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We prove that perturbing the periodic annulus of the reversible quadratic
polynomial differential system ẋ = y + ax2, ẏ = −x with a �= 0 inside the class of all
quadratic polynomial differential systems we can obtain at most two limit cycles,
including their multiplicities. Since the first integral of the unperturbed system
contains an exponential function, the traditional methods cannot be applied, except
in Figuerasa, Tucker and Villadelprat (2013, J. Diff. Equ., 254, 3647–3663) a
computer-assisted method was used. In this paper, we provide a method for studying
the problem. This is also the first purely mathematical proof of the conjecture
formulated by Dumortier and Roussarie (2009, Discrete Contin. Dyn. Syst., 2,
723–781) for q � 2. The method may be used in other problems.
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1. Introduction and statement of the main results

We recall that a centre of a planar differential system is a singular point p of
the system having a neighbourhood filled up of periodic orbits with the unique
exception of the point p. The period annulus of a centre is the maximal region filled
up with the periodic orbits surrounding the centre.

There is a big programme whose objective is to find the exact upper bound for
the number of limit cycles that can bifurcate from the periodic orbits of the period
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annuli of the quadratic polynomial differential systems under quadratic perturba-
tions, see for instance the second part of the book of Christhopher and Li [3]. This
upper bound is called the cyclicity of the period annulus. This programme started
with Arnold [1,2] and has produced more than 100 articles, see for instance the
references of [3].

Here, we contribute to this programme determining this upper bound for the
period annulus of the centre of the quadratic polynomial differential systems

Ẋ = Y + aX2, Ẏ = −X, (1.1)

with a �= 0. We note that to study the cyclicity of the period annulus of system
(1.1) is equivalent to study the cyclicity of the period annulus of the system

ẋ = y + 4x2, ẏ = −x. (1.2)

Indeed, doing the change of variables (X,Y ) → (x, y) where X = 4x/a and
Y = 4y/a system (1.1) becomes system (1.2).

System (1.2) has the first integral

H(x, y) = e8y

(
4x2 + y − 1

8

)
,

and the corresponding integrating factor R(y) = 8e8y.
The phase portrait of system (1.2) in the Poincaré disc is shown in figure 1.

This phase portrait has a unique finite singular point, the centre localized at the
origin of coordinates. It has two pairs of infinite singular points localized at the
endpoints of the x and y axes. At the endpoint of the positive x-half-axis there
is a hyperbolic stable node, at the endpoint of the negative x-half-axis there is a
hyperbolic unstable node, at the endpoints of the y-axis there is a nilpotent saddle,
having a hyperbolic sector at the endpoint of the positive y-half-axis and three
hyperbolic sectors at the endpoint of the negative y-axis. For the definitions of first
integral and integrating factor see chapter 8, for the definition of the Poincaré disc
see chapter 5 and for the definitions of hyperbolic and nilpotent singular points
see chapters 2 and 3 respectively of [4]. The boundary of the period annulus of
the centre of system (1.2) localized at the origin of coordinates is the parabola
y = −4x2 + 1/8. Then the period annulus can be expressed by {γh : h ∈ (−1/8, 0)},
where γh is the periodic orbit

H(x, y) = e8y

(
4x2 + y − 1

8

)
= h. (1.3)

In what follows, we will say simply quadratic system instead of quadratic poly-
nomial differential system. It is known, see for instance [7], that any reversible
quadratic system can be written in the complex form ż = −iz + az2 + 2|z|2 + bz̄2

where z = x + iy, or in the real form

ẋ = y + (a + b + 2)x2 − (a + b − 2)y2, ẏ = −x + 2(a − b)xy,

where a and b are real parameters. When a = b = 1 the reversible quadratic system
(2.1) becomes system (1.2).
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Figure 1. Phase portrait of system (1.2) in the Poincaré disc, with the parabola
y = −4x2 + 1/8 at the boundary of the period annulus.

Our main result is the following one.

Theorem 1.1. The cyclicity of the period annulus of system (1.2) under quadratic
perturbations is two.

Theorem 1.1 is proved in next section.

Remark 1.2. Note that system (8) of [5] is just our system (1.1) with a = −1,
hence the Abelian integrals I1(h), I3(h), I5(h) for h ∈ (−1/8, 0) in lemma 2.2 are
equivalent to J1(h), J3(h), J5(h) for h ∈ (0, 1/2) in [5]. Dumortier and Roussarie
formulated a conjecture on p. 726 of [5], that {J ′

1(h), J ′
3(h), . . . ,J ′

2q+1(h)} forms a
strict Chebyshev system for h ∈ (0, 1/2) and for any integer q � 0. This conjecture
is obviously true for q = 0. We give a positive answer to this conjecture for q = 1 in
lemma 2.4 and for q = 2 in lemmas 2.5–2.7, by using purely mathematical method.
Note also that Figuerasa, Tucker and Villadelprat in [6] gave a proof of this
conjecture for q � 2 by using theoretical analysis and computations by computer,
that are based on computer-assisted techniques. For example, the computations for
the proof of a lemma take six and a half hours on a desktop computer with a 2.8
GHz CPU, see remark 4.11 of [6].

2. Proof of theorem 1.1

We first state a result by Iliev, see statement (ii). (3) with a = b = 1 in theorem 2
of [7].

Theorem 2.1. The exact upper bound for the number of limit cycles produced by
the period annulus of the reversible quadratic system (1.2) under quadratic pertur-
bations is equal to the maximal number of zeros in the interval (−1/8, 0) counting
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multiplicities of the function

M(h) =
∫∫

H(x,y)<h

8e8y(μ1 + μ2y + μ3y
2)dxdy, (2.1)

where μ1, μ2 and μ3 are arbitrary constants, and μ2
1 + μ2

2 + μ2
3 �= 0.

Lemma 2.2. For h ∈ (−1/8, 0) function (2.1) can be expressed as

M(h) = α1I1(h) + α2I3(h) + α3I5(h), (2.2)

where α1, α2 and α3 are arbitrary constants, α2
1 + α2

2 + α2
3 �= 0, and

Ik(h) =
∫

γh

8e8yxkdy, k = 1, 3, 5. (2.3)

Proof. It is obviously that (2.1) can be expressed as

∫
γh

e8y(μ̄1 + μ̄2y + μ̄3y
2)dx, (2.4)

where μ̄1, μ̄2 and μ̄3 are arbitrary constants and μ̄2
1 + μ̄2

2 + μ̄2
3 �= 0. Hence, we only

need to prove that each
∫

γh
e8yykdx (for k = 0, 1, 2) can be expressed as a linear

combination of I1(h), I3(h) and I5(h).
First, using integration by parts we have

∫
γh

e8ydx = −I1(h).

Next, by using (1.3) and integration by parts we have

∫
γh

e8yydx =
∫

γh

[
h + e8y

(
1
8
− 4x2

)]
dx = −1

8
I1(h) +

4
3
I3(h).

Finally, by using integration by parts we have
∫

γh

e8yy2dx = −2
∫

γh

xye8ydy − 8
∫

γh

xy2e8ydy = −2K1(h) − 8K2(h).

From (1.2) we have

xdx + (y + 4x2)dy = 0, (2.5)

Multiplying (2.5) by xe8y we have

K1(h) = −1
2
I3(h) −

∮
γh

x2e8ydx = −1
6
I3(h).
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Multiplying (2.5) by xye8y we have

K2(h) = −4
∮

γh

x3ye8ydy −
∮

γh

x2ye8ydx

= −4
∮

γh

x3

[
d

(
1
8
ye8y

)
− 1

8
e8ydy

]
−

∮
γh

x2ye8ydx

=
1
2

∮
γh

x2ye8ydx +
1
16

I3(h).

Using (1.3), we change the first integral above (neglecting the fact 1
2 ) to

∮
γh

x2ye8ydx =
∮

γh

x2

[
h +

(
1
8
− 4x2

)
e8y

]
dx

=
∮

γh

x2

(
1
8
− 4x2

)
e8ydx =

1
8

∮
γh

x2e8ydx − 4
∮

γh

x4e8ydx

= − 1
24

I3(h) +
4
5
I5(h). �

Lemma 2.3. For h ∈ (−1/8, 0) the function M(h) in (2.2) satisfies

M ′(h) = α1I
′
1(h) + α2I

′
3(h) + α3I

′
5(h), (2.6)

where

I ′k(h) =
∫

γh

kxk−2dy, k = 1, 3, 5. (2.7)

Proof. It is easy to check by (1.3) that along γh one has

∂x

∂h
=

1
8e8yx

,

thus

I ′k(h) =
∫

γh

8e8ykxk−1 ∂x

∂h
dy =

∫
γh

kxk−2dy, k = 1, 3, 5. �

Since the orientation along γh is clockwise, we have Ik(h) < 0 for k = 1, 3, 5 and
h ∈ (−1/8, 0). Furthermore to simplify computations, we introduce the new variable
z = y + 4x2, then equation (1.2) becomes

dx

dt
= z,

dz

dt
= −x(1 − 8z) (2.8)

and the curve γh has the form

γh =
{

(x, z) | e−32x2+8z

(
z − 1

8

)
= h, h ∈

(
−1

8
, 0

)}
. (2.9)
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Thus, along γh we have

∂x

∂h
= − 1

64xh
,

∂z

∂h
= −1/8 − z

8zh
, (2.10)

and

z <
1
8
,

dz

x
= −(1 − 8z)dt < 0, dz = −x

(
1
z
− 8

)
dx. (2.11)

By lemma 2.3 it is obvious that

M ′(h) =
∫

γh

F (x)
x

dy =
∫

γh

F (x)
x

dz, (2.12)

where F (x) = α1 + 3α2x
2 + 5α3x

4.
In the following we use the new variables (x, z).

Lemma 2.4. If α3 = 0, then for h ∈ (−1/8, 0) the function M ′(h) has at most one
zero, including its multiplicity, where M(h) is the linear combinations of I1(h), I3(h)
and I5(h), shown in (2.2).

Proof. If α3 = α2 = 0, then α1 �= 0. By (2.12) and the second equality of (2.11)
we obtain

M ′(h) = α1

∫
γh

dz

x
�= 0, h ∈ (−1/8, 0).

If α3 = 0, α2 �= 0, we can rewrite (2.2) as

M(h) = I3(h) + αI1(h).

By using (2.7) we have

M ′(h) = I ′3(h) + αI ′1(h) =
∫

γh

3x2 + α

x
dz. (2.13)

If α � 0, then M ′(h) < 0, because dz/x < 0 along γh by (2.11).
If α < 0, we denote x0 the positive root of 3x2 + α = 0. Suppose that the inter-

section points of the curve γh and the axis {(x, z) |z = 0} are (±xM (h), 0), the most
left and the most right points of γh, then by (2.9) γh has two branches z = zi(x, h)
with

z1 < 0 < z2 <
1
8

for x ∈ (−xM (h), xM (h)). (2.14)

Note that γh tends to the origin as h → −1/8+, monotonically expands as
h increases from −1/8, and tends to infinity in ±x direction as h → 0−.

If h ∈ (−1/8, h0], where h0 = H(x0, 0), then xM (h) � x0, the curve γh is located
in the strip {(x, z) | 3x2 + α � 0}, see figure 2(i). Hence M ′(h) > 0, because
dz/x < 0 along γh by (2.11).

If h ∈ (h0, 0), then xM (h) > x0, the curve γh must cut the straight lines
{(x, z)|x = ±x0}, see figure 2(ii). The curve γh is symmetry with respect to the
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Figure 2. Relative positions of γh and the straight lines {(x, z)|x = ±x0}.

z-axis, so we will only consider the side x � 0. We divide the integral form of
M ′(h)/2 into two parts as follows:

M ′(h)
2

=
∫ x0

0

(3x2 + α)
(

1
z1

− 1
z2

)
dx −

∫ z2(x0,h)

z1(x0,h)

3x2
2 + α

x2
dz,

where zi = zi(x, h), i = 1, 2; we use the last quality of (2.11) in the first integral
to change dz to dx; in the second integral, x2 = x2(z, h) is the positive root of
e−32x2+8z(z − 1/8)= h for any z ∈ [z1(x0, h), z2(x0, h)], hence x2 � x0 > 0.

Making one more derivative with respect to h by using (2.10), we have

M ′′(h)
2

=
∫ x0

0

3x2 + α

8h

(
1/8 − z1

z3
1

− 1/8 − z2

z3
2

)
dx

− 3x2
0 + α

x0

(
∂z2(x0, h)

∂h
− ∂z1(x0, h)

∂h

)
+

∫ z2(x0,h)

z1(x0,h)

3x2
2 − α

64hx3
2

dz < 0,

because 3x2 + α < 0 for x ∈ (0, x0), z1 < 0 < z2 < 1/8 (see (2.14)), h < 0, and
3x2

2 − α > 0. Besides, 3x2
0 + α = 0 and

∣∣∣∂z2(x0,h)
∂h − ∂z1(x0,h)

∂h

∣∣∣ is bounded by (2.10),
so the above middle term is zero and we will directly omit the similar terms in
further calculations.

Thus, M ′(h) has at most one zero on (h0, 0). As we have proved that M ′(h) > 0
on h ∈ (−1/8, h0], hence M ′(h) has at most one zero on (−1/8, 0). �

If α3 �= 0 in (2.2), without loss of generality we consider

M(h) = αI1(h) + βI3(h) + I5(h), h ∈
(
−1

8
, 0

)
. (2.15)

where α and β are arbitrary constants. From (2.7) we have

M ′(h) = I ′5(h) + βI ′3(h) + αI ′1(h) =
∫

γh

F (x)
x

dz, (2.16)
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where

F (x) = 5x4 + 3βx2 + α. (2.17)

Lemma 2.5. If β � 0, then M ′(h) has at most one zero on (−1/8, 0), including its
multiplicity.

Proof. When α � 0, it is obvious that M ′(h) < 0, because dz/x < 0 along γh. Hence
we suppose α < 0 in the rest part, and denote the only positive root of F (x) = 0
by x0, and h0 = H(x0, 0).

If h ∈ (−1/8, h0], then xM (h) � x0, the curve γh is located in the strip
{(x, y) |F (x) < 0}. Hence M ′(h) > 0.

If h ∈ (h0, 0), then xM (h) > x0, the proof is completely similar to the proof of
lemma 2.4, so we only list some different computations. We first rewrite M ′(h) as

M ′(h)
2

=
∫ x0

0

(
F (x)
z1

− F (x)
z2

)
dx −

∫ z2(x0,h)

z1(x0,h)

F (x2)
x2

dz. (2.18)

Then by (2.10) we obtain

M ′′(h)
2

=
∫ x0

0

F (x)
8h

(
1/8 − z1

z3
1

− 1/8 − z2

z3
2

)
dx

+
∫ z2(x0,h)

z1(x0,h)

G(x2)
64hx3

2

dz, (2.19)

where

G(x) = 15x4 + 3βx2 − α. (2.20)

Now β � 0, α < 0, by using (2.17) (together with the definition of x0), (2.14), (2.20)
and h < 0 we obtain M ′′(h) < 0, hence M ′(h) has at most one zero on (−1/8, 0). �

Now suppose β < 0 and we start from the simple case α � 0.

Lemma 2.6. If β < 0, α � 0, then M ′(h) has at most one zero on (−1/8, 0),
including its multiplicity, where M(h) is shown in (2.15).

Proof. In this case, F (x) = 0 has exactly one positive root x0. Similar to the proof of
lemma 2.5, we denote h0 = H(x0, 0), if h ∈ (−1/8, h0], then xM (h) � x0, F (x) � 0
along γh, hence M ′(h) > 0.

If h ∈ (h0, 0), then xM (h) > x0, we get the same expressions (2.18) and (2.19).
Now β < 0, α � 0, hence F (x) < 0 on (0, x0); when x � x0, we have F (x) � 0,
then G(x) = 3F (x) − 6βx2 − 4α > 0, hence M ′′(h) < 0. In any case we obtain that
M ′(h) has at most one zero for h ∈ (−1/8, 0). �

Finally we consider the most complicated case β < 0 and α > 0.

Lemma 2.7. If β < 0 and α > 0, then M ′(h) has at most two zeros on (−1/8, 0),
including their multiplicities, where M(h) is shown in (2.15).
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Proof. Since β < 0 and α > 0, F (x) = 0 may have no positive root, a double positive
root, or two different positive roots. In the first two cases, it is obviously M ′(h) < 0
for all h ∈ (−1/8, 0), because F (x) > 0 for all x, except for the possible double root
of F , and dz/x < 0 along γh.

It remains to consider the case that F (x) = 0 has two different positive roots. In
this case we denote the smaller root by x0, then

x2
0 =

−3β −
√

9β2 − 20α

10
, 9β2 − 20α > 0. (2.21)

We will prove two assertions, and denote h0 = H(x0, 0).
Assertion 1: M ′(h) < 0 for h ∈ (−1/8, h0].
Since xM (h) � x0 for h ∈ (−1/8, h0], the curve γh is located in the strip

{(x, z) | |x| � x0}. Notice F (x) > 0 on (0, x0), because α > 0. Similar to the proof
of lemma 2.5, we can get M ′(h) < 0. This assertion is proved.

Assertion 2: M ′(h) has at most two zeros (including the multiplicities) for
h ∈ (h0, 0).

In this case xM (h) > x0. We get the same forms (2.18) and (2.19). It is easy to
see from (2.20) that G(x) has exactly one positive root for β < 0, α > 0, and it is a
simple root. Besides, G(0) = −α < 0, and by using (2.20) and (2.21) we have

G(x0) = 20x4
0 + 6βx2

0 = −2x2
0

√
9β2 − 20α < 0.

Hence the unique positive root of G(x), denoted by x1, satisfies x1 > x0 > 0.
If h ∈ (h0, h1], where h1 = H(x1, 0) then x0 < xM (h) � x1. Obviously G(x) < 0

on (x0, x1). From (2.19) we have M ′′(h) > 0, because F (x) > 0 on (0, x0), h < 0,
z1 < 0 < z2 < 1/8, and x2 > 0.

If h ∈ (h1, 0), then xM (h) > x1, we divide the second integral in (2.19) into two
parts, use the last equality of (2.11) in the first part, and move (−h) to the left
side in the whole equality, we have

(−h)M ′′(h)
2

=
∫ x0

0

F (x)
8

(
1/8 − z2

z3
2

− 1/8 − z1

z3
1

)
dx

−
∫ x1

x0

G(x)
64x2

(
1
z2

− 1
z1

)
dx −

∫ z2(x1,h)

z1(x1,h)

G(x2)
64x3

2

dz.

Making one more derivative with respect to h by (2.10), we obtain

[(−h)M ′′(h)]′

2
=

∫ x0

0

F (x)
32h

(
(1/8 − z2)(3/16 − z2)

z5
2

− (1/8 − z1)(3/16 − z1)
z5
1

)
dx

−
∫ x1

x0

G(x)
83hx2

(
1/8 − z2

z3
2

− 1/8 − z1

z3
1

)
dx

+
∫ z2(x1,h)

z1(x1,h)

15x4
2 − 3βx2

2 + 3α

642hx5
2

dz < 0,

because F (x) > 0 on (0, x0), h < 0, z1 < 0 < z2 < 1/8, G(x) < 0 on (x0, x1), x2 > 0,
and 15x4

2 − 3βx2
2 + 3α > 0 for β < 0 and α > 0.
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Thus, (−h)M ′′(h), hence M ′′(h), has at most one zero on (h1, 0). Since we have
proved that M ′′(h) > 0 on (h0, h1], we get that M ′′(h) has at most one zero on
(h0, 0), hence M ′(h) has at most two zeros on (h0, 0). assertion 2 is proved.

Supping up the results in assertions 1 and 2, we obtain that M ′(h) has at most
two zeros on (−1/8, 0). All multiplicities of the zeros are taken into account. �

Proof of theorem 1.1. We claim that M(h) has at most two zeros on (−1/8, 0),
including their multiplicities. Otherwise, if M(h) has at least three zeros on
(−1/8, 0), then since M(−1/8) = 0, M ′(h) would have at least three zeros on
(−1/8, 0), which contradicts lemmas 2.4–2.7. �
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