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Abstract

Background. Depression and cardiovascular disease (CVD) are associated with each other but
their relationship remains unclear. We aim to determine whether genetic predisposition to
depression are causally linked to CVD [including coronary artery disease (CAD), myocardial
infarction (MI), stroke and atrial fibrillation (AF)].
Methods. Using summary statistics from the largest genome-wide association studies (GWAS)
or GWAS meta-analysis of depression (primary analysis: n = 500 199), broad depression
(help-seeking behavior for problems with nerves, anxiety, tension or depression; secondary
analysis: n = 322 580), CAD (n = 184 305), MI (n = 171 875), stroke (n = 446 696) and AF
(n = 1 030 836), genetic correlation was tested between two depression phenotypes and
CVD [MI, stroke and AF (not CAD as its correlation was previously confirmed)]. Causality
was inferred between correlated traits by Mendelian Randomization analyses.
Results. Both depression phenotypes were genetically correlated with MI (depression:
rG = 0.169; p = 9.03 × 10−9; broad depression: rG = 0.123; p = 1 × 10−4) and AF (depression:
rG = 0.112; p = 7.80 × 10−6; broad depression: rG = 0.126; p = 3.62 × 10−6). Genetically
doubling the odds of depression was causally associated with increased risk of CAD
(OR = 1.099; 95% CI 1.031–1.170; p = 0.004) and MI (OR = 1.146; 95% CI 1.070–1.228;
p = 1.05 × 10−4). Adjustment for blood lipid levels/smoking status attenuated the causality
between depression and CAD/MI. Null causal association was observed for CVD on depres-
sion. A similar pattern of results was observed in the secondary analysis for broad depression.
Conclusions. Genetic predisposition to depression may have positive causal roles on CAD/
MI. Genetic susceptibility to self-awareness of mood problems may be a strong causal risk fac-
tor of CAD/MI. Blood lipid levels and smoking may potentially mediate the causal pathway.
Prevention and early diagnosis of depression are important in the management of CAD/MI.

Introduction

Depressive disorder was ranked the third leading cause of non-fatal health loss in the Global
Burden of Disease Study 2017 (GBD 2017 Disease and Injury Incidence and Prevalence
Collaborators, 2018). As reported by the World Health Organization, more than 300 million
people were suffering from depression in 2017 (World Health Organization, 2017). Among
patients with depression, cardiovascular diseases (CVD) often co-exist. Observational studies
and meta-analyses demonstrated that depression and CVD [including coronary artery disease
(CAD) (Gan et al., 2014), myocardial infarction (MI) (Gan et al., 2014), stroke (Barlinn et al.,
2015) and atrial fibrillation (AF) (Garg et al., 2019; Goren, Liu, Gupta, Simon, & Phatak,
2013)] were associated with each other, and the relationship was bi-directional (Lippi,
Montagnana, Favaloro, & Franchini, 2009). Nevertheless, there is insufficient evidence on
whether depression causally leads to various CVD traits or vice versa. Emerging reports
also called for clinical awareness on the interplay between stress-related psychiatric disorders
and CVD (Bacon, 2019; Song et al., 2019). Given the high prevalence of the diseases and the
huge public health impact incurred, it is important to understand the relationship between
depression and CVD although stress is just one of the risk factors for depression.
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Published genome-wide association studies (GWAS) have
adopted different depression phenotypes, ranging from self-
declared depression-related phenotypes to clinical diagnosis of
major depressive disorder (MDD). As accumulating evidence sug-
gested that genetic association results obtained from the combin-
ation of carefully curated research cohorts with self-declared
depression cohorts are applicable to clinical MDD (Wray et al.,
2018), increasing number of studies are using this approach.
Recently, Howard et al. conducted a GWAS meta-analysis of
depression with 807 553 individuals (246 363 cases; 561 190 con-
trols) (Howard et al., 2019) from the three largest studies of differ-
ent depression phenotypes, including self-reported clinical
diagnosis or treatment of depression in 23andMe participants
(75 607 cases and 231 747 controls) (Hyde et al., 2016), self-
reported diagnosis together with conventional methods like struc-
tured diagnostic interviews in participants of Psychiatric Genomics
Consortium (PGC) (43 204 cases and 95 680 controls) (Wray et al.,
2018), and broad depression, which was defined as ‘self-reported
past help-seeking via a general practitioner or psychiatrist for pro-
blems with nerves, anxiety, tension or depression’ in UK Biobank
participants (127 552 cases and 233 763 controls) (Howard et al.,
2018). The availability of GWAS data enables the conduct of
Mendelian randomization (MR) analysis, which is considered a
powerful approach making use of genetic variation as random
experiment to evaluate the causal association between two traits
or diseases when such relationships cannot be directly evaluated
using clinical trials (Davies, Holmes, & Davey Smith, 2018). Its
principles were described clinically elsewhere (Davies et al.,
2018). In brief, genetic variants that influence the susceptibility
to a disease/trait (like depression as exposure) could serve as
instruments and determine the association of lifelong risk of
another disease/trait (like CAD as outcome). The randomly
assigned genetic variants utilized in MR analyses were fixed at con-
ception, making MR findings less likely to be influenced by
unmeasured confounding and reverse causation when compared
to observational studies (Davies et al., 2018), relying on several
assumptions (Fig. 1). In this study, we adopted a bi-directional
two-sample MR approach to infer causality between genetically
determined depression and several types of CVD after confirming
genetic correlation exists between the traits (Fig. 1). We also aim to
identify the potential mediators in the causal pathway.

Methods

Data sources

The meta-analysis of depression conducted by Howard et al.
(2019) included the three largest GWAS using different depres-
sion phenotypes in participants from 23andMe, PGC and UK
Biobank (Howard et al., 2019). Notably, the summary statistics
of all genetic variants in the study by Howard et al. were only pub-
licly available in the form of the meta-analysis of PGC and UK
Biobank studies without samples from 23andMe, comprising
170 756 cases and 329 443 controls. Taking into account the
GWAS sample size of different depression phenotypes, the pri-
mary analyses in the current study examines the relationship
between depression and various CVD, with depression defined
by the meta-analysis of PGC (self-reported diagnosis together
with conventional identification methods) and UK Biobank
(broad depression) studies comprising 500 199 individuals.
Meanwhile, the broad depression dataset is a subset of the
GWAS meta-analysis of depression conducted by Howard et al.

(2019). Due to its relatively small sample size, only 14 SNPs
reached genome-wide significance, limiting the number of genetic
instruments employed in MR analyses. In view of the anticipated
low power, MR analyses evaluating the causal association between
broad depression and CVD were included as secondary analyses.

In evaluating the genetic correlation/causal association
between depression phenotypes and various CVD, summary sta-
tistics of genetic instruments were extracted from the largest pos-
sible publicly available GWAS/GWAS meta-analysis. Out of the
15 GWAS datasets from which summary statistics were extracted,
13 of the GWAS were conducted in Europeans only, while two
GWAS comprised approximately 80% participants of European
ancestry. Biases of the causal estimates may arise due to sample
overlap. If both the case and control participants in the outcome
dataset are also in the exposure dataset, the extent of bias is a lin-
ear function of the proportion of overlap between the exposure
and outcome datasets (Burgess, Davies, & Thompson, 2016).
Therefore, GWAS datasets with minimal chance of sample over-
lap were chosen. For example, there was a published GWAS
meta-analysis of CAD comprising UK Biobank participants,
with a larger sample size but possible sample overlap with depres-
sion datasets. To avoid any possible biases due to sample overlap,
we conducted the MR analyses using a smaller CAD dataset
without UK Biobank participants.

On the other hand, depression is reported to be associated with
several risk factors of CVD, including blood pressure (Lewington
et al., 2002; Sparrenberger et al., 2009), levels of blood lipid [low-
density lipoprotein cholesterol (LDL-C), high-density lipoprotein
cholesterol (HDL-C) and triglycerides] (Enko et al., 2018; Welty,
2013), body mass index (BMI) (Khan et al., 2018; Luppino et al.,
2010), type-2 diabetes (Kannel & McGee, 1979; Vancampfort
et al., 2015), inflammatory markers [levels of interleukin-6 (IL-6)
and C-reactive protein (CRP) (Pepys & Hirschfield, 2003) as prox-
ies of systemic inflammation] (Howren, Lamkin, & Suls, 2009;
Libby, 2006), physical activity (in terms of average acceleration
measured by wrist-worn accelerometer) (Kamphuis et al., 2007),
smoking status (Ambrose & Barua, 2004; Wootton et al., 2019)
and insomnia (Larsson & Markus, 2019; Nutt, Wilson, &
Paterson, 2008). However, it remains unknown if these risk factors
mediate the association between depression and CVD, or depres-
sion itself is an independent risk factor (Carney & Freedland,
2017). By multivariable MR approach (Burgess et al., 2017;
Burgess & Thompson, 2015), we examine if such risk factors
may potentially mediate the association between depression and
CVD. Data sources of exposures, potential mediators and
outcomes are listed in online Supplementary Table S1.

Estimation of genetic correlation

Using genome-wide summary statistics, linkage disequilibrium
(LD) score regression (LDSC) (Bulik-Sullivan et al., 2015a,
2015b) was employed to estimate the genetic correlation between
two depression phenotypes and various CVD [including MI,
stroke and AF but not CAD which was evaluated in the original
GWAS (Howard et al., 2018, 2019)]. As these complex diseases
were affected by thousands of genetic variants with small effect
size, utilizing genome-wide data in genetic correlation analyses
might provide more information regarding their genetic etiology
than using only the significantly associated SNPs in MR studies,
which also depend on the statistical power of respective GWAS.
Therefore, LCSD was firstly employed to unravel the genetic cor-
relation between diseases, providing insights on shared genetic

1766 Gloria Hoi‐Yee Li et al.

https://doi.org/10.1017/S0033291720003566 Published online by Cambridge University Press

https://doi.org/10.1017/S0033291720003566


ethology between diseases. The results of genetic correlation ana-
lyses subsequently help to prioritize the identification of likely
causal relationships (Bulik-Sullivan et al., 2015a). Pre-computed
LD scores suitable for European-ancestry samples and Python
command line tool were used.

Selection of genetic instruments for MR analyses

The causal association was tested between genetically correlated
depression/broad depression and CVD trait pairs. The genetic
instruments adopted in univariable and multivariable MR

analyses for each exposure-outcome pair are the same, and they
satisfied the MR assumptions (Fig. 1). Briefly, independent
GWAS-derived exposure-associated genetic variants, which were
not in LD with each other, were initially selected as the genetic
instruments to represent genetic predisposition to the exposure
trait. The summary statistics of these initial genetic instruments
were retrieved from the datasets of outcome and potential
mediators. If an initial genetic instrument was unavailable in
the GWAS of outcome or potential mediator datasets, a proxy
variant in high LD (r2> 0.8) and present in all the exposure, out-
come and potential mediator datasets were selected as the genetic

Fig. 1. Study design of the current study: genetic correction and mendelian randomization analysis.
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instrument to replace the initial one. If no proxies could be iden-
tified, the genetic instrument was excluded from MR analysis.
One of the MR assumptions is that the genetic instruments
only act on the outcome via the exposure and/or potential med-
iators (Fig. 1). Violation of this assumption is known as horizon-
tal pleiotropy. Pleiotropic genetic instruments associated with the
outcome through pathways other than the exposure/mediators
under investigation were excluded from MR analyses. Such
genetic variants were defined as those with a genome-wide signifi-
cant association with alternative pathways in GWAS conducted
by representative consortiums, as revealed by the web-interfaced
PhenoScanner (Staley et al., 2016), a curated database of publicly
available GWAS. If MR pleiotropy residual sum and outlier
(MR-PRESSO) identified outliers, the MR analyses were repeated
after exclusion of the outliers. Genetic instruments selected by the
above procedures constituted the main analysis. As a sensitivity
analysis, the MR analysis was repeated after excluding the genetic
instruments which did not reach genome-wide significance in the
exposure dataset (such as proxies). Detailed selection of genetic
instruments is elaborated in Supplementary Methods 1. The num-
ber of genetic instruments and summary statistics applied in each
MR analysis are included in Table 1 and online Supplementary
Tables S2–S13 respectively.

Power calculation

The proportion of variance in the exposure explained by the genetic
instruments was derived from theMangrove package (Jostins, 2017)
in R, which also takes into account the disease prevalence. An online
web tool, mRnd (http://cnsgenomics.com/shiny/mRnd/) (Brion,
Shakhbazov, & Visscher, 2013), was employed to perform power
calculation. Strength of genetic instruments for each MR analysis
is presented in Table 1. For each pair of the causal relationship
under investigation, a plot of power against odds ratio of the true
underlying association is shown in online Supplementary Fig. S1.

MR analyses

All the genetic instruments were oriented such that the effect
alleles were positively associated with the exposure. The effect
alleles were matched across the summary data of the exposure,
potential mediator and outcome dataset. Due to the unavailability
of effect allele frequency of some GWAS datasets, allele frequen-
cies were not used to align palindromic genetic instruments on
ambiguous strands across different datasets. Non-palindromic
proxies in high LD (r2⩾ 0.8) were identified for the palindromic
instruments (Hartwig, Davies, Hemani, & Davey Smith, 2016).
Univariable inverse-variance weighted (IVW) method was used
for main MR analysis to assess the total effect of the exposure
on the outcome (Burgess, Butterworth, & Thompson, 2013;
Burgess et al., 2017). Weighted median method (Bowden, Davey
Smith, Haycock, & Burgess, 2016) was employed as a sensitivity
analysis. MR-Egger intercept test (Bowden, Davey Smith, &
Burgess, 2015) and global test of MR-PRESSO (Verbanck,
Chen, Neale, & Do, 2018) were employed to detect for the pres-
ence of pleiotropy. In case univariable MR analysis suggested
the presence of causal association, multivariable IVW analysis
was also performed to dissect the mechanisms in the causal path-
way from the risk factor to the outcome (Burgess & Thompson,
2015; Burgess et al., 2017). It was reported that the causal esti-
mates derived from univariable MR analysis represents the total
effect of the exposure on the outcome. Multivariable MR analysis

can be used to estimate the direct causal effect of the exposure on
the outcome by keeping the potential mediator constant. Presence
of difference between the causal estimates of the univariable (total
effect) and multivariable MR analysis (direct causal effect) implies
that causal effect acts at least in part via the potential mediator
(indirect effect) (Burgess et al., 2017). Multivariable MR-Egger
intercept test was applied to detect the presence of residual plei-
otropy via other unmeasured risk factors (Rees, Wood, &
Burgess, 2017). Different methods of MR analyses are described
in Supplementary Methods 2.

As the exposures in all the MR analyses are binary variables,
the causal estimates were initially equivalent to the change in
the outcome per unit change in the exposure on the log odds
scale (=exponential 1, i.e. 2.72-fold change in the odds of the
exposure). For the sake of interpretation, the causal estimates
were converted by multiplying 0.693 (=ln 2) and then exponenti-
ating to represent the change in outcome per 2-fold change in the
prevalence of the exposure (Burgess & Labrecque, 2018).

Results

Genetic correlation

Genetic correlation between the depression phenotypes and
various CVD are shown in Table 2. Depression had a strong
and positive genetic correlation with broad depression (rG =
0.9732; S.E. = 0.0041; p = 0). A positive significant genetic correl-
ation was observed for both depression phenotypes with MI
(depression: rG = 0.1688; S.E. = 0.0294; p = 9.03 × 10−9; broad
depression: rG = 0.1231; S.E. = 0.0324; p = 1 × 10−4) and AF (depres-
sion: rG = 0.1124; S.E. = 0.0251; p = 7.80 × 10−6; broad depression:
rG = 0.1258; S.E. = 0.0272; p = 3.62 × 10−6), but not with stroke. In
addition to CAD which was demonstrated to be genetically corre-
lated with depression phenotypes (Howard et al., 2018, 2019),
bi-directional two-sample MR was conducted for six pairs of traits
(two depression phenotypes v. CAD, MI and AF).

Two-sample MR of depression and CVD

To account for multiple testing, we applied a conservative
Bonferroni corrected threshold (α = 4.167 × 10−3 = 0.05/12) in
the subsequent two-sample bi-directional MR analyses. The pri-
mary analysis aims to evaluate the causal relationship between
depression and various types of CVD. With 93 genetic instru-
ments in the main analysis, univariable IVW method demon-
strated that genetically doubling the odds of depression
increased the risk of CAD and MI by 9.9% and 14.6%, respectively
(CAD: OR = 1.099; 95% CI 1.031–1.170; MI: OR = 1.146; 95% CI
1.070–1.228) (Fig. 2a; online Supplementary Figs S2a and S3a).
Sensitivity analysis of weighted median method yielded similar
estimates (CAD: OR = 1.138; 95% CI 1.042–1.242; MI: OR =
1.163; 95% CI 1.057–1.281). The association remained significant
after corrected for multiple testing. In multivariable IVW analysis
adjusting for beta estimates of smoking status, the causal associ-
ation between depression and CAD/MI were attenuated (CAD:
OR = 1.027; 95% CI 0.956–1.103; MI: OR = 1.053; 95% CI
0.975–1.139). With adjustment for blood lipid levels, the causal
association was also attenuated between depression and CAD
(OR = 1.060; 95% CI 0.994–1.130), but not for MI. There was little
change in causal estimate after adjustment for other potential
mediators (Fig. 2b). MR-Egger intercept tests were insignificant
in all univariable and multivariable MR analyses of depression
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Table 1. Power calculation of MR analysis for depression phenotypes and various CVD

Exposure Outcome

Primary/Secondary/
Sensitivity analysis?

Number of genetic instruments included
in MR analysis (total number of

independent genetic variants identified
in GWAS – number of genetic variants

excluded due to lack of proxies – number
of pleiotropic variants)

Proportion of
variance explained
by the genetic
instruments on
exposure (%) F-statisticsDisease Sample size Disease Sample size

1 Depression Total: 500 199;
Cases: 170 756;
Controls: 329 443

Coronary
artery
disease

Total: 184 305;
Cases: 60 801;
Controls: 123 504

Primary analysis 93 (102 – 2 – 7) 0.878 1633.53

Sensitivity analysis 34 0.439 813.67

2 Depression Total: 500 199;
Cases: 170 756;
Controls: 329 443

Myocardial
infarction

Total: 171 875;
Cases: 43 676;
Controls: 128 199

Primary analysis 93 (102 – 2 – 7) 0.878 1523.43

Sensitivity analysis 34 0.439 758.86

3 Depression Total: 500 199;
Cases: 170 756;
Controls: 329 443

Atrial
fibrillation

Total: 1 030 836;
Cases: 60 620;
Controls: 970 216

Primary analysis 93 (102 – 2 - 7) 0.878 9131.91

Sensitivity analysis 34 0.439 4546.32

4 Coronary
artery
disease

Total: 184 305;
Cases: 60 801;
Controls: 123 504

Depression Total: 500 199;
Cases: 170 756;
Controls: 329 443

Primary analysis 47 (63 – 6 - 10) 4.281 22 372.23

5 Myocardial
infarction

Total: 171 875;
Cases: 43 676;
Controls: 128 199

Depression Total: 500 199;
Cases: 170 756;
Controls: 329 443

Primary analysis 25 (34 – 4 - 5) 2.732 14 050.26

6 Atrial
fibrillation

Total: 1 030 836;
Cases: 60 620;
Controls: 970 216

Depression Total: 500 199;
Cases: 170 756;
Controls: 329 443

Primary analysis 149 (166 – 10 - 7) 5.625 29 814.19

7 Broad
depression

Total: 322 580;
Cases: 113 769;
Controls: 208 811

Coronary
artery
disease

Total: 184 305;
Cases: 60 801;
Controls: 123 504

Secondary analysis 10 (14 – 1 - 3) 0.009 17.59

Sensitivity analysis 9 0.008 15.75

8 Broad
depression

Total: 322 580;
Cases: 113 769;
Controls: 208 811

Myocardial
infarction

Total: 171 875;
Cases: 43 676;
Controls: 128 199

Secondary analysis 10 (14 – 1 – 3) 0.009 16.47

Sensitivity analysis 9 0.008 14.75

9 Broad
depression

Total: 322 580;
Cases: 113 769;
Controls: 208 811

Atrial
fibrillation

Total: 1 030 836;
Cases: 60 620;
Controls: 970 216

Secondary analysis 10 (14 – 1 - 3) 0.009 93.78

Sensitivity analysis 9 0.008 83.47

10 Coronary
artery
disease

Total: 184 305;
Cases: 60 801;
Controls: 123 504

Broad
depression

Total: 322 580;
Cases: 113 769;
Controls: 208 811

Secondary analysis 47 (63 – 6 - 10) 4.225 14 231.23

11 Myocardial
infarction

Total: 171 875;
Cases: 43 676;
Controls: 128 199

Broad
depression

Total: 322 580;
Cases: 113 769;
Controls: 208 811

Secondary analysis 25 (34 – 4 – 5) 2.674 8863.78

12 Atrial
fibrillation

Total: 1 030 836;
Cases: 60 620;
Controls: 970 216

Broad
depression

Total: 322 580;
Cases: 113 769;
Controls: 208 811

Secondary analysis 152 (166 – 6 – 8) 5.721 19 575.67
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on both CAD and MI ( p > 0.05) (Figs 2a and 2b). MR-PRESSO
global tests did not detect any horizontal pleiotropy ( p > 0.05)
(Fig. 2a).

In the sensitivity analyses, genetic instruments which no
longer attained genome-wide significance in the depression data-
set were excluded. The same pattern of results was observed. With
34 genetic instruments, univariable IVW analysis showed that
genetic predisposition to increased risk of depression was causally
linked to increased risk of CAD and MI (CAD: OR = 1.103; 95%
CI 1.014–1.199; MI: OR = 1.180; 95% CI 1.068–1.303). Similar
causal estimates were obtained from the weighted median method
(CAD: OR = 1.131; 95% CI 1.004–1.274; MI: OR = 1.162; 95% CI
1.014–1.331) (Fig. 3a; online Supplementary Figs S2b and S3b). In
multivariable MR analysis, the causal association of depression
with both CAD and MI was attenuated after adjustment for
beta estimates of smoking status (CAD: OR = 1.030; 95% CI
0.931–1.138; MI: OR = 1.085; 95% CI 0.971–1.213) (Fig. 3b). In
addition, the causal association between depression and CAD
was also attenuated when adjusted for blood lipid levels (OR =
1.041; 95% CI 0.948–1.143), type 2 diabetes (OR = 1.083; 95%
CI 0.994–1.180), BMI (OR = 1.079; 95% CI 0.992–1.175) and
blood pressure (OR = 1.086; 95% CI 0.996–1.183) in multivariable
MR analyses. MR-PRESSO global tests, as well as MR-Egger inter-
cept tests in both univariable and multivariable MR analyses, were
insignificant ( p > 0.05), indicating the absence of horizontal
pleiotropy.

Using 93 genetic instruments in the main analysis, univariable
IVW analyses showed null causal association between depression
and AF (Fig. 2a). While MR-Egger intercept test suggested no evi-
dence of pleiotropy, MR-PRESSO suggested three horizontal plei-
otropy outliers were present. Consistent null causal association

was observed after excluding the outliers with the use of 90 instru-
ments (Fig. 2a, online Supplementary Fig. S4). MR-PRESSO glo-
bal test was still statistically significant ( p = 0.002), implying that
overall horizontal pleiotropy might be present. However,
MR-PRESSO did not identify any significant outliers of horizon-
tal pleiotropy. In sensitivity analysis including only 34 instru-
ments reaching genome-wide significance in the meta-analysis
of depression, there was null causal association between depres-
sion and AF in the univariable analysis. Insignificant MR Egger
intercept and MR-PRESSO global tests implied the absence of
horizontal pleiotropy (Fig. 3a; online Supplementary Fig. S4b).

We found no evidence of causal effects of any CVD on depres-
sion (online Supplementary Table S14a and Figs S5–S7).
MR-Egger intercept and MR-PRESSO global tests did not detect
any horizontal pleiotropy outliers.

In the secondary analysis evaluating the causal relationship
between broad depression and various CVD, a similar pattern
of results was obtained. Results of the secondary analysis were
detailed in online Supplementary Text 1, Supplementary Figs
S8–S15.

Discussion

In this study, we demonstrate the presence of the genetic correl-
ation between depression and MI, as well as AF. The primary
two-sample MR analysis provides evidence that genetically
increasing odds of depression are causally associated with
increased risk of CAD and MI. We found no evidence on the
presence of the causal relationship between depression and AF.
Reverse causation of CVD on depression is not detected. The
same pattern of results was observed in the secondary analysis
which assesses the causal relationship between broad depression
(as a subset of depression) and CVD. We also investigated if any
potential mediator plays a role in the causal pathway from
depression to CVD.

Our LDSC analysis revealed that depression and broad depres-
sion were strongly correlated with each other. A positive genetic
correlation was present between both depression phenotypes
and MI, as well as AF. A genetic correlation was also reported
between depression and CAD (Howard et al., 2018, 2019), sug-
gesting these traits may have shared genetic etiology. Stroke was
the only tested CVD trait which did not have a genetic correlation
with both depression phenotypes. As causal association was less
likely in the absence of genetic correlation, subsequent MR ana-
lysis was not performed in the current study. In line with this, a
two-sample MR analysis did not support the presence of a causal
relationship between genetically determined risk of depression on
ischemic stroke (Gill et al., 2019).

We inferred causality of depression on various CVD by MR
approach as our primary analysis. Univariable IVW analysis
using 93 genetic instruments showed that genetically doubling
the odds of depression increased the risk of CAD and MI by
9.9% (OR = 1.099) and 14.6% (OR: 1.146), respectively. The cau-
sal association remained significant after corrected for multiple
testing. Similar causal estimates were obtained in the sensitivity
analysis using 34 genetic instruments. These are consistent with
the previous meta-analysis of population-/community-based
prospective cohort studies (Gan et al., 2014). Results from
MR-Egger intercept and MR-PRESSO global tests implied that
horizontal pleiotropy is unlikely. The current study provides
robust evidence on the causality of depression on CAD and
MI. A similar pattern of results was observed in the secondary

Table 2. Genetic correlation among the two depression phenotypes and
various CVD

Trait 1 Trait 2

Genetic
correlation rG

(Standard Error)
p

value

1 Depression Broad
depression

0.9732 (0.0041) 0

2 Depression Coronary
artery
disease

0.1328 (0.0244)a 5.44 ×
10−8a

3 Depression Myocardial
infarction

0.1688 (0.0294) 9.03 ×
10−9

4 Depression Stroke 0.0715 (0.0414) 0.08

5 Depression Atrial
fibrillation

0.1124 (0.0251) 7.80 ×
10−6

6 Broad
depression

Coronary
artery
disease

0.1236 (0.0288)a 1.71 ×
10−5a

7 Broad
depression

Myocardial
infarction

0.1231 (0.0324) 1 ×
10−4

8 Broad
depression

Stroke 0.0674 (0.0434) 0.1204

9 Broad
depression

Atrial
fibrillation

0.1258 (0.0272) 3.62 ×
10−6

aGenetic correlation between the two depression phenotypes and coronary artery disease
were computed in the original GWAS (Howard et al., 2018)/GWAS meta-analysis (Howard
et al., 2019). The relevant figures were extracted here.
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analysis evaluating the causal effects of broad depression on
CAD and MI.

Depression and CVD are hypothesized to be linked by several
biological (inflammatory processes, dysfunction in the autonomic
nervous system, endothelial and platelet dysfunction) and behav-
ioral mechanisms (physical exercise, medical treatment and
smoking) (Carney & Freedland, 2017). We evaluated some of
the above mechanisms using multivariable MR analyses. The
attenuation of the causal effect of genetically determined depres-
sion on CAD/MI after adjustment for smoking status suggested
that smoking status might potentially mediate the causality.
Patients with depression may smoke as ‘self-medication’ to allevi-
ate symptoms of the illness or side-effects of medications
(Wootton et al., 2019) but toxic components of cigarettes might
increase the incidence of CAD and MI by inflammation, throm-
bosis or increase in oxidative stress (Ambrose & Barua, 2004). On
the other hand, multivariable MR analysis adjusted for blood lipid
levels (LDL-C, HDL-C and triglycerides) attenuated the causality
between depression and CAD. Patients with MDD were reported
to have lower HDL-C, higher triglycerides (Enko et al., 2018) and
LDL-C (Parekh, Smeeth, Milner, & Thure, 2017) levels in serum.
One possible explanation for such lipid profile could be

life-style-related factors (Enko et al., 2018), such as sedentary
behaviors and poor adherence to physical exercises and diet
[e.g. eating comfort food rich in fats and sugar to improve
mood (Atlantis et al., 2011)] for patients with depression
(Carney & Freedland, 2017). Meanwhile, a combination of low
HDL-C, high LDL-C and triglyceride levels arewell-known risk fac-
tors of atherosclerosis (Welty, 2013), and thus increasing the risk of
CAD. For broad depression, the causal association with CAD was
attenuated after adjusting for blood lipid levels, type 2 diabetes,
BMI, blood pressure and smoking status in multivariable MR
analysis, indicating that causality might be partly mediated by
these factors. This is further discussed in Supplementary Text
1. Due to the difference in definitions (detailed in Supplementary
Text 2), slightly different results of MR analyses of depression and
broad depression on CAD/MI were observed in the present study,
which is discussed in Supplementary Text 3. A few published MR
studies also investigated the causality between depression and
CVD traits. Comparison with these studies is further discussed in
Supplementary Text 4.

There are several clinical implications. Our research findings
suggest that genetic predisposition to depression is a causal risk
factor of CAD and MI, leading to the hypothesis that alleviation

Fig. 2. Result of Mendelian Randomization analysis in evaluating the casual association between depression and various CVD. (a) Casual estimates for various CVD
(in odds ratio) per doubling of the odds of depression in univariable MR analyses. (b) Causal estimates for various CVD (in odds ratio) per doubling of the odds of
depression in multivariable MR analyses.
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in depression might reduce the risk of CAD and MI. Although a
few randomized controlled trails (RCTs) demonstrated that anti-
depressant therapy improved depression but had no effect on
cardiac outcomes (Berkman et al., 2003; Zuidersma et al.,
2013), such null effect might be because the antidepressant
intervention on depression was weak and short-term that did
not pose much effect on the long-term cardiac outcome
(Shapiro, 2013). In addition, some depression-related medica-
tions would result in arrhythmias (Girardin et al., 2013), weight
gain (Gafoor, Booth, & Gulliford, 2018) and type 2 diabetes
(Galling et al., 2016), which are known risk factors of CVD
(Girardin et al., 2013). The robust causal association between
depression and CAD/MI strengthens the idea that prevention
and early diagnosis of depression or related mood disorder
may help preventing CVD. Moreover, the depression definition
adopted in this study is a mix of self-reported diagnosis together
with conventional methods like structured diagnostic interviews,
as well as broad depression, which represents self-awareness of
mood problems (a stage preceding and not necessarily a clinical
diagnosis of depression), and a proxy phenotype of stress. In a
recent population-based, sibling controlled cohort study com-
prising 136 637 patients with stress-related disorders, the crude
incidence rate of any CVD in these patients were higher than

their unaffected siblings and matched unexposed individuals
from the general population (Song et al., 2019). A meta-analysis
of 46 cohorts with 2 017 276 participants (222 253 with an anx-
iety disorder) revealed that anxiety was associated with an ele-
vated risk of coronary heart disease, heart failure, but not AF
(Emdin et al., 2016). The findings of our study may partly
explain the comorbidity of stress-related and anxiety disorders
with CVD. Given the potential mediating roles of smoking
and blood lipid levels in the causal pathway of depression to
CVD, appropriate stress management strategies with a change
of lifestyle-related factors (such as smoking cessation and intake
of less comfort foods of high energy) may be warranted to pre-
vent CVD in patients with depression, stress-related or anxiety
disorders.

The current study has several strengths. MR approach is
applied to infer causality between two diseases, which is infeasible
by RCT, as it is unethical to leave the patients with one disease
untreated with the aim to observe the occurrence of another
disease outcome. Two-sample MR approach is reported to have
increased statistical power particularly for testing causality on
binary disease outcomes (Lawlor, 2016). Genetic instruments
adopted in this study were selected from the largest possible
and well-powered GWAS studies. Hence, the current study is well-

Fig. 2. Continued.
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powered (online Supplementary Fig. S1). The relatively high
F-statistic (⩾1523.43) of the genetic instruments involved in the
main primary MR analyses of depression implied a lower chance
of weak instrument bias. Although the genetic instruments
employed in the MR analyses of broad depression (Table 1)
were relatively weak, this should have causal estimates biased
towards the null in two-sample MR analysis (Pierce & Burgess,
2013). The causality inferred for broad depression is thus unlikely
to be false positive.

This study also has limitations. Firstly, functions of the gen-
etic instruments and how they influence the risk factors were
not fully understood. Although we intended to be stringent in
identifying pleiotropic instruments based on the information
available in PhenoScanner in order to exclude genetic instru-
ments likely to have horizontal pleiotropy with the outcome,
it is possible that the genetic instruments may have an indirect
effect on the outcome via a currently unknown pathway that
does not involve the risk factor of interest. Nevertheless, we
addressed this issue by adopting MR-Egger intercept and
MR-PRESSO tests, though it cannot be ruled out unequivocally.
Secondly, we attempted to reveal the potential mediators in the
causal pathway from depression to CVD by multivariable MR
analysis. However, we acknowledged that the list of potential

mediators being examined may not be exhaustive and future
studies on additional potential mediators are warranted.
Thirdly, two out of the 15 GWAS datasets from which the sum-
mary statistics were extracted from comprised predominantly
Europeans (approximately 80%). Population stratification may
confound the association between depression and various
CVD, violating one of the MR assumptions. Nevertheless,
adjustments for principal components were performed in the
respective GWAS (Hoffmann et al., 2017; Nikpay et al., 2015),
alleviating the potential effects of population stratification on
the MR findings. Fourthly, we intended to explore the potential
mediator in the causal pathway from depression to CVD by
multivariable MR analysis. Yet, the sample size of GWAS of
the two inflammation markers, CRP (n = 9961) (Prins et al.,
2017) and IL-6 (n = 8293) (Ahola-Olli et al., 2017), were
small. The roles of various inflammatory markers in the causal
pathway may be examined again when summary statistics from
larger GWAS become available. Fifthly, study participants
included in the depression meta-analysis were not screened
for CVD at baseline and vice versa. The presence of outcome
in the exposure dataset may inflate the causal estimates in MR
analyses. However, this is a general limitation of two-sample
MR analyses and is inevitable without individual-level data.

Fig. 3. Sensitivity analysis results in evaluating the causal association between depression and various CVD using only genetic instruments that remained genome-
wide significant in the samples excluding 23andme cohort. (a) Causal estimates for various CVD (in odds ratio) per doubling of the odds of depression in univariable
MR analysis. (b) Causal estimates for various CVD (in odds ratio) per doubling of the odds of depression in multivariable MR analysis.
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Sixthly, non-overlapping samples were utilized in the exposure
and outcome datasets as far as possible to avoid bias. However,
due to the unavailability of the raw genetic data, we could not
determine the proportion of sample overlap between exposure
and outcome datasets.

In conclusion, genetic predisposition to depression is causally
associated with CAD and MI, but reverse causation is not
observed. Genetic susceptibility to increased self-awareness of
mood problems, preceding and not necessarily a clinical diagnosis
of depression, may be a strong causal risk factor of CAD and MI.
The causal association contributes to the shared comorbidity of
depression and CAD/MI.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0033291720003566.
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