 20 years.
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Table A5. Summary of cancer lag literature (time between exposure and death)

Cancer site Study
Sample
size

Mean/
median age

Age
definition

Mean
exposure
duration
(years)

Minimum
lag (years)

Maximum
lag (years)

Standard
deviation
(years)

Mean/
median
lag

(years)

Estimated
mean lag
(employed
population)a

Bladder Rubino
et al.
(1982)

192 59.2 Age at death Not reported 12 41 – 24.9 34

Bone Bender
et al.
(1989)

17 – – Not reported 9 53 14.3 32 30

Lung Tokudome
and

Kuratsune
(1983)

29 61.7 Age at death Not reported 13 50 – 37.6 29

Koskela
et al.
(1987)

8 – – Not reported 15 35 – –

Liver Collins
et al.
(2014)

13 – – Not reported 24 56 – 36.5 28

Jones et al.
(1988)

13 Not reported Not reported
Not reported

8 33 – 25

Mesothelioma Firth et al.
(1999)

3 Not reported Not reported Not reported 51 57 – 54 45

aLatency as calculated using the methodology described in this paper.
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Finally, due to the larger number of studies identified for mesothelioma, we discuss those
studies separately in Appendix B.

Tables A4 and A5 present the sample size, mean/median age of study participants, mean
exposure duration, minimum lag, maximum lag, mean/median lag, and standard deviation
for each relevant study for lags defined as the time between exposure and diagnosis and the
time between exposure and death, respectively. Because the study sample for the majority of
relevant studies is the employed population, for simplicity the last columns of the tables
present latency estimates for the employed population as estimated using our approach
presented in Section 2 of this paper. Lag estimates for all 21 populations evaluated in this
paper are included in the supplemental spreadsheets.

While mean lags differ from our estimates for some cancer sites, we are limited in our
ability to draw any strong conclusions about the accuracy of our approach for these sites
given limited sample sizes. However, from a broad comparison of the mean lags reported by
the studies and the lags estimated using our methodology described in this paper, we believe
our approach for estimating cancer lag produces estimates that are reasonably consistent
with those identified in the literature search (see Figure A2).

As previously discussed, one goal for this literature review is to assess the scope of
existing literature on the lag between exposure and cancer risk, and whether the use of
these existing data would be a preferable alternative to our approach presented in this
paper. Our review reveals several limitations of the existing literature, leading us to
conclude that the scope of existing literature is limited and that the data from the
literature are not robust enough for us to consider it as a preferable alternative to our
approach. First, all identified relevant studies define lags in terms of the latency between
exposure and cancer diagnosis, demonstrating that data on cessation lag are not prevalent
in the literature and cannot be used to determine the extent to which values for cessation

0 5 10 15 20 25 30 35 40 45 50

Literature Point Estimate Estimated Mean Lag Using Incidence

Years from Exposure to Diagnosis
Literature Range Estimate

Bladder
Bone
Brain
Breast
Colorectal
Head and neck
Kidney
Leukemia
Liver
Lung
Lymphoma

Melanoma
Nasal
Prostate
Pancreas
Skin
Stomach
Thyroid

Myeloma

Figure A2. Comparison of literature latency estimates with the estimated means based on
incidence.
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lag and latency differ. Second, due to the age of many studies, the small sample size of
relevant studies, and the small sample sizes of the studies themselves, it is possible that
the lag estimates identified through the literature search are not representative of those
for populations that would be affected by current regulatory policies in the United States.
For example, to maintain a broad scope, we did not limit studies by geography. It is
possible that healthcare systems, socioeconomic factors, and sociocultural behaviors in
other countries both differ from those in the United States and have an impact on cancer
lags. Similarly, the small number of studies and limited statistics provided by each study
do not allow for robust analysis of how lags may vary by exposure source, exposure
concentration, cancer severity, or age of the individual at exposure. We also note that
studies measured exposures over many years and varied in how they defined the start of
exposure (e.g. using a midpoint vs start of an exposure range to calculate lag). Because
regulatory analyses typically estimate benefits corresponding to annual reductions in
exposure, using lag values from the literature for this purpose would introduce uncer-
tainty due to the likely need to assume that mean lags frommultiple years of exposure are
equal to the lag for a single given year of exposure. In addition, the relevant studies
largely do not employ rigorous methods to establish causality between the exposure
source and subsequent cancer diagnosis, adding to uncertainty regarding the accuracy
and precision of the lag estimates. In light of these numerous limitations, we conclude
that the existing literature is not robust enough to justify estimating cessation lags and
latencies directly from the literature.

Appendix B: Meta-analysis of mesothelioma latency

We identified 34 relevant studies related to latency between exposure and diagnosis of
mesothelioma.14 Given the larger sample size of studies for this cancer site, we per-
formed a meta-analysis to estimate a pooled mean latency and a pooled standard
deviation across all the studies. The goal of this meta-analysis is to provide a more
robust comparison of cancer latency estimates developed in this paper and the latency
estimates in the literature.

We use a random-effects meta-analysis model to estimate the pooled mean latency of
the mesothelioma studies. Under this model, the pooled mean latency is estimated as the
weighted average latency of the relevant studies, where the weights are estimated as the
inverse of the within-study and between-study variances.15 By using inverse variance
weights, studies with larger sample sizes and studies with more precise latency estimates

14Note that because no studies measuring cessation lag were identified, we use the term “latency” to refer to time
between exposure and diagnosis in studies evaluating the mesothelioma end point.

15Weights are estimated as 1/(SE2 + T), where:
SE = standard error;
T = (Q-k-1)/C;

Q =
Pk
i = 1

x�xið Þ2
SE2 ;

C =
Pk
i = 1

1
SE2

i

� �
�

Pk
i = 1

1
SE2

i

� �2

Pk
i = 1

1
SE2

i

0
B@

1
CA;

xi = mean latency for study i; and
�x = pooled mean latency calculated using weights 1/(SE2) for studies i to k
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(i.e. smaller standard deviations) will receive greater weights. We also estimate a pooled
standard deviation across studies as the weighted average standard deviation of the individ-
ual studies, with weights equal to the degrees of freedom (N�1) for each study. These
methods require the following underlying assumptions about the population of relevant
cancer latency studies: (a)Mean latencies reported by each study vary from each other due to
both within-study variance (i.e. sampling error) and between-study variance (i.e. differences
in true mean latencies across study populations), (b) There is a common population variance
underlying the studies, (c) Studies are independent of each other.

Table B1 presents the pooled mean latency and pooled standard deviation across the
mesothelioma studies. Note that because variances are required to estimate the weights for
each study, we exclude studies that do not report a standard deviation. We further exclude
Bianchi et al. (2011) and the subgroups for peritoneum (males and females) and pleura
(females) end points from the Marinaccio et al. (2007) study because these estimates are
sampled from the same population as other estimates (i.e. Bianchi et al. (2004); pleura
(males) subgroup from Marinaccio et al. (2007)). We selected these estimates to exclude
because they correspond to the smallest sample sizes. Themeta-analysis therefore consists of
a final sample of 19 studies. All excluded studies are shaded grey in Table B1 to indicate that
they are not included in the pooled meta-analysis estimates.

As shown in Table B1 and Figure B1, the pooled mean latency for mesothelioma cases is
43 years, with a pooled standard deviation of 11.3 years. In comparison, we estimate a mean
latency of 29 years16 using the methodology described in the main body of this paper.

To evaluate the 19 studies for potential publication bias, we created a funnel plot in which
we plot the mean latency and the standard error of each study included in the meta-analysis.
Publication biasmay be present if, for example, studies with larger sample sizes, larger effect
sizes, and/or significant results are more likely to be published. The plot is a qualitative
assessment of potential bias in the relevant studies. As shown in Figure B2, the larger studies
with lower standard errors are symmetrically distributed about the pooled mean latency. We
should expect this result where no publication bias is present. In the absence of publication
bias, we should also expect the smaller studies with higher standard errors to be symmet-
rically distributed about the pooled estimate, albeit with more variance about the mean. Any
asymmetry in the studies is potential evidence of publication bias. This asymmetry would
most likely be present among the smaller studies; for example, if smaller studies systemat-
ically show larger effect sizes.

Figure B2 appears to be generally symmetrical, indicating that there is no publication
bias.While one could potentially interpret Figure B2 as showing studies with larger standard
errors skewing toward shorter latencies, we are cautious to interpret this as evidence of
publication bias for two reasons. First, only a small number of studies are included in the
meta-analysis; thus, any potential trend shown in Figure B2may be a result of sampling error
rather than systematic bias. Second, in most cases, the latencies reported by the studies were
not the primary research objective. Latencies were often provided as descriptive statistics
and based on observational records rather than a modeled effect size. Because concerns
about publication bias often center around systematically larger effect sizes, we think the
likelihood is low that studies included in this meta-analysis would exhibit publication bias.

16 Estimate based on most current data as of July 2024.
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Table B1. Meta-analysis of mesothelioma latency

Study
Sample
size (N)

Min.
latency
(years)

Max.
latency
(years)

Mean Standard deviation

Mean
latency
(years)

Pooled mean
latency
weighta

Pooled
mean
latency

Standard
deviation
(years)

Pooled standard
deviation
weightb

Pooled
standard
deviation

Beck et al. (1982) 3 30 57 41 0.02 43.0 11.6 2 11.3
Bianchi et al.

(2004)
40 25 70 52 0.33 10.8 39

Chahinian et al.
(1982)

69 10 50 34 0.95 8.1 68

Chang et al. (2006) 67 – – 46 0.52 11 66
Dodson et al.

(2005)
54 12 61 42.6 0.41 11.2 53

Emory et al. (2020) 75 14 72 50 0.43 13 74
Faig et al. (2015) 380 – – 49.2 2.40 10.9 379
Firth et al. (1999) 3 – – 54 0.46 2.5 2
Huh et al. (2022) 923 – – 33.7 2.28 13.8 922
Kane et al. (1990) 7 13 34 22 0.10 8.5 6
Karjalainen et al.

(1994)
4 39 58 47.75 0.06 8.0 3

Kishimoto et al.
(1989)

7 25 49 43.6 0.13 7.4 6

Maltoni et al.
(1995)

12 23 48 36.1 0.24 7.0 11
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Table B1. Continued

Study
Sample
size (N)

Min.
latency
(years)

Max.
latency
(years)

Mean Standard deviation

Mean
latency
(years)

Pooled mean
latency
weighta

Pooled
mean
latency

Standard
deviation
(years)

Pooled standard
deviation
weightb

Pooled
standard
deviation

Marinaccio et al.
(2007)c

2,075 6 84 44.6 5.83 11.9 2,074
360 9 84 45.2 – 13.6 –

83 23 63 41.9 – 9.9 –

19 21 56 36.8 – 10.2 –

Miller (2005) 31 25 72 49.0 0.27 10.5 30
Moline et al.

(2023)
166 20 83 52.4 1.05 12.1 165

Neumann et al.
(2001)

821 11 68 37.8 4.64 9.6 820

van der Bij et al.
(2012)

1,353 19 78 48 6.13 9 1,352

Yeung et al. (1999) 505 6 84 41.4 2.57 12 504

Bianchi and
Bianchi (2009)d

522 13 73 48.2 – – –

Bianchi et al.
(2011)e

8 64 75 68 – 4.2 –

Bianchi and
Bianchi (2012)d

34 25 68 48.3 – – –

Brims et al.
(2023)d

2,796 – – 47 – – –

Burdorf et al.
(2003)d

710 – – 40.5 – – –
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Table B1. Continued

Study
Sample
size (N)

Min.
latency
(years)

Max.
latency
(years)

Mean Standard deviation

Mean
latency
(years)

Pooled mean
latency
weighta

Pooled
mean
latency

Standard
deviation
(years)

Pooled standard
deviation
weightb

Pooled
standard
deviation

Haber and Haber
(2011)d

191 18 70 48.5 – – –

Hyland et al.
(2007)d

1,837 – – 43.7 – – –

104 – – 42.8 – – –

Klebe et al. (2021)d 1 – – 8.5 – – –

Marinaccio et al.
(2010)d

188 – – 43.6 – – –

Marinaccio et al.
(2012)d

6,455 – – 43.7 – – –

Mendez-Vargas
et al. (2010)d

4 – – 40 – – –

Skammeritz et al.
(2011)d

107 – – 42 – – –

Vimercati et al.
(2020)d

71 20 81 51.2 – – –

Visonà et al.
(2021)d

72 19 80 47.8 – – –

Visonà et al. (2023)d 42 – – 49 – – –

Note: Rows shaded in grey are not included in the pooled estimates.
aSee Footnote for a description of the pooled mean latency weights.
bEstimated as (N�1).
cThe four estimates for Marinaccio et al. (2007) represent estimates for (a) pleura, males; (b) pleura, females; (c) peritoneum, males; and (d) peritoneum, females; respectively. We exclude the three estimates
with the smallest sample sizes to maintain the assumption that studies are independent.
dExcluded because no standard deviation reported.
eExcluded due to overlap in study population with Bianchi et al. (2004).
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Given the difference between the meta-analysis pooled mean latency estimate for
mesothelioma cases (43 years) and the mean estimate using the current methodology
described in the main body of this paper (29 years), the values for the mesothelioma end
point we provide in our supplemental spreadsheets do not use the approach described in
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Mean Latency (95% Confidence Interval; Years)
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Bianchi et al. (2004)
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Figure B1. Mean latency and 95% confidence intervals of relevant studies.
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Figure B2. Funnel plot of mean latency by standard error.
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the main body of this paper. Instead, we use an adjusted triangular distribution with a
minimum of 11 years, a maximum of 70 years (or the number of years until age 89, the
max age of diagnosis in our analysis), and a mode of 43 years, which is the estimated
mean latency from the meta analysis described in this appendix. The probabilities for the
set of values above and below the mode are adjusted so that the average lag equals the
mode of 43 years.

Appendix C: Literature review on WTP for avoiding non-fatal cancer risk

In this appendix, we discuss findings from a literature review on the value that individ-
uals place on avoiding non-fatal cancer risks (see Abt Associates 2022 for a previous
version of this literature review). The complete valuation of a non-fatal cancer case
measures the WTP to avoid an occurrence of cancer that will be survived. WTP is a
comprehensive measure of the total value that a person would place on avoiding a cancer
diagnosis. It accounts for the desire to avoid treatment costs; the value of avoiding the
pain and suffering associated with treatment of cancer, such as chemotherapy, radiation,
and surgery to treat cancer; productivity losses during treatment; the premium for risk
aversion; and any other adverse consequences related to contraction of a non-fatal case of
cancer.

While there is an extensive literature on the value individuals place on changes in
mortality risks (i.e. VSL) (e.g. Robinson & Hammitt, 2016; EPA, 2010), studies
measuring the WTP to avoid non-fatal cancer morbidity risks are less common. Based
on advice from EPA’s SAB (2001), recent EPA economic analyses (see EPA, 2013,
2016, 2017, 2019) have used WTP estimates to avoid curable lymphoma (Magat et al.,
1996) and chronic bronchitis (Viscusi et al., 1991) as substitutes for the value of
avoiding non-fatal cancers that originate at other sites. For example, EPA’s 2005
analysis for the Final Stage 2 Disinfectants and Disinfection Byproducts Rule used
bronchitis and lymphoma to estimate the value of avoiding a non-fatal case of bladder
cancer (EPA, 2005). Given the breadth of cancer sites included in our estimates, the goal
of this literature review is to assess potential WTP values that may be applicable to our
valuation of avoiding non-fatal cancer risk.

C.1 Search protocol and methodology

We searched four databases for our literature review: EconLit, Environment Complete,
JSTOR, and Science Direct. Given our goal of estimating the WTP to avoid cancer risk, we
structured our database search terms to include at least one valuation term and at least one
health end point term (Table C1). Although cancer end points are the primary interest, we
included broader health end point terms (e.g. “disease”) to capture adverse non-cancer health
outcomes that may still provide useful benefit-transfer estimates. We searched titles,
abstracts, key words, and full texts for our terms. We restricted our results to peer-reviewed
journal articles, but otherwise did not place any other search restrictions. This search was
conducted in January and February 2020.

We used the terms presented in Table C1 to search each of the four databases and
compiled the resulting articles using the EndNote reference manager software. After
removing duplicate articles, we identified a final set of relevant articles in three stages:
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1. Title and abstract screening. Titles and abstracts are evaluated and either excluded or
flagged for full text screening. The criteria used for screening are described in Table C2.
The presence of any one criterion was sufficient for exclusion of that study.

2. Full text screening. The full text of the article is evaluated and either excluded or flagged
for detailed full text review. The criteria used for screening are described in Table C2. The
presence of any one criterion was sufficient for exclusion of that study.

3. Detailed full text review. Articles are assessed for quality and for applicability to our
cancer benefit estimates. We assessed study quality by evaluating factors, such as sample
size, sampling methods, and valuation methods. For each study, we recorded the
following information: (a) publish date, (b) study date, (c) country, (d) study population
(e.g. children, specific industry, geography), (e) sample size, (f) health end point,
(g) valuation method, and (h) valuation estimate.

Table C1. WTP literature review search terms

Search term category Search term

Valuation WTP
WTP
Willing-to-pay
Willingness-to-accept
Willingness-to-accept
Willing-to-accept
Contingent valuation
Choice model
Choice experiment
Conjoint analysis
Stated preference
Hedonic wage
Hedonic property
Averting behavior
Risk–risk
Risk-dollar

Health end point Cancer
Carcinoma
Adenoma
Lymphoma
Leukemia
Sarcoma
Seminoma
Mesothelioma
Melanoma
Morbidity
Risk reduction
Disease
Illness

34 Matthew LaPenta et al.

https://doi.org/10.1017/bca.2024.43 Published online by Cambridge University Press

https://doi.org/10.1017/bca.2024.43


Table C2. WTP literature review exclusion criteria

No. Criterion Reason for exclusion Examples

1 Study does not provide (A)
a quantitative monetary
estimate for (B) the value
to avoid an adverse
health outcome

(A) A quantitative
monetary estimate is
necessary to monetize
benefits estimates;

(B) The value of avoiding a
specific adverse health
outcome is necessary
to map to specific
cancer end points
where risk reductions
are anticipated

(A) Study is not an
empirical paper

(B) Study estimates
the WTP for:

• Vaccines
• Insurance
• Screenings
• Treatment

2 Study estimates the value of
a fatal health outcome

Out of scope Study estimates the
value of:

• An avoided cancer
mortality

• A statistical life
3 Study does not measure the

value to avoid an adverse
health outcome in terms
of reduced risk or an
avoided case

Unit should be able to be
converted to the value of
a micro-risk reduction to
be consistent with the
cancer risk valuation
approach described in
this document

Study estimates the
value of:

• A disability- or
quality adjusted life
year (DALY/
QALY)

• Amonthly or annual
payment to avoid an
adverse health
outcome

• A policy or program
that will result in
fewer adverse health
outcomes

4 Study uses a cost-of-illness
approach

Cost-of-illness does not
capture intangible
elements such as the
value of avoiding pain
and suffering; the dread
associated with a cancer
diagnosis; or a premium
for risk aversion

Study estimates the
direct medical costs
of an illness

5 Study measures an adverse
health outcome that
would not be a
reasonable substitute for

Estimate should be a
reasonable benefits
transfer value for

Study evaluates the
benefits of avoiding
adverse health
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C.2 Review of literature measuring the WTP for avoiding cancer risk

Querying the four databases with the search terms in Table C1 returned a total of 1,620
articles. Among these, we flagged 82 for a full text screening and 20 of those for a detailed
full text review17 (Figure C1).

Table C2. Continued

No. Criterion Reason for exclusion Examples

non-fatal cancer due to
differences in (A) long-
term quality of life (e.g.
regular doctor visits;
taking medication;
limiting recreational &
occupational activities);
and/or (B) severity of
acute health effects (e.g.
surgery; chemotherapy;
related side effects)

avoiding non-fatal
cancer risks

outcomes such as:
• Asthma
• Migraines
• Mental illnesses
• Food and water-
borne illnesses

hcraeS
esabataD

weiveRtxeTlluF
ne ercStcartsbA/ eltiT

ne ercStxeTlluF

Number of articles identified via database searches
EconLit

392
Environment Complete

541
Science Direct

633
JSTOR

54

Number of Articles Screened: 1,620

Number of articles excluded as not relevant: 1,498

Number of Articles Screened: 82

Number of full-text articles not located: 4
Number of articles excluded as not relevant: 58

Number of Articles Reviewed: 20

Number of articles excluded as not relevant: 14

Number of Relevant Articles: 6

Criteria 1:
12

Criteria 2:
7

Criteria 3:
16

Criteria 4:
2

Criteria 5:
25

Criteria 1:
1,235

Criteria 2:
111

Criteria 3:
47

Criteria 4:
6

Criteria 5:
107

Figure C1. Overview of literature screening and review – WTP.

17 Full-text articles could not be located for three studies flagged for full-text screening.
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Table C3. Full text review – Irrelevant articles.

References Country Health end point Reason for irrelevance

Adamowicz
et al. (2011)

Canada Bladder cancer Conducted outside the United
States

Alberini and
Scasny
(2018)

Italy,
Netherlands,
UK, and
Czech
Republic

Cancer (not site-
specific)

Conducted outside the United
States

Dickie and
Gerking
(1996)

United States Skin cancer Does not distinguish between
WTP for avoided mortality and
WTP for avoided morbidity.
Furthermore, results from
Gerking et al. (2014) indicate
that the WTP to avoid a case of
skin cancer is captured entirely
by the WTP to avoid a skin
cancer mortality.

Franic et al.
(2005)

United States Breast cancer Not a preferred study because
WTP estimates are associated
with curing a case of cancer
rather than for avoiding a case.
Several studies have addressed
the difference in the value of
prevention versus treatment of a
disease (e.g. Bosworth et al.,
2010; Rheinberger et al., 2016).

Gerking
et al. (2017)

United States Heart disease Non-cancer end point

Hammitt et
al. (2017)

United States Unspecified non-
fatal illness

Non-cancer end point

Hammitt
et al. (2006)

China Chronic bronchitis Conducted outside the United
States

Jeanrenaud
et al. (2001)

Switzerland Cirrhosis
ENT cancer

Conducted outside the United
States

Krupnick and
Cropper
(1992)

United States Chronic bronchitis Uses same sample and survey
instrument as Viscusi et al.
(1991)

Lang et al.
(2012)

Taiwan Cervical cancer Conducted outside the United
States

Nielsen et al.
(2012)

Denmark Cardiovascular
disease

Conducted outside the United
States

Switzerland Chronic bronchitis
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During the full text review, we evaluated studies for their quality and their applicability to
our goal of identifying WTP estimates for avoiding cancer risk in the U.S. population. We
assessed study quality by evaluating factors such as sample size, sampling methods, and
valuationmethods. For example, we excluded studieswith a sample size <50 and studies that
were unlikely to be representative of the general U.S. population. Table C3 presents the
studies we determined to be irrelevant during full-text review based on this quality assess-
ment and relevance to the populations potentially affected by a TSCA action.

Table C4 summarizes the final six studies we believe are most applicable to our
monetized estimates of avoiding cancer risks. Generally, the studies deemed relevant to
our review are conducted in the United States. We prioritize domestic analyses because we
expect that WTP estimates will be dependent on factors such as cultural context, healthcare
systems, and incomes and relative purchasing power. Several studies have investigated the
reliability of international benefit transfers and have found that WTP estimates can differ
considerably across countries for comparable non-market goods (e.g. Lindhjem & Navrud,
2008; Ready et al., 2004; Zhai, 2011).

While it would useful to be able to characterize the validity of benefit transfer between
WTP values for cancer and non-cancer health outcomes, the three studies we found
examining this showed mixed evidence on the validity of such transfers (Hammitt &
Haninger, 2010; Hammitt & Liu, 2004; Magat et al., 1996). However, we expect that the
WTP to avoid a non-fatal cancer will be dependent on the characteristics of each adverse
health outcome. Given the wide range of symptoms, prognoses, treatments, and latency
periods for different types of cancers, a benefit transfer involving a non-cancer adverse
health outcome may in some cases be more appropriate than a benefit transfer involving a
cancer end point with differing characteristics. For this reason, we may still include non-
cancer adverse health outcomes in our relevant studies.

In the sections below, we provide an additional discussion of each preferred study.
Studies reflect a mix of private and public valuations, and theWTP values estimated by each
study reflect overall utility loss associated with cancer risk. Estimated values were adjusted
for income growth and inflation using EPA’s (2014) recommended method for the adjust-
ment and an income growth elasticity of 0.45, which is the central estimate recommended for
severe illness in used in EPA’s BenMAP model (EPA, 2021).

Table C3. Continued

References Country Health end point Reason for irrelevance

Priez and
Jeanrenaud
(1999)

Conducted outside the United
States

Stavem (1999) Norway Epilepsy Conducted outside the United
States

Sunstein and
Zeckhauser
(2011)

United States Cancer (not site-
specific)

Small sample size (<35) and
unrepresentative sample
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Table C4. Full text review – Relevant articles

References Study date Study population Sample size Valuation method Health end point

Bosworth et al. (2009) Not reported Nationally
representative
internet panel of U.S.
households

1,511 Choice experiment Cancer
(not
site-specific),
leukemia,
colon/bladder
cancer, lung
cancer

Gayer et al. (2000) 1988–1993 Houses sold in greater
Grand Rapids area
between 1988 and
1993

16,928 Hedonic pricing Cancer (not site-
specific)

Gerking et al. (2014) 2002 Parents in Hattiesburg,
MS with a child
between 3 and
12 years old

488 Contingent
valuation

Skin cancer

2008–2009 Parents in Orlando, FL
with a child living at
home between 1 and
16 years old

815 Leukemia

Magat et al. (1996) Not reported Shoppers in
Greensboro, NC

727 Risk–risk trade-off Lymphoma

Sloan (1998) 1995 Shoppers in
Greensboro, NC

293 Risk–risk trade-off Multiple sclerosis

Viscusi et al. (1991 Not reported Shoppers in
Greensboro, NC

389 Risk–risk trade-off Chronic
bronchitis
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C.2.1 Bosworth et al. (2009)

Bosworth et al. (2009) used a discrete choice experiment to estimate WTP values to avoid
illness from leukemia, colon/bladder cancer, lung cancer, and a non-site specific cancer. In
their stated preference survey instrument, Bosworth et al. elicited public WTP values by
describing a proposed public policy that will reduce community-level risk of both illness and
death for these diseases by improving air pollution, drinking water contamination, and the
levels of pesticides in foods. Survey participants were presented with a series of policy
scenario pairs and asked to choose between the two offered policies, where the private cost of
the policy, the number of avoided illnesses and the number of avoided deaths were varied.

We derived WTP per statistical illness avoided from Bosworth et al.’s estimates at the
following sites, where the number of deaths are held constant. Note that Bosworth et al.
estimated the median annual WTP per illness avoided in a population of 50,000 over
10 years. We estimate the WTP per statistical case avoided by multiplying their WTP
estimates by 500,000 (50,000 × 10). Below, we present theWTP per statistical case avoided
as derived from Bosworth et al. (2009), as well as our adjusted estimates reporting in 2023$
per 1 in 1,000,000 risk reduction.

• Non-site specific cancer:
• $245,000 (2003$) per avoided statistical illness, or
• $0.46 per 1/1,000,000 risk reduction (2023$)

• Leukemia in children:
• $280,000 (2003$) per avoided statistical illness, or
• $0.52 per 1/1,000,000 risk reduction (2023$)

• Leukemia, general:
• $770,000 (2003$) per avoided statistical illness, or
• $1.44 per 1/1,000,000 risk reduction (2023$)

• Colon/bladder cancer:
• $400,000 (2003$) per avoided statistical illness, or
• $0.75 per 1/1,000,000 risk reduction (2023$)

• Lung cancer:
• $845,000 (2003$) per avoided statistical illness, or
• $1.58 per 1/1,000,000 risk reduction (2023$)

Bosworth et al. elicited WTP estimates for community-level risks in that respondents are
valuing reductions in risk to both themselves and to others in their community. Public WTP
estimates may be appropriate when valuing a reduction in risks from a public good
(e.g. municipal drinking water), but WTP estimates for public versus private risks can differ
significantly (Zhang et al., 2013). For example, Bosworth et al. estimated that the WTP to
avoid leukemia risks for children (private risk to respondent not a factor) to be less than half
of that for the general population (private risk to respondent considered). However, Bos-
worth et al. measured the degree to which perceived personal benefits is associated with a
respondent’s WTP and concluded that anticipated private benefits is a stronger predictor of
WTP than altruistic considerations. Thus, we believe that the estimates from Bosworth et al.
are a reasonable approximation for theWTP to avoid private cancer risks, with the exception
of leukemia risks for children.
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C.2.2 Gayer et al. (2000)

Gayer et al. (2000) used a hedonic pricing model to estimate the WTP of residents to avoid
cancer risk from Superfund sites. The study estimates the value of avoiding a non-site-
specific case of cancer based on the marginal effect of cancer risk on housing prices.
Valuations therefore reflect the private cost to avoid an increased risk of cancer. Gayer
et al. estimated a value of avoiding a statistical case of cancer of $4.6 million (1996$), or
$10.79 per 1/1,000,000 risk reduction (2023$). Note that this valuation method does not
distinguish between WTP to avoid cancer morbidity risks from the WTP to avoid cancer
mortality risks. Because residents may account for risk of mortality from a cancer illness in
their demand for housing near hazardous waste sites, this estimate likely overestimates the
value of a non-fatal case of cancer.

C.2.3 Gerking et al. (2014)

Gerking et al. (2014) used contingent valuation data to estimate the WTP to avoid skin
cancer and leukemia risks. The authors estimated cancer risks in three dimensions: proba-
bility of illness, probability of death conditional on illness, and probability of illness
conditional on survival. We use the third dimension (probability of illness conditional on
survival) for our estimates ofWTP to avoid non-fatal cancer risk. Gerking et al. found that for
skin cancer, the expected utility gain from being healthy as compared to contracting cancer is
not statistically different from zero. The authors suggested that this result is plausible for
minor illnesses where a reduction in utility would not occur. This result is consistent with
Dickie andGerking (1996), who estimated comparatively lowWTP values to avoid a case of
skin cancer. They, therefore, do not estimate the WTP for reductions in risk of skin cancer
given that death does not occur.

For leukemia, Gerking et al. estimated a mean value of $9.62 per 1 in 10,000 reduction
in risk of illness conditional on survival (2008$) or $0.15 per 1/1,000,000 risk reduction
(2023$). This value is lower than estimates from the other studies discussed in this section.
Gerking et al. (2012) discussed the factors that might explain this difference. Marginal
WTP for a unit of risk reduction is expected to decrease as risk increases. The WTP
estimates from this study are based on the private WTP to eliminate the perceived risk of
leukemia morbidity and mortality of the study participants. This perceived risk is higher
than risk of workplace fatalities, which is often used for VSL estimates such as the estimate
described in Section 1 that is used to calculate the value of avoiding non-fatal cancer risk
for studies using a risk–risk trade-off approach between risk of disease and death
(i.e. Magat et al., 1996; Sloan, 1998; Viscusi et al., 1991). Furthermore, study participants
overestimated the perceived risk of leukemia morbidity and mortality, which may result in
underestimates of WTP.

C.2.4 Magat et al. (1996)

Magat et al. (1996) evaluated the risk–risk trade-off between curable lymphoma and death
using a reference lottery metric. A reference lottery is a methodology that educates survey
respondents of the health consequences of a particular disease (in this case curable lym-
phoma), and based on this information, presents them with choices related to health
outcomes. The private choices in health outcomes made by the respondents can be further
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evaluated to derive quantitative measures of relative risk aversion. The Magat et al.’s study
determined that the median risk–risk trade-off (relative risk aversion) for contracting a
curable case of lymphoma without any risk of death was equivalent to 58.3% of the risk
attributed to contracting a case of lymphoma with certain death (i.e. the average person
would pay 58.3% of what they would pay to reduce the risk of certain death to achieve an
equal risk reduction for contracting lymphoma and recovering). Based on the Magat et al.’s
study results of the WTP for a micro-risk reduction for curable lymphoma as 58.3% of the
VMR, this results in an estimate of $7.99 (58.3%× $13.71) for theWTP of a 1/1,000,000 risk
reduction (2023$) for the morbidity component of curable lymphoma.

C.2.5 Sloan (1998)

Sloan (1998) used a risk–risk approach to evaluate the value of avoiding a case of multiple
sclerosis (MS). Study participants were asked to assume they hadMS and then decidewhether
they would undergo an operation that would either cure the disease completely or kill them
instantly, with the probability of death varying between question iterations. The median
probability of death where participants were indifferent between having MS and undergoing
the operationwas 0.45.Multiplying this probability by our VMRestimate results in aWTP for
a 1/1,000,000 risk reduction for MS of $6.17 (2023$; 0.45 x $13.71).

C.2.6 Viscusi et al. (1991)

Viscusi et al. (1991) derived a WTP estimate through a contingent valuation survey that
measured risk–risk trade-off. The study asked participants to compare the risk of chronic
bronchitis with the risk of a fatal auto accident to produce a relative valuation. The study
measured a risk-dollar trade-off by comparing the risk reduction for chronic bronchitis or an
auto accident fatality against a cost-of-living increase to reduce risks. The result is a
distribution of values representing the private WTP to avoid a case of chronic bronchitis
with a median of $457,000 and a mean of $883,000 in 1990 dollars. Adjusting the median
value results to 2023$ results in an estimate of $1,340,000 per-statistical case, or $1.34 per
1/1,000,000 risk reduction.

The WTP to avoid chronic bronchitis is not a perfect substitute for the WTP to avoid a
case of cancer, though it appears to be a reasonable approximation for the purposes of benefit
assessment. Non-fatal cancer is associated withmore severe acute health effects than chronic
bronchitis, often including major surgery and undergoing radiation or chemotherapy treat-
ments, with attendant side effects. Chronic bronchitis may be associated with more obvious
lingering implications, such as shortness of breath and more frequent chest infections. Both
chronic bronchitis and non-fatal cancer can have implications for long-term quality of life,
such as taking medication, visiting doctors regularly, and limiting recreational and job-
related activities.

C.3 Summary and discussion

Table C5 summarizes the WTP values per 1 in 1,000,000 reduction in non-fatal cancer
risk from the studies described above. Values per statistical case can be estimated by
multiplying the value per risk reduction in the table by 1,000,000. The table includes a
description of the adverse health end points that can be used for evaluating the applicability
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of a particular end point as a substitute for other types of cancers. We also suggest specific
cancer sites where each WTP value may be most applicable. However, for each cancer site
under evaluation, we recommend consideration of its disease profile (e.g. symptoms,
treatment) in comparison to that of the health end points valued by each study to determine
which studies are most applicable. Depending on the cancer sites, either specific values or a
range of plausible WTP values could be used. In Table C5, we suggest potential upper and
lower bounds for these ranges by indicating whether a WTP value could be used an “upper
estimate” or “lower estimate.”

Table C5. Summary of default WTP estimates to avoid non-fatal cancer risk (value per
1/1,000,000 reduction in cancer risk, 2023$)

Value – Health end point Suggested applications (cancer sites)

Bosworth et al. (2009)
$0.46 – Cancer (unspecified) Being one of the lowest values (the lowest was the $0.12

Gerking et al., 2014 estimate) across the studies we
identified and also as a value that is not cancer site-
specific, we suggest this value for a lower estimate for
cancer sites where disease profile does not reasonable
match any of the other end points in this table.

$0.52 – Leukemia in children None. Does not include an assessment of private risk
$1.44 – Leukemia, general As the higher of the two estimates in the studies we

identified with leukemia estimates, we suggest this value
as an upper estimate for (a) acute lymphocytic leukemia,
(b) acute monocytic leukemia, (c) acute myeloid
leukemia, and (d) Aleukemic, subleukemic, and NOS

$0.75 –Colon/bladder cancer As the only study we identified with colon/bladder
estimates, we suggest this value can be used for the
following cancer sites: (a) C18.9 – colon, NOS; (b)
C67.9 – bladder, NOS; (c) colon excluding rectum; (d)
urinary bladder; (e) C64.9 – kidney, NOS; and (f) other
cancers of the urinary system

$1.58 – Lung cancer As the only study we identified with lung cancer estimates,
we suggest this value can be used for the following
cancer sites: (a) lung (non-small cell) and (b) C34.9-lung,
NOS. As the higher of the two estimates we identified for
a respiratory disease, we suggest this value can be used as
the higher estimate for the following cancer sites: (a)
mesothelioma and (b) other cancers of the respiratory
system

Gayer et al. (2000)
$10.79 – Cancer

(unspecified)
None. Implicitly includes the value of a mortality risk

reduction
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As outlined in the National Science and Technology Council’s report Advancing the
Frontiers of Benefit–Cost Analysis: Federal Priorities and Directions for Future Research
(National Science andTechnologyCouncil, 2023), the valuation of non-fatal health effects is
a research priority for federal agencies. The results of this literature review support the view
that data gaps in the valuation of non-fatal health effects exist in the literature.We identified a
limited number of relevant studies and associated health end points. This is amajor limitation
given that WTP for avoiding a non-fatal health risk is likely very specific to a given health
end point and a range of associated impacts, such as symptoms, treatment, and outlook. We
include our recommended values from this appendix in our supplemental spreadsheets for

Table C5. Continued

Value – Health end point Suggested applications (cancer sites)

Gerking et al. (2014)
$0.15 – Leukemia As the lower of the two estimates in the studies we

identified with leukemia estimates, we suggest this value
as an lower estimate for (a) acute lymphocytic leukemia;
(b) acute monocytic leukemia; (c) acute myeloid
leukemia; (d) aleukemic, subleukemic; and NOS; and (e)
myeloma or other blood cancers

Magat et al. (1996)
$7.99- (Curable) Lymphoma As the only study we identified with lymphoma estimates,

we suggest this value can be used for non-Hodgkin
lymphoma. As the highest value in any of the studies we
identified that exclude mortality risks, we suggest this
value be used as the upper estimate for cancer sites where
disease profile does not reasonable match any of the
other end points in this table

Sloan (1998)
$6.17 – Multiple sclerosis This is the only estimate in the studies we identified for a

disease affecting the central nervous system. Since it is
not a cancer end point we suggest using it as a lower
estimate for (a) brain (glioma malignant) and (b) other
cancers of the nervous system. Since this estimate is an
imprecise match for cancers affecting the nervous
system, we suggest using the higher curable lymphoma
estimates for the upper estimate.

Viscusi et al. (1991)
$1.34 – Chronic bronchitis As the lower of the two estimates in the studies we

identified for a respiratory disease, we suggest this value
as an lower estimate for (a) mesothelioma and (b) cancers
of the respiratory system.

44 Matthew LaPenta et al.

https://doi.org/10.1017/bca.2024.43 Published online by Cambridge University Press

https://doi.org/10.1017/bca.2024.43


use by analysts in the absence of more robust data on the value of avoiding non-fatal health
risks. However, we recognize that this review is not comprehensive nor applicable to all
analyses. Thus, we designed our approach so that a policy analyst may easily substitute any
value of avoided non-fatal health risks of their choice in lieu of our default values.
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