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Abstract

We construct some new deformation families of four-dimensional Fano manifolds of index one in some
known classes of Gorenstein formats. These families have explicit descriptions in terms of equations,
defining their image under the anticanonical embedding in some weighted projective space. They also
have relatively smaller anticanonical degree than most other known families of smooth Fano 4-folds.
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1. Introduction

A projective algebraic variety X with an ample anticanonical divisor class −KX is
called a Fano variety. The Fano index i is the largest integer such that −KX = iD, for
some ample divisor D on X. Fano varieties are one of the central topics of research in
algebraic geometry, in general, and in classification problems, in particular. It is well
known that there are only finitely many deformation families of smooth Fano varieties
in each dimension [20]. In dimension less than or equal to three, the classification
has been completed [15–17, 23, 24]. There are 1, 10 and 105 deformation families of
smooth Fano varieties in dimension one, two and three, respectively.

In dimension greater than or equal to four, the full classification is still to be
completed. The complete classification of smooth Fano 4-folds of index greater than
or equal to two is known and there are 35 deformation families of such Fano 4-folds
[9–12, 15, 17, 19, 32, 33], listed in [4]. The index one case is still not complete,
although there are a number of partial classification results. The toric Fano 4-folds
have been classified by Batyrev [1] who found 123 deformation families. One of the
larger sets of examples was constructed by Coates, Kasprzyk and Prince: in [5], they
constructed 527 new deformation families of Fano 4-folds as complete intersections
in toric varieties and they constructed one more in [6] by using the Laurent inversion.
Another collection of 141 deformation families has been given by Coates, Kasprzyk
and Kalashnikov [18] as quiver flag zero loci in quiver flag varieties. The smooth
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Fano 4-folds of Picard rank two with hypersurface Cox ring have been classified by
Hausen et al. [13], who found 17 new deformation families of smooth Fano 4-folds
of index one. Some of the earlier index one examples were constructed by Küchle
[21, 22] as sections of homogeneous vector bundles over Grassmannians and complete
intersections in weighted projective spaces.

In this article, we aim to contribute to the classification of smooth Fano 4-folds
of index one; this can be thought of as an extension of Küchle’s lists as some of
his examples also appear in our list. We construct some new deformation families of
smooth Fano 4-folds of index one as weighted complete intersections of some known
classes of Gorenstein formats (Definition 2.1). As a starting point, we use a computer
algebra system to search for candidate families of smooth Fano 4-folds by using the
algorithmic approach [3, 27]. Then we prove the existence of these 4-folds by analysing
the explicit equations of the candidate varieties.

1.1. Summary of results. In total, we obtained 25 candidate families of smooth
Fano 4-folds by using the computer search routine [3, 27]: four as hypersurfaces,
eight as codimension two complete intersections, one each as complete intersections
in codimension three and four, four in Gr(2,5) format, four in P2 × P2 format and three
in codimension four Gr(2, 5) ∩H format. Among these, one candidate codimension
two complete intersection and one candidate example in Gr(2, 5) ∩H format failed
to be smooth. All the hypersurfaces and complete intersection examples have already
appeared in [22], so the new deformation families appear as noncomplete intersection
Fano 4-folds.

THEOREM 1.1. There exist at least ten families of smooth Fano 4-folds of index one
whose images under the anticanonical embedding in a weighted projective space can
be described as noncomplete intersection varieties, and they are given in Table 1. In
four cases, they can be described by using Gr(2, 5) in P7(wi) format, in two cases by
Gr(2, 5) ∩H format in P8(wi) and in four cases by using P2 × P2 format in P8(wi). The
families 1–6 have Picard rank one and 7–10 have Picard rank two.

This list of examples in not a formal complete classification of Fano 4-folds in these
Gorenstein formats but it is very unlikely that there are any further such examples. In
fact, we searched about half a million candidate embeddings of Fano 4-folds by using
computer algebra. Examples 1 and 5 also appeared in [22] and the other examples are
new deformation families of smooth Fano 4-folds.

It is well known that the plurigenera of the Hilbert series PX(t) =
∑

h0(−nKX)tn

are deformation invariant [31]. In particular, the Reimann–Roch formula for smooth
4-folds shows that the first plurigenus h0(−K) and the anticanonical degree (−KX)4

are sufficient to distinguish between nondeformation equivalent families (see
Proposition 4.1). For the known families of smooth Fano 4-folds, the list of these
invariants can be found in [4–6, 13, 18, 21, 22]. We obtain at least six new deformation
families of smooth Fano 4-folds of index one. The lists we obtain are conjecturally
complete classifications of such varieties in these formats.
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TABLE 1. Smooth Fano 4-folds in Gorenstein formats.

No. Format (−KX)4 h0(−KX) Eq Degs, wP Weight Matrix

1 Gr(2, 5) 13 8 X2,34 ⊂ P(18)

1 1 1 2
1 1 2

1 2
2

2 10 7 X34,4 ⊂ P(17, 2)

1 1 1 1
2 2 2

2 2
2

3 7 6 X2,34 ⊂ P(16, 22)

1 1 2 2
1 2 2

2 2
3

4 5 5 X45 ⊂ P(15, 23)

2 2 2 2
2 2 2

2 2
2

5 Gr(2, 5) ∩H 15 9 X25,(3) ⊂ P(19)

1 1 1 1
1 1 1

1 1
1

6 10 8 X25,(4) ⊂ P(18, 2)

1 1 1 1
1 1 1

1 1
1

7 P
2 × P2 17 9 X23,36 ⊂ P(19)

1 1 1
1 1 1
2 2 2

8 11 7 X36,43 ⊂ P(17, 22)
1 1 1
2 2 2
2 2 2

9 10 7 X2,34,44 ⊂ P(17, 22)
1 1 2
1 1 2
2 2 3

10 5 5 X49 ⊂ P(15, 24)
2 2 2
2 2 2
2 2 2

A linear section Y of each of the Fano 4-folds in Table 1 is a smooth Calabi–Yau
3-fold. Therefore, by Lefschetz’s hyperplane theorem, the Picard rank of a Fano 4-fold
X will be equal to that of its Calabi–Yau 3-fold section Y . The Picard ranks for the
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TABLE 2. Smooth Fano 4-fold hypersurfaces and complete intersections list of [21].

Format Codimension h0(−KX) (−KX)4 Fano 4-fold

Hypersurface 1

6 5 X5 ⊂ P(16)

5 3 X6 ⊂ P(15, 2)

2 X8 ⊂ P(15, 4)

4 1 X10 ⊂ P(14, 2, 5)

Comp. Int.

2

7 9 X32 ⊂ P(17)

8 X4,2 ⊂ P(17)

6 6 X4,3 ⊂ P(16, 2)

5 4 X42 ⊂ P(15, 22)

6 4 X6,2 ⊂ P(16, 3)

4 2 X6,4 ⊂ P(14, 22, 3)

3 1 X62 ⊂ P(13, 22, 32)

3 8 12 X22,3 ⊂ P(18)

4 9 16 X24 ⊂ P(19)

corresponding Y have been calculated by using [8, Theorem 2.5] and the computer
algebra package [14] in Macaulay2.

REMARK 1.2. A pair of examples, #2 and #9, and another pair of examples, #4
and #10, have the same numerical invariants, h0(−KX) and (−KX)4, but they lie
in different codimension. We expect them to lie in different deformation families;
a similar phenomenon was observed for some terminal Fano 3-folds in [2]. The
corresponding Calabi–Yau 3-fold sections of pairs #2, #9 and #4, #10 have distinct
Hodge numbers and lie in different deformation families, which provides evidence
that the corresponding Fano 4-folds also belong to distinct deformation families.

REMARK 1.3. Our computer search routine also recovered the 13 examples of smooth
Fano 4-folds of index one that are hypersurfaces or complete intersections in weighted
projective spaces. However, we do not list them as a part of the theorem since they are
very well-known examples that appeared in [22] and were further studied in [25]. We
list them for the reader in Table 2.

REMARK 1.4. We did search for examples of smooth Fano 4-folds in some other
well-known classes of Gorenstein formats, namely, in Grassmannians Gr(2,6) [29],
Lagrangian Grassmannians LGr(3,6) [26], a two step flag variety in C4 [26], orthog-
onal Grassmannians OGr(5,10) [7] and a weighted homogeneous F4 variety [28], but
no new candidate examples of smooth Fano 4-folds were found.
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2. Definitions and notation

A weighted projective variety X ↪→ PN(wi) of codimension c is called wellformed
if it does not contain a singular stratum of codimension c + 1. A format is a way
of representing the equations of varieties. For example, the Segre embedding of
P

2 × P2 can be described as 2 × 2 minors of a size 3 matrix. A more formal definition
of Gorenstein format is given below.

DEFINITION 2.1 [3]. A codimension c Gorenstein format F is a triple (Ṽ ,R, μ) which
consists of a codimension c affine Gorenstein variety Ṽ ⊂ An, a minimal graded free
resolution R of OṼ as a graded OAn module, and a C∗-action μ of strictly positive
weights on Ṽ .

We only consider those Gorenstein formats where the action μ leaves the variety Ṽ
invariant and the free resolution R is equivariant for the action. The varieties defined
below in Definitions 2.2 and 2.3 are examples of such Gorenstein formats.

DEFINITION 2.2 [7]. Consider the Plücker embedding Gr(2, 5) ↪→ P9(∧2
C

5) of Grass-
mannians of 2-planes in C5. For a choice of vector w := (a1, . . . , a5) with all ai ∈ 1

2Z

satisfying

ai + aj > 0 for 1 ≤ i < j ≤ 5,

one can define the weighted Grassmannian wGr(2, 5) = ˜Gr(2, 5)\{0} as the quotient of
an affine cone minus the vertex with C× action given by

μ : xij 	→ μai+aj xij.

This gives the embedding

wGr(2, 5) ↪→ P({wij : 1 ≤ i < j ≤ 5, wij = ai + aj}). (2.1)

We will use wG to denote wGr(2, 5). The image of wG under the embedding (2.1) can
be defined by five maximal Pfaffians of the 5 × 5 skew symmetric matrix⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x12 x13 x14 x15
x23 x24 x25

x34 x35
x45

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

where we omit the diagonal of zeros and the lower triangular part of the skew
symmetric matrix. If wG does not contain a 5-dimensional singular locus of P(wi),
then the canonical divisor class is given by

KwG =
(
− 1

2

∑
1≤i<j≤5

wij

)
H, (2.2)

for an ample divisor H. Another variant of this format is the Gr(2, 5) ∩H format,
which is a nonquasilinear hypersurface section of the Gr(2, 5) format.
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DEFINITION 2.3 [2, 30]. Let Σ be the Segre embedding of

P
2 × P2 ↪→ P8(xij) for 1 ≤ i, j ≤ 3,

and consider a pair of half integer vectors b = (b1, b2, b3) and c = (c1, c2, c3) satisfying

bi + cj > 0, bi ≤ bj and ci ≤ cj for 1 ≤ i ≤ j ≤ 3.

Then the quotient of the punctured affine cone Σ̃\{0} by C×, with the action

μ : xij 	→ μbi+cj xij for 1 ≤ i, j ≤ 3,

is called a weighted P2 × P2 variety, which we will denote by wP. For a choice of
b, c, written together as a single input parameter p = (b1, b2, b3; c1, c2, c3), we have the
embedding

wP ↪→ P8(wij : wij = bi + cj for 1 ≤ i, j ≤ 3).

The equations of the image are the well-known 2 × 2 minors of the 3 × 3 matrix,
which we usually refer to as the weight matrix, written as⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

w11 w12 w13
w21 w22 w23
w31 w32 w33

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , where wij = bi + cj for 1 ≤ i, j ≤ 3.

If wP is wellformed, then the canonical divisor class is given by

KwP =
(
−

3∑
i=1

wii

)
H,

for an ample divisor H.

3. Families of Fano smooth 4-folds

In this section, we give a proof of Theorem 1.1 by providing details of the calcula-
tions in three cases. The remaining cases can be checked by similar calculations.

3.1. Example #3. For w = 1
2 (1, 1, 1, 3, 3), we get the embedding wG ↪→ P(13, 26, 3).

Let x1, x2, x3 be weight one variables, let y1, . . . , y6 be weight two variables and let z be
the weight three variable. Now it is evident that wG does not contain any 5-dimensional
singular locus of the ambient P9(wi), the weight three locus is just an orbifold point and
the weight two locus describes a cubic 3-fold in P5, so it is wellformed. Thus, by (2.2),
KwG = O(−9). Let Y1 ⊂ P(16, 26, 3) be a projective cone over wG with vertex P2, that
is, we add three variables of weight one to the ambient P9(wi) which are not involved in
any defining equations of wG. Then Y1 is a 9-dimensional variety with KY1 = O(−12).

We take a complete intersection of Y1 with four general quadrics to get a Fano 5-fold

Y2 ⊂ P(16, 22, 3) with KY2 = O(−12 + 2 × 4) = O(−4),

by using the adjunction formula. Now the base locus of the linear system of quadrics
|O(2)| contains a single point which is a coordinate point of the variable z. Moreover,
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Y2 ∩ P(2, 2) is the empty locus and the only singular point on Y2 is the quotient
singularity 1

3 (1, 1, 1, 2, 2). As a final step, we take an intersection of Y2 with a general
cubic to get a Fano 4-fold,

X ⊂ P(16, 22) with KX = O(−1).

As X does not contain any singular point of P(16, 22), it follows that X is a smooth Fano
4-fold of index one. By using the Hilbert series one can easily show that (−KX)4 = 7,
and h0(−KX) = 6 is evident from the embedding.

3.2. Example #6. The Grassmannian Gr(2, 5) has an embedding in P9(x1, . . . , x10).
It is a 6-fold with KX = O(−5). Let Y1 be the variety obtained by taking a cone of
weight two over it, that is, we have the embedding

Y1 = C2Gr(2, 5) ↪→ P10(19, 2),

where the new variable y of weight two is not involved in any defining equations. Then
Y1 is a singular 7-fold with KY1 = O(−7). Now we take a general quartic section

Q4 = y2 + f4(xi, y) for 1 ≤ i ≤ 10,

of Y1 to get a 6-fold

Y2 ⊂ P(110, 2) with KY2 = O(−3).

The linear system |O(4)| has empty base locus. The 6-fold Y2 is a codimension four
smooth variety since the weight two points have been removed by the quartic section.
Now we take two hyperplane sections of Y2 to get a smooth Fano 4-fold X ⊂ P(18, 2)
of index one with h0(−KX) = 8 and −K4

X = 10.

3.3. Example #10. For the choice of parameter w = (1, 1, 1; 1, 1, 1), we find that
wP ↪→ P(29), which is a priori a nonwellformed 4-fold. Consider a projective cone
Y1 over wP with vertex P4. Then we have a 9-fold

Y1 ⊂ P(15, 29) with KY1 = O(−11).

The 9-fold Y1 is wellformed, although it contains the orbifold locus of dimension four
defined by the weight two variables and a further P4 given by the cone variables. The
quasilinear section of Y1 with five general quadrics is a Fano 4-fold

X = Y1 ∩ {∩5
i=1Qi} ⊂ P(15, 24) with KX = O(−11 + 10) = OX(−1),

that is, X is a Fano 4-fold of index one. The intersection X ∩ P(15, 24) is empty and also
the base locus of the linear system |O(2)| of quadrics is empty. Thus, X is a smooth Fano
4-fold.

4. Geography of smooth Fano 4-folds

The deformation type of a smooth Fano variety X depends on the plurigenera
h0(−nKX) of the Hilbert series

∑
n≥0 h0(−nKX)tn of X, as they are invariant under
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FIGURE 1. Fano 4-folds with small invariants satisfying (4.1). The red circles represent new examples
constructed in this paper, blue squares represent the examples from [13, 21, 22] and the filled red dots

represent examples which appear in this paper and in [22].

smooth projective deformations [31]. Therefore, if two varieties have different pluri-
genera, then they represent two distinct different deformation families of Fano 4-folds.
By using various vanishing theorems, one can derive the form of the Riemann–Roch
formula for smooth Fano 4-folds of index one [22, page 48] given by

χ(−nKX) = h0(−nKX) = 1 +
n(n + 1)

24
(−KX)2c2(X) +

n2(n + 1)2

24
(−KX)4.

In particular,

h0(−KX) = 1 +
(−KX)2c2(X)

24
+

(−KX)4

6
.

Thus, the intersection number (−KX)2c2(X) is determined easily from the first term if
we can compute h0(−KX) and (−KX)4. In our case, these two invariants can be readily
computed from the Hilbert series of X. Therefore we have the following result.

PROPOSITION 4.1. Let X and Y be two smooth Fano 4-folds of index one such
that h0(−KX) � h0(−KY ) and (−KX)4 � (−KY )4. Then X and Y belong to two distinct
deformation families of smooth Fano 4-folds.

4.1. Geography with respect to h0(−KX) and (−KX)4. In total, there are at least 987
known deformation families of smooth Fano 4-folds with distinct anticanonical degree
(−KX)4 and h0(−KX). They can be found in [4–6, 13, 18, 21, 22]. Among these, there
are 13 examples of Fano 4-folds of index one which are hypersurfaces or complete
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intersections in weighted projective spaces [22]. For all of these examples, the first
plurigenus h0(−KX) and the anticanonical degree (−KX)4 satisfy

1 ≤ −K4 ≤ 17 and 3 ≤ h0(−KX) ≤ 9. (4.1)

In what follows, we say that a smooth Fano 4-fold has small invariants if its
invariants satisfy (4.1). There are very few families of smooth Fano 4-folds with
such small invariants, other than hypersurfaces and complete intersections in weighted
projective spaces. In total, excluding the hypersurfaces or complete intersections, only
7 out of the approximately 970 remaining known examples have small invariants.
Among these, three appeared in [21, 22], three are listed in [4] and three are in [13],
but two of these have the same invariants as those in [22]. All our new families of
Fano 4-folds have small invariants and thus they lie in the lower-left-hand corner of
the graph of the geography of smooth Fano 4-folds which is a graph in the positive
quadrant with (−KX)4 on the x-axis and h0(−KX) on the y-axis. In Figure 1, we show
the known smooth families of Fano 4-folds with small invariants.
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