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Abstract

Scientific data is often analyzed in the context of domain-specific problems, for example, failure diagnostics, predictive
analysis, and computational estimation. These problems can be solved using approaches such as mathematical models
or heuristic methods. In this paper we compare a heuristic approach based on mining stored data with a mathematical ap-
proach based on applying state-of-the-art formulae to solve an estimation problem. The goal is to estimate results of scien-
tific experiments given their input conditions. We present a comparative study based on sample space, time complexity, and
data storage with respect to a real application in materials science. Performance evaluation with real materials science data is
also presented, taking into account accuracy and efficiency. We find that both approaches have their pros and cons in com-
putational estimation. Similar arguments can be applied to other scientific problems such as failure diagnostics and predic-
tive analysis. In the estimation problem in this paper, heuristic methods outperform mathematical models.

Keywords: Comparative Study; Computational Estimation; Heat Treating of Materials; Heuristic Methods; Mathematical
Modeling

1. INTRODUCTION

Scientific data in domains such as materials science is often
analyzed in the context of domain-specific applications. An
example is computational estimation, where the results of ex-
periments are estimated without conducting real experiments
in a laboratory. Another application is failure diagnostics,
where existing cases are used to diagnose causes of failures
such as distortion in materials. A related application is predic-
tive analysis, where process variables are predicted a priori to
assist parameter selection so as to optimize the real processes.

This paper describes the use of mathematical and heuristic
approaches in such scientific data analysis. The goal is to per-
form a comparative study between these two approaches. We
consider a domain-specific computational estimation prob-
lem. The domain of focus is the heat treating of materials
(Stolz, 1960). The result of a heat treating experiment is
plotted as a heat transfer curve. Scientists are interested in

estimating this curve given experimental input conditions
(Sisson et al., 2004). We present a detailed study of selected
mathematical and heuristic approaches as potential solutions
to this problem.

Mathematical models for estimation are based on formulae
derived from theoretical calculations (Stolz, 1960; Beck et al.,
1985). They provide definite solutions under certain situ-
ations. However, existing mathematical models are often in
applicable under certain circumstances (Maniruzzaman et al.,
2006). For example, in heat treating there is a direct–inverse
heat conduction model for estimating heat transfer curves
(Beck et al., 1985). However, if the real experiment is not con-
ducted, this model requires initial time–temperature inputs to
be given by domain experts each time the estimation is per-
formed. This is not always feasible.

Heuristic methods are often based on approximation. A
heuristic by definition is a rule of thumb likely to lead to
the right answer but not guaranteed to succeed (Russell &
Norvig, 1995). However, heuristic methods are applicable
in some situations where mathematical models cannot be
used or do not provide adequate solutions. In our earlier
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work (Varde et al., 2006b) we have proposed a heuristic
approach based on integrating the data mining techniques
of clustering and classification as a solution to a computa-
tional estimation problem. When applied to estimating heat
transfer curves, this approach works well in many situations
where mathematical models in heat treatment are not found
to be satisfactory because of lack of inputs.

In this paper, we present a comparative study between
mathematical and heuristic approaches in estimation taking
into account sample space, time complexity, and data storage.
Sample space refers to the number of experiments that can be
estimated under various conditions. Time complexity relates
to the computation of the mathematical models or heuristic
methods in terms of execution time. Data storage refers to
the amount of data stored in the database in each approach.

We also provide performance evaluation with real data
from the heat treating domain considering accuracy and effi-
ciency. The accuracy of the estimated results refers to how
close the estimation is to the result of a real laboratory experi-
ment. The efficiency of the approach relates to how fast it can
perform the estimation.

It is found that both mathematical and heuristic approaches
have their advantages and disadvantages. For the given esti-
mation problem in this paper, we find that heuristic methods
are generally better than existing mathematical models.

The arguments made for computational estimation can also
be considered valid in the context of the other applications
such as failure diagnostics tools (Scientific Forming Technol-
ogies, 1995) and predictive analysis systems (Varde et al.,
2004). Detailed discussion about each of these is beyond
the scope of this paper.

The following contributions are made in this work:

1. A description of mathematical and heuristic approaches
in computational estimation.

2. A comparative study based on sample space, time com-
plexity, and data storage.

3. A performance evaluation with real data from the heat
treating of materials.

The rest of this article is organized as follows. Section 2
explains the computational estimation problem. Section 3
describes a mathematical approach to solve the given prob-
lem, and Section 4 describes a heuristic solution. Section 5
presents a comparative assessment of the approaches with
respect to sample space, data storage, and time complexity.
Section 6 discusses the performance evaluation of each
approach in terms of accuracy and efficiency. Section 7 out-
lines related work. Section 8 states the conclusions.

2. COMPUTATIONAL ESTIMATION PROBLEM

In scientific domains such as materials science and mechanical
engineering, experiments are performed in the laboratory with
specified input conditions and the results are often plotted
as graphs. The term graph in this paper refers to a two-

dimensional plot of a dependent versus an independent vari-
able depicting the behavior of process parameters. These
graphs serve as good visual tools for analysis and comparison
of the processes. Performing real laboratory experiments and
plotting such graphs consumes significant time and resources,
motivating the need for computational estimation.

We explain this with an example from the domain of heat
treating of materials that inspired this work. Heat treating is a
field in materials science that involves the controlled heating
and rapid cooling of a material in a liquid or gas medium to
achieve desired mechanical and thermal properties (Stolz,
1960).

Figure 1 shows an example of the input conditions and
the resulting graph in a laboratory experiment in quenching,
namely, the rapid cooling step in heat treatment (Stolz,
1960). The quenchant name refers to the cooling medium
used, for example, T7A and HoughtoQuenchG. The part
material name incorporates the characteristics of the part
such as its alloy content and composition, for example,
ST4140 and Inconel600. Note that the part may have thick,
thin, or no oxide layer on its surface. A sample of the part
called the probe is used for quenching, and has certain shape
and dimensions characterized by the probe type. During
quenching, the quenchant is maintained at a given tempera-
ture and may be subjected to a certain level of agitation,
that is, high or low. All these parameters are recorded as input
conditions of the quenching experiment.

The result of the experiment is plotted as a graph called a
heat transfer coefficient curve. This depicts the heat transfer
coefficient h versus part temperature T. The heat transfer co-
efficient measures the heat extraction capacity of the pro-
cess, and depends on the cooling rate and other parameters
such as part density, specific heat, area, and volume. The
heat transfer curve characterizes the experiment by repre-
senting how the material reacts to rapid cooling (Stolz, 1960).

For instance, in the material ST4140, which is a kind of steel,
heat transfer coefficient curves with steep slopes imply fast heat
extraction capacity. The corresponding input conditions could
be used to treat this steel in an application that requires such a
capacity. Materials scientists are interested in this type of anal-
ysis to assist decision making about corresponding processes.

However, to perform such analysis, conducting the actual
experiment in the laboratory takes 5–6 h. The concerned re-
sources require a capital investment of thousands of dollars
and recurring costs worth hundreds of dollars (Sisson et al.,
2004).

It is thus desirable to computationally estimate in an experi-
ment the resulting graph given the input conditions. The esti-
mation problem is as follows:

† Given: the input conditions of a scientific experiment
† Estimate: the resulting graph depicting the output of the

experiment

We describe the solutions to this estimation problem taking
into account mathematical and heuristic approaches.
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3. MATHEMATICAL MODELING APPROACH

Mathematical models are often derived in a domain-specific
manner. We explain mathematical modeling with reference
to the problem of estimating heat transfer curves (Ma et al.,
2004; Maniruzzaman et al., 2006). This problem translates
to estimating heat transfer coefficients as a function of tem-
perature. The estimation method presented here is based on
the extension of the sequential function specification method
(Beck et al., 1985).

The mathematical model we describe relates to processes
known as direct and inverse heat conduction (Stolz, 1960).
Although there are other mathematical models in the litera-
ture, we discuss just this model in detail. The arguments
applied here in the context of comparative analysis can also
be extended in principle to other mathematical models.

3.1. The direct problem

The first step of the analysis is to develop a direct solution for
the heat conduction problem, that is, to determine probe
temperature given other input conditions. We consider a
one-dimensional, nonlinear heat conduction problem in a
cylindrical coordinate system. The Center for Heat Treating
Excellence (CHTE) probe (3/8-in. diameter, 1.5-in. length)
is used in this study (Ma et al., 2004).

The differential heat equation can be expressed as

@2T(r, t)
@r2

þ 1
r

@T

@r
¼ 1

a

@T(r, t)
@t

, (1a)

with boundary conditions

k
@T(r, t)
@r

¼ h[T(r, t)� T1], (1b)

@T(0, t)
@r

¼ 0, (1c)

and initial condition

T(r, 0) ¼ T0: (1d)

Here, T(r, t) is the temperature, which is the function of radius
and time; h is the heat transfer coefficient; T1 is the quenchant
temperature; and k and a are the respective thermal conduc-
tivity and thermal diffusivity of the material being studied.

The direct problem is thus concerned with calculating the
probe temperature at the different locations when the surface
heat transfer coefficient, specific heat, thermal conductivity,
and boundary conditions are known. The above direct heat
conduction problem is solved using a technique called the
finite difference method. This method is explained in detail
in Ma et al. (2004).

3.2. The inverse problem

The next step of the analysis is known as the inverse problem.
In this problem, the surface heat transfer coefficient h(T ) is
regarded as being unknown, but everything else in Eqs.
(1a) –(1d) is known. In addition, the temperature readings at
the geometric center of the probe from the quenching experi-
ment are considered available. Let the temperature reading be
denoted by Y(0, t). Then the estimation of surface heat trans-
fer coefficient can be obtained by minimizing the following
functional:

J[h] ¼
ðt¼tf

t¼0

[T(0, t)� Y(0, t)]2dt: (2)

where J[h] is the functional to be minimized, T(0, t) is the cal-
culated temperature at the geometric center of the probe ob-
tained by solving the direct problem using a finite difference
method, Y(0, t) is the experimentally measured temperature,
and tf is the final time for the whole quenching process.

3.3. Steepest descent method (SDM)

The SDM is an iterative process used for the estimation of the
transient heat transfer coefficient. This method primarily in-
volves minimizing the J[h] functional. The computational
procedure to implement this method will be explained
Section 3.4.

Fig. 1. An example of input conditions and a graph. [A color version of this figure can be viewed online at www.journals.cambridge.org]
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In this method the change in heat transfer coefficient from
computation step n to n þ 1 can be expressed as

h nþ1 ¼ h n � b nP n; (3)

Here,b n is the search step size in going from iteration n to nþ 1,
and P n is the direction of descent (i.e., search direction) given by

P n ¼ J 0 n (4)

To determine the search step and the search direction, we
need two concepts, namely, a sensitivity problem and an
adjoint problem.

3.3.1. Sensitivity problem

The sensitivity problem involves replacing T with T þ DT
in the direct heat conduction differential equation, then sub-
tracting the direct problem from the resultant expression
and neglecting the second-order terms.

@ 2DT(r, t)
@r 2

þ 1
r

@DT

@r
¼ 1

a

@DT(r, t)
@t

, (5a)

hDT � k
@DT

@r
¼ Dh(T1 � T), (5b)

@DT(0, t)
@r

¼ 0, (5c)

DT(r, 0) ¼ 0: (5d)

Here, Eq. (5a) is the differential equation for the sensitivity
problem, Eqs. (5b) and (5c) are used for the boundary condi-
tions, and Eq. (5d) is the initial condition. This sensitivity
problem can also be solved by a finite difference method.
The functional can be rewritten as follows:

J[h nþ1] ¼
ðt¼tf

t¼0

[T(h n � b nP n)� Y]2dt: (6)

If the temperature term T(hn 2 bnP n) is linearized by a Tay-
lor expansion, then the above equation takes the form

J[h nþ1] ¼
ðt¼tf

t¼0

[T(h n)� b nDT(P n)� Y]2dt: (7)

Taking the first-order derivative of the J[h nþ1] expression in
terms of b n, then the search step size can be expressed as

b n ¼

ðt¼tf

t¼0
[T(0, t)� Y(0, t)]DTdtðt¼tf

t¼0
[DT]2dt

: (8)

The sensitivity problem DT can be solved using Eqs. (5a)–
(5d) by letting Dh¼ P n, T(0, t) is the solution from the direct

problem, and Y(0, t) is taken from the experiment (Ma et al.,
2004).

3.3.2. Adjoint problem

The theorem of the adjoint problem can be explained as
follows. The minimum or maximum of function f (x) subject
to the constraints function gj(x) that is not on the boundary of
the region where f (x) and gj(x) are defined can be found by
introducing p new parameters l1, l2, . . . , lp and solving
the system

@

@xi
f (x)þ

Xp

j¼1
ljgj(x)

 !
¼ 0: (9a)

In our case, because there is only one constraint function,
the adjoint problem is formed by multiplying Eq. (9a) by
the Lagrange multiplier l(r, t), integrating over the whole
space and time domain and adding the functional. The
following expression results:

J[h] ¼
ð
t

[T � Y]2dt

þ
ðð

r,t

l(r, t) �a @ 2T(r, t)
@r 2

þ 1
r

@T

@r
� @T(r, t)

@t

� �� �
dtdr:

(9b)

Similar to the formation of the sensitivity problem, DJ is
obtained by perturbing h by Dh and T by DT in Eq. (9b), sub-
tracting from the resultant expression, and neglecting the
second-order terms.

DJ ¼
ð
t

[2(T � Y)DTdt þ
ðð

r,t

al �r2Tdr �
ðð

r,t

l �rTdr: (10)

Green’s second identity is applied to the second term in
Eq. (10), the initial and boundary conditions for the sensitivity
problem (5b)–(5d) are utilized, and the integral term including
DT is allowed to go to zero. The adjoint problem can be formu-
lated as follows:

@ 2l(r, t)
@r 2

þ 1
r

@l

@r
¼ 1

a

@l(r, t)
@t

: (11a)

With final and boundary conditions

�lhþ k
@l

@r
¼ 2 k

a
(T � Y), (11b)

@l(0, t)
@r

¼ 0, (11c)

l(r, tf ) ¼ 0: (11d)

Note that the adjoint problem is a final condition problem,
which means l ¼ 0 at t ¼ tf , instead of the regular initial
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condition problem, but the final condition problem can be
transformed into the initial condition problem by letting t ¼

tf 2 t.
After the introduction of the adjoint problem, the following

term is left from the functional expression:

DJ ¼
ð
t

a
l

k
Dh(T � T1)dt: (12)

From the definition of the search step size bn,

DJ ¼
ð
t

J 0Dhdt: (13)

Comparing Eqs. (12) and (13), the following expression for
the gradient of the functional is the result:

J 0 [h] ¼ a
l

k
(T � T1): (14)

3.3.3. Stopping criterion

From Huang et al. (2003) the traditional check condition is
specified as

J[hnþ1] , 1: (15)

where the stopping criteria 1 is a small value. This check condi-
tions assumes that there are no errors is measurement. However,
in practice, the measured temperature data may contain errors.
Therefore, the stopping criteria 1 is obtained as follows by using
a discrepancy principle, which takes the standard deviation into
account:

1 ¼ s 2tf : (16)

Here s is the standard deviation of the measurement, which is
assumed to be a constant.

3.4. Computational procedure

The computational procedure Ma et al. (2004) for the solution
of the problem by SDM can be summarized as follows:

1. Pick an initial guess for h at iteration n for all the time
steps.

2. Solve the direct problem T(r, t) given by Eqs. (1a)–(1d)
for all the time steps using the guessed h at iteration n as
the boundary condition.

3. Examine the stopping criteria indicated by Eq. (16),
continue if not satisfied.

4. Solve the adjoint problem l(r, t) given by Eqs. (11a)–
(11d).

5. Calculate gradient of functional J 0[h] in Eq. (14) and
search direction in Eq. (4).

6. Solve the sensitivity problem DT(r, t) given by Eqs.
(5a)–(5d) by letting Dh ¼ P n.

7. Compute the search step size b n from Eq. (8).
8. Estimate the new h nþ1 from Eq. (3) and return to step 1.

This summarizes the mathematical approach for solving
the computational estimation problem. We now explain our
heuristic approach.

4. HEURISTIC APPROACH BASED
ON DATA MINING

The term heuristic originates from the Greek word heures-
kein, meaning “to find” or “to discover” (Russell & Norvig,
1995). Newell et al. (1988) stated that “A process that may
solve a given problem but offers no guarantees of doing so
is called a heuristic for that problem.” Nevertheless, heuristic
methods in the literature often provide good solutions to
many problems.

We have proposed a heuristic estimation approach called
AutoDomainMine (Varde et al., 2006b). The assumption in
this approach is that data from existing experiments has
been stored in a database.

4.1. AutoDomainMine: A heuristic approach
for estimation

The AutoDomainMine approach is based on data mining. It
involves a one-time process of knowledge discovery from
previously stored data and a recurrent process of using the
discovered knowledge for estimation. This approach is illus-
trated in Figure 2.

AutoDomainMine discovers knowledge from existing ex-
perimental data by integrating the two data mining techniques
of clustering and classification. It follows a typical learning
strategy of materials scientists. They often perform analysis
by grouping experiments based on the similarity of the result-
ing graphs and reasoning about the causes of similarity group
by group in terms of the impact of the input conditions on the
graphs (Sisson et al., 2004). This learning strategy is auto-
mated for knowledge discovery in AutoDomainMine (Varde
et al., 2006b). Clustering is the process of placing a set of ob-
jects into groups of similar objects (Han & Kamber, 2001).
This is analogous to the grouping of experiments done by
scientists. Classification is a form of data analysis that can
be used to extract models to predict categories (Mitchell,
1997). An analogy can be drawn here with the scientists
reasoning about the similarity group by group. Hence, the
two data mining techniques are integrated for knowledge
discovery as described below.

4.2. Knowledge discovery in AutoDomainMine

The knowledge discovery process is shown in Figure 3. Clus-
tering is first performed over the graphs obtained from exist-
ing experiments. Any clustering algorithm in the literature
can be used such as the k-means algorithm (MacQueen,
1967). We use a semantics-preserving distance metric as
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the notion of distance in clustering (Varde et al., 2005). Once
the clusters of experiments are identified (e.g., H and D), the
clustering criteria, namely, the input conditions that charac-
terize each cluster are learned by decision tree classification
(Quinlan, 1986). This helps understand the relative
importance of conditions in clustering. The decision tree
paths and the clusters they lead to are used to design a
domain-specific representative pair of input conditions and
graph per cluster (Varde et al., 2006a). The decision trees
and representative pairs form the discovered knowledge
used for estimation.

4.3. Estimation in AutoDomainMine

The process of estimation is shown in Figure 4. To estimate a
graph, given a new set of input conditions, the decision tree is
searched to find the closest matching cluster. The representa-
tive graph of that cluster is the estimated graph for the given
set of conditions. If a complete match cannot be found then
partial matching is done based on the higher levels of the
tree using a domain-specific threshold (Varde et al.,
2006b). Note that this estimation incorporates the relative
importance of conditions identified by the decision tree.

4.4. Details of AutoDomainMine

4.4.1. Distance metric learning

A significant issue in AutoDomainMine is capturing the
semantics of the concerned graphs during clustering. Several
distance metrics such as Euclidean and statistical distances
exist in the literature (Han & Kamber, 2001). However, it is

Fig. 2. The AutoDomainMine approach. [A color version of this figure can
be viewed online at www.journals.cambridge.org]

Fig. 3. AutoDomainMine—knowledge discovery. [A color version of this figure can be viewed online at www.journals.cambridge.org]
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not known a priori which metric(s) would best preserve se-
mantics if used as the notion of distance in clustering. Experts
at best have vague notions about the relative importance of
regions on the graphs but do not have a defined metric.
State-of-the-art distance learning approaches (e.g., Hinne-
burg et al. 2000, Xing et al., 2003) are either not applicable
or not accurate enough in this context. We therefore propose
an approach called LearnMet (Varde et al., 2005) to learn
semantics-preserving distance metrics for graphs. This is
illustrated in Figure 5.

A LearnMet metric D is a weighted sum of components
where each component is an individual metric such as Euc-
lidean distance, statistical distance, or a domain-specific crit-
ical distance (Varde et al., 2005), and its weight gives its
relative importance in the domain. LearnMet iteratively com-
pares a training set of actual clusters given by experts with
predicted clusters obtained from any fixed clustering algo-
rithm, for example, k-means (MacQueen, 1967). In the first
iteration, a guessed metric D is used for clustering using fun-
damental knowledge of the domain. This metric is adjusted
based on error between predicted and actual clusters using a

weight adjustment heuristic (Varde et al., 2005) until error
is below a given threshold or a maximum number of epochs
is reached. The metric with error below threshold or with
minimum error among all epochs is returned as the learned
metric. The output of LearnMet is used as the notion of
distance for the graphs.

4.4.2. Designing cluster representatives

Another important issue in AutoDomainMine is capturing
relevant data in each cluster while building representatives.
A default approach of randomly selecting a representative
pair of input conditions and graph per cluster is not found to
be effective in preserving the necessary information. Because
several combinations of conditions lead to a single cluster,
randomly selecting any one as a representative causes informa-
tion loss. Randomly selected representatives of graphs do not
incorporate semantics and ease of interpretation based on user
interests.

State-of-the-art approaches (e.g., Helfman & Hollan, 2001;
Janecek & Pu, 2004), do not build cluster representatives as ap-
propriate for our needs. Hence, we propose an approach called

Fig. 4. AutoDomainMine—estimation. [A color version of this figure can be viewed online at www.journals.cambridge.org]

Fig. 5. The LearnMet approach. [A color version of this figure can be viewed online at www.journals.cambridge.org]
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DesRept (Varde et al., 2006a) to design domain-specific clus-
ter representatives. This approach is depicted in Figure 6.

In DesRept, two design methods of guided selection and
construction are used to build candidate representatives show-
ing various levels of detail in the cluster, where each candidate
captures a certain aspect of domain semantics. Candidates are
compared using our proposed DesRept encodings for condi-
tions and graphs analogous to the minimum description
length principle (Rissanen, 1987). In minimum description
length, the goal is to minimize the sum of encoding a theory
and examples using the theory. In DesRept, the theory refers
to a cluster representative, whereas the examples refer to the
other objects within the cluster. Thus, a DesRept encoding
consists of the sum of storing a cluster representative
and the distance of all other cluster objects from that
representative. In correspondence, the criteria in the DesRept
encodings are complexity of the representative itself and in-
formation loss based on its distance from other cluster objects.
Weights are assigned to these two criteria based on user inter-
ests in targeted applications. The winning candidate for each
cluster is considered to be the one with the lowest encoding.
This candidate is returned as the designed cluster representa-
tive. The designed representatives are used for estimation in
the AutoDomainMine approach (Varde et al., 2006b).

4.4.3. Implementation of heuristic approach

The main tasks in implementing this heuristic estimation
approach based on data mining are described below. The pro-
gramming language used for implementation is Java with
MySQL for the databases.

† The learning strategy in AutoDomainMine of discover-
ing knowledge for estimation by integrating clustering
and classification is implemented using the k-means
algorithm for clustering (MacQueen, 1967) and the
J4.8 algorithm for decision tree classification (Quinlan,
1986). Parameters in these algorithms such as the values
of k are variable and are altered during the evalution of
the approach as will be elaborated in Section 6.

† LearnMet is implemented for learning semantics-
preserving distance metrics for graphs, in particular, its

weight adjustment heuristic. The clustering algorithm
used within LearnMet is also k-means (MacQueen, 1967).

† DesRept is implemented for designing domain-specific
cluster representative pairs along with the DesRept
Encodings for evaluating them. The clusters are ob-
tained from the k-means algorithm (MacQueen, 1967)
and the decision tree paths leading to the clusters are
obtained using the J4.8 algorithm for decision tree
classification (Quinlan, 1967).

Thus, the AutoDomainMine approach has been used to
build a software tool called AutoDomainMine (Varde et al.,
2006b), which is a trademark of the CHTE that supported
this research. This approach has been rigorously evaluated
with real data from the heat treating domain with the help
of formal user surveys. It has been found to provide effective
estimation as per the requirements of the users.

5. COMPARATIVE STUDY

We now compare the approaches based on sample space, time
complexity, and data storage.

5.1. Sample space

The sample space of any estimation problem is the number of
cases it can estimate (Russell & Norvig, 1995). We explain
the calculation of the sample space with reference to our
estimation problem.

5.1.1. Sample space calculation

The sample space is calculated as a product of the number
of possible values of each experimental input condition. Each
input condition is described by an attribute that gives its name
and a value that gives its content. Thus, we have, sample
space

S ¼
YA

c¼1

Vc, (i)

where A is the total number of attributes (conditions) and Vc is
the number of possible values of the conditions.

Consider the example of estimating heat transfer curves. In
this example, the input conditions are the following:

1. quenchant name: T7A, DurixolV35, and so forth
2. part material: ST4140, SS304, and so forth
3. agitation level: absent, high, low
4. oxide layer: none, thin, thick
5. probe type: CHTE, IVF, and so forth
6. quenchant temperature: 08–2008C

Note that there are 500 experiments stored in the database.
The number of possible values of each of these based on the
stored experiments is as follows:

Fig. 6. The DesRept approach. [A color version of this figure can be viewed
online at www.journals.cambridge.org]
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1. quenchant name: nine values
2. part material: four values
3. agitation level: three values
4. oxide layer: three values
5. probe type: two values
6. quenchant temperature: 20 ranges

Thus, the total sample space provided by the 500 stored
experiments is given by a product of these values. Hence,
we have sample space ¼ 9�4�3�3�2�20 ¼ 12,960.

We now discuss this with reference to our mathematical
and heuristic approaches.

5.1.2. Mathematical approach

In this approach, the estimation of heat transfer coefficients
is performed using the direct and inverse heat conduction
equations. However, to apply these equations, data on time
and temperature is needed. If the real laboratory experiment
is not conducted then this data is typically supplied by
domain experts (Maniruzzaman et al., 2006).

Thus, in this process domain expert intervention is needed
each time the estimation is performed. Thus, to cover a sam-
ple space of 12,960 experiments, the domain experts would
need to provide the time–temperature inputs 12,960 times,
which seems rather infeasible. Besides the fact that supplying
these inputs is time consuming and cumbersome, it is not
always possible for the experts to guess them based on ex-
perimental input conditions. This is a major drawback of
the mathematical approach related to sample space.

However, a major advantage of this approach is that no
other data on previous experiments needs to be stored in
advance to cover this sample space. The state of the art for-
mulae can be directly applied.

The advantage and disadvantage are further clarified as we
discuss the heuristic solution.

5.1.3. Heuristic approach

The heuristic solution approach to the given estimation
problem is AutoDomainMine (Varde et al., 2006b). In this
approach, when the input conditions of a new experiment
are submitted, the decision tree paths are traced to find the
closest match. The representative graph of the corresponding
cluster is conveyed as the estimated result. When an exact
match is not found, a partial match is conveyed using higher
levels of the tree. Thus, even if data on all the possible com-
binations of inputs is not available, an approximate answer
can still be provided.

Hence, to cover the sample space of the estimation it is not
necessary to supply time–temperature data for each new
experiment whose results are to be estimated. The estimation
can be performed simply by supplying the input conditions of
the new experiment. Thus, the whole sample space of 12,960
experiments can be covered without domain expert interven-
tion each time the estimation is performed. This is an advan-
tage of the heuristic approach with reference to the sample
space criterion.

However, to perform the estimation in AutoDomainMine,
data from existing laboratory experiments needs to be stored
in the database. This forms the basis for knowledge discovery
and estimation. This is a drawback of the heuristic approach.
However, the amount of data from existing experiments can
be much lower than the sample space. For example, in heat
treating the number of experiments stored is 500. With
this, AutoDomainMine gives an accuracy of approximately
90–95%, as elaborated later in this paper.

5.2. Time complexity

The time complexity of any approach refers to the execution
time of the technique used for computation. We discuss this
with reference to the mathematical and heuristic approaches.

5.2.1. Mathematical approach

In the direct–inverse heat conduction mathematical model,
the time complexity tM(E) of each estimation (Ma et al.,
2004) is given as

tM(E) ¼ O(n2 � i), (ii)

where n is the number of time–temperature data points sup-
plied and i is the number of iterations for convergence to
minimal error. Each such data point corresponds to measure-
ment of heat transfer coefficient at one instance of time.

In the given problem the maximum number of data points
supplied would be 1500 and the minimum number would be
25. On an average, 100 data points are supplied. The number
of iterations for convergence is typically found to be on the
order of 100 (Ma et al., 2004).

Thus, we have the following time complexities. Worst case:

tM(E) ¼ O(15002 � 100), (iii-a)

average case:

tM(E) ¼ O(1002 � 100), (iii-b)

best case:

tM(E) ¼ O(252 � 100): (iii-c)

Because the data points need to be provided for each estima-
tion, the time complexity tM(S ) over the whole sample space S
is given by

tM(S) ¼ S� tM(E), (iv)

where tM(E) is the time complexity of each estimation.
Thus, we have the following time complexities over the

whole sample space for the worst, average, and best cases.
Worst case:

tM(S) ¼ S� O(15002 � 100), (v-a)
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average case:

tM(S) ¼ S� O(1002 � 100), (v-b)

best case:

tM(S) ¼ S� O(252 � 100): (v-c)

Given a sample space of S¼ 12,960, it is clear that these time
complexities are huge.

5.2.2. Heuristic approach

In the heuristic approach AutoDomainMine, the knowl-
edge discovery process of clustering followed by classifica-
tion is executed one time, whereas the estimation process of
searching the decision tree paths to find the closest match is
recurrent. The complexities of each are calculated as follows.

Consider tH(D) to be the time complexity of the knowledge
discovery process in the heuristic approach. This is calculated
as the sum of the time complexities of the clustering and clas-
sification step. We use k-means clustering (MacQueen, 1967)
and decision tree classification with J4.8 (Quinlan, 1986).
The complexities of these respective algorithms are used to
compute the complexity of the knowledge discovery process
in AutoDomainMine. Thus, given that g is the number of
graphs (experiments) in the database, k is the number of
clusters, and i is the number of iterations in the clustering
algorithm, from a study of the literature (Han & Kamber,
2001; Russell & Norvig, 1995) we have

tH(D) ¼ tH(clustering)þ tH(classification), (vi-a)

where

tH(clustering) ¼ O(gki) (vi-b)

and

tH(classification) ¼ O(g log10 g): (vi-c)

Hence,

tH(D) ¼ O(gki)þ O(g log10 g): (vi-d)

Now consider that the time complexity of each estimation
in the heuristic approach is tH(E). The manner in which the
estimation is performed in AutoDomainMine is by searching
the decision tree paths to find the closest match with the given
input conditions of a new experiment. We find that this search
problem in general has a complexity of O(log10N ), where N is
the number of entries in the database from which the tree was
generated (Gehrke et al., 1998). Thus, in our context this
translates to O(log10N ), because g is the number of graphs
in the database that equal the number of experiments (i.e.,
database entries). Thus,

tH(E) ¼ O( log10 g), (vii)

Hence, given a sample space S, the time complexity tH(S )
over the whole space is calculated as

tH(S) ¼ tH(D)þ S� tH(E), (viii)

where tH(D) is the complexity of knowledge discovery
(one time) and tH(E) is the complexity of each estimation
(recurrent).

Thus, from the calculation of the time complexities tH(D)
and tH(E), we get

tH(S) ¼ O(gki)þ O(g log10g)þ S� O( log10g), (ix)

where g is the number of graphs (experiments) in the data-
base, k is the number of clusters, and i is the number of itera-
tions in the clustering algorithm. Given this, we consider the
time complexities in the best, average, and worst case in our
problem.

Note that the maximum value of g is equal to all the experi-
ments in the database, that is, 500 in this context. The min-
imum value of g is empirically set to be at least one-fifth of
the total number of experiments. Thus, g is at least 100.
The average value for g is considered to be half the total num-
ber of experiments, that is, g ¼ 250 in the average case. The
number of clusters k is usually set close to the square root of
the number of graphs g because this value is found to yield the
highest classifier accuracy. Thus, for g¼ 500, k¼ 22; for g¼
250, k ¼ 16; and for g ¼ 100, k ¼ 10. The number of itera-
tions in the clustering algorithm is found to be typically of
the order of 10 (Varde et al., 2006b). Given this, we have
the following time complexities in the worst, average, and
best cases. Worst case:

tH(S) ¼ O(500� 22� 10)þ O(500 log10500)

þ S� O( log10500), (x-a)

average case:

tH(S) ¼ O(250� 16� 10)þ O(250 log10250)

þ S� O( log10250), (x-b)

best case:

tH(S) ¼ O(100� 10� 10)þ O(100 log10100)

þ S� O( log10100): (x-c)

Therefore, the order of these complexities is logarithmic, as
opposed to exponential in Eqs. (v-a)–(v-c) of the mathemati-
cal approach. Hence, it is clear that the worst case, average
case, and best case time complexities in the heuristic ap-
proach are much lower than the respective complexities in
the mathematical modeling approach. This is a considerable
advantage of the heuristic method.
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5.3. Data storage

The data storage criterion refers to the quantity of data that
needs to be stored from existing experiments to execute the
approach.

5.3.1. Mathematical approach

This approach uses the applicable formulae and the inputs
supplied by domain experts each time the estimation is per-
formed. No data from previously performed experiments is
utilized in the computation. Hence, in theory, the quantity
of data stored for this approach is zero. Thus, given that Q re-
fers to the quantity of data, we find that in the mathematical
model, Q¼ 0. This is a big advantage of the mathematical ap-
proach.

However, note that the experts, although providing initial
time–temperature inputs to this model, may refer to existing
experiments. Thus, in practice, data stored from previously
performed experiments could perhaps be useful in mathemat-
ical modeling, but this data storage is not a requirement of the
model per se, which gives this approach an edge over the
heuristic approach.

5.3.2. Heuristic approach

This uses the existing experiments in the database for
knowledge discovery and estimation. Given that g is the num-
ber of graphs (experiments) in the database, n is the number of
data points stored per graph, and A is the number of attributes
stored for each experiment, the quantity Q of data stored in the
heuristic approach is given as

Q ¼ g� n� A: (xi)

The heuristic approach cannot work without data from pre-
vious experiments. This is one of the situations where the
mathematical model wins over the heuristic method.

Theoretically, there is no bound on the minimum quantity
of data that needs to be stored in order to perform the estima-
tion heuristically. However, the more the data from existing
experiments, the more accurate is the estimation. This is
because a greater number of experiments are available for
knowledge discovery by clustering and classification and a
greater number of decision tree paths can be searched for
estimation. In addition, the more distinct the input conditions
are, the better it is for the heuristic approach. This is because a
greater number of distinct paths can be identified in the
decision tree to more classify new experiments.

Note that in scientific domains experiments are often de-
signed using the Taguchi metrics (Roy et al., 2001). In Tagu-
chi design, experimental parameters are intelligently selected
such that one experiment can effectively cover approximately
three experiments in terms of the ranges of the inputs and the
corresponding results. This enhances the sample space. It is
therefore desirable that Taguchi metrics be used for the
experimental setup to provide more data for the heuristic
approach.

6. PERFORMANCE EVALUATION

The approaches have been evaluated for accuracy and effi-
ciency with real data from the domain of heat treating of
materials. A summary of the evaluation is presented here.

6.1. Accuracy

Accuracy is a quality measure that refers to how close the es-
timated result is to the output of a real experiment. Evaluation
of accuracy is explained with reference to each approach in-
dividually.

6.1.1. Mathematical approach

We present excerpts from the study of the accuracy of the
mathematical approach. The objective of the study is to pre-
dict the surface heat transfer coefficient from the known tem-
perature at the geometric center of the CHTE probe. In this
study a few numerical examples are presented below to illus-
trate the ability of the SDM in predicting the surface heat
transfer coefficient.

The first test case shows a CHTE ST4140 cylindrical probe
with 3/8-in. diameter and 1.5-in. length quenched in the
mineral oil Houghton G. Specific heat and thermal con-
ductivity as a function of temperature are utilized in the cal-
culation. Figure 7 shows the heat transfer coefficient h(T )
from two methods, namely, lumped parameter analysis (Ma
et al., 2002) and the inverse analysis described here.

Figure 8 shows another case of the estimated heat transfer
coefficient of the same CHTE ST4140 steel probe quenched
in mineral oil T-7-A. The difference between Figure 9 and
Figure 8 is that the curve in Figure 9 includes the Leidenfrost
point, which is one of the important parameters to character-
ize the quenching process. The selection of this test case is to
ensure that the inverse analysis can successfully predict the
heat transfer coefficient curve with a Leidenfrost point.
Figure 9 shows the comparison results from the lumped
parameter analysis and the inverse analysis. The inverse
analysis does give a heat transfer coefficient curve with a
Leidenfrost point, which shifts to the higher temperature
compared with that from the lumped parameter analysis.

The third test case is for a wrought aluminum 2024 probe
with the same dimension quenched in polymer solution Aqua
260. The results are shown in Figure 9. As can be seen, the
curves from both the lumped parameter analysis and the in-
verse analysis are almost on top of each other. This is because
the thermal conductivity is much higher for aluminum alloy
than that for steel, which makes the heat extraction rate
much greater for aluminum quenching.

Likewise, several tests are conducted with different input
conditions using the 500 laboratory experiments stored in
the database. Based on the tests conducted, the domain ex-
perts conclude that the estimation accuracy of the mathemati-
cal models in general is found to be in the range of approxi-
mately 85–90%. This means that in 85–90% of the tests, the
estimated result matches the real result of the corresponding
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laboratory experiment. However, this is subject to the avail-
ability of good time–temperature inputs from experts.

6.1.2. Heuristic approach

The accuracy of the heuristic model is evaluated with formal
surveys conducted by the targeted users of the system. The users
run tests with the AutoDomainMine tool. These tests are con-
ducted using various values of experimental parameters. The

clustering seeds are altered for randomization, different values
of k are used in the k-means algorithm for clustering and
decision tree parameters in the J4.8 algorithm are altered. We
show below a few examples from our rigorous evaluation of
AutoDomainMine. The holdout strategy (Russell & Norvig,
1995) is used for evaluation. Among the 500 experiments in
the heat treating database, 400 are used for training the technique
and the remaining 100 are kept aside as the distinct test set.

Fig. 7. The heat transfer coefficient for the CHTE ST4140 probe quenched in Houghton G. [A color version of this figure can be viewed
online at www.journals.cambridge.org]

Fig. 8. The heat transfer coefficient for the CHTE ST4140 probe quenched in T-7-A. [A color version of this figure can be viewed online at
www.journals.cambridge.org]
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Tests are conducted as follows. In each test, the users enter
the input conditions of a real experiment from the distinct test
set. They observe the estimated output of AutoDomainMine
and compare it with the output of the corresponding real ex-
periment. If the real and estimated results are close enough as
per user satisfaction, then the estimation is considered to be
correct. Accuracy is then reported as the percentage of correct
estimations over all the tests conducted.

We target the users of various applications of Auto-
DomainMine such as parameter selection (Sisson et al.,
2004), simulation tools (Lu et al., 2002), decision support
systems (Varde et al., 2003), and intelligent tutors (Bierman
& Kamsteeg, 1988). Accuracy is reported in the context of
each application. Sample screen-dumps from the evaluation
are demonstrated here.

Figure 10 shows an example of how the user enters the
input conditions of an experiment in the test set. The Auto-
DomainMine system estimates the heat transfer curve that

would be obtained. The estimated output is shown in Figures
11–13. Figure 11 depicts the most likely heat transfer curve
that would be obtained from the input conditions in Figure
10. This conveys to the user the most probable estimated out-
put. Figure 12 shows the average heat transfer curve with pre-
diction limits for the same input conditions. This enables the
user to get an idea of the estimated average output along with
variations that may occur if the real experiment were con-
ducted. Figure 13 goes one level deeper to illustrate the esti-
mated ranges of heat transfer that would occur with the given
input conditions. This allows the user to see all the potential
values of the estimated output that would occur based on an
analysis of existing data.

The users compare the estimated output in all the levels
with the real output of the corresponding experiment con-
ducted with the same input conditions. Figure 14 shows the
real heat transfer curve obtained for the input conditions in
Figure 10. Upon comparing the real and estimated heat

Fig. 9. The heat transfer coefficient for the CHTE aluminum 2024 probe quenched in Aqua260. [A color version of this figure can be
viewed online at www.journals.cambridge.org]

Fig. 10. An example of user input to AutoDomainMine. [A color version of this figure can be viewed online at www.journals.cambridge.
org]
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transfer curves, the users conclude that the estimation is cor-
rect. Because the estimation provided by AutoDomainMine
shows the expected output including its estimated ranges,
the real result is more likely to fall within these ranges (as op-
posed to the output provided by the mathematical models).
This, in turn, is likely to increase the accuracy of the estima-
tion in most cases.

Likewise, upon conducting tests with all the data in the test
set, the estimation accuracy of AutoDomainMine is found to
be in the range of 90–95% (Varde et al., 2006b). This is
evident from an analysis of the survey results. Figure 15
shows the accuracy of the heuristic approach AutoDomain-
Mine in the context of computational estimation and its tar-
geted applications. Note that the accuracy has been evaluated
by users in the context of the applications of estimation.
Hence, we analyze the responses of the users with respect to
the given applications and report accuracy accordingly. For
example, among 100 tests conducted by parameter selection
users, 95 are found to be accurate, and hence, the accuracy
in that application is reported as 95%. The accuracy of the
computational estimation on the whole is the percentage of
accurate tests among all the tests conducted by users in all
the applications. This effectively represents the overall estima-

tion accuracy of AutoDomainMine. Figure 15 shows that the
overall accuracy is 92%.

Therefore, on the whole, we find that the estimation ac-
curacy in the heuristic approach is somewhat higher than that
in the mathematical approach.

6.2. Efficiency

Efficiency refers to the amount of time taken to perform the
estimation, that is, the setup time for supplying the inputs
and the response time of the tool (Fig. 16). We record the
amount of time taken to supply inputs for each test in both
the mathematical and heuristic approaches. Note that in the
mathematical approach, in addition to experimental input
conditions, experts need to provide initial values for time–
temperature. Thus, the time taken to provide these additional
inputs is also recorded. The response time of each approach in
terms of how long it takes to produce the output, given the in-
puts, is observed as well.

Figure 12 shows average input and response times of the
mathematical and heuristic approaches. We find that input

Fig. 11. The most probable estimated output. [A color version of this figure
can be viewed online at www.journals.cambridge.org]

Fig. 13. Potential ranges of estimated output. [A color version of this figure
can be viewed online at www.journals.cambridge.org]

Fig. 12. The average estimated output with variations. [A color version of
this figure can be viewed online at www.journals.cambridge.org]

Fig. 14. The heat transfer curve from the real experiment. [A color version of
this figure can be viewed online at www.journals.cambridge.org]
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time of the mathematical approach is much more than the
heuristic approach. In addition, the response time of the math-
ematical approach is of the order of minutes, whereas that of
the heuristic approach is negligible.

Thus, the heuristic approach is distinctly more efficient
than the mathematical approach.

7. RELATED WORK

An intuitive approach to estimation is a similarity search over
existing data (Mitchell, 1997). When the user supplies input
conditions of an experiment, these are compared with the
conditions stored in the database. The closest match is se-
lected in terms of the number of matching conditions. The
corresponding graph is output as the estimated result. How-
ever, a partial match is not likely to be useful because the non-
matching condition(s) could be significant in the given do-
main. For example, in heat treating, the user-submitted
experimental conditions may match many conditions except
for the cooling medium used in the experiment and the
material being cooled. Because these two factors are signif-
icant as evident from basic domain knowledge, the resulting
estimation would likely be incorrect.

A somewhat more sophisticated approach is performing a
weighted search (Keim & Bustos, 2004). Here, the search is
guided by the knowledge of the domain to some extent.
The relative importance of the search criteria, in our context,
experimental input conditions, is coded as weights. The

closest match is determined using a weighted sum of the
conditions. However, these weights are not precisely known,
with respect to their impact on the resulting graph or even
otherwise. For example, in heat treating, in some cases the agi-
tation level in the experiment may be more crucial than the
oxide layer on the surface of the part. In some cases, it may
be less crucial. This may depend on factors such as the
actual value of the conditions, for example, high agitation
may be more significant than a thin oxide layer, whereas
low agitation may be less significant than a thick oxide layer.
Thus, there is a need to learn: that is, to discover knowledge in
some manner, for example, from the results of experiments.

Case-based reasoning (Kolodner, 1993) could also be
used for estimation. In our context, this involves comparing
input conditions to retrieve the closest matching experiment,
reusing its heat transfer curve as a possible estimate, per-
forming adaptation if needed, and retaining the adapted
case for future use. However, adaptation approaches in the
literature (Aamodt & Plaza, 2003) are not feasible for us.
For example, in heat treating, if the “agitation level” in
the new case has a higher value than in the retrieved case,
then a domain-specific adaptation rule could be used to in-
fer that high agitation implies high heat transfer coefficients.
However, this is not enough to plot a heat transfer curve in
the new case.

Rule-based and case-based approaches have been inte-
grated in the literature to solve certain domain-specific prob-
lems (Leake, 1996). General domain knowledge is coded in
the form of rules, whereas case-specific knowledge is stored
in a case base and retrieved as necessary. For example, in the
domain of law (Pal & Campbell, 1997), rules are laid down by
the constitution and legal cases solved in the past are typically
documented. However, it is nontrivial to apply this approach
to graphs in our context. In the literature such approaches
have been used where the solution is categorical. To the
best of our knowledge, it has not been used with graphs.

8. CONCLUSIONS

In this paper, mathematical and heuristic approaches for com-
putational estimation are compared using the criteria of sample
space, time complexity, data storage, efficiency, and accuracy.

Fig. 15. The accuracy of the heuristic approach in targeted applications. [A color version of this figure can be viewed online at www.
journals.cambridge.org]

Fig. 16. The efficiency of estimation approaches. [A color version of this
figure can be viewed online at www.journals.cambridge.org]
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Similar arguments for comparison can be applied for other
scientific data analysis problems such as failure diagnostics
and predictive analysis. We consider the heat treating domain
and compare the direct–inverse heat conduction mathematical
model for estimation with our proposed heuristic approach
AutoDomainMine. Performance evaluation with real data
from materials science is presented. It is found that mathe-
matical models are feasiblewhen data from previous experiments
is not stored, domain experts are available to provide inputs,
and efficiency is not critical. Heuristic approaches are found
to give much higher efficiency and relatively higher accuracy
than the mathematical models. However, heuristic methods are
applicable only when data from previously performed experi-
ments is available. In the context of the estimation problem in
this paper, heuristic approaches are preferred.

ACKNOWLEDGMENTS

This work was supported by the CHTE and by the Department of
Energy Industrial Technology Program Award DE-FC-07-
01ID14197. The authors thank the Metal Processing Institute for or-
ganizing the seminars that gave visibility to the AutoDomainMine
system. We are grateful to all the CHTE users who spent their pre-
cious time in completing the surveys for system evaluation. The
feedback of the Artificial Intelligence Research Group, Database
Systems Research Group, and Knowledge Discovery and Data
Mining Research Group in the Department of Computer Science
at Worcester Polytechnic Institute (WPI) is gratefully acknowledged.
In particular, we acknowledge the input of Prof. Carolina Ruiz from
the Department of Computer Science at WPI. We also thank the re-
searchers from the Quenching Team in Materials Science for their
cooperation and support.

Editor’s Note: The reviewing process for this article was managed
by an AIEDAM Associate Editor.

REFERENCES

Aamodt, A., & Plaza, E. (2003). Case based reasoning: foundational issues,
methodological variations & system approaches. Artificial Intelligence
Communications 7(1), 39–59.

Beck, J.V., Blackwell, B., & St. Clair, C.R. (1985). Inverse Heat Conduction.
New York: Wiley.

Bierman, D., & Kamsteeg, P. (1988). Elicitation of knowledge with and for
intelligent tutoring systems. IICAI-03: IEEE Systems, Man, and Cyber-
netics Society’s 1st Indian Int. Conf. Artificial Intelligence.

Gehrke, J., Ramakrishnan, R., & Ganti, V. (1998). Rainforest—a framework
for fast decision tree construction of large datasets. Data Mining and
Knowledge Discovery 4, 127–162.

Han, J., & Kamber, M. (2001). Data Mining: Concepts and Techniques. San
Mateo, CA: Morgan Kaufmann.

Helfman, J., & Hollan, J. (2001). Image representations for accessing and
organizing Web information. Proc. SPIE Int. Society for Optical
Engineering Internet Imaging II Conf., pp. 91–101.

Hinneburg, A., Aggarwal, C., & Keim, D. (2000). What is the nearest neigh-
bor in high dimensional spaces. Proc. VLDB, pp. 506–515.

Huang, C.-H., Yuan, I.C., & Ay, H. (2003). A three-dimensional inverse
problem in imaging the local heat transfer coefficients for plate finned-
tube heat exchangers. International Journal of Heat and Mass Transfer
4(6), 3629–3638.

Janecek, P., & Pu, P. (2004). Opportunistic Search with Semantic Fisheye
Views, Technical Report TR IC/2004/42. Lausanne: Swiss Federal Insti-
tute of Technology.

Keim, D., & Bustos, B. (2004). Similarity search in multimedia databases.
Proc. ICDE, pp. 873–874.

Kolodner, J. (1993). Case-Based Reasoning. San Mateo, CA: Morgan Kauf-
mann.

Leake, D. (1996). Case-Based Reasoning: Experiences, Lessons and Future
Directions. New York: AAAI Press.

Lu, Q., Vader, R., Kang, J., & Rong, Y. (2002). Development of a
computer-aided heat treatment planning system. Heat Treatment of
Metals 3, 65–70.

Ma, S., Maniruzzaman, M., & Sisson, R.D., Jr. (2002). Characterization of
the performance of mineral oil based quenchants using the CHTE
Quench Probe System. Proc. 1st Int. Surface Engineering Congr. and
13th IFHTSE Congr.

Ma, S., Maniruzzaman, M., & Sisson, R.D., Jr. (2004). Inverse Heat Conduc-
tion Problem in Estimating the Surface Heat Transfer Coefficients by
Steepest Descent Method, Technical Report. Worcester, MA: Worcester
Polytechnic Institute.

MacQueen, J.B. (1967). Some methods for classification and analysis of
multivariate observations. Proc. Mathematical Statistics and Probability,
pp. 281–297.

Maniruzzaman, M., Varde, A.S., & Sisson, R.D., Jr. (2006). Estimation of
surface heat transfer coefficients for quenching process simulation.
ASM Int. Conf. Materials Science and Technology.

Mitchell, T. (1997). Machine Learning. New York: McGraw–Hill.
Newell, A., Shaw, J.C., & Simon, H.A. (1988). Chess playing programs and

the problem of complexity. In Computer Chess Compendium (Levy, D.,
Ed.), pp. 29–42. New York: Springer–Verlag.

Pal, K., & Campbell, J. (1997). An application of rule-based and case-based
reasoning in a single legal knowledge-based system. Database for
Advances in Information Systems 28(4), 48–63.

Quinlan, J.R. (1986). Induction of decision trees. Machine Learning 1,
81–106.

Roy, R.K. (2001). Design of Experiments Using The Taguchi Approach: 16
Steps to Product and Process Improvement. New York: Wiley.

Rissanen, J. (1987). Stochastic complexity and the MDL principle. Econ-
ometric Reviews 6, 85–102.

Russell, S., & Norvig, P. (1995). Artificial Intelligence: A Modern Approach.
Englewood Cliffs, NJ: Prentice–Hall.

Stolz, G., Jr. (1960). Heat Transfer. New York: Wiley.
Scientific Forming Technologies Corporation. (2005). DEFORM-HT. Colum-

bus, OH: Scientific Forming Technologies Corporation.
Sisson, R., Jr., Maniruzzaman, M., & Ma, S. (2004). Quenching: understand-

ing, controlling and optimizing the process. Proc. Center for Heat Treat-
ing Excellence Fall Seminar, Columbus, OH.

Varde, A.S., Rundensteiner, E.A., Ruiz, C., Brown, D.C., Maniruzzaman,
M., & Sisson, R.D. (2006a). Effectiveness of domain-specific cluster
representatives for graphical plots. Proc. SIGMOD IQIS Workshop,
pp. 31–36.

Varde, A.S., Rundensteiner, E.A., Ruiz, C., Brown, D.C., Maniruzzaman,
M., & Sisson, R.D., Jr. (2006b). Integrating clustering and classification
for estimating process variables in materials science. AAAI Poster Track.

Varde, A.S., Rundensteiner, E.A., Ruiz, C., Maniruzzaman, M., & Sisson,
R.D., Jr. (2005). Learning semantics-preserving distance metrics for
graphical plots. Proc. SIGKDD MDM Workshop, pp. 107–112.

Varde, A.S., Takahashi, M., Rundensteiner, E.A., Ward, M.O., Maniruzza-
man, M., & Sisson, R.D., Jr. (2003). QuenchMinerTM: decision support
for optimization of heat treating processes. IICAI, pp. 993–1003.

Varde, A.S., Takahashi, M., Rundensteiner, E.A., Ward, M.O., Maniruzza-
man, M., & Sisson, R.D., Jr. (2004). A priori algorithm and game-of-
life for predictive analysis in materials science. International Journal
of Knowledge-Based & Intelligent Engineering Systems 8(4), 213–228.

Xing, E., Ng, A., Jordan, M., & Russell, S. (2003). Distance metric learning
with application to clustering with side information. Proc. Neural Infor-
mation Processing Systems, pp. 503–512.

Aparna Varde is an Assistant Professor in computer science
at Virginia State University. She obtained her PhD and MS in
computer science from WPI and a BE in computer engineer-
ing from the University of Bombay. Dr. Varde has software
trademarks and has written journal articles and conference
papers (IEEE, ACM, AAAI, and ASM International). Her

A.S. Varde et al.68

https://doi.org/10.1017/S0890060408000048 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060408000048


professional activities include serving as a reviewer for the
journals Data and Knowledge Engineering, Transactions
on Knowledge and Data Engineering, and Information Sys-
tems; as Co-Chair of the PhD Workshop in the ACM Confer-
ence on Information and Knowledge Management; and as a
PC Member of SIAM’s Data Mining Conference and the
Multimedia Data Mining Workshop in the ACM Conference
on Knowledge Discovery and Data Mining. She is working
on research projects mostly in scientific data mining.

Shuhui Ma is a Manufacturing Engineer at Tiffany and
Company. She has a BS in physical chemistry from Beijing
University of Science and Technology and an MS and a
PhD in materials science and engineering from WPI. She is
a member of Sigma Xi, ASM, and TMS. Dr. Ma was the
recipient of the 2006 Bodycote/HTS best paper award.

Mohammed Maniruzzaman is currently a Research
Assistant Professor of mechanical engineering at WPI. He
has a BSc and an MS degree in mechanical and a PhD in
materials science and engineering. He is a member of the
ASM, TMS, and Sigma Xi. Dr. Maniruzzaman’s main re-
search interest is the application of mathematical modeling
to materials processing, with special emphasis on alloy heat
treatment and molten metal treatment.

David C. Brown is a Professor of computer science and has a
collaborative appointment as a Professor of mechanical en-
gineering at WPI. He has BSc, MSc, MS, and PhD degrees in
computer science and is a member of the ACM, IEEE Computer
Society, AAAI, ASME, and IFIP WG 5.2. He is the Editor in
Chief of the Cambridge University Press journal Artificial Intel-
ligence for Engineering Design, Analysis and Manufacturing,

and he is on the editorial boards of several other journals.
Dr. Brown’s research interests include computational models
of engineering design and the applications of artificial intelli-
gence to engineering and manufacturing.

Elke Rundensteiner is a Professor of computer science at
WPI. She is a well-known expert in databases. Her current
research includes stream data management, data integration
and warehousing, and visual information exploration. She
has over 280 publications in these areas. Her research has
been funded by government agencies and industry, includ-
ing NSF, NIH, IBM, Verizon, GTE, HP, and NEC. Dr.
Rundensteiner has been the recipient of numerous honors,
including NSF Young Investigator, Sigma Xi Outstanding
Senior Faculty Researcher, and WPI Trustees’ Outstanding
Research and Creative Scholarship awards. She serves on
the program committees of prestigious conferences and is the
Associate Editor and Special Issue Editor of several journals.

Richard D. Sisson, Jr., is the George F. Fuller Professor and
Director of Manufacturing and Materials Engineering at WPI.
He received his BS in metallurgical engineering from
Virginia Polytechnic Institute and an MS and a PhD in metal-
lurgical engineering from Purdue University. Dr. Sisson’s
teaching and research has focused on the applications of
thermodynamics and kinetics to materials processing and
degradation phenomena in metals and ceramics. He became
a Fellow of ASM International in 1993. He received the
WPI Trustees Award as Teacher of the Year in 1987. In
2006 he was inducted into Virginia Tech’s College of
Engineering Excellence. In 2007 he received the WPI
Chairman’s Exemplary Faculty Award.

Approaches for scientific data analysis 69

https://doi.org/10.1017/S0890060408000048 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060408000048

