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Abstract
Efficiently solving inverse kinematics (IK) of robot manipulators with offset wrists remains a challenge in robotics
due to noncompliance with Pieper criteria. In this paper, an improved method to solve the IK for 6-DOF robot
manipulators with offset wrists is proposed. This method is based on the Newton iteration technique, but it does not
require a selection of initial estimation of joint variables. The solution is divided into two parts: the first part is to
reconstruct a simplified structure with analytical IK solution, and the second part is to obtain a numerical solution
by iteration. Further, a robot manipulator HSR-BR606 with an offset wrist is used as an example to specifically
elaborate the mathematical procedure of the method and to investigate the algorithm in terms of accuracy, efficiency,
and application of motion planning. A comparative experiment is conducted with a typical IK algorithm, which
demonstrates a higher accuracy and shorter calculation time of the proposed method. The mean calculation time
for a single IK solution required for this algorithm is only 4% of the comparison algorithm.

Highlights

• An improved IK method for 6-DOF robot manipulators with an offset wrist is proposed.
• The method does not require a selection of initial estimation of joint variables.
• The proposed algorithm is simple, highly efficient, and suitable for real-time control.

1. Introduction
In the kinematics of robot manipulators, the forward kinematics (FK) function is straightforward and
unique, while the solution of the inverse kinematics (IK) is complicated due to its nonlinear and coupled
equations. In fact, the inverse problem (i.e., mapping the pose of the end effector from a Cartesian space
to a joint space) is a problem of real practical interest since the motion is usually dealt with in Cartesian
space. Therefore, solving the IK efficiently has been one of the basic challenges in robotics. [1] For the
IK solution of a 6-DOF articulated robot manipulator, previous research generally focuses on the Euler
as well as the spherical wrist structure (Fig. 1(a)) satisfying the Pieper criterion that the three adjacent
joint axes of the robot intersect at a common point or the three axes are parallel (e.g., classical Puma
series and Stanford robots). [2] Such kinds of wrist structures have been completely solved analytically
[3–5] However, the robot manipulators with Euler or spherical wrists also have their own limitations
and are unable to meet the practical requirements. For instance, the conventional robot manipulators
with Euler wrist structure are not satisfactory in terms of load capacity and flexibility, which are difficult
to cater for the craft requirements or the production of certain industries. [6] With the extension of
C© The Author(s), 2022. Published by Cambridge University Press.
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Figure 1. The structure of wrist (a) Euler wrist (b) offset wrist.

application fields, robot manipulators with offset wrists have been designed and adopted,[7–9] and the
sketch of its structure as shown in Fig. 1(b). Because of its better dexterity, the offset wrist structure is
suitable for many specific tasks such as welding, material handling, and machine tending; besides, this
structure is allowed to form hollow wrist structure to lay the cables inside that is especially important
for painting. Furthermore, the singularity set is different, in particular wrist singularities are eliminated.
[10] However, this type of robot manipulator possesses a special geometric structure failing to conform
to Pieper criterion in practical applications, which results in being hard to find closed-form solutions
(i.e., analytical solution) for the IK. [11]

There have been lots of methods carried out to calculate the IK solutions utilizing numerical tech-
niques. Jacobian-based inverse methods are the most commonly used method so far, such as the
Newton-Raphson, the Jacobian Pseudo-inverse, the Jacobian Transpose, the predictor-corrector, and
the damped least-squares methods. [1,12–15] The efficiency of some of these methods is determined by
the selection of initial value and the singularity of the robot structure. Although some of the methods
are modified to deal with singularity, those methods need to pay the corresponding cost (accuracy or
computation time). For instance, the greatest advantage of using Jacobian transpose is to avoid inverse
operation; however, the convergence rate of the iteration is slower and the output torque for manipulator
controlled by this method at the joints far from the end effector is usually larger. Other methods that
do not need to take Jacobian matrix and singularity into considerations are gradient-based nonlinear
algorithms treating the IK problem as an equivalent minimization problem. [14,16] However, the effi-
ciency of the methods decreases significantly as the nonlinearity and constraints increase. [17] On the
other hand, heuristic and metaheuristics techniques have proposed to address the IK problems for robot
manipulators with offset wrists. [18–22] Although this kind of intelligent optimization algorithms have
the potential to solve the IK problem with singularity robustness (i.e., the property of providing us with
continuous and feasible solutions even at or in the neighborhood of singular points), the local conver-
gence rate is generally expected to be slow and it is unsatisfactory from the perspective of real-time
control. Recently, Shi et al. [23] developed a method based on Adaboost Neural Network to solve the IK
of robot with offset wrist, and this method indicated a good performance in both accuracy and stability.
Xu et al. [17] proposed a hierarchical iterative algorithm to deal with the IK problem, which combined
heuristic initial estimation and analytical calculation. Metin Toz [22] proposed a meta-heuristic opti-
mization algorithm, but solving the IK problem of serial robot manipulators with offset wrists is just
one of the applications of the method without detailed discussion of the IK problem. Li et al. [24] came
up with a novel IK method for 6-DOF robots with nonspherical wrist inspired by the idea of virtual wrist
center and implement a comparative study with the NR method.

This paper comes up with an improved method to solve the IK for the 6-DOF robot manipulators with
offset wrists based on the Newton iteration technique. This method integrates wrist reconstruction by
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Figure 2. Framework of the algorithm.

translating the certain coordinate frames and the Newton iteration method. The input of the algorithm
only requires the homogeneous matrix of the desired pose instead of both the matrix and the initial esti-
mation of the joint variables as previous conventional algorithms. This algorithm is simple and suitable
for real-time control. The paper is organized in the following manner. Section 2 introduces the framework
of the algorithm along with elaborates the simplified reconstruction process of a specific robot manipula-
tor with an offset wrist and the corresponding deduction procedure for the IK. After that, Section 2.4 car-
ries out simulation and comparison experiments to investigate the performance of the proposed method.

2. Methodology
The method proposed in this paper involves two main steps to obtain the IK solution of the 6-DOF robot
manipulators with offset wrists. The algorithm framework is depicted in Fig. 2. In the first step, the offset
wrist structure is simplified into a common structure conforming the Pieper criterion via translating the
relevant coordinate frames of the joints. The IK solution of the simplified structure can be analytically
achieved after giving desired pose. The second step is to solve the IK problem iteratively based on
the approximate pose that the joint coordinates of the simplified structure are the input to the FK of
the actual structure. Specifically, the Jacobian matrix is used to establish the relationship between the
differential Cartesian space motion and the joint variables, where the Cartesian space motion comprises
positional and orientational components, and the approximate orientation associated with the desired
orientation is expressed by the equivalent angle-axis representation. Differential increment of the joint
variables can be mapped by the differential motion in Cartesian space through the Jacobian matrix.
Then the new approximate pose is generated with differential increment of joint variables, and it will
be compared with the desired pose again. The resulting synthetical error between the desired pose and
the approximate pose is determined by the position error and the orientation error. If the synthetical
error fails to meet the requirement of the error tolerance, the iteration will be repeated until the error
of IK solution satisfies the accuracy or reaches the maximum number of iterations. As an example, the
kinematics of a 6-DOF manipulator with an offset wrist is studied in this paper.
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Figure 3. Structure and coordinate frames of the HSR-BR606 robot manipulator.

2.1. Simplification of wrist structure
The structure of the robot manipulator investigated herein is the HSR-BR606 developed by Huashu
Robot Co., Ltd. and Foshan Institute of Intelligent Equipment Technology. The specific structure and the
corresponding coordinate frames based on the modified Denavit-Hartenberg model [25] are illustrated
in Fig. 3. The offset structure allows the robot to work in a narrow space constraint such as factory for
intensive stamping and inside the machining center. In order to be more intuitive, the three views and
axonometric drawing of the robot are shown in Fig. 4.

As discussed in Section 1, it is difficult to find a closed-form solution of the IK for such kind of robot
manipulator. To obtain the numerical solutions of the IK, it is necessary to search a reasonable initial
estimation of the joint configuration. Heuristic techniques may be suitable to deal with the estimation,
but implementation of the real-time control is not satisfactory due to the large amount of computation
for each estimation. According to the coordinate frames shown in Fig. 3, it can be easily simplified into
an Euler wrist structure by translating the frames {5} and {6} at a distance of −d5 along the Y axis of
the frame {4}. It can be seen in Fig. 5 that the Z axes (joint axes) of the frame {4}{5}{6} intersect at
a common point called virtual wrist center [26] after translation. The position and orientation of the
center can be decoupled and thus the analytical solution of the IK can be obtained in this case.

2.2. Forward kinematics
The end pose in Cartesian coordinate can be mapped from the known robot manipulator configuration
by the FK. In the IK solution method, the FK is used to identify the current pose according to the
estimated joint variables. Kinematics structure of the robotic manipulators in this paper is described by
the modified DH (MDH) convention, and the parameters with respect to the coordinate frames of the
HSR-BR606 in Figs. 3 and 5 are illustrated in Table I. The specific values of parameter inside are d2 = 96,
a2 = 726, d3 = 126.5, d4 = 630.5, d5 = 91, d6 = 122, where αi-1, ai-1, and di are structure parameters. αi-1

and ai-1, respectively, are the rotation and translation between Zi and Zi-1 about the Xi-1 axis. di is the
distance from the Xi-1 axis the Xi axis along the Zi axis. The structure parameters are known and the
joint variables θ i (i=1, 2, 3, 4, 5, 6) vary with the motion. Table II shows the rotation limits of each joint,
and the constraints will be considered in the simulation that the group of angles are selected within the
ranges.

https://doi.org/10.1017/S0263574721001648 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721001648


Robotica 2279

Table I. The MDH parameters of the HSR-BR606.

i θ i (rad) ai-1 (mm) αi-1 (rad) di (mm)
1 θ 1 0 0 0
2 θ 2 0 π /2 d2

3 θ 3 a2 0 d3

4 θ 4 0 π /2 d4

5 θ 5 0 −π /2 d5

6 θ 6 0 π /2 d6

Figure 4. The three views and axonometric drawing of the robot manipulator.

Figure 5. The changes in wrist structure before and after simplification.
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Table II. Joint ranges of the HSR-BR606.

θ 1(deg) θ 2(deg) θ 3(deg) θ 4(deg) θ 5(deg) θ 6(deg)
min –155 2 –218.5 –90 –96.5 –180
max 155 178 38.5 90 96.5 180

According to the MDH convention, the homogeneous matrix transforming link coordinate frame {i}
with respect to frame {i-1} is expressed as [2]

i−1
i T(θi) = RotX(αi−1)TransX(ai−1)RotZ(θi)TransZ(di)

=

⎡
⎢⎢⎢⎢⎣

cosθi −sinθi 0 ai−1

sinθicosαi−1 cosθicosαi−1 −sinαi−1 −sinαi−1di

sinθisinαi−1 cosθisinαi−1 cosαi−1 cosαi−1di

0 0 0 1

⎤
⎥⎥⎥⎥⎦ (1)

The end pose homogeneous matrix of robot in the base coordinates can be expressed as

0
6T = 0

1T (θ1)
1
2T (θ2)

2
3T (θ3)

3
4T (θ4)

4
5T (θ5)

5
6T (θ6) =

[
R P
0 1

]
(2)

where R represents a 3×3 rotation matrix and P is a 3×1 position vector of transformation matrix 0
6T .

2.3. Inverse kinematics
In the proposed method, the IK involves solution of the simplified wrist structure and the actual offset
wrist structure.

2.3.1. IK solution for simplified structure
The 6-DOF robot manipulator with simplified structure that satisfies the Pieper criterion can be obtained,
when d5 = 0. In this case, the end position of simplified mechanism is still not exactly the position of
virtual wrist center. It can be seen in Fig. 5 that there is a position translation (d6, along the Z of {6})
between them. The pose of the virtual wrist center is obtained by using the pose of the end coordinate
frame ([X Y Z A B C]). Assuming the pose matrix of frame {6} is as following:

0
6T = Rotz(A)RotY(B)RotX(C)Trans(X, Y , Z) = [

n o a P
] =

⎡
⎢⎢⎢⎢⎣

nx ox ax X

ny oy ay Y

nz oz az Z

0 0 0 1

⎤
⎥⎥⎥⎥⎦ (3)

where n = [nx ny nz]T , o = [ox oy oz]T and a = [ax ay az]T are called normal vector, sliding vector, and
approaching vector.

Then translating the origin of the frame {6} to the virtual wrist center the pose matrix is expressed
as

Rotz(A)RotY(B)RotX(C)Trans(X, Y , Z)Trans(0, 0, −d6)

=

⎡
⎢⎢⎢⎢⎣

nx ox ax X

ny oy ay Y

nz oz az Z

0 0 0 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 −d6

0 0 0 1

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

nx ox ax X − axd6

ny oy ay Y − ayd6

nz z az Z − azd6

0 0 0 1

⎤
⎥⎥⎥⎥⎦ (4)
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The position of virtual wrist center is determined by the former three joints, and it can be obtained
from Eqs. (1)–(3):

0P4org = 0
1T (θ1)

1
2T (θ2)

2
3T (θ3)

3P4org =

⎡
⎢⎢⎢⎢⎣

X − axd6

Y − ayd6

Z − azd6

1

⎤
⎥⎥⎥⎥⎦ (5)

where 0P4org and 3P4org are position vectors of transformation matrices 0
4T and 3

4T , respectively:

⎡
⎢⎣

X − axd6

Y − ayd6

Z − azd6

⎤
⎥⎦ =

⎡
⎢⎣

(d4s23 + a2c2)c1 + (d2 + d3)s1

(d4s23 + a2c2)s1 + (d2 + d3)c1

a2s2 − d4c23

⎤
⎥⎦ (6)

where si = sinθi, ci = cosθi, sij = sin
(
θi + θj

)
, cij = cos

(
θi + θj

)
.

The former three joint variables (θ 1, θ 2, θ 3) can be obtained from Eq. (6). The last three joints
variables (θ 4, θ 5, θ 6) only affect the orientation of the end. The difference between the orientation of
coordinate frame {3} and coordinate frame {6} depends on the last three joints (θ 4, θ 5, θ 6).

3
6R = 0

3R−10
6R =

⎡
⎢⎣

c4c5c6 − s4s6 −c6s4 − c5s6 c4s5

c6s5 −s5s6 −c5

c4s6 + c5c6s4 c4c6 − c5s4s6 s4s5

⎤
⎥⎦ (7)

where n
mR is the rotation matrix of {m} with respect to {n}.

If 3
6R (2, 3) �= ±1, the last three joint variables θ 4, θ 5, and θ 6 can be obtained by Eq. (7), and the

analytical solution is as following:

θ5 = acos
(−3

6R (2, 3)
)

θ4 = atan2

(
3
6R (3, 3)

s5

,
3
6R (1, 3)

s5

)

θ6 = atan2

(−3
6R (2, 2)

s5

,
3
6R (2, 1)

s5

)
(8)

2.3.2. IK solution for actual structure
Assuming the desired pose matrix (0

6Td) of the coordinate frame {6} of the robot manipulator with offset
wrist is given as following:

0
6Td =

⎡
⎢⎢⎢⎢⎣

nxd oxd axd Xd

nyd oyd ayd Yd

nzd ozd azd Zd

0 0 0 1

⎤
⎥⎥⎥⎥⎦ (9)

The pose matrix of the coordinate system {6} of the simplified structure can be obtained by translating
the desired pose matrix along the Y axis of the coordinate frame {6} of actual structure in negative
direction of the d5.
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0
6TdTrans (0, −d5, 0) =

⎡
⎢⎢⎣

nxd oxd axd Xd

nyd oyd ayd Yd

nzd ozd azd Zd

0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1 0 0 0
0 1 0 −d5

0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

nxd oxd axd Xd − oxdd5

nyd oyd ayd Yd − oydd5

nzd ozd azd Zd − ozdd5

0 0 0 1

⎤
⎥⎥⎦ (10)

The pose of coordinate frame {6} in Eq. (10) is equivalent to the end pose of the simplified structure
in Section 2.3.1. The joint variables θ s = [θs1 θs2 θ3 θs4 θs5 θs6] of the robot manipulator with no offset
wrist (i.e., simplified structure) can be obtained analytically by Eqs. (6) and (8). The joint variables are
the approximate solutions of the IK for the robot manipulator with an offset wrist (i.e., actual structure).
The joint variables θ s are then used in the iteration process. The approximate pose 0

6Ts of the actual
structure can be obtained by substituting the θ s into the FK and the homogeneous matrix is as following:

0
6Ts = 0

1T (θs1)
1
2T (θs2)

2
3T (θs3)

3
4T (θs4)

4
5T (θs5)

5
6T (θs6) (11)

The synthetical error between the approximate pose and the desired pose can be defined as

e = ‖dP‖2 + ‖dAng‖2 (12)

where dP is an incremental displacement and dAng is an incremental rotation.

dP =
⎡
⎢⎣

0
6Td (1, 4) − 0

6Ts (1, 4)

0
6Td (2, 4) − 0

6Ts (2, 4)

0
6Td (3, 4) − 0

6Ts (3, 4)

⎤
⎥⎦ (13)

In term of the rotation increment between the approximate pose and the desired pose, the equivalent
angle-axis representation is adopted. Based on the Rodrigues’ rotation formula, the equivalent rotation
matrix is [2]

R (K, ϕ) = 0
6Ts(1:3, 1:3)

−10
6Td (1:3, 1:3)

=
⎡
⎢⎣

kxkxν + cosϕ kxkyν − kzsinϕ kxkzν + kysinϕ

kxkyν + kzsinϕ kykyν + cosϕ kykzν − kxsinϕ

kxkzν − kysinϕ kykzν + kxsinϕ kzkzν + cosϕ

⎤
⎥⎦ =

⎡
⎢⎣

r11 r12 r13

r21 r22 r23

r31 r32 r33

⎤
⎥⎦ (14)

where ν = 1 − cosϕ, and K = [kx, ky, kz] is a unit vector passing through the origin of the coordinate
system {6} of the robot manipulator with offset wrist. ϕ is the angle of rotation around the K vector.
The desired orientation will be achieved after rotating the approximate orientation about K vector by
the angle ϕ.

The vector K and the angle ϕ can be solved from the given rotation matrix [27]:

ϕ = arccos

(
r11 + r22 + r33 − 1

2

)
(15)

K =
⎡
⎢⎣

kx

ky

kz

⎤
⎥⎦ = 1

2sinϕ

⎡
⎢⎣

r32 − r23

r13 − r31

r21 − r12

⎤
⎥⎦ (16)

Thus, the incremental rotation dAng is expressed as

dAng = 0
6Ts (1:3, 1:3) Kϕ (17)

https://doi.org/10.1017/S0263574721001648 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721001648


Robotica 2283

Combining the position increment dP and rotation increment dAng into a vector dX = [dP dAng]T

expressed in world coordinate, the dX is the differential motion (6x1) corresponding to the infinitesimal
motion from approximate pose to desired pose.

If the synthetical error e is within the reasonable tolerance, the iteration will be ceased and the numer-
ical IK solution of the robot manipulator with offset wrist can be obtained. Otherwise, new possible joint
variables for next iteration will be generated based on the differential variables of the joint configuration
dθ , which is calculated by the Jacobian matrix and the differential motion dX.

dθ = J−1dX (18)

The Jacobian matrix of the actual structure with offset wrist is expressed as following:

J =

⎡
⎢⎢⎣

Jpi · · · Jpn

...
. . .

...

JOi · · · JOn

⎤
⎥⎥⎦

[
Jpi

JOi

]
=

[
0Zi

(
0Pn − 0Pi

)
0Zi

]
i = 1, 2, 3, · · · , 6, n = 6 (19)

where 0Zi is the vector representation of the Z axis of in the coordinate frame {i} with respect to the
base coordinate frame {0}. 0Pi is the vector representation of the origin of the coordinate frame {i} with
respect to the base coordinate frame {0}.

The new possible joint variables θ can be obtained by Eq. (20). Substituting the new joint variables
into Eq. (2), the current pose of the robot manipulator with offset wrist can be obtained and the synthet-
ical error between the current pose and the desired pose will be calculated to decide whether the joint
variables need to refresh again or not.

θ = θ + dθ (20)

2.4. Inverse kinematics algorithm flow
The key steps for the proposed IK algorithm are as followed:

(1) Translating the frame {6} of 6-DOF robot manipulator with offset wrist in its Y axis by d5 to
obtain the pose of frame{6} of 6-DOF robot with no offset wrist. The joint variables of simplified
structure can be obtained by Eqs. (3)–(8);

(2) Using the joint variables of simplified structure as the input of Eq. (2) to get the pose matrix of
the frame {6} of 6-DOF robot manipulator with offset wrist.

(3) Calculating the position increment dP and rotation increment dAng by Eqs. (13)–(17) and
obtaining the synthetical errors e by Eq. (12).

(4) Judging whether the synthetical error e is within the pre-set criteria or not. If the synthetical
error is within the reasonable error range, the iteration is stopped and a current value of the
joint variables as the iterative numerical solution of the IK of the 6-DOF robot manipulator with
offset wrist is returned. If the synthetical error is out of range, the dθ is calculated by the Jacobian
matrix of the 6-DOF robot manipulator with offset wrist and then get new joint variables for next
iteration.

(5) Repeating step (2)-step (4) until the synthetical error is within the pre-set criteria or the number
of iteration reaches the maximum setting number.

The generalized pseudocode description is as following:
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The pseudocode of algorithm

1: Input: desired homogenous matrix of the end pose (Td)
2: Initial: Tolerance ε, MDH parameters, setting limit ranges of each joint
3: Td_N = Td∗Trans()∗Trans() % Translate the frames to a virtual point
4: Td_N → θ S % analytical solution of simplified structure
5: Ts = FK(θ S) % FK function is based on actual structure
6: [K , ϕ] = Equivalent angle-axis representation (Ts, Td)
7: [K , ϕ] → dAng
8: [dP, dAng] → dX; e=norm(dP)+norm(dAng)
9: while e > ε or within the maximum number of iteration
10: J = J_OffsetWrist(θ S)
11: dθ S = J \ dX
12: θ S = θ S+ dθ S

13: repeat steps 5∼8
14: end while
15: return θ=θ S

3. Simulations and discussion
In this section, the proposed algorithm is tested and discussed in terms of accuracy, efficiency and appli-
cation for motion planning. To ensure the reproducibility of experiments and consistency, the model of
the robot manipulator to implement the validation of the algorithm is the same as mentioned above,
and the structure parameters are summarized in Section 2.2. After evaluating the performance of the
proposed algorithm, a comparative experiment is conducted between the algorithm and the improved
Jacobian transpose (IJT) algorithm developed by Corke et al. [28] The programming and experiments
are developed and carried out on a CPU of Intel Core i5-7400 3.00 GHz with 16 GB RAM in MATLAB
2019b software.

3.1. Accuracy and efficiency
In order to investigate the accuracy and efficiency for the proposed algorithm, the first experimental
scheme is that the joint coordinates vary from Pose A (20◦ 90◦ 30◦ 10◦ –90◦ 0◦) to Pose B (–80◦ 50◦ 15◦

–80◦ 0◦ 10◦) as illustrated in Fig. 6, and 1000 sets of joint angles between Poses A and B are interpolated
by a quintic (5th order) polynomial in joint space. After interpolation, the corresponding homogeneous
matrices can be obtained by FK, and the joint variables are solved via the proposed IK algorithm.

The distribution of the error during convergence can be seen in Fig. 7 where the convergence criteria
is set to 1×10–6 in this test. The synthetical error (e) includes position error (dP) and orientation error
(dAng) as mentioned in Eq. (12). In other word, the synthetical error can be considered as a spatial
displacement contributed by the incremental displacement and incremental rotation. Figure 7 shows
that the synthetic errors of 1000 test poses are within a reasonable range and most of the errors are
much lower than the convergence criteria. For the first two hundred groups of poses, the synthetical
errors are mainly dominated by the position error. In sequence number of trajectory points from 200
to 323, the orientation errors are dominant, and the peak of norm (dAng) reaches 9.698×10–7. For the
points from 700 to 850, the contribution of position error and orientation error is relatively obvious, and
the orientation component is slightly larger than the position component. The average synthetical error
is 1.09×10–7, and its standard deviation is 2.07×10–7.

Figure 8 shows the differences between the joint angles solved by the algorithm and the interpolated
joint angles. It can be seen in Fig. 8(a) that large differences appear in trajectory points of sequence
number around 830 at about Joint 4 and Joint 6, which have a greater influence on the orientation error
of the robot. Figure 8(b) is the enlargement of the gray region (points 1–400) in Fig. 8(a). The differences
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Figure 6. The poses of the robot manipulator in the simulation. Starting from Pose A (20◦ 90◦ 30◦ 10◦

–90◦ 0◦) to end Pose B (–80◦ 50◦ 15◦ –80◦ 0◦ 10◦).

Figure 7. The distribution of the error and its components during convergence.

of all joint angles are within ±3×10–6 rad. The peaks in Fig. 7 can be explained by the accumulation
of the angle difference of each joint in Fig. 8. In other words, Fig. 8 shows the detailed information of
the synthetical errors in terms of the difference between calculation angle and target angle of each joint.
Usually, the first three joints cooperate to determine the end position, and the last three joints determine
the orientation. Because of the offset structure, the rotation of Joint 5 affects both the position and
orientation of the end frame. For instance, the peaks of Joint 3 and Joint 5 of sequence number 200
in Fig. 8(b) result in the peak of synthetical error of the same sequence number in Fig. 7. The mean,
standard deviation, maximum, and minimum of differences for each joint are listed in detail in Table III.
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Table III. Statistical analysis of differences of the IK solution for each joint.

Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6
(10–6 rad) (10–6 rad) (10–6 rad) (10–6 rad) (10–6 rad) (10–6 rad)

Min –0.116 –1.44 –2.71 –2.02 –0.857 –13.5
Max 1.17 1.04 2.27 14.6 1.67 1.95
Mean 0.0186 0.0476 0.134 0.223 0.0932 0.208
Std 0.0921 0.153 0.369 1.17 0.229 1.08

Figure 8. The differences between the joint angles solved by algorithm and the interpolated joint angles.

Figure 9. The number of iterations for different tolerance.

To investigate the computational efficiency, the number of iterations, and computation time are also
considered in the same experiment. As shown in Fig. 9, when the convergence accuracy (i.e., tolerance)
is set to 1×10–7, 1×10–6, and 1×10–5, the maximum number of iterations is 12, 9, and 5, respectively.
Figure 10 shows the calculation time of the algorithm in terms of a single joint configuration and the joint
configurations from pose A to pose B. It turns out that the calculation time is unstable at the beginning
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Figure 10. The computation time of single joint configuration for different tolerance and the computa-
tion time of 1000 joint configurations for different tolerance (inset graph).

Figure 11. The motion trajectory for rectangular path.

and the maximum time consumption of the algorithm is 0.0195 s in test 5 for tolerance of 1×10–6. The
content of the brackets next to some points refer to the specific computation time for blue circle points
in corresponding test number, which is used as a reference for neighboring points. For calculation of a
single joint configuration, the mean time is 0.393, 0.346, and 0.263 ms for tolerance of 1×10–7, 1×10–6,
and 1×10–5. An inset graph in the upper right corner illustrates the computation time for the 100 repeated
calculations of the 1000 joint configurations for different tolerance. It can be seen in Fig. 10 that the IK
solutions from pose A to pose B take up to 0.3, 0.25, and 0.18 s for tolerance of 1×10–7, 1×10–6, and
1×10–5, respectively. The mean time consuming is 0.255, 0.149, and 0.215 s.
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Figure 12. The joint trajectories for the rectangular path.

Figure 13. The distribution of the error along the path.

3.2. Motion planning
In this section, the performance of algorithm to track a trajectory planed in Cartesian coordinate is
discussed. The trajectory is a rectangle and the motion of the end of robot manipulator starts and ends
with the initial pose (0◦ 90◦ 0◦ 0◦ –90◦ 0◦) as illustrated in Fig. 11. The rectangle with 0.5 m sides totally
consists of 80 points described by homogeneous matrices and each side has 20 points. In the simulation,
the end moves clockwise along the sides and the convergence accuracy is set to 1×10–6. Figure 12 shows
six joint trajectories changing with the points of rectangular path. The trajectories are continuous and
smooth. The synthetical error and its components during the convergence can be seen in Fig. 13. Overall,
the synthetical errors are much smaller than the convergence criterion except the two peaks caused by
the position errors. The orientation errors are below 1×10–7.
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Figure 14. Actual tracking of the rectangular path. (a) The comparison between the actual trajectory
and the planned trajectory. (b) The deviation of each axis between actual track and planned track.

To be more intuitive, Fig. 14(a) shows the actual tracking of the rectangular path. Red circle points
are the planned points, and blue star shaped points are the points solved by the proposed method. The
motion planning sequence in Fig. 14(a) is marked by 1, 2, 3, and 4 corresponding to the Fig. 11. In
general, the proposed algorithm can track all planned points within a synthetical error of 1×10–6 as
mentioned above. Figure 14(b) specifically illustrates the deviation of each axis (X-Y-Z axis of Cartesian
coordinates) between actual tracking points and planned points, where the large errors, respectively,
appear in point 12 and point 47 in x-axis direction in sequences 1 and 4, and the corresponding deviations
are 8.989×10–7 and 8.452×10–7 m. The peaks in Fig. 13 correspond to the large errors in Fig. 14. The
deviation in Fig. 14(b) shows that the position error peaks of Fig. 13 is mainly caused by the errors in
the x-axis direction.

For efficiency, the number of iterations and computation time are investigated as well. Figure 15
shows that the maximum number of iterations is 4, which is less than the first experimental scheme
discussed in Section 3.1 because of the relatively simple trajectory in the Cartesian space. Figure 16
shows the computation time for motion planning of a rectangular. To obtain a reasonable estimation,
the calculation is repeatedly implemented for 100 times. The range of the calculation time is between
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Figure 15. The number of iterations for motion planning of a rectangular.

Figure 16. The computation time for motion planning of a rectangular (a hundred repetitions of
calculations).

11 and 20 ms, and the mean and standard deviation are 14.43 and 1.66 ms, which satisfy the real-time
control for the robot manipulator.

3.3. Comparing with the IJT algorithm
To valid the effectiveness of the proposed algorithm, a general numerical approach (IJT algorithm) for
the IK from ref. [28] is used as a reference. The IJT algorithm is developed based on the Jacobian
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Table IV. Statistical analysis of synthetical errors for the pro-
posed and IJT algorithm.

Algorithm Mean(10–6) Max(10–6) Std(10–6)
The proposed algorithm 0.067 0.946 0.173
The IJT algorithm 0.242 0.959 0.265

Figure 17. The distribution of synthetical errors of the proposed and IJT algorithm.

transpose and the Levenberg–Marquardt optimization algorithm which are suitable for any manipulator
configuration. The comparison scheme is that both methods are used to solve the IK of the rectangular
trajectory illustrating in Fig. 11. The initial estimation of the joint variables of the IJT algorithm is
the joint variables of the previous pose, which aims to speed up the convergence. Figure 17 shows the
distribution of the synthetical errors by using the IJT algorithm to track the rectangular path. Compared
to the proposed algorithm, the IJT algorithm has more peaks, which indicates a relatively lower accuracy.
Specifically, Table IV shows the statistical analysis of the synthetical errors of the two methods. It can
be seen that the accuracy of the algorithm proposed in the paper is three times higher than that of the
IJT algorithm.

Figure 18 shows the comparison of the calculation time regarding to a single point and a complete
rectangular path for the two algorithms. It can be seen in Fig. 18(a) that there are 4 valleys corresponding
to points 1, 21, 41, and 61 for the IJT algorithm. The pose of point 1 is the same as the initial pose, while
points 21, 41, and 61 are the same corner points as the previous poses (i.e., the poses of points 20, 40, and
60). For calculating the IK of a complete rectangular path (a total of 80 points), the calculation time of
the IJT algorithm fluctuates between 2.075 and 2.175 s, while the proposed algorithm is between 0.013
and 0.018 s. The statistical analysis of the calculation time of the two algorithms is shown in Table V.
Figure 19 shows the number of iterations of the two algorithms for each planning point. The valleys
here are corresponding to the valleys as shown in Fig. 18(a), and the reason of the formation is the same
as mentioned above. The maximum number of iterations of the IJT algorithm is 8 and the algorithm
proposed is only half of it. Note that the number of iterations for the proposed algorithm is independent
to the previous pose, and it depends on the pose of the simplified structure of the robot manipulator.
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Table V. Statistical analysis of computation time for the proposed and IJT algorithm.

Mean time for calculating Mean time for calculating
Algorithm a single point (s) a complete path (s)
The proposed algorithm 0.00119 0.01438
The IJT algorithm 0.02846 2.09050

Figure 18. The computation time of two algorithms (a) The computation time for each single point. (b)
The computation time for motion planning of a rectangular (a hundred repetitions of calculations).
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Figure 19. The number of iterations for the two algorithms to track the same rectangular trajectory.

4. Conclusion
This paper presents an improved IK solution for the 6-DOF robot manipulator with an offset wrist. By
translating certain coordinate frames depending on the structure of the robot manipulator, the analytical
solution of the simplified reconstructed structure is presented for the IK. This solution is served as an
approximate solution for the actual offset structure, and the exact solution satisfying the convergence
accuracy can be obtained by iteration. Further, a robot manipulator HSR-BR606 with an offset wrist is
used as an example to specifically elaborate the mathematical procedure of the algorithm and to carry
out the simulation calculation of the algorithm. Simulation experiments are carried out to investigate
the performance of the algorithm in terms of accuracy, efficiency, and motion planning. A comparative
experiment with the IJT algorithm is also conducted. The results show that the proposed algorithm
has the advantages of high accuracy with short calculation time compared to the IJT algorithm. The
proposed method is simple and efficient, which facilitates the real-time performance and as well as
reduces the computational burden. It is believed that this method can be extended to other kinds of robot
manipulators with offset structures.
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