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Abstract

This paper presents a flexible family which we call the α-mixture of survival func-
tions. This family includes the survival mixture, failure rate mixture, models that are
stochastically closer to each of these conventional mixtures, and many other models.
The α-mixture is endowed by the stochastic order and uniquely possesses a mathematical
property known in economics as the constant elasticity of substitution, which provides an
interpretation for α. We study failure rate properties of this family and establish closures
under monotone failure rates of the mixture’s components. Examples include potential
applications for comparing systems.
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1. Introduction

Mixture models are useful for analysis of data that are suspected to be generated from
heterogeneous items. Let F̄i and fi denote the survival functions (SFs) and probability
density functions (PDFs) or probability mass functions, respectively, and ri defined by ri(x) =
fi(x)/F̄i(x), F̄i(x) > 0, i = 1, . . . , n be the failure rates (FRs) of n items. Two different mixture
models are commonly used: the mixture distribution model, which can be represented in terms
of SFs as

F̄am(x) =
n∑

i=1

piF̄i(x), (1.1)

and the mixture FR model defined by

rgm(x) =
n∑

i=1

piri(x), (1.2)
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where
∑n

i=1 pi = 1, pi > 0. (The countable mixture is defined similarly, and the continuous
mixture is defined analogously with p = (p1, . . . , pn) replaced by a PDF).

The SF corresponding to (1.2) is the following geometric mean of F̄1, . . . , F̄n:

F̄gm(x) =
n∏

i=1

F̄pi
i (x). (1.3)

(The normalization of the pi is not necessary for the construction of (1.2) and (1.3), but we
only consider the normalized case.) The FR of (1.1) is the following variable weights mixture
of r1, . . . , rn:

ram(x) =
n∑

i=1

pi(x)ri(x),

where

pi(x) = piF̄i(x)

F̄am(x)
,

provided that F̄am(x) > 0. The mixtures of SFs and FRs are less restrictive than the single
distribution assumption and provide interesting alternatives to nonparametric modeling.

We will consider the following classes of distributions and stochastic orders of random
variables Xi, i = 1, 2, with SF F̄i.

Definition 1.1.
(a) A random variable X or its distribution is said to be increasing (decreasing) FR (IFR (DFR))
if its FR is non-decreasing (non-increasing).

(b) A nonnegative random variable X or its distribution is said to be increasing (decreasing)
FR average (IFRA (DFRA)) if − log F̄(x)/x is non-decreasing (non-increasing).

(c) X1 is said to be stochastically less than or equal to X2, denoted by F̄1 ≤st F̄2, if F̄1(x) ≤ F̄2(x)
for all x ∈R.

(d) X1 is said to be less than or equal to X2 in hazard rate order, denoted by F̄1 ≤hr F̄2, if
r1(x) ≥ r2(x) for all x ∈R.

(e) X1 is said to be less than or equal to X2 in likelihood ratio order, denoted by F̄1 ≤lr F̄2, if
f1(x)/f2(x) is non-increasing in x ∈R.

It is apparent that (1.1) and (1.3) provide two completely different models for studying
lifetimes of heterogeneous items. For example, it is clear from (1.2) that if ri(x), i = 1, . . . , n,
are all IFR, DFR, or constant, then F̄gm is respectively an IFR, DFR, or an exponential
distribution. However, it is well known that if F̄am is the mixture of two exponential
distributions then ram is decreasing. Furthermore, Wondmagegnehu et al. [24] showed that
if F̄am is a mixture of two IFR models then ram can have a “practical” bathtub-shaped FR
(bathtub up to the tail of the mixture distribution).

Which of these two mixture models is more suitable or preferred for a problem is an open
question and sometimes a subject of sharp disagreement among experts. For example, for
modeling burn-in, Block & Savits [8] used the mixture of probability distributions (1.1) while
Lynn & Singpurwalla [17] disputed the choice and argued in favor of the predictive FR function
which is the mixture of FRs. When p is a probability vector, then (1.1) is a Bayesian predictive
FR. Other examples include Aktekin [1], who used (1.1) in a Bayesian context, and Finkelstein
[13], who interpreted p in (1.1) as a probability in a non-Bayesian context. In the same vein, an
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important non-Bayesian interpretation of (1.3) is the generalization of the proportional hazards
model to the case when an item is operating in an unknown/random environment of specific
type, a proportional effect of which is modeled by (1.3).

In many applications it is difficult to favor one of the two models (1.1) or (1.3) over the other.
In this paper we propose the weighted power mean of the SFs, which through a parameter α ∈
R provides a flexible family of mixture distributions. The density function version of this model
has appeared in the information theory literature [5, 23] and following the former paper, we call
it an α-mixture. This model gives (1.1) and (1.3) for the specific values of the parameter, as well
as models that provide various degrees of compromise between the two conventional mixtures,
and much more. The α-mixture inherits stochastic order from properties of the weighted power
mean, and uniquely possesses a property which in economics is called the constant elasticity
of substitution (CES). We study its FR properties. We obtain monotonicity results that extend
the DFR result of Barlow et al. [7]. The α-mixture lies in the class of generalized distorted
distributions studied by Navarro et al. [20] and Navarro & del Águila [19], and thus satisfies the
results obtained by the cited authors for the generalized distorted distributions. We obtain FR
order results for the α-mixture under weaker assumptions than those needed for the generalized
distorted distributions.

This paper is organized as follows. Section 2 introduces the α-mixture model and its special
cases. Section 3 presents the FR properties of the α-mixture model. Section 4 briefly discusses
the extension of the α-mixture model to the countable and continuous cases. Section 5
concludes the paper. Proofs are given in the Appendix.

2. α-mixture model

The finite α-mixture of SFs F̄i, i = 1, . . . , n, is defined by their weighted αth power mean
as follows:

F̄α(x) =
{[ ∑n

i=1 piF̄α
i (x)

]1/α 0 �= α ∈R,

F̄gm(x) α = 0,
(2.1)

where p = (p1, . . . , pn), pi > 0,
∑n

i=1 pi = 1, and F̄gm(x) = limα→0 F̄α(x). The α-mixture
combines two very popular models: mixture and proportional hazard (PH) models. It is a PH
model where the baseline model is an arithmetic mixture of PH models with different baselines
and a common PH parameter α.

Let uα = F̄α(x) and ui = F̄i(x), i = 1, . . . , n. Then

uα = Q(u1, . . . , un) =
{[ ∑n

i=1 piuα
i

]1/α 0 �= α ∈R,∏n
i=1 upi

i α = 0,
(2.2)

where Q : [0, 1]n → [0, 1] is a generalized distorted distribution that is continuously increasing
on [0, 1] with Q(0, . . . , 0) = 0 and Q(1, . . . , 1) = 1 [19, 20]. Equation (2.2) represents the
α-mixture (2.1) as a dual distorted distribution.

The α-mixture is a broad family of mixture distributions which includes the following
models:

(a) For α = 1 we have the usual arithmetic mixture distribution (1.1).

(b) For α = 0 we have the SF of the mixture FR model (1.3).
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(c) For α = −1, we have the harmonic mixture (mean) of the baseline SFs:

F̄hm(x) =
[ n∑

i=1

pi

F̄i(x)

]−1

, x > 0.

(d) For n = 2 and α = 1
m the α-mixture is the following binomial expansion mixture:

F̄ 1
m

(x) =
m∑

k=0

Bk,mpm−k(1 − p)kF̄1−k/m
1 (x)F̄k/m

2 (x),

where Bk,m is the binomial coefficient. In particular, for α = 1
2 the α-mixture gives

F̄ 1
2
(x) = p2F̄1(x) + (1 − p)2F̄2(x) + 2p(1 − p)

√
F̄1(x)F̄2(x). (2.3)

This model is a weighted mean of F̄1, F̄2, and
√

F̄1F̄2, and hence is similar to the
Heronian mean of the two SFs. (The Heronian mean is defined by equal weights given
to the three terms in (2.3) [10].) The model in (2.3) gives lower weights to F̄1 and F̄2 as
compared with F̄am(x), and instead a weight of 2p(1 − p) is given to the root of the SF
of the minimum of two independent random variables with SFs F̄1 and F̄2.

This model has an interesting interpretation in terms of series systems. A product is
assembled as a series system with two components by a manufacturer who uses two
suppliers of the device for the components with shares p and 1 − p and with different
reliability functions F̄1/2

i , i = 1, 2. The products are assembled with the devices supplied
by the same supplier or different suppliers. Equation (2.3) gives the reliability model of
the system for a user of the product.

The α-mixture of the cumulative distribution function (CDF) can be defined similarly. For
example, for n = 2,

Fα(x) =
{

[pFα
1 (x) + (1 − p)Fα

2 (x)]
1
α 0 �= α ∈R,

Fgm(x) α = 0,

where
Fgm(x) = lim

α→0
Fα(x) = Fp

1(x)F1−p
2 (x).

Note that Fα and F̄α represent the same distribution for α = 1, but different distributions for
α �= 1.

2.1. Stochastic order

For each x, F̄α(x) is the weighted mean of αth order, usually of a set of nonnegative numbers
[14]. The weighted power means inequality, which has been shown to be equivalent to the
Hölder inequality [16], implies that, pointwise for each x,

F̄α1 (x) ≤ F̄α2 (x), −∞ < α1 ≤ α2 < ∞. (2.4)

This implies the stochastic order of the α-mixture family by α ∈R.
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When among the mixed components there is an SF F̄max which stochastically dominates
the others, and an SF F̄min which is stochastically dominated by all others, we can define the
α-mixture for all α in the extended real line as follows:

{
F̄−∞(x) = limα→−∞ F̄α(x) = F̄min(x),
F̄∞(x) = limα→∞ F̄α(x) = F̄max(x).

These limits for each ui = F̄i(x) are known, and can be shown by the L’Hospital rule. By
increasing (decreasing) α, the α-mixture moves stochastically closer to F̄max (F̄min).

The stochastic order (2.4) gives

F̄gm ≤st F̄α ≤st F̄am, 0 ≤ α ≤ 1.

Thus, the α-mixture provides flexible compromises between (1.1) and (1.3), where α ∈ [0, 1]
determines the extent of the compromise. When α is close to zero, F̄α is stochastically close to
the mixture FRs model; when α is close to one, F̄α is stochastically close to the mixture SFs
model. More formally, the stochastic distance (SD) between two distributions is defined by the
variation distance (L1-norm) between their CDFs [2, 11], which can be represented in terms of
the SFs as

SD(F̄, Ḡ) =
∫

|F̄(x) − Ḡ(x)| dx.

The following proposition gives a benchmark for the extent of the compromise between (1.1)
and (1.3).

Proposition 2.1. For n = 2 and p = 1/2, F̄1/2 is stochastic equidistant from the FR mixture
and SF mixture models.

SD(F̄1/2, F̄am) = SD(F̄gm, F̄1/2)

= 1

4

∫ (√
F̄1(x) −

√
F̄2(x)

)2

dx (2.5)

= 1

2
(μam − μgm),

where μam and μgm are means of the arithmetic and geometric mixtures, respectively, and the
integral in (2.5) is twice the squared Hellinger distance between the two SFs.

If F̄(x) ≥ Ḡ(x) for all x, then their means are ordered as μF ≥ μG and SD(F̄, Ḡ) = μF − μG.
Then, for p = 1/2, α < 1/2 (α > 1/2) the α-mixture is closer to (farther from) the mixture FRs
model as compared to the mixture of SFs. The following example illustrates the α-mixture and
the notion of SD.

Example 2.1. Figure 1 shows plots of F̄α(x) with n = 2, p = 1/2, and α = 0, .25, .5, .75, 1,
where F̄1 and F̄2 are as follows:

(a) The left panel shows the α-mixtures of two Weibull distributions with SFs F̄1(x) = e−x2
,

x > 0, and F̄2(x) = e−4x2
, x > 0.

(b) The right panel shows the α-mixtures of a Weibull F̄1(x) = e−x2
, x > 0 and a linear FR

distribution (LFR) F̄2(x) = e−x2−4x, x > 0.
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FIGURE 1: Survival functions, means, and stochastic distances of α-mixtures (α = 0, .25, .5, .75, 1) of
two Weibull distributions with a common shape parameter and different scale parameters (left) and of a

Weibull distribution and a linear failure rate distribution (right).

In both panels the increasing stochastic order is evident. Due to the stochastic order the
stochastic distances between the mixtures are given by the differences between the means.
The means and stochastic distances between the models and F̄gm are tabulated below each
panel. The models shown in the left panel have larger means but are closer to each other than
those shown in the right panel. In both panels F̄1/2 (dashed blue) is halfway between F̄gm (solid
red) and F̄am (dashed purple), where SD(F̄1/2, F̄am) = SD(F̄gm, F̄1/2) = .052 and .089 for the
left and right panels, respectively.

The following examples present applications of the stochastic order (2.4) to comparing
series systems.

Example 2.2. Consider comparison of a certain type of product assembled as a series system
with n devices according to two different processes. The devices are m ≥ 2 types with lifetimes
X1, . . . , Xm that have SFs F̄1, . . . , F̄m, respectively.

A. The systems are assembled using the same type of device for all components, where the
device with lifetime Xi is used for the proportion pi of the products, i = 1, . . . , m. The
reliability of a randomly selected product is

F̄1(x) =
m∑

i=1

piF̄
n
i (x), x > 0.
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B. The systems are assembled using devices drawn from a lot that contains proportion pi of
the device with lifetime Xi, i = 1, . . . , m. The reliability of a randomly selected product
is

F̄2(x) =
[ m∑

i=1

piF̄i(x)

]n

, x > 0.

Now the question is: which product is more reliable? The monotone decreasing property of
α-mixture provides the answer to this question. Noting that F̄1(x) = F̄n

α(x) with α = n and
F̄2(x) = F̄n

am(x), we have F̄2 ≤st F̄1, where the equality holds if and only if the devices have
stochastically equal lifetimes: F̄1(x) = · · · = F̄m(x) for all x. This comparison illustrates that,
given the weights, mixtures of series system with homogeneous components are more reliable
than series systems with heterogeneous components.

Example 2.3. Consider three series systems Sk, k = 1, 2, 3, each with two components
whose lifetimes are distributed as {F̄1, F̄2}, {F̄gm, F̄gm}, where Fgm(x) =

√
F̄1(x)F̄2(x), and

{F̄−α, F̄α}, α > 0, respectively. Which system is more reliable? The answer depends on the
weight p of F̄1 in S2 and S3.

(a) For p = 1
2 , the Sk, k = 1, 2, 3, are equally reliable:

F̄α(x)F̄−α(x) = F̄1(x)F̄2(x) = F̄2
gm(x). (2.6)

We can write:

F̄α(x)F̄−α(x) =
(

pF̄α
1 (x) + (1 − p)F̄α

2 (x)

pF̄−α
1 (x) + (1 − p)F̄−α

2 (x)

) 1
α

=
(

pF̄α
1 (x) + (1 − p)F̄α

2 (x)

pF̄α
2 (x) + (1 − p)F̄α

1 (x)

) 1
α

F̄1(x)F̄2(x).

In particular, when p = 1
2 we obtain (2.6). This in turn implies that with p = 1

2 , the
geometric mean of F̄α(x) and F̄−α(x) equals the geometric mean of F̄1(x) and F̄2(x),
for any α. The following inequalities can be shown similarly.

(b) If F̄1 ≤st (≥st) F̄2 and p > (<) 1
2 , then S3 is less reliable than S1 and S2:

F̄−α(x)F̄α(x) ≤ F̄1(x)F̄2(x) = (F̄gm(x))2,

where the last equality assumes p = 1
2 .

(c) If F̄1 ≥st (≤st) F̄2 and p > (<) 1
2 , then S3 is more reliable than S1 and S2:

F̄−α(x)F̄α(x) ≥ F̄1(x)F̄2(x) = (F̄gm(x))2,

where the last equality assumes p = 1
2 .

2.2. The CES property

For each x, (2.2) produces an output probability based on a set of input probabilities
ui, i = 1, . . . , n. The α-mixture function (2.2) uniquely possesses a mathematical property
called the constant elasticity of substitution (CES) between the inputs. Since its exploration
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in economics by Nobel laureates Arrow and Solow and their collaborators [3], CES is
widely used for modeling production functions and utility (consumption) functions with
multiple inputs. The notion of CES can be defined for any number of inputs, but the case
of n = 2 simplifies the exposition. For a twice differentiable (production/utility) function
with two inputs u = Q(u1, u2), the elasticity of substitution between the inputs u1 and u2 is
defined by

σ (u1, u2) = d log (u1/u2)

d log (c1(u1, u2)/c2(u1, u2))
,

where

ci(u1, u2) = ∂Q(u1, u2)

∂ui
, i = 1, 2.

The economic interpretation of σ (u1, u2) is the percentage response of the relative marginal
products of the two inputs to a percentage change in the ratio of their quantities. The CES
function is defined by σ (u1, u2) = σ . The CES holds if and only if

log
u2

u1
= σ log

c1(u1, u2)

c2(u1, u2)
+ c, (2.7)

where c = σ log (p2/p1) and pi is the share of input ui in the model. It is well known that if Q
is a homogeneous function of degree one (that is, Q(λu1, λu2) = λQ(u1, u2)), then it is CES if
and only if Q(u1, u2) ∝ (p1uα

1 + p2uα
2 )1/α , where α = (σ − 1)/σ . The limiting case of α = 0 is

the Cobb–Douglas production function Q(u1, u2) ∝ up1
1 up2

2 .
Accordingly, the α-mixture of two SFs is characterized among the homogeneous functions

of degree one by the CES between the input SFs. The left-hand side of (2.7) is the log-
odds log [F̄2(x)/F̄1(x)]. For the right-hand side of (2.7), we use the chain rule for the partial
derivative and obtain the PDF of the α-mixture of the SFs in the form

f (x) = c1(x)f1(x) + c2(x)f2(x),

where fi is the PDF of F̄i and ci(x) are given by the partial derivatives as follows:

c1(u1, u2) = ∂g(u1, u2)

∂u1
= pF̄α−1

1 (x)[pF̄α
1 (x) + (1 − p)F̄α

2 (x)]1/α−1,

c2(u1, u2) = ∂g(u1, u2)

∂u2
= (1 − p)F̄α−1

2 (x)[pF̄α
1 (x) + (1 − p)F̄α

2 (x)]1/α−1.

Thus, the linear relationship (2.7) holds between the log-odds of the two SFs and the log-
ratio of coefficients in the PDF of their α-mixture, where σ [F̄1(x), F̄2(x)] = σ is free from
F̄i, i = 1, 2, and α = σ/(σ − 1). This property provides the interpretation of α in terms of the
elasticity of substitution between the two input SFs.

The CES characterization extends to n > 2 in terms of constant partial elasticities of
substitution between every pair of inputs [22].

3. FR properties of α-mixture

The FR of the α-mixture for all α ∈R is given by

rα(x) =
n∑

i=1

pi(x, α)ri(x), (3.1)

https://doi.org/10.1017/jpr.2019.72 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2019.72


Mixture models 1159

1.8

1.6

1.4

1.2

1.0

0.8

1 2 3 4 5
x

6 7 8 9 10

FIGURE 2: The FR of the harmonic mixture of the SFs of the exponential and Weibull distributions of
Example 3.1.

where

pi(x, α) = pi

[
F̄i(x)

F̄α(x)

]α

.

The following theorem extends the well-known result of Barlow et al. [7] on the closure of the
mixture of DFR distributions.

Theorem 3.1. Let F̄α(x) be an α-mixture.

(a) If each F̄i is IFR (DFR) then for α < 0 (α > 0) F̄α is IFR (DFR).

(b) If each F̄i is IFRA (DFRA) then for α < 0 (α > 0) F̄α is IFRA (DFRA).

It is known that the arithmetic mixture of an exponential distribution and an IFR Weibull
distribution has a “practical” bathtub-shaped FR [24]. The following example shows that the
α-mixture is not closed under the DFR property for α < 0, and the harmonic mixture of the
exponential and DFR Weibull distributions has a “practical” bathtub-shape FR.

Example 3.1. Let F̄1(x) = e−x, x > 0, and F̄2(x) = e−√
x, x > 0. These two models are both

DFR. The FR of their harmonic mixture with p = 1/2 is

rhm(x) = e−√
x

e−√
x + e−x

+ e−x

2
√

x(e−√
x + e−x)

.

A plot of rhm(x) is shown in Figure 2. It is evident from the plot that the FR of the α-mixture
is decreasing for a short period of time until it attains its minimum and then starts to increase.

Let F̄rmin and F̄rmax denote the SFs corresponding to rmin(x) = min{r1(x), . . . , rn(x)} for all
x and rmax(x) = max{r1(x), . . . , rn(x)} for all x, respectively. It is known that

F̄rmax ≤hr F̄gm ≤hr F̄am ≤hr F̄rmin; (3.2)

see, for example, [21] and [4]. Next, we give some FR order results for the α-mixture.
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Theorem 3.2. If among the components of F̄α there is an F̄rmin whose FR dominates the FRs
of all other components, and there is an F̄rmax whose FR is dominated by the FRs of all other
components, then, for all α ∈R,

F̄rmax ≤hr F̄α ≤hr F̄rmin.

The following theorem gives further generalization of (3.2) in terms of relaxing the
assumption of directional order in Theorem 3.2.

Theorem 3.3. If the baseline FRs ri(x), i = 1, . . . , n, are ordered either increasingly or
decreasingly, then rα(x) is decreasing in α for all α ∈R.

From Theorems 3.2 and 3.3, we have the extension of (3.2) given by the following corollary.

Corollary 3.1. If baseline FRs are ordered either increasingly or decreasingly, then

F̄hm ≤hr F̄gm ≤hr F̄am.

The following example illustrates the FR order results for α-mixtures of three sets of three
gamma distributions.

Example 3.2. Consider the gamma family G(β) with the following SF:

F̄(x;β) =
∫ ∞

x

1

�(β)
uβ−1e−u du, x ≥ 0, β > 0.

It is known that the shape parameter β orders the FR of the gamma family decreasingly. For
β < 1 ( > 1) the FR is decreasing (increasing) in x. The upper panels of Figure 3 show plots of
three IFR gamma distributions (left) and a three-dimensional (3D) plot of the FR of their α-
mixtures (right) as functions of (α, x), −1 ≤ α ≤ 1. The middle panels show the corresponding
plots for three DFR gamma distributions. The lower panels show plots of the FRs of the
gamma distributions with decreasing, constant, and increasing FRs, and their α-mixtures for
α = −1, 0, 1 (left), and a 3D plot of the FR of the α-mixture (right). The following patterns are
apparent:

(a) The 3D plots for the IFR(DFR) gamma distributions illustrate Theorem 3.1. The 3D
plot for β < 1 (β > 1) illustrates the closure under IFR (DFR). However, these plots also
confirm that the conditions on the sign of α are sufficient but not necessary.

(b) The lower two-dimensional plots illustrate the FR orders in accord with Theorem 3.2
and Corollary 3.1.

(c) All 3D plots are decreasing in α, which illustrates Theorem 3.3.

The shape of the FR of the arithmetic mixture of two Weibull distributions has been studied
by many authors, for example [15, 24], and the shape of the FR of the arithmetic mixture of
two linearly increasing FRs has been studied in detail in [9]. The following example illustrates
the FR order results for α-mixtures of two exponential and two IFR Weibull distributions.

Example 3.3. Let F̄1(x) = e−xβ
, x > 0, and F̄2(x) = e−λxβ

, x > 0. Then

rα(x) = βxβ−1
[

1 + (1 − p)(λ − 1)

1 − p + pe−α(1−λ)xβ

]
.

Figure 4 shows plots of the FRs of the harmonic, geometric, and arithmetic mixtures where
p = 1/2. These plots illustrate Theorem 3.2 and Corollary 3.1. The left panel shows plots
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FIGURE 3: Plots of FRs of gamma distributions and their α-mixtures: three IFR gammas (upper panels);
three DFR gammas (middle panels); three gamma distributions with IFR, DFR, and constant FR and
their α-mixtures (lower left) and a three-dimensional plot of their mixture (lower right). All models have

a common scale parameter.

for two exponential distributions where β = 1 and λ = 2, and the right panel shows plots
for two Rayleigh distributions where β = λ = 2. In the right panel, for α = −1 the FRs
become approximately linear very early, and for α = 1 the FR is approximately linear after
x ≈ 1.5.

https://doi.org/10.1017/jpr.2019.72 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2019.72


1162 M. ASADI ET AL.

1.9

16

14

12

10

8

6

4

2

0
0 1 2 3 40 1 2 3

x x

4 5

1.8

1.7

1.6

1.5

1.4

1.3

1.2

1.1

mix(–1) mix(–1) mix(0) mix(1)mix(0) mix(1)

FIGURE 4: The FRs of the harmonic, geometric, and arithmetic mixtures of the SFs of two exponential
(left) and two Weibull (right) distributions of Example 3.3.

Remark 3.1. It is known that if F̄1 ≤lr F̄2, then

F̄1 ≤lr F̄am ≤lr F̄2,

where Xam is a random variable with SF F̄am (see [21]). The following example shows that
the result is not necessarily true for the α-mixture, α �= 1; see [18] for the likelihood order of
mixtures of type F̄am and series systems which, by Example 2.3, can be interpreted as mixtures
of type F̄gm.

Example 3.4. Let X1 be distributed as exponential with PDF f1(x) = e−x, x > 0, and X2 be
distributed as f2(x) = (1 + x)−2, x > 0. It is easy to show that f2(x)

f1(x) is increasing in x, and hence

X1 ≤lr X2. Let Xgm denote the random variable with SF F̄gm. Then X1 ≤lr Xgm does not hold.
This can be seen by using p = 1/2, where the PDF of F̄gm is

fgm(x) = .5e−.5x

(1 + x).5
+ .5e−.5x

(1 + x)1.5
.

The likelihood ratio is
fgm(x)

f1(x)
= .5e.5x

(1 + x).5
+ .5e.5x

(1 + x)1.5
.

Its derivative is

d

dx

(
fgm(x)

f1(x)

)
= .25e.5x[x2 + 2x − 2]

(1 + x)2.5
,

which has a positive root at x = −1 + √
3 ≈ 0.732.

4. Countable and continuous α-mixture

The general case of α-mixture is defined by

F̄α(x) =
[ ∫

A
F̄α

θ (x) dG(θ )

]1/α

, (4.1)
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where A is an index set for Fθ , θ ∈A, dG(θ ) ≥ 0, and
∫
A dG(θ ) = 1. In this representation, the

distribution of X depends on a covariate or a latent parameter θ with an associated probability
mass function dG(θ ) = pi = P(θ = θi) or a PDF dG(θ ) = g(θ )dθ . For example, when X is the
lifetime of a product and θ represents the environment in which the product operates, dG(θ )
depicts an expert opinion or a prior distribution. Theorem 3.1 holds for the general case (4.1);
see Appendix A.1.

The following example gives an interesting application of Theorem 3.1 for the case of a
countable mixture.

Example 4.1. Assume that X1, . . . XN are independent and identically distributed random
variables with SF F̄(x), and N is a random variable independent of the Xi. Let N have a
truncated Poisson distribution with probability function

g(n) = e−λλn

n!(1 − e−λ)
, n = 1, 2, . . . , λ > 0.

Then, given N = n, Yn = min (X1, . . . , Xn) has SF F̄n. The harmonic mixture of the distribu-
tions of minima when the mixing distribution is the truncated Poisson given above is

[F̄hm(x)]−1 =
∞∑

n=1

g(n)

F̄n(x)

=
∞∑

n=1

e−λλn

n! F̄n(x)(1 − e−λ)

= e−λ

1 − e−λ

∞∑
n=1

[λ/F̄(x)]n

n!

= e−λ

1 − e−λ
(eλ/F̄(x) − 1).

This implies that

F̄hm(x) = eλ − 1

eλ/F̄(x) − 1
, x > 0.

According to Theorem 3.1, if F̄ is IFR (IFRA) then so is F̄hm.

For a continuous θ , the α-mixture of the SF F̄θ (x) is defined by

F̄α(x) =
{

[
∫

F̄α
θ (x)g(θ ) dθ ]1/α α �= 0,

F̄gm(x), α = 0,
(4.2)

where
F̄gm(x) = lim

α→0
F̄α(x) = e−Eg[Rθ (x)] (4.3)

is the geometric mixture of the conditional baseline SF, Rθ (x) = − log F̄θ (x) is the conditional
cumulative hazard function, and Eg denotes the expectation with respect to g, assumed to exist.
For α = 1, (4.2) gives the continuous mixture of the distribution,

F̄(x) =
∫

F̄θ (x)g(θ ) dθ,

and for α = −1 it gives the continuous version of the harmonic mixture of SF.

https://doi.org/10.1017/jpr.2019.72 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2019.72


1164 M. ASADI ET AL.

Example 4.2. When the baseline distribution is proportional hazards, F̄θ (x) = [F̄(x)]θ with a
prior g(θ ), then

F̄gm(x) = e
∫

log [F̄(x)]θ g(θ) dθ

= elog F̄(x)
∫

θg(θ) dθ

= [F̄(x)]E(θ).

This shows that when F̄θ (x) for each θ is proportional hazards, then the geometric mixture
model F̄gm is the proportional hazards model where the parameter of the model is the
expectation of θ .

The case of (4.3) is the SF of the mixture FR model

rgm(x) =
∫

rθ (x)g(θ ) dθ,

where rθ (x) is the FR corresponding to F̄θ (x). The behavior of the FR of F̄gm(x) depends on
the behavior of the FR of F̄θ (x). For example, if F̄θ (x) is IFR (DFR) then so is F̄gm(x). The FR
of the continuous α-mixture (4.2) for α �= 0 is as follows:

rα(x) = fα(x)

F̄α(x)

= 1

α

∫
αfθ (x)F̄α−1

θ (x)g(θ ) dθ∫
F̄α

θ (x)g(θ ) dθ

=
∫

rθ (x)gα(θ | x) dθ,

where

gα(θ | x) = g(θ )F̄α(x | θ )∫
F̄α(x | u)g(u) du

is the conditional density function of θ given that Xα > x, in which Xα is a random variable
with the proportional hazard SF F̄α(x).

Example 4.3. Let F̄θ (x) = e−θx, x ≥ 0, and consider the gamma prior G(λ, β). Then

F̄α(x) =
[ ∫ ∞

0
e−αθx λβ

�(β)
θβ−1e−λθ dθ

]1/α

=
(

λ

λ + αx

)β/α

, x ≥ 0, α ≥ 0 (0 ≤ x ≤ −λ/α, α < 0).

This is the SF of the generalized Pareto distribution, which gives the following models:

(a) For α > 0, F̄α(x), x ≥ 0, is Pareto, which is DFR.

(b) The limiting case of α → 0, F̄gm(x), x ≥ 0, is exponential, which is constant FR.

(c) For α < 0, F̄α(x), 0 ≤ x ≤ −λ/α, is rescaled beta, which is IFR.
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5. Conclusion

Mixtures of SFs and FRs provide two alternative models for the lifetime of heterogeneous
items. The α-mixture introduced in this paper is a flexible general family that contains both
these alternatives as special cases. In addition, with 0 ≤ α ≤ 1, it provides various degrees
of compromise between these well-known conventional mixtures, as well as models that
are way beyond these two types with α ∈R. Other examples of the α-mixture family
include the harmonic mixture of distributions with α = −1 and a Heronian type mixture of
two distributions with α = 1/2. The α-mixture of two SFs with p = α = 1/2 is stochastic
equidistant from the two conventional mixture models, hence F̄1/2 provides a benchmark for
the compromise between them. As such, the α-mixture provides a flexible tool for modeling
the lifetime of heterogeneous items. As the weighted power mean of order α, the family is
stochastic ordered by α. Examples of applications of the stochastic order for comparison of
systems are presented. The α-mixture uniquely possesses the CES property, which provides an
interpretation for α.

Some hazard rate properties of the α-mixture family have been explored. A result provided
the following extension of the well-known result of Barlow et al. [7] on the closure of the
mixture of DFR distributions: the α-mixture family with α < 0 (α > 0) is IFR (DFR) when all
components of the mixture are IFR (DFR). A similar closure property holds in terms of IFRA
(DFRA). Another result states that if the FR of a component of the mixture of SFs dominates
the FRs of all other components and the FR of another component is dominated by the FRs
of all other components, then the FR of the α-mixture is bounded between the dominated
and dominator FRs. A further result states that if the FRs of the components of the mixture
of SFs are ordered either increasingly or decreasingly, then the FR of the α-mixture family
is decreasingly ordered by α. These results were illustrated through examples of mixtures of
well-known survival models.

Appendix A. Proofs

A.1. Proof of Theorem 3.1

Following [12] and [6], we provide the proof for the general case (4.1).

Definition A.1. The hazard transform of the α-mixture is defined by [6, 12]

ηα({uθ }) = − 1

α
log

∫
A

e−αuθ dG(θ ), 0 ≤ uθ ≤ ∞, α ∈ ( − ∞, ∞). (A.1)

Using the Hölder inequality, we have the following extension of [6, Theorem 4, p. 162].

Lemma A.1. The hazard transform η({uθ }) of the mixture is concave for α > 0 and convex for
α < 0. That is, for α > 0 (α < 0),

ηα[β{uθ } + (1 − β){vθ }] ≥ (≤) βηα({uθ }) + (1 − β)ηα({vθ })
for any 0 ≤ β ≤ 1, 0 ≤ uθ , vθ ≤ ∞, and θ ∈A.

Following a lemma of [6], if in (A.1) we let uθ = Rθ (x) be the hazard function associated with
F̄θ , then

Rα(x) = ηα({Rθ (x)}) ≡ − 1

α
log

∫
A

e−αRθ (t) dG(θ ), 0 ≤ x < ∞. (A.2)
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Proof. The proof of Theorem 3.1 proceeds as follows.

(a) This part follows from Lemma A.1 and (A.2).

(b) As F̄θ is IFRA (DFRA), and ηα is increasing, the hazard function Rα(x) of the α-mixture
satisfies

Rα(βx) = ηα({Rθ (βx)}) ≤ (≥) ηα({βRθ (x)}), 0 ≤ β ≤ 1.

Now, choosing {vθ } = 0 in the result of Lemma A.1, we obtain

ηα(β{Rθ (x)}) ≤ (≥) βηα({Rθ (x)}). (A.3)

That is, Rα(βx) ≤ (≥) βRα(x), and hence F̄α is IFRA (DFRA). �

A.2. Proof of Theorem 3.2

Proof. The hazard order is equivalently defined by F̄2(x)
F̄1(x)

and is increasing in x ∈R. Denote

the SFs corresponding to rmax(x) by F̄j. Then

F̄α(x)

F̄j(x)
= 1

F̄j(x)

[
pjF̄

α
j (x) +

n∑
i=1,i �=j

piF̄
α
i (x)

]1/α

=
[

pj +
n∑

i=1,i �=j

pi

(
F̄i(x)

F̄j(x)

)α]1/α

.

This is increasing for all α ∈R, by the assumption. The implication rmin(x) ≤ rα(x) can be
established similarly. �

A.3. Proof of Theorem 3.3

Proof. After some algebraic manipulations we find the derivative of (3.1) as follows:

∂rα(x)

∂α
= 1

[F̄α(x)]2α

n−1∑
i=1

n∑
j>i

pipjF̄
α
i (x)F̄α

j (x)

[
(rj(x) − ri(x)) log

F̄j(x)

F̄i(x)

]
.

Let r1(x) ≤ · · · ≤ rn(x) for all x > 0. Then F̄1(x) ≥ · · · ≥ F̄n(x) for all x > 0, and the expression
in the square brackets is negative, implying that the derivative is negative. Hence, rα(x) is
decreasing in α. If r1(x) ≥ · · · ≥ rn(x) for all x > 0, then F̄1(x) ≤ · · · ≤ F̄n(x) for all x > 0,
implying the same conclusion. �
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