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We calculate the rheological properties of a dilute emulsion of neutrally buoyant
nearly spherical drops at O(φRe3/2) in a simple shear flow (u∞ = γ̇ x211, γ̇ being
the shear rate) as a function of the ratio of the dispersed- and continuous-phase
viscosities (λ= µ̂/µ). Here, φ is the volume fraction of the dispersed phase and Re is
the micro-scale Reynolds number. The latter parameter is a dimensionless measure
of inertial effects on the scale of the dispersed-phase constituents and is defined as
Re = γ̇ a2ρ/µ, a being the drop radius and ρ the common density of the two phases.
The analysis is restricted to the limit φ, Re � 1, when hydrodynamic interactions
between drops may be neglected, and the velocity field in a region around the drop
of the order of its own size is governed by the Stokes equations at leading order. The
dominant contribution to the rheology at O(φRe3/2), however, arises from the so-
called outer region where the leading-order Stokes approximation ceases to be valid.
The relevant length scale in this outer region, the inertial screening length, results
from a balance of convection and viscous diffusion, and is O(aRe−1/2) for simple
shear flow in the limit Re � 1. The neutrally buoyant drop appears as a point-force
dipole on this scale. The rheological calculation at O(φRe3/2) is therefore based on
a solution of the linearized Navier–Stokes equations forced by a point dipole. The
principal contributions to the bulk rheological properties at this order arise from
inertial corrections to the drop stresslet and Reynolds stress integrals. The theoretical
calculations for the stresslet components are validated via finite volume simulations
of a spherical drop at finite Re; the latter extend up to Re ≈ 10.

Combining the results of our O(φRe3/2) analysis with the known rheology of
a dilute emulsion to O(φRe) leads to the following expressions for the relative
viscosity (µe), and the non-dimensional first (N1) and second normal stress differences
(N2) to O(φRe3/2): µe = 1 + φ[(5λ+ 2)/(2(λ+ 1)) + 0.024Re3/2(5λ+ 2)2/(λ+ 1)2];
N1 =φ[−Re4(3λ2 + 3λ+ 1)/(9(λ + 1)2) + 0.066Re3/2(5λ+ 2)2/(λ+ 1)2] andN2 =φ[Re 2
(105λ2 + 96λ+ 35)/(315(λ+ 1)2) − 0.085Re3/2(5λ+ 2)2/(λ+ 1)2].

† Email address for correspondence: sganesh@jncasr.ac.in
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Thus, for small but finite Re, inertia endows an emulsion with a non-Newtonian
rheology even in the infinitely dilute limit, and in particular, our calculations show
that, aside from normal stress differences, such an emulsion also exhibits a shear-
thickening behaviour. The results for a suspension of rigid spherical particles are
obtained in the limit λ→ ∞.

Key words: emulsions, particle/fluid flow, rheology

1. Introduction
In an earlier paper (see Vivek Raja, Subramanian & Koch 2010), we have analysed,

to O(φRe), the effect of inertia on the rheology of a dilute emulsion of neutrally
buoyant nearly spherical drops of viscosity µ̂ subjected to an ambient flow that varies
over length scales large compared with the size of a single drop. Here, φ is the drop
volume fraction and Re = γ̇ a2ρ/µ is the micro-scale Reynolds number based on the
drop radius (a) and the shear rate (γ̇ ) in the ambient flow; Re is thus a dimensionless
measure of the importance of inertial forces at the micro-scale in a suspending fluid
with density ρ and viscosity µ. Such a calculation has already been performed for a
suspension of rigid particles (for instance, see Lin, Peery & Schowalter 1970; Stone,
Brady & Lovalenti 2000), and leads to normal stress differences in simple shear
flow, implying that an inertial suspension is non-Newtonian even in the absence
of interparticle interactions. For an emulsion, inertial effects again lead to normal
stress differences at O(φRe). A dilute emulsion, unlike a suspension, remains non-
Newtonian even in the Stokesian limit on account of drop deformation due to viscous
stresses (see Schowalter, Chaffey & Brenner 1968; Frankel & Acrivos 1970). However,
the simulations of Li & Sarkar (2005) and the subsequent analysis of Vivek Raja
et al. (2010) showed that even a small amount of inertia qualitatively alters emulsion
rheology in simple shear by changing the signs of the normal stress differences. In the
aforementioned instances, the inertial correction to the rheology arises from the O(Re)
modification of the flow field around an isolated drop or particle, immersed in an
ambient linear flow, in a region around it of the order of its own size. Since the Stokes
equations remain a valid leading-order approximation in this region, the O(φRe)
correction to the inertialess rheology may be obtained from a regular perturbation
expansion about the Stokes limit.

In this paper, we consider the next inertial correction to the rheology of a dilute
emulsion subjected to a simple shear flow. This contribution is O(φRe3/2), and has
a singular character. There have been earlier attempts to calculate the rheological
properties of an inertial suspension in simple shear, to O(φRe3/2), by the same sets of
authors referred to above in the context of the O(φRe) calculation. Lin et al. (1970)
were the first to investigate the effect of micro-scale inertia on the rheology of a
suspension of rigid particles in simple shear, and obtained results to O(φRe3/2) via
the traditionally matched asymptotic expansions approach. Later, Stone et al. (2000)
redid the calculation using a more concise formulation in Fourier space based on
the generalized reciprocal theorem, and in the process, also extended the rheological
results at O(φRe) to an arbitrary ambient linear flow. Although the two theories
agreed at O(φRe) for simple shear flow, there remained a discrepancy at O(φRe3/2)
that has not yet been resolved. The discrepancy is a particularly important one, since
the first inertial correction to the suspension shear viscosity is O(φRe3/2), the effects
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of inertia at O(φRe) being restricted to normal stress differences. The rheology of
an inertial suspension has also been the subject of recent numerical calculations.
Mikulencak & Morris (2004) computed the stationary flow around both fixed and
torque-free spheres in a simple shear flow for a range of Re (0–100) using finite element
methods. For a torque-free sphere, a comparison of the inertial corrections to the
computed angular velocity and the shear component of the stresslet, both of which are
O(Re3/2) in the limit of small Re, appeared to validate the results of Stone et al. (2000).
A favourable comparison with the theoretical predictions was also obtained for the
other stresslet components; these are O(Re), however, and as already mentioned, the
two theories are in agreement at this order. Kulkarni & Morris (2008) have recently
used a lattice Boltzmann method to simulate a suspension undergoing simple shear
flow in a wall-bounded domain at finite Re, thereby extending the rheology of an
inertial suspension to higher volume fractions when interparticle interactions become
important. The bulk rheological properties were correlated to the anisotropy of the
finite-Re microstructure.

Here, we show that the aforementioned theoretical calculations for the bulk stress
are incomplete since they neglect the contributions of the Reynolds stresses at
O(φRe3/2); furthermore, the results for the O(Re3/2) correction to the stresslet are
only partially correct. The computations of Mikulencak & Morris (2004) are again
restricted to obtaining the stresslet at finite Re in the infinitely dilute limit and do
not include the results for the Reynolds stresses. We derive the complete O(φRe3/2)
contributions to the viscosity and normal stress differences of a dilute emulsion
of neutrally buoyant spherical drops in simple shear flow as a function of the
viscosity ratio λ ( = µ̂/µ); the correct results for a dilute suspension are then obtained
in the limit λ→ ∞. The bulk stress in simple shear flow (a viscometric flow) of
an incompressible homogeneous emulsion is completely characterized by the shear
viscosity (µe) and the first (N1) and second normal stress differences (N2). The analysis
in this paper, together with the results for the inertial corrections at O(φRe) (see
Vivek Raja et al. 2010), yields the following expressions for the three viscometric
coefficients, correct to O(φRe3/2):

µe = 1 + φ

[
(5λ + 2)

2(λ + 1)
+ 0.024Re3/2 (5λ + 2)2

(λ + 1)2

]
+ O(φRe2, φ2), (1.1)

N1 = φ

[
−Re

4(3λ2 + 3λ + 1)

9(λ + 1)2
+ 0.066Re3/2 (5λ + 2)2

(λ + 1)2

]
+ O(φRe2, φ2), (1.2)

N2 = φ

[
Re

2(105λ2 + 96λ + 35)

315(λ + 1)2
− 0.085Re3/2 (5λ + 2)2

(λ + 1)2

]
+ O(φRe2, φ2), (1.3)

where the shear viscosity and the normal stress differences have been non-
dimensionalized by µ and µγ̇ , respectively. The above expressions may be combined
with those that result from drop deformation due to viscous forces alone (see
Schowalter et al. 1968), and this is done in § 6 in order to compare with simulation
results; note that the calculations here are restricted to the infinitely dilute
limit, and the isotropic part of the dispersed-phase stress tensor is therefore not
considered.

Micro-scale inertia at O(φRe) only contributes to the normal stresses with N1

being negative and N2 being positive (see (1.2) and (1.3)). The O(φRe3/2) analysis
yields the first correction to the shear viscosity and predicts a shear-thickening
rheology. Simulations (see Kulkarni & Morris 2008) showed that this prediction
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is robust and the shear-thickening persists at higher Re up until φ ≈ 0.2. At
these volume fractions, there is a significant contribution due to the anisotropic
pair microstructure; the results for the pair distribution function, g(r), show the
development of an increasingly strong anisotropy along the compressional quadrant
with an increase in Re, consistent with a shear-thickening behaviour. At higher volume
fractions, and for Re <O(1), the shear-thinning rheology characteristic of a flow-
aligning microstructure, arising from a balance of hydrodynamic and Brownian (or
interparticle) forces in a Stokesian suspension, begins to dominate. The shear viscosity
therefore exhibits a non-monotonic behaviour with increasing Re. It is of interest to
note that while shear-thickening in the absence of inertia relies on the formation of
multi-particle structures, mediated by lubrication interactions, at the highest shear
rates (see Brady & Morris 1997), inertia leads to shear-thickening even in the absence
of interparticle interactions. The enhancement of the microstructural anisotropy
at finite Re also implies that the finite Re contributions to N1 and N2, arising
from pair interactions, are both negative. Thus, the pair interaction contribution to
N2, in particular, has a sign opposite to the single-particle contribution (see (1.3)),
implying a reversal in sign with increasing φ for a fixed Re; this is confirmed
by simulations of Kulkarni & Morris (2008). The O(Re3/2) analysis, in the limit
λ→ ∞, leads to the following angular velocity of a torque-free rigid spherical particle:
Ωp = − 1

2
1z + 0.054Re3/2; inertia causes the particle to slow down, which is again a

robust prediction. Numerical computations show this to be true at higher Re both
in two (Kossack & Acrivos 1974) and three dimensions (Mikulencak & Morris 2004).
Computations by Mikulencak & Morris indicated that the angular velocity of a sphere
continues to decay roughly in proportion to Re−0.1 for large Re, so that broad features
of the velocity field around the particle become rather insensitive to the torque-free
constraint for Re � 1. A similar effect of fluid inertia leads to a complete arrest of
rotation, at a finite Re, for cylindrical particles with an anisotropic cross-section (see
Ding & Aidun 2000).

The most relevant numerical calculation for comparison with the present analysis
is that of Li & Sarkar (2005). The authors have simulated the effect of micro-scale
inertia on the rheology of an infinitely dilute emulsion with unit viscosity ratio.
A comparison with their results was initiated by Vivek Raja et al. (2010), wherein
a discrepancy with the O(φRe) theory was found even at the smallest Reynolds
numbers. It was suggested therein that such a discrepancy might arise, in part, due to
the neglect of higher-order inertial corrections. The inclusion of the O(Re3/2) inertial
corrections, and additional contributions that arise from drop deformation, allow a
more comprehensive comparison in this paper. Since rheological information from
numerical computations has been restricted to only a pair of viscosity ratios (both
the stresslet and Reynolds stress contributions for a unit viscosity ratio, Li & Sarkar
2005, and only the stresslet coefficients for an infinite viscosity ratio,Mikulencak &
Morris 2004), we present new results for the stresslet components at finite Re, over
a range of viscosity ratios, obtained using a control volume formulation with the
SIMPLE algorithm. The computations extend up to a Reynolds number of 10 and,
together with the analytical predictions, allow the synthesis of correlations for the
stresslet contributions to the three viscometric coefficients, in this range of Re, and
for the different viscosity ratios.

The calculation of the inertial correction at O(φRe3/2) is a more difficult task
than that at O(φRe), owing to the non-uniformity of the Stokes approximation
for the disturbance velocity field. The Stokes description breaks down for distances
larger than the inertial screening length that, for a linear flow, is O(aRe−1/2) in the
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limit Re � 1 (Lin et al. 1970). In the so-called outer region (r � aRe−1/2), inertial and
viscous forces remain comparable and the disturbance fields are governed by the
linearized Navier–Stokes equations instead. As argued by Stone et al. (2000) and
Vivek Raja et al. (2010), the above non-uniformity affects the bulk stress calculation
at O(φRe3/2). The increased mathematical difficulty related to solving the linearized
Navier–Stokes equations also implies that an analysis, at O(φRe3/2), for an arbitrary
linear flow is a formidable undertaking. The structure of the disturbance field in
the outer region depends crucially on the topology of the imposed flow. In contrast,
in the inertialess limit, a drop always induces a disturbance flow that is similar in
structure, but opposite in sense, to the ambient rate of strain. The analysis in this
paper is thus restricted to simple shear flow. A second difficulty arises because an
arbitrary steady linear flow is not an exact solution of the Navier–Stokes equations.
Steady linear flows that satisfy the Navier–Stokes equations are devoid of vortex
stretching. Inclusion of the latter necessitates either an unsteadiness on a time scale
of O(γ̇ −1) or higher-order terms in the spatial variation (see Stone et al. 2000; Vivek
Raja et al. 2010). Since the outer velocity field relaxes on a convective time scale,
however, the quasi-steady approximation must break down, at O(φRe3/2), for the case
of an unsteady ambient flow. On the other hand, if the ambient flow must remain
steady, the additional nonlinear terms (that balance the vortex stretching at leading
order) become comparable with the linearly varying part in the outer region, and
a consistent calculation, at O(φRe3/2), must therefore account for contributions to
the outer velocity field arising from such nonlinear corrections. Clearly, unlike the
O(φRe) analysis detailed in Vivek Raja et al. (2010), the O(φRe3/2) analysis depends
on details specific to a particular ambient flow, and is not readily generalizable.
Furthermore, the longer length and time scales associated with the disturbance flow
in the outer region imply that factors such as a drift velocity arising (due to either
inertia or drop deformation) become more important; these may even lead to an
inhomogeneous number density field over longer time scales, bringing into question
the utility of a rheological calculation based on a homogeneous suspension. However,
recent simulations (Wang et al. 2009) have shown that, even in unidirectional flows
such as those that occur in a pipe or a channel, the balance between a transverse
drift and hydrodynamic diffusion leads to a stationary inhomogeneity only on length
scales much larger than the inertial screening length. Since any unidirectional flow
may be locally approximated as a simple shear flow, the rheological response, to
O(Re3/2), of a homogeneous suspension subjected to a simple shear flow becomes
relevant in these instances. An analysis of micro-scale inertia remains important for
reasons other than its rheological relevance, however, and a discussion in this regard
appears in the conclusions section.

This paper is organized as follows. In § 2, we obtain the Fourier-transformed velocity
field in the outer region that is central to the bulk stress calculation. Then, in § 3, we
derive an expression for the bulk stress, accurate to O(φRe3/2), in a dilute emulsion
subjected to simple shear flow. The two principal contributions to the bulk stress, viz.
the O(Re3/2) correction to the stresslet associated with an isolated neutrally buoyant
drop in a simple shear flow, and the corrections to the Reynolds stress integrals at
the same order, are obtained in §§ 4 and 5, respectively. Section 6.1 is devoted to a
collation and discussion of prior numerical results, particularly those available for
an infinitely dilute emulsion of unit viscosity ratio, and their comparison with the
present theory. In the light of the general paucity of numerical results, particularly
as a function of the viscosity ratio, in § 6.2, we present new results for the finite-Re
stresslet components over a wide range of viscosity ratios. The stresslet components
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are obtained from a finite volume simulation of a spherical drop centred within a
much larger spherical domain outside of which the ambient simple shear flow prevails.
While conforming to the theoretical estimates at small Re, the computed values extend
up to Re ≈ 10, and thereby allow the development of empirical fits over the range
of Re examined. Finally, in § 7, we comment on the directions in which the present
analysis may be usefully extended, so one may obtain greater insight into the effects
of inertia at the micro-scale, and the manner in which these couple with macro-scale
flow. The results for an inertial suspension in all the above cases are obtained in a
straightforward manner by taking the limit λ→ ∞.

2. The Fourier-transformed velocity field in the outer region
For particles or drops moving in an unbounded fluid domain, the limit of weak

inertia is a singular one (for instance, see Proudman & Pearson 1957). The exterior
Stokes velocity field for a neutrally buoyant drop in an ambient simple shear flow,
obtained by setting Re = R̂e = 0 (here, R̂e = γ̇ a2ρ/µ̂ is the Reynolds number based
on the dispersed-phase viscosity µ̂), is not a uniformly valid approximation at any
finite Re however small. The approximation breaks down for distances from the
drop larger than an inertial screening length that, for a simple shear flow, scales as
O(aRe−1/2). The leading-order velocity field in this outer region satisfies the linearized
Navier–Stokes equations instead, the convection by the simple shear being included in
a linearized form. It is shown in the next section that the above non-uniformity affects
the bulk stress at O(φRe3/2). Since the drop appears only as a point-force dipole on
length scales of the order of the inertial screening length, the stress calculation may
be carried out in Fourier space. In what follows, we obtain an expression for the
Fourier-transformed outer velocity field.

We scale distances by a, velocities by γ̇ a and stresses by µγ̇ , while continuing to
use the same notation for the resulting dimensionless variables. Thus, in the outer
region, r ∼ O(Re−1/2), and the relevant scales for the velocity and pressure fields may
be derived as follows. Since the Stokes velocity disturbance generated by a force-free
torque-free drop is O(1/r2) for r � 1, it is only O(Re) for r ∼ O(Re−1/2). Comparing
the viscous and pressure terms, the corresponding disturbance pressure field must be
O(∇u) ∼ O(Re3/2). Defining the re-scaled variables in the outer region as r = Re−1/2ρ,
u′ = Re uo and p′ =Re3/2po, one obtains the linearized Navier–Stokes equations and
the equation of continuity in the following dimensionless form:

Γ · uo + (Γ · ρ) · ∇ρuo = − ∇ρpo + ∇2
ρuo − 4π(5λ + 2)

3(λ + 1)
E · ∇δ(ρ), (2.1)

∇ρ · uo = 0, (2.2)

where Γ = 1112 is the transpose of the velocity gradient tensor in simple shear flow,
and E = 1

2
(Γ + Γ †) is the rate-of-strain tensor, λ being the viscosity ratio; here, 1, 2

and 3 correspond, respectively, to the flow, gradient and vorticity directions of the
ambient simple shear. We have followed Saffman (1965) in replacing the matching
condition (to the inner expansion) by a point-dipole forcing at the origin in (2.1), the
constant of proportionality being the familiar stresslet coefficient that characterizes
the response of a neutrally buoyant drop in a linear flow in the absence of inertia (see
Kim & Karrila 1991; Leal 1992).

The finite size of the drop now being irrelevant, the analysis for the outer velocity
field may be conveniently carried out in Fourier space. Using (2.1) and (2.2), we
write down the Fourier-transformed equations of continuity and motion. Defining the
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Fourier transform as f̂ (k) =
∫

e−ik·ρf (ρ) dρ, one obtains

Γ · ûo − (Γ † · k) · ∇kûo = i kp̂o − k2ûo − 4πi(5λ + 2)

3(λ + 1)
E · k, (2.3)

k · ûo = 0. (2.4)

In the limit k � 1, convection by the shear flow becomes unimportant at leading
order, and the solution of (2.3) and (2.4) reduces to the inertialess disturbance field
induced by a point dipole, satisfying

i kp̂d − k2ûd =
4πi(5λ + 2)

3(λ + 1)
E · k, (2.5)

k · ûd = 0, (2.6)

in Fourier space. Since we are interested in the inertial corrections to the
bulk stress in a dilute emulsion, and not the Stokes contribution that leads
to the Taylor viscosity (see Schowalter et al. 1968; Frankel & Acrivos 1970),
it is convenient to remove the singular stresslet contribution from the outer
velocity field. In a manner similar to Stone et al. (2000), we therefore define
u∗(ρ) = uo(ρ)−ud(ρ), p∗(ρ) = po(ρ)−pd(ρ), and the equations satisfied by the Fourier-
transformed variables, û∗(k) and p̂∗(k), may then be obtained from the difference of
the equations governing [ûo(k), p̂o(k)] and [ûd(k), p̂d(k)] above. Thus,

Γ · û∗ − (Γ † · k) · ∇kû∗ = i kp̂∗ − k2û∗ − Γ · ûd + (Γ † · k) · ∇kûd
, (2.7)

k · û∗ =0. (2.8)

Furthermore, using the projection operator (I − k̂k̂) together with (2.8) to eliminate
the pressure from (2.7), one obtains

Γ · û∗ · (I − 2k̂k̂) − (Γ † · k) · ∇kû∗ + k2û∗ = −Γ · ûd · (I − 2k̂k̂)+ (Γ † · k) · ∇kûd
, (2.9)

where k̂ = k/k is the unit vector in Fourier space. The terms involving ûd(k), rather
than the original singular forcing, now act as forcing terms in (2.9). Using the
Fourier-transformed stresslet velocity field,

ûd(k) = −4πi(5λ + 2)

3(λ + 1)

(
E · k
k2

− (E : kk)k
k4

)
, (2.10)

(2.9) takes the form

Γ · û∗ · (I − 2k̂k̂) − (Γ † · k) · ∇kû∗ + k2û∗ =
4πi(5λ + 2)

3(λ + 1)k
[Γ · (E · k̂ − (E : k̂k̂)k̂)

+ (Γ † · k̂) · (E − 2k̂(E · k̂) + (E · k̂)k̂ − (I − 4k̂k̂)(E : k̂k̂))], (2.11)

for a general linear flow. Finally, using the expressions for Γ and E for simple shear
flow, one obtains

k1

∂ û∗

∂k2

+
2k1

k2
kû∗

2 − û∗
211 − k2u∗ =

8πi(5λ + 2)

3(λ + 1)

(
−k2

1k
2
2

k6
k +

k2
1k2

k4
12

)
. (2.12)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
0.

65
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2010.654


314 G. Subramanian, D. L. Koch, J. Zhang and C. Yang

The individual components along the flow, gradient and vorticity directions are given
by

k1

∂û∗
1

∂k2

− k2û∗
1 = −

(
2k2

1

k2
− 1

)
û∗

2 − 8πi(5λ + 2)

3(λ + 1)

k3
1k

2
2

k6
, (2.13)

k2

∂û∗
2

∂k2

+

(
2k1k2

k2
− k2

)
û∗

2 =
8πi(5λ + 2)

3(λ + 1)

k2
1k2(k

2
1 + k2

3)

k6
, (2.14)

k1

∂û∗
3

∂k2

− k2û∗
3 = − 2k1k3

k2
û∗

2 − 8πi(5λ + 2)

3(λ + 1)

k2
1k

2
2k3

k6
. (2.15)

The equation governing the gradient component, û∗
2, is decoupled from the others,

and may therefore be solved first. Expressions for û∗
1 and û∗

3 may then be obtained
in terms of û∗

2. In (2.13)–(2.15), one may identify a ‘simple shear flow’ in Fourier
space too, given by û∗∞(k) = k112. This simple shear flow is orthogonal to the one
in physical space (u∞ = x211), and the orthogonality arises because the wave vector
is oriented normal to the wave fronts, the latter being rotated by the shear flow in
physical space. The Fourier-transformed velocity components are convected by this
flow, and the characteristics of the above system of first-order differential equations
correspond to the streamlines in Fourier space. A characteristic or a streamline is
defined by k′

2 = k2 + k1s, where s is a time-like variable; thus, k2 is the initial position
on the streamline, and (k′

2 − k2) is the distance travelled along the streamline in a time
s moving with velocity k1. The solutions for the individual components, û∗

2, û∗
1 and û∗

3,
may now be written down in terms of s as follows:

û∗
2(k) = − 8πi(5λ + 2)

3(λ + 1)k2

∫ ∞

0

ds
k2

1

(
k2

1 + k2
3

)
(k2 + sk1) e−(k2s+k1k2s

2+ 1
3 k2

1s3)(
k2 + 2k1k2s + k2

1s
2
)2

, (2.16)

û∗
1(k) =

8πi(5λ + 2)

3(λ + 1)

∫ ∞

0

ds
k3

1(k2 + sk1)
2 e−(k2s+k1k2s

2+ 1
3 k2

1s3)(
k2 + 2k1k2s + k2

1s
2
)3

−
∫ ∞

0

ds

(
k2 + 2k1k2s + k2

1s
2 − 2k2

1

)
e−(k2s+k1k2s

2+ 1
3 k2

1s3)(
k2 + 2k1k2s + k2

1s
2
) û∗

2(k1, k2 + sk1, k3),

(2.17)

û∗
3(k) =

8πi(5λ + 2)

3(λ + 1)

∫ ∞

0

ds
k2

1k3(k2 + sk1)
2 e−(k2s+k1k2s

2+ 1
3 k2

1s3)

(k2 + 2k1k2s + k2
1s

2)3

+

∫ ∞

0

ds
2k1k3 e−(k2s+k1k2s

2+ 1
3 k2

1s3)(
k2 + 2k1k2s + k2

1s
2
) û∗

2(k1, k2 + sk1, k3). (2.18)

Here, the s dependence of û∗
2 inside the integrals in (2.17) and (2.18) has been made

explicit by way of its arguments. The limiting form of the inverse Fourier transforms of
(2.16)–(2.18), in the matching region (1 � r � Re−1/2), will be used in § 4 to determine
the stresslet to O(Re3/2). The full expressions enter the Reynolds stress calculation
in § 5.

3. The bulk stress in a dilute emulsion subjected to a simple shear flow
The expression for the non-dimensional bulk stress in an emulsion of neutrally

buoyant drops subjected to an ambient linear flow, u∞ = Γ · r , is given by

Σij = −ptδij + 2Eij + Σ
(d)
ij , (3.1)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
0.

65
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2010.654


The influence of inertia on emulsion rheology 315

where pt is an arbitrary isotropic pressure, the second term is the deviatoric stress
in the Newtonian suspending fluid, and Σ

(d)
ij is the excess stress due to the dispersed

phase. In Vivek Raja et al. (2010), it has been shown that the excess stress in a dilute
non-interacting emulsion with volume fraction φ may be written in the following
form involving integrals of dynamical quantities related to an isolated drop in simple
shear flow:

Σ
(d)
ij =

3φ

4π

∫
A+

d

[
1

2
(σikrj + σjkri)nk − (uinj + ujni)

]
dA +

3φ

4π
Re

(
4π

15
ΓikΓjk

+

∫
Vd

Γikrku
′
j dr +

∫
Vd

Γjkrku
′
i dr −

∫
V −Vd

u′
iu

′
j dr

)
. (3.2)

Here, A+
d denotes the external surface of an isolated drop, Vd denotes the volume of

the drop and (V −Vd) denotes the exterior (infinite) fluid domain. Only the first term in
(3.2), the stresslet integral (Sij ) survives in the inertialess limit, leading to the familiar
Taylor viscosity (Taylor 1932). The remaining terms arise only for non-zero Re, and
may therefore be termed the direct inertial contributions. Vivek Raja et al. (2010)
derived the O(Re) correction to the leading-order Stokes velocity field in the inner
region using a regular perturbation expansion, and thereby, the correction to the
stresslet at the same order. Writing the stresslet as Sij = S

(0)
ij + Re S

(1)
ij + S̃

(2)
ij , and using

their results, we have

S
(0)
ij =

(5λ + 2)

(λ + 1)
Eij , (3.3)

S
(1)
ij =

(
4(3λ2 + 3λ + 1)

9(λ + 1)2
(ΩikEkj − EikΩkj ) +

(43λ2 + 36λ + 8)

35(λ + 1)2
EikEkj

)
, (3.4)

with S̃
(2)
ij denoting the higher-order contributions (that is, smaller than O(Re)). Using

(3.3) and (3.4), (3.2) takes the form

Σ
(d)
ij =

(5λ+ 2)

(λ + 1)
Eij − Re

(
4(3λ2 + 3λ+1)

9(λ + 1)2
(ΩikEkj − EikΩkj )

+
(43λ2 + 36λ + 8)

35(λ + 1)2
EikEkj

)
+ S̃

(2)
ij +

3φ

4π
Re

(
4π

15
ΓikΓjk +

∫
Vd

Γikrku
′
j dr

+

∫
Vd

Γjkrku
′
i dr −

∫
V −Vd

u′
iu

′
j dr

)
. (3.5)

The Reynolds stress integrals and Ŝ
(2)

in (3.5) remain to be evaluated. At leading
order, the Reynolds stresses may be evaluated using the well-known expression for
the Stokes disturbance velocity field, u′(0)(r)u(0) − Γ · r , with u(0) given by (Leal 1992)

u(0)(r) = Γ · r − λ

(λ + 1)r5
E · r −

(
(5λ + 2)

2(λ + 1)r5
− 5λ

2(λ + 1)r7

)
r(E : r r). (3.6)

This leads to contributions to the bulk stress at O(φRe). Writing the disturbance
velocity field as u′ = u′(0) + Re u(1) in order to formally separate stress contributions
arising from the Stokes and inertial parts of the velocity field, the expression for the
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dispersed-phase stress becomes

Σ
(d)
ij = φ

[
(5λ + 2)

(λ + 1)
Eij − Re

(
4(3λ2 + 3λ + 1)

9(λ + 1)2
(ΩikEkj − EikΩkj )

+
(43λ2 + 36λ + 8)

35(λ + 1)2
EikEkj

)
+

3

4π
Re

(
4π

15
ΓikΓjk +

∫
Vd

Γikrku
′
j

(0)
dr

+

∫
Vd

Γjkrku
′
i

(0)
dr −

∫
V −Vd

u′
i

(0)
u′

j

(0)
dr
)

+ S̃
(2)
ij

+
3

4π
Re2

(∫
Vd

Γikrkuj
(1) dr +

∫
Vd

Γjkrkui
(1) dr

)

− 3

4π
Re2

(∫
V −Vd

u′
i

(0)
u

(1)
j dr +

∫
V −Vd

u
(1)
i u′

j

(0)
dr
)

− 3

4π
Re3

∫
V −Vd

u
(1)
i u

(1)
j dr

]
.

(3.7)

The direct inertial contributions have again been evaluated to O(φRe) by Vivek Raja
et al. (2010) and are given by

3

4π

(
4π

15
ΓikΓjk +

∫
Vd

Γikrku
′
j

(0)
dr +

∫
Vd

Γjkrku
′
i

(0)
dr −

∫
V −Vd

u′
i

(0)
u′

j

(0)
dr
)

=

[
1

5
ΓikΓjk − 1

5
(EjkΓik + EikΓjk) −

(
2(5λ + 2)2

35(λ + 1)2
− 2λ(5λ + 2)

35(λ + 1)2
+

3λ2

35(λ + 1)2

)
× EikEkj

]
. (3.8)

Combining (3.8) with (3.7), the dispersed-phase stress takes the form

Σ
(d)
ij = φ

[
(5λ + 2)

(λ + 1)
Eij − Re

(
4(3λ2 + 3λ + 1)

9(λ + 1)2
(ΩikEkj − EikΩkj ) − 8λ

35(λ + 1)2
EikEkj

)

+ S̃
(2)
ij +

3

4π
Re2

(∫
Vd

Γikrkuj
(1) dr +

∫
Vd

Γjkrkui
(1) dr

)

− 3

4π
Re2

(∫
V −Vd

u′
i

(0)
u

(1)
j dr +

∫
V −Vd

u
(1)
i u′

j

(0)
dr
)

− 3

4π
Re3

∫
V −Vd

u
(1)
i u

(1)
j dr

]
.

(3.9)

The validity of a regular perturbation expansion, to O(Re), in a region around the
drop of the order of its own size, implies that the correction to the integrals over
the drop volume in (3.9) is O(Re2). The correction to the leading-order estimate
for the integral over the unbounded fluid domain is, however, larger than the
formal scalings indicated; it is O(Re3/2), this being related to the breakdown of the
regular perturbation at distances of O(Re−1/2). To see this, we note that in a regular
perturbation approach, u(1), at O(Re), satisfies the inhomogeneous Stokes equations,
−∇p(1) + ∇2u(1) = u(0) · ∇u(0). For r � 1, ∇2u(1) ≈ (Γ · r) · ∇u′(0), with u′(0) ∼ O(1/r2).
Thus, u(1) ∼ O(1) for r � 1, the failure to satisfy the far-field decay condition again
being a signature of the aforementioned non-uniformity. With u′(0) ∼ O(1/r2) and
u(1) ∼ O(1),

∫
u′(0)u(1) dV ∼ O(R) and

∫
u(1)u(1) dV ∼ O(R3), when integrated over a

domain of size R. The divergence with domain size is cutoff on using the correct
outer solution obtained from the linearized Navier–Stokes equations. Since this cutoff
occurs at the inertial screening length (R ∼ O(Re−1/2)),

∫
u′(0)u(1) dV ∼ O(Re−1/2) and∫

u(1)u(1) dV ∼ O(Re−3/2), respectively. As a result, all Reynolds stress integrals over
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the exterior fluid domain in (3.9) contribute at O(φRe3/2). This Reynolds stress
contribution has been overlooked in the two earlier calculations referred to in the
Introduction, viz. Lin et al. (1970) and Stone et al. (2000).

Since the dominant contributions to the Reynolds stress integrals arise in the outer
region, it is natural to use the outer variable ρ =Re1/2r . Writing the disturbance
velocity field as u′(r) = u′(0)(r) + Re u∗(ρ) (the components of u∗(ρ) are given in § 4;
see (4.1)–(4.3); only the Fourier-transformed velocity components, û∗

i (k), are needed
in the Reynolds stress evaluation), the dispersed-phase stress takes the form

Σ
(d)
ij = φ

[
(5λ + 2)

(λ + 1)
Eij − Re

(
4(3λ2 + 3λ + 1)

9(λ + 1)2
(ΩikEkj − EikΩkj ) − 8λ

35(λ + 1)2
EikEkj

)

× S̃
(2)
ij − 3

4π
Re1/2

(∫
V −Vd

u′
i

(0)
(r)u∗

j (ρ) dρ +

∫
V −Vd

u∗
i (ρ)u′

j

(0)
(r) dρ

)

− 3

4π
Re3/2

∫
V −Vd

u∗
i (ρ)u∗

j (ρ) dρ

]
+ O(φRe2). (3.10)

Furthermore, we note that u′(0)(r) ∼ Re ud(ρ) + o(Re) in the outer region, ud(ρ) being
the singular dipole velocity field expressed in outer variables; and that the volume
of the drop Vd is only O(Re3/2) in units of the inertial screening length, and may
therefore be neglected. Thus, the integrals over (V − Vd) may be extended to include
the volume inside the drop with an error of o(Re3/2), and one obtains

Σ
(d)
ij =φ

[
(5λ + 2)

(λ + 1)
Eij − Re

(
4(3λ2 + 3λ + 1)

9(λ + 1)2
(ΩikEkj − EikΩkj ) − 8λ

35(λ + 1)2
EikEkj

)

+ S̃
(2)
ij − 3

4π
Re3/2

(∫
{ud

i (ρ)u∗
j (ρ) + u∗

i (ρ)ud
j (ρ) + u∗

i (ρ)u∗
j (ρ)} dρ

)]
+ O(φRe2).

(3.11)

With the finite size of the drop neglected, the analysis may be done in Fourier space.
Using the convolution theorem to transform the Reynolds stress integrals, (3.11) takes
the form

Σ
(d)
ij =φ

[
(5λ + 2)

(λ + 1)
Eij − Re

(
4(3λ2 + 3λ + 1)

9(λ + 1)2
(ΩikEkj − EikΩkj ) − 8λ

35(λ + 1)2
EikEkj

)

+ S̃
(2)
ij − 3Re3/2

32π4

∫
{ûd

i (−k)û∗
j (k) + û∗

i (k)ûd
j (−k) + û∗

i (−k)û∗
j (k)} dk

]
+ O(φRe2),

(3.12)

with

ûd(k) = −4πi(5λ + 2)

3(λ + 1)

(
E · k
k2

− (E : kk)k
k4

)
(3.13)

and the components of û∗(k) being given by (2.16)–(2.18). Since both u(r) and ud(r)
are odd functions of r in simple shear flow, their transforms are odd functions of k,
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and (3.12) may be written as

Σ
(d)
ij = φ

[
(5λ + 2)

(λ + 1)
Eij − Re

(
4(3λ2 + 3λ + 1)

9(λ + 1)2
(ΩikEkj − EikΩkj ) − 8λ

35(λ + 1)2
EikEkj

)

+ S̃
(2)
ij +

3Re3/2

32π4

(∫
{ûd

i (k)û∗
j (k) + û∗

i (k)ûd
j (k) + û∗

i (k)û∗
j (k)} dk

)]
+ O(φRe2).

(3.14)

The stresslet coefficient, S̃
(2)

, is also O(Re3/2), and to see this, we note that, for
distances much smaller than an inertial screening length (ρ � 1), the outer velocity
field, corresponding to a point-dipole forcing in simple shear flow, may be written in
the following general form:

lim
ρ→0

uo(ρ) = Re

[
ud(ρ) +

∞∑
i=0

G(i)(ρ)

]
, (3.15)

where G(i)(ρ) denotes a homogeneous vector function of degree i. Expressed in inner
variables using ρ = Re1/2r , G(0)(ρ) remains unchanged, while succeeding terms are
smaller by O(Re1/2). Thus, Re G(0)(r) must match up to the O(Re) correction to the
Stokes velocity field, while the term Re3/2G(1)(r) determines the next correction in

the inner region, and hence, S̃
(2)

. One may therefore write S̃
(2)

= Re3/2S(2), and the
resulting dispersed-phase stress is given by

Σ
(d)
ij = φ

[
(5λ + 2)

(λ + 1)
Eij − Re

(
4(3λ2 + 3λ + 1)

9(λ + 1)2
(ΩikEkj − EikΩkj ) − 8λ

35(λ + 1)2
EikEkj

)

+ Re3/2

{
S

(2)
ij +

3

32π4

(∫
{ûd

i (k)û∗
j (k) + û∗

i (k)ûd
j (k) + û∗

i (k)û∗
j (k)} dk

)}]
+ O(φRe2). (3.16)

The O(φRe2) correction now includes both the corrections to the stresslet integral
and the Reynolds stresses. The O(Re3/2) stresslet coefficient, S(2), is calculated in the
next section, while the Reynolds stress integrals are evaluated in § 5. We also note in
passing that the Fourier integrals to be evaluated in the succeeding sections, in order
to characterize the O(Re3/2) correction, are independent of the viscosity ratio, and
therefore remain the same both for a rigid particles and drops. As will be seen, the
entire dependence on viscosity ratio, at O(Re3/2), appears in a pre-factor of the form
(5λ + 2)2/(λ + 1)2.

4. The O(Re3/2) correction to the stresslet
In this section, we determine the O(Re3/2) correction to the stresslet using the

limiting form of the outer velocity field in the matching region. The velocity field,
u∗(ρ), in real space may be obtained formally by inverting the expressions (2.16)–
(2.18) derived in § 2. In order to obtain the velocity field in the inner region, to
O(Re3/2), we need only to examine the limiting form of û∗(k) in the overlap region.
With the finite size of the drop being neglected, the overlap region in Fourier space
merely corresponds to the limit k � 1. One expects convection along a Fourier
streamline to become unimportant in this limit, reflecting the local nature of the
Fourier space forcing for dominant viscosity. This is seen from (2.16)–(2.18), where
for k → ∞, the exponential kernel in the integrals becomes increasingly damped, and
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the dominant contribution to the integrals is restricted to an asymptotically small
interval, s ∼ O(k−2), along the streamline. Using this estimate, it may be shown that
the only s-dependence in the integrands that needs to be retained at this order is
the one in the exponential kernel now approximated as e−k2s; the resulting integral
over s is trivial:

∫ ∞
0

e−k2s ds = 1/k2. Thus, the leading-order approximations for the

components of the outer velocity field, u∗(ρ), in the overlap region 1 � r � Re−1/2,
are given by

u∗
2(ρ) = − 1

(2π)3
8πi(5λ + 2)

3(λ + 1)

∫
dk eik·ρ k2

1k2(k
2
1 + k2

3)

k8
, (4.1)

u∗
1(ρ) =

1

(2π)3
8πi(5λ + 2)

3(λ + 1)

∫
dk eik·ρ k3

1k
2
2

k8
, (4.2)

u∗
3(ρ) =

1

(2π)3
8πi(5λ + 2)

3(λ + 1)

∫
dk eik·ρ k2

1k
2
2k3

k8
, (4.3)

where we have also neglected the integral terms involving û∗
2 that enter the expressions

for û∗
1 and û∗

3 since they only contribute at O(Re3/2). The above approximate
expressions for the leading-order inverse Fourier transforms may further be written
in the form

u∗
2(ρ) = − 1

(2π)3
8πi(5λ + 2)

3(λ + 1)

∂3

∂ρ2
1∂ρ2

[
∂2

∂ρ2
1

+
∂2

∂ρ2
3

]
F (ρ), (4.4)

u∗
1(ρ) =

1

(2π)3
8πi(5λ + 2)

3(λ + 1)

∂3

∂ρ3
1

∂2

∂ρ2
2

F (ρ), (4.5)

u∗
3(ρ) =

1

(2π)3
8πi(5λ + 2)

3(λ + 1)

∂2

∂ρ2
1

∂2

∂ρ2
2

∂

∂ρ3

F (ρ), (4.6)

where F (ρ) is the inverse Fourier transform of 1/k8, and satisfies (∇2
ρ)

4F = δ(ρ).
Furthermore, it is seen from equations (4.1)–(4.3) that the velocity field in physical
space must be a homogeneous function of ρ of degree zero. This then corresponds to
retaining only the particular solution for F ; thus, one is led to the following sequence:
(∇2

ρ)
4F = δ(ρ), (∇2

ρ)
3F = −1/4πρ, (∇2

ρ)
2F = −ρ/8π, and so on, until F = −ρ5/96(30π).

Using this in (4.4)–(4.6), and carrying out the differentiations, one finally obtains

u∗
2(ρ) =

(5λ + 2)

72(λ + 1)

ρ2

ρ5

(
ρ2

1ρ
2
2 + 4ρ4

2 + 3ρ4
3 + 3ρ2

1ρ
2
3 + 7ρ2

2ρ
2
3

)
, (4.7)

u∗
1(ρ) = − (5λ + 2)

72(λ + 1)

ρ1

ρ5

(
2ρ4

1 + 3ρ4
3 + 5ρ2

1ρ
2
2 + 3ρ2

2ρ
2
3 + 5ρ2

1ρ
2
3

)
, (4.8)

u∗
3(ρ) = − (5λ + 2)

72(λ + 1)

ρ3

ρ5

(
ρ4

3 + ρ2
1ρ

2
3 + ρ2

2ρ
2
3 + 3ρ2

1ρ
2
2

)
, (4.9)

at leading order. Note that the terms above really represent the O(Re) corrections to
the leading-order stresslet field, ud(ρ), in the matching region; the latter contribution
was subtracted from uo(ρ) when defining u∗(ρ) in order to isolate the inertial
corrections. For purposes of comparing our results thus far with an earlier analysis in
Vivek Raja et al. (2010), we now write down the limiting form of the full outer velocity
field in the matching region, to O(Re), and expressed in terms of inner variables. One
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obtains

lim
1�r�Re−1/2

u′(r) = Re lim
ρ�1

uo(ρ), (4.10)

= Re(ud(ρ) + lim
ρ�1

u∗(ρ)), (4.11)

= Re

[
−5

2

ρ(E : ρρ)

ρ5
+ lim

ρ�1
u∗(ρ)

]
, (4.12)

= − 5

2

r(E : r r)
r5

+ Re
(5λ + 2)

72(λ + 1)

[ r2

r5

(
r2
1 r

2
2 + 4r4

2 + 3r4
3

+ 3r2
1 r

2
3 + 7r2

2 r
2
3

)
12 − r1

r5

(
2r4

1 + 3r4
3 + 5r2

1 r
2
2 + 3r2

2 r
2
3 + 5r2

1 r
2
3

)
11

− r3

r5

(
r4
3 + r2

1 r
2
3 + r2

2 r
2
3 + 3r2

1 r
2
2

)
13

]
+ O(Re3/2), (4.13)

where we have used the expression for the stresslet field in physical space The above
expression is identical to the limiting form, for r � 1, of the velocity field obtained by
Vivek Raja et al. (2009) via a regular perturbation expansion, to O(Re), in the inner
region. The identity of the two expressions for simple shear flow confirms the regular
nature of the O(Re) inertial correction. As shown by Vivek Raja et al. (2010), the
structure of the regular perturbation expansion remains unchanged, to O(Re), even
for a general ambient linear flow, implying that the O(Re) inertial correction must
continue to have a regular character in this case.

The identity of the results, to O(Re), obtained here and in Vivek Raja et al. (2010)
implies that despite the regular perturbation expansion being valid only to O(Re),
and only in the region r � Re−1/2, it nevertheless yields the correct inner velocity field
to this order. Thus, rather surprisingly (from the perspective of a matched asymptotic
expansions approach), a solution of the linearized Navier–Stokes equations in the
outer region is not needed at this order. This situation is, however, peculiar to a
neutrally buoyant drop in an ambient linear flow, and is not true, for instance, in
the simpler case of a drop translating in a quiescent unbounded fluid domain. The
difference arises because, in the translation problem, the velocity field at O(Re) (where
Re = aU/ν, U being the translation velocity) includes both a particular integral and
a homogeneous solution. Although the O(Re) particular integral obtained fails to
satisfy the far-field decay condition, in a manner similar to the linear flow case,
it does not lead to a drag. Thus, the well-known Oseen correction to the Stokes
drag arises from a homogeneous solution forced by the outer velocity field obtained
from solving the Oseen equations (valid in the region r ∼ O(Re−1), this being the
inertial screening length for the translation problem). For an ambient linear flow,
however, the O(Re) particular solution yields a non-trivial contribution to the
stresslet and additional homogeneous contributions are excluded on grounds of
symmetry.

A situation similar to that given above, for a translating drop at O(Re), prevails at
O(Re3/2) in simple shear flow. The inner limit of the outer solution at this order acts
as an ambient linear flow for the inner region, and the correction to the stresslet is the
familiar inertialess response of a neutrally buoyant drop to this linear flow (arising
as a homogeneous solution of the Stokes equations). Thus, at O(Re3/2), the outer
solution must reduce to the form Re3/2(r · A) in the matching region, and the analysis
below determines the elements of the velocity gradient tensor A. We begin with (2.16),
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the expression for u∗
2(ρ), which is the least cumbersome:

u∗
2(ρ) = − i(5λ + 2)

3π2(λ + 1)

∫
dk

eik·ρ

k2

∫ ∞

0

ds
k2

1

(
k2

1 + k2
3

)
(k2 + sk1) e−(k2s+k1k2s

2+ 1
3 k2

1s3)(
k2 + 2k1k2s + k2

1s
2
)2

.

(4.14)
As already seen, the leading-order approximation for u∗

2(ρ) was obtained as the
inverse Fourier transform of û∗

2(k) in the limit k � 1, leading to a term of O(Re)
in the matching region. However, carrying out such a large-k expansion to second
order, in order to isolate the next inertial correction, leads to a divergent integral. In
particular, one obtains

lim
k�1

u∗
2(ρ) ≈ − i(5λ + 2)

3π2(λ + 1)

∫
dk

eik·ρ

k2

∫ ∞

0

ds
k2

1

(
k2

1 + k2
3

)
(k2 + sk1) e−k2s(1 − k1k2s

2)

k4

(
1 +

2k1k2s

k2

)2
,

(4.15)

≈ − i(5λ + 2)

3π2(λ + 1)

[∫
dk

k2
1k2

(
k2

1 + k2
3

)
k8

eik·ρ +

∫
dk

k3
1

(
k2

1 + k2
3

)
k6

(
1

k4
− 6k2

2

k6

)
eik·ρ + · · · ·

]
,

(4.16)

where the first term leads to the O(Re) correction analysed earlier, while the second
term leads to a divergent integral in the limit of small ρ. Specifically, for ρ � 1, this
integral takes the form

∫
dk(1 + ik · ρ)

k3
1

(
k2

1 + k2
3

)
k6

(
1

k4
− 6k2

2

k6

)

≈ i

∫
dk(k · ρ)

k3
1

(
k2

1 + k2
3

)
k6

(
1

k4
− 6k2

2

k6

)
∼ ρ

∫
dk

k2
, (4.17)

where the contribution from the leading-order term in the Fourier exponential yields
an odd integrand, and therefore integrates to zero. The divergence arises because of
the lack of a reciprocal correspondence between the limits in physical and Fourier
space beyond O(Re). In order to obtain a convergent result at the next order, we
need to take the limit ρ � 1 rather than k � 1. In the latter instance, one may always
expand the exponential kernel in the Fourier integrals, thereby obtaining a local
relation between a Fourier-transformed velocity component and the corresponding
component of the projected point-dipole forcing. However, physically, the singular
nature of the O(Re3/2) correction implies that convection along a Fourier streamline
remains important, and the non-local nature of the forcing in Fourier space must
be accounted for beyond O(Re). In other words, the integral along the characteristic
coordinate s must be retained in its full form. We therefore proceed a little differently,
first extracting the O(Re) correction from the exact expression for the Fourier
transform:

lim
ρ�1

u∗
2(ρ) = − lim

ρ�1

i(5λ + 2)

3π2(λ + 1)

∫
dk

eik·ρ

k2

∫ ∞

0

ds
k2

1

(
k2

1 + k2
3

)
(k2 + sk1) e−(k2s+k1k2s

2+ 1
3 k2

1s3)(
k2 + 2k1k2s + k2

1s
2
)2

,

(4.18)
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= − i(5λ + 2)

3π2(λ + 1)

∫
dk

k2
1k2

(
k2

1 + k2
3

)
k8

eik·ρ + lim
ρ�1

i(5λ + 2)

3π2(λ + 1)

×
∫

dk
eik·ρ

k2

[
k2

1k2

(
k2

1 + k2
3

)
k6

−
∫ ∞

0

ds
k2

1

(
k2

1 + k2
3

)
(k2 + sk1) e−(k2s+k1k2s

2+ 1
3 k2

1s3)(
k2 + 2k1k2s + k2

1s
2
)2

]
, (4.19)

where the small ρ limit is a redundant one in the first term, it being a homogeneous
function of degree zero. In the second term, one may now expand (only) the Fourier
exponential, and thereby, still obtain convergent integrals. Using (4.7) and converting
to inner variables, one obtains

lim
1�r�Re−1/2

u∗
2(r) =

(5λ + 2)

72(λ + 1)

r2

r5

(
r2
1 r

2
2 + 4r4

2 + 3r4
3 + 3r2

1 r
2
3 + 7r2

2 r
2
3

)
−Re1/2r · (5λ + 2)

3π2(λ + 1)

×
∫

dk k
k2

1

(
k2

1 + k2
3

)
k2

[
k2

k6
−
∫ ∞

0

ds
(k2 + sk1) e−(k2s+k1k2s

2+ 1
3 k2

1s3)(
k2 + 2k1k2s + k2

1s
2
)2

]
.

(4.20)

Even with the s-dependence included, the factor multiplying the Fourier exponential
in the integrand of the second term in (4.19) remains an odd function of k, and the first
non-trivial contribution in (4.20) therefore comes from the term of O(ρ) ≡ O(Re1/2r)
in the limit ρ → 0. With the retention of the exact dependence on s in the exponential
kernel, the divergence with k, for k → 0, encountered earlier in (4.16) is no longer a
concern. Since s ∼ O(1) for k ∼ O(1), all the terms in the argument of the exponential
kernel become important once k ∼ O(1), cutting off the divergence. In fact, it is
now seen that the earlier approximate form in (4.16), obtained by Taylor-expanding
exponential kernel about e−k2s , is only appropriate for k → ∞, and the resulting
limiting form ensures convergence in the large k limit instead. Using (4.20), one may
now write down the limiting form for the gradient component of the outer velocity
field in the matching region. Thus,

lim
1�r�Re−1/2

uo2(r) = − 5

2

r2(E : r r)
r5

+ Re
(5λ + 2)

72(λ + 1)

r2

r5

(
r2
1 r

2
2 + 4r4

2 + 3r4
3 + 3r2

1 r
2
3 + 7r2

2 r
2
3

)
− Re3/2r · (5λ + 2)

3π2(λ + 1)

∫
dkk

k2
1

(
k2

1 + k2
3

)
k2

×
[

k2

k6
−
∫ ∞

0

ds
(k2 + sk1) e−(k2s+k1k2s

2+ 1
3 k2

1s3)(
k2 + 2k1k2s + k2

1s
2
)2

]
. (4.21)

Arguments along similar lines applied to the expressions for u∗
1 and u∗

3, that is,

u∗
1(ρ) =

1

(2π)3

∫
dk eik·ρ

[
8πi(5λ + 2)

3(λ + 1)

∫ ∞

0

ds
k3

1(k2 + sk1)
2 e−(k2s+k1k2s

2+ 1
3 k2

1s3)(
k2 + 2k1k2s + k2

1s
2
)3

−
∫ ∞

0

ds

(
k2 + 2k1k2s + k2

1s
2 − 2k2

1

)
e−(k2s+k1k2s

2+ 1
3 k2

1s3)(
k2 + 2k1k2s + k2

1s
2
) û∗

2(k1, k2 + sk1, k3)

]
,

(4.22)
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u∗
3(ρ) =

1

(2π)3

∫
dk eik·ρ

[
8πi(5λ + 2)

3(λ + 1)

∫ ∞

0

ds
k2

1k3(k2 + sk1)
2 e−(k2s+k1k2s

2+ 1
3 k2

1s3)(
k2 + 2k1k2s + k2

1s
2
)3

+

∫ ∞

0

ds
2k1k3 e−(k2s+k1k2s

2+ 1
3 k2

1s3)(
k2 + 2k1k2s + k2

1s
2
) û∗

2(k1, k2 + sk1, k3)

]
, (4.23)

yield the corresponding O(Re3/2) corrections. The limiting form of the outer velocity
field in the matching region may be written down in the following succinct form:

lim
1�r�Re−1/2

uo(r) = − 5

2

r(E : r r)
r5

+ Re
(5λ + 2)

72(λ + 1)
B(r) + Re3/2 (5λ + 2)

3π2(λ + 1)
(r · A), (4.24)

where the components of the vector B(r) given by

B1(r) = − r1

r5

(
2r4

1 + 3r4
3 + 5r2

1 r
2
2 + 3r2

2 r
2
3 + 5r2

1 r
2
3

)
, (4.25)

B2(r) =
r2

r5

(
r2
1 r

2
2 + 4r4

2 + 3r4
3 + 3r2

1 r
2
3 + 7r2

2 r
2
3

)
, (4.26)

B3(r) =
r3

r5

(
r4
3 + r2

1 r
2
3 + r2

2 r
2
3 + 3r2

1 r
2
2

)
, (4.27)

characterize the far-field form of the regular O(Re) correction. It is worth reiterating
that B(r) is the limiting form, for r � 1, of the O(Re) velocity field obtained by Vivek
Raja et al. (2010) via a regular perturbation expansion. The components of A given
by

A11 =

∫
dk k4

1

[
k2

2

k8
−
∫ ∞

0

ds
(k2 + sk1)

2 e−(k2s+k1k2s
2+ 1

3 k2
1s3)(

k2 + 2k1k2s + k2
1s

2
)3

]

−
∫

dk k3
1

(
k2

1 + k2
3

) [∫ ∞

0

ds
(k2 + 2k1k2s + k2

1s
2 − 2k2

1) e−(k2s+k1k2s
2+ 1

3 k2
1s3)(

k2 + 2k1k2s + k2
1s

2
)2

×
∫ ∞

0

ds ′ (k2 + k1(s + s ′)) e−[k2s′+k1k2(s
′2+2ss′)+ 1

3 k2
1 (s′3+3ss′2+3s2s′)][

k2 + 2k1k2(s + s ′) + k2
1(s + s ′)2

]2
]
, (4.28)

A12 =

∫
dk

k3
1

(
k2

1 + k2
3

)
k2

∫ ∞

0

ds
(k2 + sk1) e−(k2s+k1k2s

2+ 1
3 k2

1s3)(
k2 + 2k1k2s + k2

1s
2
)2

, (4.29)

A21 = −
∫

dk k3
1k2

∫ ∞

0

ds
(k2 + sk1)

2 e−(k2s+k1k2s
2+ 1

3 k2
1s3)(

k2 + 2k1k2s + k2
1s

2
)3

−
∫

dk k2
1k2

(
k2

1 + k2
3

) [∫ ∞

0

ds

(
k2 + 2k1k2s + k2

1s
2 − 2k2

1

)
e−(k2s+k1k2s

2+ 1
3 k2

1s3)(
k2 + 2k1k2s + k2

1s
2
)2

×
∫ ∞

0

ds ′ (k2 + k1(s + s ′))2 e−[k2s′+k1k2(s
′2+2ss′)+ 1

3 k2
1 (s′3+3ss′2+3s2s′)][

k2 + 2k1k2(s + s ′) + k2
1(s + s ′)2

]2
]
, (4.30)
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A22 =

∫
dk

k2
1k2

(
k2

1 + k2
3

)
k2

[∫ ∞

0

ds
(k2 + sk1) e−(k2s+k1k2s

2+ 1
3 k2

1s3)(
k2 + 2k1k2s + k2

1s
2
)2

− k2

k6

]
, (4.31)

A33 =

∫
dk k2

1k
2
3

[
k2

2

k8
−
∫ ∞

0

ds
(k2 + sk1)

2 e−(k2s+k1k2s
2+ 1

3 k2
1s3)(

k2 + 2k1k2s + k2
1s

2
)3

]

−
∫

dk2k3
1k

2
3

(
k2

1 + k2
3

) [∫ ∞

0

ds
e−(k2s+k1k2s

2+ 1
3 k2

1s3)(
k2 + 2k1k2s + k2

1s
2
)2

×
∫ ∞

0

ds ′ (k2 + k1(s + s ′)) e−[k2s′+k1k2(s
′2+2ss′)+ 1

3 k2
1 (s′3+3ss′2+3s2s′)][

k2 + 2k1k2(s + s ′) + k2
1(s + s ′)2

]2
]
, (4.32)

A13 = A23 = A31 = A32 = 0, (4.33)

characterize the singular O(Re3/2) correction. Here, the nested characteristic integrals
in A11, A21 and A33 arise because both u∗

1 and u∗
3 involve an integration of u∗

2

along a Fourier streamline (see (4.22) and (4.23)), and the latter involves a second
characteristic integral.

The disturbance velocity field at O(Re3/2), in the inner region, is now readily
calculated as the inertialess disturbance field induced by a neutrally buoyant drop
subjected to an ‘ambient’ linear flow given by u∞ =Re3/2{(5λ + 2)/[3π2(λ + 1)]}(r ·A).
Thus, in contrast to the rather cumbersome algebra involved in obtaining the O(Re)
inner velocity field, the O(Re3/2) analysis only involves knowledge of a well-known
Stokes solution (see Leal 1992), once the elements of A are determined. One may now
write the velocity field in the exterior fluid domain, in the inner region, to O(Re3/2)
as

u(r) = u(0)(r) + Re u(1)(r) + Re3/2u(2)(r), (4.34)

where

u(0)(r) = Γ · r − λ

(λ + 1)r5
E · r −

(
(5λ + 2)

2(λ + 1)r5
− 5λ

2(λ + 1)r7

)
r(E : r r), (4.35)

u(2)(r) =
(5λ + 2)

3π2(λ + 1)
A† · r − λ(5λ + 2)

6π2(λ + 1)2r5
(A + A†) · r

− (5λ + 2)

6π2(λ + 1)

(
(5λ + 2)

2(λ + 1)r5
− 5λ

2(λ + 1)r7

)
r((A + A†) : r r), (4.36)

and the general form of the regular correction, u(1)(r), derived in Vivek Raja
et al. (2010), is reproduced here for the exterior fluid domain:

u(1)(r) =
1

(λ + 1)

[(
− c1

4r11
+

c2

2r10
− 7c3

4r9
+

c4

3r8
− c5

12r5

)
(Γ : r r)2r +

(
c1

18r9
− 3c2

32r8

+
c6

r7
− c4

36r6
− c7

2r5
+

c5

18r3

)
(Γ : r r)(Γ · r) +

(
c1

18r9
− 3c2

32r8
+

c8

r7
− c4

36r6

+
c7

2r5
− c5

9r3

)
(Γ : r r)(Γ † · r) +

(
c1

36r9
− 3c2

32r8
+

c9

r7
− 5c4

36r6
− c10

r5
+

c5

36r3

)
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× (Γ · r) · (Γ · r)r +

(
c1

18r9
− 3c2

16r8
+

c9 + c11

r7
− 5c4

18r6
+

c5

18r3

)
(Γ · r) · (Γ †· r)r

+

(
c1

36r9
− 3c2

32r8
+

c11

r7
− 5c4

36r6
+

c10

r5
+

c5

36r3

)
(Γ † · r) · (Γ † · r)r

+

(
− c1

126r7
+

c2

32r6
− c17

r5
+

c4

36r4
− λ + 1

30r3
+

c5

9r

)
Γ · (Γ · r)

+

(
− c1

126r7
+

c2

32r6
− c18

r5
+

c4

36r4
+

λ + 1

30r3
− c5

18r

)
Γ † · (Γ † · r)

+
(

− c1

126r7
+

c2

32r6
− c12

r5
+

c4

36r4
− c7

6r3
+

c5

9r

)
Γ † · (Γ · r)

+
(

− c1

126r7
+

c2

32r6
− c13

r5
+

c4

36r4
+

c7

6r3
− c5

18r

)
Γ · (Γ † · r)

+

(
− c1

252r7
+

c2

48r6
− c12 + c13

2r5
+

c4

18r4
− c5

36r

)
(Γ : Γ † + Γ : Γ )r

]
. (4.37)

The constants ci in (4.37) are functions of the viscosity ratio and have been defined in
Vivek Raja et al. (2010). For r � 1, (4.37) reduces to B(r) as defined by (4.25)–(4.27).

We again emphasize that the only difference between the Stokes disturbance
field and that at O(Re3/2) is the ambient linear flow. In the former case, it
is the actual imposed flow, Γ · r , while in the latter case, it is the ‘ambient’
flow, [(5λ + 2)/3π2(λ + 1)](A† · r), set up by the outer field in the overlap region
overlap (1 � r � Re−1/2). The expression for the O(Re3/2) correction to the stresslet
is immediate. The stresslet for a neutrally buoyant drop in a linear flow, Γ · r , is
S = (4π/3)[(5λ + 2)/(λ + 1)]E, and for the ambient flow at O(Re3/2), this takes the
form Re3/2(2/9π)[(5λ + 2)2/(λ + 1)2](A + A†). Thus, S(2), which appears in (3.14) for
the bulk stress in § 3, is given by

S(2) =
2

9π

(5λ + 2)2

(λ + 1)2
(A + A†). (4.38)

Combining this result with the O(Re) correction to the stresslet derived for simple
shear flow by Vivek Raja et al. (2010) (see (3.4) in § 3), one obtains the following
expression for the stresslet, accurate to O(Re3/2):

S = S(0) + Re S(1) + Re3/2 S(2), =
4π(5λ + 2)

3(λ + 1)
E − Re

[
16π(3λ2 + 3λ + 1)

27(λ + 1)2

×(Ω · E − E · Ω) +
4π(43λ2 + 36λ + 8)

105(λ + 1)2
E · E

]
+Re3/2 2(5λ + 2)2

9π(λ + 1)2
(A + A†) + O(Re2),

(4.39)

where we again note that Γ = 1112 and E = 1
2
(1112 + 1211) for simple shear flow; the

order of the next correction to the stresslet is also indicated in (4.39). It was noted
by Vivek Raja et al. (2010) that inertia, at O(Re), only alters the normal stresses in
simple shear flow, so that the shear component of the stresslet may be written as

S12 =
2π(5λ + 2)

3(λ + 1)
+ Re3/2 2(5λ + 2)2

9π(λ + 1)2
(A12 + A21) + O(Re2), (4.40)

=
4π

3

[
(5λ + 2)

2(λ + 1)
+ Re3/2 (5λ + 2)2

12π2(λ + 1)2
(A12 + A21) + O(Re2)

]
. (4.41)
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At O(φRe3/2), the shear viscosity of a dilute emulsion becomes a function of the shear
rate.

We now calculate the elements of A. This calculation is clearly not a trivial one since
the elements A11, A21 and A33 involve five-dimensional integrals, while A12 and A22

involve four-dimensional ones. The multi-dimensional nature and the infinite intervals
involved make a direct numerical approach a difficult one; this may indeed have led to
the inaccurate results reported earlier for the O(Re3/2) correction to the stresslet (see
Lin et al. 1970; Stone et al. 2000). We therefore first reduce the dimensionality of
integration to two by analytical means, before resorting to numerics. To begin with, we
reduce the nested characteristic integrals in A11, A21 and A33 to a single integral using
an integration by parts. For instance, consider the nested integral in the expressions
for A11 and A21:

∫ ∞

0

ds

(
k2 + 2k1k2s + k2

1s
2 − 2k2

1

)
e−(k2s+k1k2s

2+ 1
3 k2

1s3)(
k2 + 2k1k2s + k2

1s
2
)2

∫ ∞

0

ds ′ (k2 + k1(s + s ′)) e−[k2s′+k1k2(s
′2+2ss′)+ 1

3 k2
1 (s′3+3ss′2+3s2s′)]

[k2 + 2k1k2(s + s ′) + k2
1(s + s ′)2]2

.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.42)

Defining a variable s ′′ = (s + s ′) allows one to combine the two exponentials, and the
above integral takes the form

∫ ∞

0

ds

(
k2 + 2k1k2s + k2

1s
2 − 2k2

1

)
(
k2 + 2k1k2s + k2

1s
2
)2

∫ ∞

s

ds ′′ (k2 + k1s
′′) e−[k2s′′+k1k2s

′′2+ 1
3 k2

1s′′3][
k2 + 2k1k2s ′′ + k2

1s
′′2
]2 . (4.43)

One may now integrate (4.43) by parts. Noting that

∫ (
k2 + 2k1k2s + k2

1s
2 − 2k2

1

)
(
k2 + 2k1k2s + k2

1s
2
)2

ds =
k2

3

k1

(
k2

1 + k2
3

)3/2
tan−1

(
k2 + k1s(
k2

1 + k2
3

)1/2

)

− k1(k2 + k1s)(
k2

1 + k2
3

)[
k2

1 + k2
3 + (k2 + k1s)2

] , (4.44)

one obtains

∫ ∞

0

ds

(
k2 + 2k1k2s + k2

1s
2 − 2k2

1

)
(
k2 + 2k1k2s + k2

1s
2
)2

∫ ∞

s

ds ′′ (k2 + k1s
′′) e−[k2s′′+k1k2s

′′2+ 1
3 k2

1s′′3][
k2 + 2k1k2s ′′ + k2

1s
′′2
]2

=

∫ ∞

0

ds
(k2 + k1s) e−[k2s+k1k2s

2+ 1
3 k2

1s3]

k1

(
k2 + 2k1k2s + k2

1s
2
)2

[
k2

3

k1

(
k2

1 + k2
3

)3/2

[
tan−1

(
k2 + k1s(
k2

1 + k2
3

)1/2

)]

− tan−1

(
k2(

k2
1 + k2

3

)1/2

)
+

k2
1(

k2
1 + k2

3

)[k2

k2
− (k2 + k1s)

k2
1 + k2

3 + (k2 + k1s)2

]]
. (4.45)
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For the nested characteristic integral in A33, one similarly obtains∫ ∞

0

ds
e−[k2s+k1k2s

2+ 1
3 k2

1s3](
k2 + 2k1k2s + k2

1s
2
)2

∫ ∞

0

ds ′ (k2 + k1(s + s ′)) e−[k2s′+k1k2(s
′2+2s′s)+ 1

3 k2
1 (s′3+3ss′2+3s2s′)][

k2 + 2k1k2(s + s ′) + k2
1(s + s ′)2

]2
=

∫ ∞

0

ds
(k2 + k1s) e−[k2s+k1k2s

2+ 1
3 k2

1s3](
k2 + 2k1k2s + k2

1s
2
)2

[
1(

k2
1 + k2

3

)1/2

[
tan−1

(
k2(

k2
1 + k2

3

)1/2

)

− tan−1

(
(k2 + k1s)(
k2

1 + k2
3

)1/2

)]
+

[
k2

k2
− (k2 + k1s)

k2
1 + k2

3 + (k2 + k1s)2

]]
. (4.46)

Using (4.45) and (4.46), we now write all the non-trivial elements of A as four-
dimensional integrals:

A11 =

∫
dk k4

1

[
k2

2

k8
−
∫ ∞

0

ds
(k2 + sk1)

2 e−(k2s+k1k2s
2+ 1

3 k2
1s3)(

k2 + 2k1k2s + k2
1s

2
)3

]

−
∫

dk
∫ ∞

0

ds
(k2 + k1s) e−[k2s+k1k2s

2+ 1
3 k2

1s3](
k2 + 2k1k2s + k2

1s
2
)2

[
k1k

2
3(

k2
1 + k2

3

)1/2

[
tan−1

(
k2 + k1s(
k2

1 + k2
3

)1/2

)

− tan−1

(
k2(

k2
1 + k2

3

)1/2

)]
+ k4

1

[
k2

k2
− (k2 + k1s)

k2
1 + k2

3 + (k2 + k1s)2

]]
, (4.47)

A12 =

∫
dk

k3
1

(
k2

1 + k2
3

)
k2

∫ ∞

0

ds
(k2 + sk1) e−(k2s+k1k2s

2+ 1
3 k2

1s3)(
k2 + 2k1k2s + k2

1s
2
)2

, (4.48)

A21 = −
∫

dk k3
1k2

∫ ∞

0

ds
(k2 + sk1)

2 e−(k2s+k1k2s
2+ 1

3 k2
1s3)(

k2 + 2k1k2s + k2
1s

2
)3

−
∫

dk

×
∫ ∞

0

ds
(k2 + k1s) e−[k2s+k1k2s

2+ 1
3 k2

1s3](
k2 + 2k1k2s + k2

1s
2
)2

[
k2k

2
3

k1

(
k2

1 + k2
3

)3/2

[
tan−1

(
k2 + k1s(
k2

1 + k2
3

)1/2

)

− tan−1

(
k2(

k2
1 + k2

3

)1/2

)]
+ k3

1k2

[
k2

k2
− (k2 + k1s)

k2
1 + k2

3 + (k2 + k1s)2

]]
, (4.49)

A22 =

∫
dk

k2
1k2

(
k2

1 + k2
3

)
k2

[∫ ∞

0

ds
(k2 + sk1) e−(k2s+k1k2s

2+ 1
3 k2

1s3)

(k2 + 2k1k2s + k2
1s

2)2
− k2

k6

]
, (4.50)

A33 =

∫
dk k2

1k
2
3

[
k2

2

k8
−
∫ ∞

0

ds
(k2 + sk1)

2 e−(k2s+k1k2s
2+ 1

3 k2
1s3)(

k2 + 2k1k2s + k2
1s

2
)3

]
− 2

∫
dk

×
∫ ∞

0

ds
(k2 + k1s) e−[k2s+k1k2s

2+ 1
3 k2

1s3](
k2 + 2k1k2s + k2

1s
2
)2

[
k2

1k
2
3

(
k2

1 + k2
3

)1/2

[
tan−1

(
k2(

k2
1 + k2

3

)1/2

)

− tan−1

(
(k2 + k1s)(
k2

1 + k2
3

)1/2

)]
+ k2

1k
2
3

(
k2

1 + k2
3

) [k2

k2
− (k2 + k1s)

k2
1 + k2

3 + (k2 + k1s)2

]]
.

(4.51)

It becomes convenient now to change spherical coordinates with the polar axis
along the gradient direction of simple shear flow. By defining k1 = k sin θ cos φ,
k3 = k sin θ sinφ and k2 = k cos θ , θ being the polar angle and φ being the azimuthal
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angle in the k1–k3 plane, the resulting integral over k is of the general form∫ ∞
0

k2e−ak2

dk, which is, of course, readily evaluated, giving
√

π/4a3/2. Using this
result, and the symmetry of simple shear flow, one may now express the elements of
A as three-dimensional integrals:

A11 =
√

π

∫ 1

0

dt

∫ π/2

0

dφ

{
−(1 − t2)2 cos4 φ

∫ ∞

0

ds

s3/2

[
2t2 − γ+t

α2
+β

3/2
+

+
γ−t

α2
−β

3/2
−

]

+ (1 − t2)3/2 sin2 φ cos2 φ

∫ ∞

0

ds

s3/2

[
γ+

α2
+β

3/2
+

(
sin−1 t − sin−1 γ+√

α+

)

+
γ−

α2
−β

3/2
−

(
sin−1 t − sin−1 γ−√

α−

)]}
, (4.52)

A12 =
√

π

∫ 1

0

dt

∫ π/2

0

dφ

{
−t(1 − t2)3/2 cos3 φ

∫ ∞

0

ds

s3/2

[
γ−t

α2
−β

3/2
−

− γ+t

α2
+β

3/2
+

−
]

+ t(1 − t2) sin2 φ cos φ

∫ ∞

0

ds

s3/2

[
γ+

α2
+β

3/2
+

(
sin−1 t − sin−1 γ+√

α+

)

− γ−

α2
−β

3/2
−

(
sin−1 t − sin−1 γ−√

α−

)]}
, (4.53)

A21 =
√

π

∫ 1

0

dt

∫ π/2

0

dφ(1 − t2)5/2 cos3 φ

∫ ∞

0

ds

s3/2

[
γ 2

+

α2
+β

3/2
+

− γ 2
−

α2
−β

3/2
−

]
, (4.54)

A22 =
√

π

∫ 1

0

dt

∫ π/2

0

dφ t(1 − t2)2 cos2 φ

∫ ∞

0

ds

s3/2

[
γ 2

+

α3
+β

3/2
+

+
γ 2

−

α3
−β

3/2
−

− 2t2

]
, (4.55)

A33 = −
√

π

∫ 1

0

dt

∫ π/2

0

dφ sin2 φ cos2 φ

{
(1 − t2)2

∫ ∞

0

ds

s3/2

[
γ+t

α2
+β

3/2
+

+
γ−t

α2
−β

3/2
−

− 2t2

]

+ (1 − t2)3/2

∫ ∞

0

ds

s3/2

[
γ+

α2
+β

3/2
+

(
sin−1 t − sin−1 γ+√

α+

)

+
γ−

α2
−β

3/2
−

(
sin−1 t − sin−1 γ−√

α−

)]}
, (4.56)

where t = cos θ , and

α± = 1 ± 2t
√

1 − t2 cos φ s + (1 − t2) cos2 φ s2, (4.57)

β± = 1 ± 2t
√

1 − t2 cos φ s + (1 − t2) cos2 φ
s2

3
, (4.58)

γ± = t ±
√

1 − t2 cos φ s. (4.59)

Note that the arctangents in the earlier expressions have been replaced by arcsines
above since this leads to a slight simplification of the argument. Finally, on defining

the variable ŝ =
√

1 − t2 cos φ s, the integrals over φ may be expressed in terms of
Beta functions (see Gradshteyn & Ryzhik 1965). Using the result∫ π/2

0

cos(2n+1)/2 φ dφ =
1

2
B
(

(2n + 3)

4
,
1

2

)
, (4.60)
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and that B(p, q) = Γ (p)Γ (q)/Γ (p + q), the non-trivial elements of A may now be
expressed as double integrals in t and ŝ:

A11 =
2
√

2π2

15

[
Γ

(
1

4

)]2

∫ 1

0

dt
{
7t(1 − t2)9/4J0(t) + 2(1 − t2)7/4J2+(t)

}
, (4.61)

A12 =

[
Γ

(
1

4

)]2

42
√

2

∫ 1

0

dt
{

−5t2(1 − t2)7/4J1−(t) + 2t(1 − t2)5/4J2−(t)
}
, (4.62)

A21 =

5

[
Γ

(
1

4

)]2

42
√

2

∫ 1

0

dt(1 − t2)11/4J1−(t), (4.63)

A22 = − 6
√

2π2

5

[
Γ

(
1

4

)]2

∫ 1

0

dt t(1 − t2)9/4J0(t), (4.64)

A33 =
4
√

2π2

15

[
Γ

(
1

4

)]2

∫ 1

0

dt
{
t(1 − t2)9/4J0(t) − (1 − t2)7/4J2+(t)

}
, (4.65)

where

J0(t) =

∫ ∞

0

dŝ

ŝ3/2

×

⎡
⎢⎢⎢⎣2t − (t + ŝ)

(1 + 2t ŝ + ŝ2)2
(

1 + t ŝ +
ŝ2

3

)3/2
− (t − ŝ)

(1 − 2t ŝ + ŝ2)2
(
1 − t ŝ +

ŝ2

3

)3/2

⎤
⎥⎥⎥⎦,

(4.66)

J1±(t) =

∫ ∞

0

dŝ

ŝ3/2

×

⎡
⎢⎢⎢⎣ (t + ŝ)

(1 + 2t ŝ + ŝ2)2
(

1 + t ŝ +
ŝ2

3

)3/2
± (t − ŝ)(

1 − 2t ŝ + ŝ2
)2

(
1 − t ŝ +

ŝ2

3

)3/2

⎤
⎥⎥⎥⎦,

(4.67)

J2±(t) =

∫ ∞

0

dŝ

ŝ3/2

⎡
⎢⎢⎢⎣ (t + ŝ)

(1 + 2t ŝ + ŝ2)2
(

1 + t ŝ +
ŝ2

3

)3/2

(
sin−1 t − sin−1 (t + ŝ)√

1 + 2t ŝ + ŝ2

)

± (t − ŝ)

(1 − 2t ŝ + ŝ2)2
(

1 − t ŝ +
ŝ2

3

)3/2

(
sin−1 t − sin−1 (t − ŝ)√

1 − 2t ŝ + ŝ2

)⎤⎥⎥⎥⎦.

(4.68)
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The double integrals are readily evaluated using Gaussian quadrature, and the
convergence with respect to the upper limit in the inner s-integral is verified
by combining the numerical estimate for a finite interval in s with an analytical
approximation for large s. One finds

A11 = 0.38, (4.69)

A22 = − 0.64, (4.70)

A12 = 0.83, (4.71)

A21 = 0.19, (4.72)

A33 = 0.26, (4.73)

which, together with (4.39), determine the stresslet to O(Re3/2). The values of Aij given
by (4.69)–(4.73) show that, in contrast to the imposed simple shear flow, the linear
flow at O(Re3/2) has a genuine three-dimensional character with vortex stretching.
It may be thought of as a superposition of a (non-axisymmetric) bi-axial extension,
with the extensional plane making an angle of about 23◦ with the flow-vorticity
plane (measured in the anticlockwise sense), and a solid-body rotation with a vorticity
vector opposing the ambient vorticity; the principal rates of deformation are −0.84,
0.58 and 0.26 in a coordinate system aligned with the rate-of-strain tensor.

Using (4.69)–(4.73), the stresslet in simple shear flow, to O(Re3/2), is finally given
by

S =
2π(5λ + 2)

3(λ + 1)
(1112 + 1211) − Re

[
8π(3λ2 + 3λ + 1)

27(λ + 1)2
(1111 − 1212)

+
π(43λ2 + 36λ + 8)

105(λ + 1)2
(1111 + 1212)

]
+ Re3/2 2(5λ + 2)2

9π(λ + 1)2
[0.761111 − 1.281212

+ 1.02(1112 + 1211) + 0.521313] + O(Re2), (4.74)

and the O(Re3/2) stresslet coefficient, in particular, is

S(2) =
2(5λ + 2)2

9π(λ + 1)2
[0.761111 − 1.281212 + 1.02(1112 + 1211) + 0.521313] (4.75)

The components of S(2), in the limit λ→ ∞, may be compared with the results of
earlier calculations. Since the isotropic part of the stresslet is of particular significance
in the infinitely dilute limit, the result (4.75) may equivalently be written as S

(2)
12 = 1.8,

(S(2)
11 − S

(2)
22 ) = 3.61 and (S(2)

22 − S
(2)
33 ) = −3.18 for λ→ ∞. The corresponding results

of Stone et al. (2000) are 1.82, 3.34 and −1.56, and the O(Re3/2) contribution
towards an N2 appears to be in error. A closer examination of the plots given in
Mikulencak & Morris (2004), comparing the predictions of Stone et al. (2000) for
the stresslet components with the numerics, shows a significant overestimation of
(S22–S33) on the part of the theory in a range of Re where (S11–S22) continues to be
predicted accurately. On the other hand, all the stresslet components given in Lin
et al. (1970) appear to be incorrect.

One may also calculate the angular velocity of a rigid particle, to O(Re3/2), for
λ→ ∞. The spherical particle must rotate at a rate equal to half the vorticity of the
imposed linear flow. The opposing vorticity vectors of the simple shear flow and the
linear flow field, at O(Re3/2), imply that the particle slows down due to inertia; its

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
0.

65
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2010.654


The influence of inertia on emulsion rheology 331

angular velocity being given by

Ωp =

[
−1

2
+ Re3/2 lim

λ→ ∞

(5λ + 2)

6π2(λ + 1)
(A12–A21)

]
13

=

[
−1

2
+ 0.054Re3/2

]
13. (4.76)

The above angular velocity correction was accurately calculated in Stone et al. (2000).

5. The O(Re3/2) contributions to the Reynolds stresses
Here, we present the results for the O(Re3/2) contributions to the Reynolds

stress integrals in (3.16). The quantities to be calculated naturally separate into
two categories: integrals that are a bilinear functional of ûd(k) and û∗(k), and those
that are quadratic functionals of û∗(k). Thus, defining

1

2

∫
{ûd

i (k)û∗
j (k) + û∗

i (k)ûd
j (k)} dk =

(5λ + 2)2

(λ + 1)2
Rij , (5.1)∫

û∗
i (k)û∗

j (k)} dk =
(5λ + 2)2

(λ + 1)2
Qij , (5.2)

the direct inertial contributions to the dispersed-phase stress may be written in the
form

3

4π

(
4π

15
ΓikΓjk +

∫
Vd

Γikrku
′
j

(0)
dr +

∫
Vd

Γjkrku
′
i

(0)
dr −

∫
V −Vd

u′
i

(0)
u′

j

(0)
dr
)

+
3Re3/2

32π4

(5λ + 2)2

(λ + 1)2
(2Rij + Qij ). (5.3)

Employing a sequence of variable transformations similar to those used in the earlier
section to simplify the stresslet calculation, the non-trivial elements of R and Q,
respectively, may be reduced to the following two- and three-dimensional integrals:

R11 =
128π4

45

[
Γ

(
1

4

)]2

[
3

∫ 1

0

dt t2(1 − t2)5/4K1−(t) − 14

3

∫ 1

0

dt t2(1 − t2)9/4K1−(t)

− 2

∫ 1

0

dt t(1 − t2)3/4K2−(t) +
4

3

∫ 1

0

dt t(1 − t2)7/4K2−(t)

]
, (5.4)

R12 = R21 =

16π2

[
Γ

(
1

4

)]2

9

[
5

42

∫ 1

0

dt t(1 − 2t2)(1 − t2)7/4K1+(t)

− 1

6

∫ 1

0

dt t(1 − t2)7/4K1+(t) +
1

21

∫ 1

0

dt (1 − 2t2)(1 − t2)5/4K2+(t)

+
5

21

∫ 1

0

dt t(1 − t2)11/4K1+(t)

]
, (5.5)
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R22 = − 128π4

15

[
Γ

(
1

4

)]2

∫ 1

0

dt(1 − t2)9/4(1 − 2t2)K1−(t), (5.6)

R33 = − 512π4

135

[
Γ

(
1

4

)]2

[∫ 1

0

dt t2(1 − t2)9/4K1−(t) +

∫ 1

0

dt t(1 − t2)7/4K2−(t)

]
, (5.7)

and

Q11 = − 512π4

135

[
Γ

(
1

4

)]2

[
4

∫ 1

0

dt(1 − t2)5/4L3+(t) + 4

∫ 1

0

dt t(1 − t2)7/4L2+(t)

+ 7

∫ 1

0

dt t2(1 − t2)9/4L1+(t)

]
, (5.8)

Q12 = Q21 =

64π2

[
Γ

(
1

4

)]2

189

[
5

∫ 1

0

dt t(1 − t2)11/4L1−(t) + 2

∫ 1

0

dt (1 − t2)9/4L2−(t)

]
,

(5.9)

Q22 = − 512π4

15

[
Γ

(
1

4

)]2

∫ 1

0

dt (1 − t2)13/4L1+(t), (5.10)

Q33 = − 1024π4

135

[
Γ

(
1

4

)]2

[∫ 1

0

dt(1 − t2)5/4L3+(t) − 2

∫ 1

0

dt t(1 − t2)7/4L2+(t)

+

∫ 1

0

dt t2(1 − t2)9/4L1+(t)

]
. (5.11)

The following integrals appear in the above simplified expressions for the Reynolds
stresses:

K1±(t) =

∫ ∞

0

dŝ

ŝ1/2

×

⎡
⎢⎢⎢⎣ (t + ŝ)

(1 + 2t ŝ + ŝ2)2
(

1 + t ŝ +
ŝ2

3

)1/2
± (t − ŝ)

(1 − 2t ŝ + ŝ2)2
(

1 − t ŝ +
ŝ2

3

)1/2

⎤
⎥⎥⎥⎦,

(5.12)

K2±(t) =

∫ ∞

0

dŝ

ŝ1/2

⎡
⎢⎢⎢⎣ (t + ŝ)

(1 + 2t ŝ + ŝ2)2
(

1 + t ŝ +
ŝ2

3

)1/2

(
sin−1 t − sin−1 (t + ŝ)√

1 + 2t ŝ + ŝ2

)

± (t − ŝ)

(1 − 2t ŝ + ŝ2)2
(

1 − t ŝ +
ŝ2

3

)1/2

(
sin−1 t − sin−1 (t − ŝ)√

1 − 2t ŝ + ŝ2

)⎤⎥⎥⎥⎦,

(5.13)
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L1±(t) =

∫ ∞

0

∫ ∞

0

dŝ dŝ ′

⎡
⎢⎢⎢⎣ (t + ŝ)(t + ŝ ′)

(1 + 2t ŝ + ŝ2)2(1 + 2t ŝ ′ + ŝ ′2)2
(
ŝ + t ŝ2 +

ŝ3

3
+ ŝ ′ + t ŝ ′2 +

ŝ ′2

3

)1/2

± (t − ŝ)(t − ŝ ′)

(1 − 2t ŝ + ŝ2)2(1 − 2t ŝ ′ + ŝ ′2)2
(

ŝ − t ŝ2 +
ŝ3

3
+ ŝ ′ − t ŝ ′2 +

ŝ ′2

3

)1/2

⎤
⎥⎥⎥⎦ ,

(5.14)

L2±(t) =

∫ ∞

0

∫ ∞

0

dŝ dŝ ′

×

⎡
⎢⎢⎢⎣

(t + ŝ)(t + ŝ ′)

(
sin−1 (t + ŝ ′)√

1 + 2t ŝ ′ + ŝ ′2
− sin−1 t

)

(1 + 2t ŝ + ŝ2)2(1 + 2t ŝ ′ + ŝ ′2)2
(

ŝ + t ŝ2 +
ŝ3

3
+ ŝ ′ + t ŝ ′2 +

ŝ ′2

3

)1/2

±
(t − ŝ)(t − ŝ ′)

(
sin−1 (t − ŝ ′)√

1 − 2t ŝ ′ + ŝ ′2
− sin−1 t

)

(1 − 2t ŝ + ŝ2)2(1 − 2t ŝ ′ + ŝ ′2)2
(

ŝ − t ŝ2 +
ŝ3

3
+ ŝ ′ − t ŝ ′2 +

ŝ ′2

3

)1/2

⎤
⎥⎥⎥⎦ ,

(5.15)

L3±(t) =

∫ ∞

0

∫ ∞

0

dŝ dŝ ′

×

⎡
⎢⎢⎢⎣

(t + ŝ)(t + ŝ ′)

(
sin−1 (t + ŝ)√

1 + 2t ŝ + ŝ2
− sin−1 t

)(
sin−1 (t + ŝ ′)√

1 + 2t ŝ ′ + ŝ ′2
− sin−1 t

)

(1 + 2t ŝ + ŝ2)2(1 + 2t ŝ ′ + ŝ ′2)2
(

ŝ + t ŝ2 +
ŝ3

3
+ ŝ ′ + t ŝ ′2 +

ŝ ′2

3

)1/2

±
(t − ŝ)(t − ŝ ′)

(
sin−1 (t − ŝ)√

1 − 2t ŝ + ŝ2
− sin−1 t

)(
sin−1 (t − ŝ ′)√

1 − 2t ŝ ′ + ŝ ′2
− sin−1 t

)

(1 − 2t ŝ + ŝ2)2(1 − 2t ŝ ′ + ŝ ′2)2
(

ŝ − t ŝ2 +
ŝ3

3
+ ŝ ′ − t ŝ ′2 +

ŝ ′2

3

)1/2

⎤
⎥⎥⎥⎦ .

(5.16)

Again, we use Gaussian quadrature to evaluate the elements of R and Q to find

R11 = − 15.21, (5.17)

R12 = R21 = − 1.56, (5.18)

R22 = − 21.83, (5.19)

R33 = − 4.64, (5.20)

and

Q11 = − 11.16, (5.21)

Q12 = Q21 = 10.52, (5.22)
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Q22 = − 31.08, (5.23)

Q33 = − 8.76. (5.24)

Using (3.8) and the above results in (5.3), the expression for the direct inertial
contributions, to O(Re3/2), is given by

− Re

4

(
2(5λ + 2)2

35(λ + 1)2
− 2λ(5λ + 2)

35(λ + 1)2
+

3λ2

35(λ + 1)2

)
(1111 + 1212) +

3Re3/2

32π4

× (5λ + 2)2

(λ + 1)2
{−41.581111 − 74.741212 + 7.4(1112 + 1211) − 18.041313} + O(Re2).

(5.25)

It must be emphasized that while the stresslet contribution at O(Re3/2) has been
calculated before, albeit incorrectly, for a suspension of rigid particles, the Reynolds
stress contributions at the same order have gone unnoticed. The latter contribute
significantly to the normal stress differences at O(φRe3/2).

6. Comparison of theory and numerics
Before proceeding to a comparison both with earlier bulk stress computations for

a dilute emulsion (Li & Sarkar 2005) and with new results for the stresslet coefficient
alone presented later in this section, we summarize the results of the preceding analysis
with a discussion of its predictions. Using (4.38) for the stresslet coefficient, and (5.3)
for the direct inertial contributions, the dispersed-phase stress in an infinitely dilute
emulsion may be written as

Σ
(d)
ij = φ

[
(5λ + 2)

(λ + 1)
Eij − Re

(
4(3λ2 + 3λ + 1)

9(λ + 1)2
(
ΩikEkj − EikΩkj

)
− 8λ

35(λ + 1)2
EikEkj

)

+ Re3/2 (5λ + 2)2

(λ + 1)2

(
1

6π2
(Aij + Aji) +

3

32π4
(2Rij + Qij )

)]
+ O(φRe2). (6.1)

Furthermore, using the numerical results for the O(Re3/2) stresslet and the Reynolds
stress coefficients in §§ 4 (see (4.75)) and 5 (see (5.25)), the dispersed-phase stress tensor
in simple shear flow, to O(φRe3/2), is given by

Σ (d) =φ

[
(5λ + 2)

2(λ + 1)
(1112 + 1211) − Re

(
2(3λ2 + 3λ + 1)

9(λ + 1)2
(1111 − 1212)

− 2λ

35(λ + 1)2
(1111 + 1212)

)
+ Re3/2 (5λ + 2)2

(λ + 1)2

(
1

6π2
{0.761111 − 1.281212

+ 1.02(1112 + 1211) + 0.521313} +
3

32π4
{−41.581111 − 74.741212

+ 7.4(1112 + 1211) − 18.041313}
)]

+ O(φRe2). (6.2)

The shear viscosity and the first and second normal stress differences, to O(φRe3/2),
are respectively

µe = 1 + φ

[
(5λ + 2)

2(λ + 1)
+ 0.024Re3/2 (5λ + 2)2

(λ + 1)2

]
+ O(φRe2), (6.3)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
0.

65
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2010.654


The influence of inertia on emulsion rheology 335

N1 = φ

[
−Re

4(3λ2 + 3λ + 1)

9(λ + 1)2
+ 0.066Re3/2 (5λ + 2)2

(λ + 1)2

]
+ O(φRe2), (6.4)

N2 = φ

[
Re

2(105λ2 + 96λ + 35)

315(λ + 1)2
− 0.085Re3/2 (5λ + 2)2

(λ + 1)2

]
+ O(φRe2). (6.5)

From (6.4) and (6.5), we note that the O(Re) and O(Re3/2) contributions to the
normal stress differences have opposing signs, and a balance leads to critical Reynolds
numbers:

R̄e
N1

c = 45.34
(3λ2 + 3λ + 1)2

(5λ + 2)4
, (6.6)

R̄e
N2

c = 5.58 × 10−3 (105λ2 + 96λ + 35)2

(5λ + 2)4
, (6.7)

for reversals in sign of N1 and N2, respectively. Of course, not knowing the numerical
pre-factors in the O(Re2) contributions renders the relevance of the above critical

Reynolds numbers questionable. Nevertheless, it is worth noting that R̄e
N2

c increases
from about 0.1, in the limit λ→ ∞, to only about 0.42 for λ=0 (the corresponding

values of R̄e
N1

c are 0.65 and 2.83), and a reversal in sign of N2 thus appears
probable for large λ. The possibility of a sign reversal, of course, hinges on the
range of validity of a small-Re asymptotic expansion. Earlier computations do not
offer definitive evidence in this regard, however. The theoretical predictions for the
diagonal components of the rigid particle stresslet compare well with the results of

Mikulencak & Morris (2004) up until Re ≈ 0.5, a range that includes R̄e
N2

c . However,
the diagonal components of the bulk stress also include contributions from the
Reynolds stress integrals. While the stresslet, at O(Re3/2), is determined only by
the limiting form of the velocity field in the matching region, the Reynolds stress
integrals at this order depend on the full form of the outer velocity field. The range of
validity of a finite-Re result is expected to depend on the region where the dominant
contributions arise, and agreement between theory and numerics for the stresslet
components, over a significant range in Re, does not therefore guarantee a similar
agreement for corresponding components of the Reynolds stresses. In fact, in our own
computations, the results for the Reynolds stresses were found to be very sensitive
to the size of the computational domain. The resulting domain size dependence,
particularly at small Re, has led to our presenting numerical results only for the
stresslet components (see § 6.2); similar problems were encountered by Mikulencak &
Morris (2004).

The recent lattice Boltzmann simulations of Kulkarni & Morris (2008) for an
inertial suspension in a bounded domain indicate no signs of either a saturation or a
reversal in the normal stress differences even at the smallest volume fraction (φ = 0.05)
simulated. However, φ = 0.05 may already be outside the range of an infinitely dilute
approximation. The comparison between the present analysis and simulations will
be quantitative only if the O(φRe3/2) contribution calculated here is much larger
than the O(φ2) contribution arising from pair interactions. The resulting restriction,
φ � Re3/2, implies Re � 0.4 for φ =0.05; the assumption Re � 1 then being a little
untenable. Thus, in the interests of an unambiguous comparison with theory, there
is clearly a need for simulating an infinitely dilute (single drop) scenario, in the limit
Re � 1, over a range of viscosity ratios. This is partly addressed in § 6.2, where we
extend the results of Mikulencak & Morris (2004) by presenting results for the drop
stresslet over a range of viscosity ratios.
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The speculated reversal in sign above, for the normal stress differences (especially
N2), should occur even for Ca = 0, being solely a consequence of micro-scale inertia;
here, Ca = µaγ̇ /σ is the Capillary number, σ being the coefficient of interfacial
tension, and measures the relative importance of viscous and interfacial tension
forces. On the other hand, Vivek Raja et al. (2010) predicted reversals in the signs of
N1 and N2, specific to a dilute emulsion, arising from the competing effects of inertial
and viscous stresses on drop deformation. The associated critical Reynolds numbers
were O(Ca), given by

ReN1
c =

9(19λ + 16)2

160(3λ2 + 3λ + 1)
Ca, (6.8)

ReN2
c =

9(551λ3 + 1623λ2 + 1926λ + 800)

16(λ + 1)(105λ2 + 96λ + 35)
Ca. (6.9)

The dependence of the viscometric coefficients on both Re and Ca , and the related
sign reversals, may be analysed by combining the known O(φCa) contributions (see
Schowalter et al. 1968; Frankel & Acrivos 1970) with the inertial contributions
summarized in (6.3)–(6.5); one obtains

µe =1 + φ

[
(5λ + 2)

2(λ + 1)
+ 0.024Re3/2 (5λ + 2)2

(λ + 1)2
+ O(Re2, ReCa, Ca2)

]
, (6.10)

N1 =φ

[
Ca

(19λ + 16)2

40(λ + 1)2
− Re

4(3λ2 + 3λ + 1)

9(λ + 1)2
+ 0.066Re3/2 (5λ + 2)2

(λ + 1)2

+ O(Re2, ReCa, Ca2)

]
, (6.11)

N2 =φ

[
−Ca

(551λ3 + 1623λ2 + 1926λ + 800)

280(λ + 1)3
+ Re

2(105λ2 + 96λ + 35)

315(λ + 1)2

− 0.085Re3/2 (5λ + 2)2

(λ + 1)2
+ O(Re2, ReCa, Ca2)

]
. (6.12)

The above superposition is valid to O(ReCa), which is when the contributions due
to finite Re and Ca couple. For the range of Re and Ca under consideration, the
O(ReCa) contributions are, however, much smaller than those included in (6.10)–
(6.12). A shear-thinning contribution, at O(φCa2), has also been neglected in (6.10),
since it is again expected to be much smaller than the O(φRe3/2) shear-thickening
contribution.

To examine the possibility of sign reversals for N2, we equate (6.12) to zero, leading
to a cubic equation in Re1/2. Provided 0 <Ca <Cac with

Cac = 1.49 × 10−3 (105λ2 + 96λ + 35)3(λ + 1)

(5λ + 2)4(551λ3 + 1623λ2 + 1926λ + 800)
, (6.13)

this equation has a pair of positive roots. The corresponding critical Reynolds numbers
are given by

ReN2
1 =

α2
1

9

⎡
⎢⎢⎣2 cos

⎛
⎜⎜⎝

cos−1

[
(27α2 + 2α3

1)

2α3
1

]
+ 4π

3

⎞
⎟⎟⎠− 1

⎤
⎥⎥⎦

2

, (6.14)
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ReN2
2 =

α2
1

9

⎡
⎢⎢⎣2 cos

⎛
⎜⎜⎝

cos−1

[
(27α2 + 2α3

1)

2α3
1

]
+ 2π

3

⎞
⎟⎟⎠− 1

⎤
⎥⎥⎦

2

, (6.15)

where

α1 = − 0.075
(105λ2 + 96λ + 35)

(5λ + 2)2
, (6.16)

α2 = 0.042Ca
(551λ3 + 1623λ2 + 1926λ + 800)

(5λ + 2)2(λ + 1)
, (6.17)

and the range of interest corresponds to 0 < cos−1[(27/α2 + 2α3
1)/2α3

1] < π. The second
normal stress difference must undergo a sign reversal at each of ReN2

1 and ReN2
2 . With

increasing Re, N2 first changes from negative to positive at Re = ReN2
1 , and then

becomes negative when Re >ReN2
2 due to the eventual dominance of the O(Re3/2)

inertial correction. For Ca � 1, ReN2
1 ≈ ReN2

c ∼ O(Ca), while ReN2
2 remains small but

finite for all λ, being well approximated by R̄e
N2

c obtained above from a balance of
the inertial terms alone (see (6.7)). Vivek Raja et al. (2010) neglected the O(Re3/2)
correction, and only found the first sign reversal at ReN2

1 ≈ ReN2
c . Next, equating N1 to

zero again yields a cubic equation. The critical Reynolds number obtained in this case,
from equating the O(Re) and O(Re3/2) terms, remains of order unity or larger for all
λ (see (6.6)). As a result, the two positive roots of the cubic equation are well separated
in the limit Ca � 1, and a general solution serves little purpose. The smaller of the

two roots is well approximated by ReN1
c while the larger approaches R̄e

N1

c . It is likely
that N1 changes from positive to negative at Re =ReN1

c ≈ O(Ca) (the sign reversal

found by Vivek Raja et al. 2010). The second sign reversal predicted at Re = R̄e
N1

c

may, however, be outside the range of validity of the theory. For Ca larger than the
threshold value given by (6.13), the interval of sign reversal vanishes, and N2 must
always remain negative while continuing to exhibit a non-monotonic dependence on
Re; a similar threshold for N1 and the resulting non-monotonic behaviour may be
outside the range of validity of the theory.

6.1. Comparison with previous simulations of the rheology of dilute emulsions
of slightly deformable drops

With the above theoretical scenario in mind, we now compare (6.10)–(6.12), for λ=1,
with the viscometric coefficients obtained by Li & Sarkar (2005). The authors studied
the effect of inertia on single drop deformation, and the implied steady shear rheology
of a dilute emulsion, for a viscosity ratio of unity. A dilute emulsion undergoing simple
shear flow was simulated by positioning a single drop between infinite parallel plates
moving in opposite directions with periodic boundary conditions in the horizontal
coordinates. The Navier–Stokes equations were solved using a front-tracking finite-
difference method with the singular interfacial tension forces being distributed over a
thin layer surrounding the drop. Figures 1 and 2 compare the theoretical predictions
for N1 and N2 (normalized by φ) with those obtained from simulations, and figure 3
presents a similar comparison for the shear viscosity. The theory being valid only for
small Re, the comparison is restricted to Re � 1, although the simulation results are
available for Re up to 3.

In figures 1 and 2, we note that Ca = 0.02 is already large enough for there to be
no sign reversal either for N1 or N2. Furthermore, the O(φRe3/2) correction for N2
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Figure 1. (a, b) The variation of the first normal stress difference including inertial corrections
to O(Re) (bold dashed line) and O(Re3/2) (bold dotted line) from (6.11) as a function of Re for
Ca = 0.02 and Ca = 0.05; λ= 1. The dash-dotted lines in both figures denote the simulation
results.

becomes dominant at a much smaller Re, and thus, while there is a significant region
of non-monotonic variation for the theoretical N1 curve, that for N2 is restricted
to Re < 0.1 (the smallest Re in the simulations). One could find smaller values of
Ca at which both N1 and N2 exhibit intervals of reversed sign, but their relevance
appears in doubt since the numerical results, even for N2, are significantly different.
The dependence of the computed normal stress differences on Re is, in all cases,
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Figure 2. (a, b) The variation of the second normal stress difference including inertial
corrections to O(Re) (bold dashed line) and O(Re3/2) (bold dotted line) from (6.12) as a
function of Re for Ca = 0.02 and Ca = 0.05; λ= 1. The bold dash-dotted lines in both figures
denote the simulation results.

monotonic, and the O(φRe) theory of Vivek Raja et al. (2010) fares much better in
comparison to the O(φRe3/2) results derived here. For N1, the latter theory appears to
agree a little better with numerics for Re � 0.3, but for N2, the O(φRe) theory leads to
a more accurate prediction over the entire range of Re and Ca examined. Moreover,
the predictions of the O(φRe3/2) theory rapidly worsen for Re � 0.5, being both of the
wrong sign and slope in this range. It is also important to note that both the O(φRe)
and O(φRe3/2) theories do not approach the computed results even at the smallest
Re, a discrepancy already noted by Vivek Raja et al. (2010). Notwithstanding this
last observation, it is tempting to attribute the deviations to the asymptotic nature of
the perturbation expansion; in which case, the O(Re3/2) corrections, while making the
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Figure 3. The variation of the O(φ) correction to the shear viscosity of the suspending fluid,
as a function of Re, from both theory ((6.10), dotted line) and simulation. The dashed and
dash-dotted lines denote the simulation results for Ca =0.02 and Ca = 0.05, respectively.

expansion more accurate for small Re, do not extend its range of validity. Thus, the
predicted sign reversals of N2, and perhaps, even the non-monotonic dependence for
either N2 or N1, are in a range of Re where higher-order inertial corrections become
equally important.

Figure 3 for the shear viscosity does raise some questions about the accuracy of the
simulations, however. The significant discrepancy between theory and numerics even
at Re =0.1 is not unexpected; for instance, the comparison given in Mikulencak &
Morris (2004) for the shear component of the rigid particle stresslet (λ→ ∞) reveals a
significant discrepancy between theory and numerics at the same Re (this comparison
is more relevant than that for normal stresses, since the stresslet contribution provides
a reasonable approximation to the total shear viscosity to O(Re3/2)). More troubling is
the qualitative difference between theory and computation. While the former predicts
a viscosity enhancement of O(Re3/2), the computed viscosity only shows a sub-linear
growth with increasing Re. The near coincidence of the Ca = 0.02 and Ca = 0.05
curves at the smaller values of Re implies that this difference is not related to drop
deformation (the two curves do depart at higher Re, perhaps due to the coupled
effects of inertia and drop deformation not included in the theory). An examination
of the corresponding plot in Mikulencak & Morris (2004) shows that the suspension
shear viscosity (the stresslet contribution) exhibits a faster-than-linear growth up until
Re ≈ 1. Also, in contrast to figure 3, the computed suspension viscosity is smaller
than the corresponding theoretical prediction at any finite Re. In fact, for Re = 0.1,
the computed enhancement in the suspension viscosity appears to be smaller than
that computed for an emulsion with λ=1 (and Ca = 0.02). This is again surprising
since the theory predicts that the effect of the viscosity ratio on the inertial correction
at O(Re3/2) is entirely contained in the factor [(5λ + 2)/(λ + 1)]2, which increases
from 12.25 at λ=1 to 25 for λ→ ∞. Thus, for sufficiently small Ca (the case here),
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the viscosity enhancement of an emulsion of unit viscosity ratio must be significantly
smaller than that for a suspension.

6.2. Finite volume simulation of the stresslet of non-deformable drops
at finite Reynolds numbers

The discrepancies revealed in § 6.1, from the detailed comparison of the O(φRe3/2)
theory with available numerical results, have highlighted the need for an accurate
simulation of an infinitely dilute emulsion, over a range of viscosity ratios, particularly
for small Re. Towards this end, we now report results obtained by simulating an
isolated neutrally buoyant spherical drop of variable viscosity, over a range of Re,
subjected to a simple shear flow. Enforcing a spherical shape implies that, unlike
Li & Sarkar (2005), our computations do not explicitly include drop deformation,
and thereby, only help evaluate the theoretical estimates for the inertial contributions
to the bulk stress. Ideally, one would want accurate estimates for both the stresslet and
Reynolds stress contributions. However, the numerical calculation of the Reynolds
stress integrals at small Re is a delicate task with the dominant contributions arising at
large distances of O(Re−1/2); our computations confirm this difficulty and the results
for the Reynolds stresses proved to be very sensitive to the size of the computational
domain. The results included here are therefore restricted to the stresslet components
obtained by substituting the computed velocity and stress fields on the drop surface
in the first term in (3.2).

The equation of continuity and the steady Navier–Stokes equations are solved
in dimensionless form both inside and outside the drop using a control volume
formulation with the SIMPLE algorithm (see Mao & Chen 1997); the Reynolds
numbers are defined in the same way as in § 2. Preservation of a spherical shape
demands a vanishing normal velocity component at the drop surface (r =1). One
needs to additionally implement equality of the interior and exterior tangential
velocity and stress components at r = 1; the required interfacial jump in normal stress
is balanced by a slight deformation (that is not explicitly calculated). The far-field
boundary condition of simple shear flow is applied on a distant spherical boundary of
radius Rinf . The grid for all computations consists of 30 and 60 uniform nodes in the
θ and φ directions, respectively; here, θ is the polar angle with the vorticity axis of the
ambient simple shear and φ is the dihedral angle between the gradient-vorticity plane
and the plane containing the position (r) and ambient vorticity vectors. For Re � 1,
the exterior domain has 135 nodes in the radial direction; the region near the drop
surface is finely resolved with the 10 modes closest to the surface having a spacing
of �r = 2.5 × 10−3. An additional 20 nodes are used inside the drop with the 5 nodes
nearest the surface again having a spacing of �r = 2.5 × 10−3. The computations for
larger Re begin to exhibit an insensitivity to domain size at smaller values of Rinf ,
and the total number of nodes in the radial direction therefore decreases in general
with increasing Re.

Figure 4 depicts the variation of the stresslet contributions to the viscometric
coefficients, suitably scaled, with Re, for different values of Rinf and for λ= 1 and
λ= ∞ (the surface boundary condition in this latter case is one of rigid rotation
consistent with a zero-torque condition, and only the exterior fields need to be solved
for; see Mikulencak & Morris 2004). The plots show that, in the range Re � 1, the
computed values become insensitive to the domain size once Rinf exceeds 64.6. The
increasing insensitivity to domain size for the larger values of Re is already evident,
and is confirmed later in figure 13 for larger Re.
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Figure 4. (Colour online) Variation of (a, b) the first and second normal stresslet differences
and (c) the shear component of the stresslet, with Re, for different values of Rinf .

Figure 5 compares the computed diagonal stresslet components (Rinf =105.2) with
the analytical results for different viscosity ratios. The first and second normal stress
differences, normalized by Re, and plotted as a function of Re1/2, show good agreement
with the theoretical predictions for small Re; the nearly linear variation in this range
confirms the Re3/2 scaling. In the range 0.01 <Re < 0.1, the slopes and intercepts
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Figure 5. (Colour online) (a, b) Plots of (S11–S22)/Re and (S22–S33)/Re as a function
of Re1/2.

obtained by fitting the computed curves for (S11 − S22)/Re and (S22 − S33)/Re versus
Re1/2 are respectively 0.72, −2.02 and −0.65, 1.32 for λ= 0.1, which are close to the
corresponding analytical values of 0.75, −2.05 and −0.66, 1.32. Similar results for
other values of λ are shown in table 1.

Figure 6 plots, as a function of Re3/2, the difference between the shear component
of the stresslet and its extrapolated value (S12,0) for Re = 0. The difference rather
than the absolute value is used since S12,0 deviates slightly from the classical Taylor
coefficient primarily due to the finite computational domain; for instance, with λ= 0.1
and Re = 10−6, S12,0 ≈ 4.746, while the corresponding analytical value for Re =0 is
4.76. In contrast to the diagonal components, the numerical results for (S12–S12,0)
depart significantly from the analytical asymptotes even in the range 0.01 <Re < 0.1,
implying a greater sensitivity to higher-order inertial effects not included in the
theory. A similar behaviour was found earlier for a rigid particle (see Mikulencak &
Morris 2004). The validation of the theoretical prediction for the shear component
evidently requires smaller values of Re, and hence, larger domain sizes. To avoid an
unrealistically large computational domain, we account for the systematic dependence
of the numerical results on Rinf (this dependence being stronger than that for the
diagonal components), and the extrapolated value obtained in the limit of an infinite
domain is then used for comparison with theory. Thus, figure 7(a) shows the shear

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
0.

65
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2010.654


344 G. Subramanian, D. L. Koch, J. Zhang and C. Yang

Simulation fit
λ (0.01< Re < 0.1) Theory

0.1 (S11 − S22)/Re = 0.72Re1/2 − 2.01 (S11 − S22)/Re = 0.75Re1/2 − 2.05
(S22 − S33)/Re = −0.65Re1/2 + 1.32 (S22 − S33)/Re = −0.66Re1/2 + 1.32

1 (S11 − S22)/Re = 1.67Re1/2 − 3.21 (S11 − S22)/Re = 1.77Re1/2 − 3.26
(S22 − S33)/Re = −1.55Re1/2 + 2.28 (S22 − S33)/Re = −1.56Re1/2 + 2.28

5 (S11 − S22)/Re = 2.74Re1/2 − 4.63 (S11 − S22)/Re = 2.92Re1/2 − 4.71
(S22 − S33)/Re = −2.55Re1/2 + 3.41 (S22 − S33)/Re = −2.58Re1/2 + 3.40

∞ (S11 − S22)/Re = 3.42Re1/2 − 5.52 (S11 − S22)/Re = 3.61Re1/2 − 5.59
(S22 − S33)/Re = −3.25Re1/2 + 4.14 (S22 − S33)/Re = −3.18Re1/2 + 4.08

Table 1. Comparison of the normal stress differences (the stresslet contributions) between
simulations and theory.
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Figure 6. (Colour online) Plot of (S12–S12,0) as a function of Re3/2; here, S12,0 is the
stresslet coefficient for Re = 0.

component of the rigid particle stresslet, again as a function of Re3/2, but in the range
0.0005 <Re < 0.01 with Rinf =64.6, 87.2, 105.2 and 153. The data for each Rinf are
fitted well by a straight line passing through the origin, confirming the proportionality
to Re3/2 in the limit Re → 0. Figure 7(b) includes a plot of the slopes of these straight
line fits against 1/Rinf . The plot yields an extrapolated slope of 1.79 in the limit
Rinf → ∞, which is very close to the analytical value of 1.80 (see (4.75)). A similar
trend is observed for λ= 5 and the corresponding plots appear in figures 8(a) and 8(b).

The plots in figures 9–12 show the computed stresslet components for intermediate
Re (1 � Re � 10), for different values of λ, when the theoretical predictions no longer
hold. These computations were carried out for Rinf = 28, and figure 13 shows that
the results are already representative of those of an infinite domain. For this range
of Re, the computations for a rigid particle failed to converge beyond a critical (Re-
dependent)Rinf , which is related to the failure of the iteration needed to approach a
torque-free condition. This critical value was much smaller than that found for large
but finite viscosity ratios, and as a result, the converged results for a rigid particle

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
0.

65
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2010.654


The influence of inertia on emulsion rheology 345

2.0

(×10–3)
(a)

(b)

1.5

1.0

0.5

1.80

1.75

1.70

1.65

1.60

1.55

1.50

1.45

1.40

1.35

1.30

0 0.004 0.008 0.012 0.016

0 0.0002 0.0004 0.0006 0.0008 0.0010

S 1
2 

–S
12

,0

S12 – S12,0 = 1.80 Re3/2 for O(Re3/2) prediction

S
lo

pe
 o

f 
S 1

2 
–S

12
,0

 v
s 

R
e

Re3/2

1/Rinf

Rinf = 64.6a
Rinf = 87.2a

Rinf = 105.2a
Rinf = 153.0a

Figure 7. (Colour online) (a) Plots of (S12 − S12,0) versus Re3/2 for different values of Rinf for

λ= ∞. (b) The straight line slopes, obtained from the plot of (S12 − S12,0) versus Re3/2 in (a),
plotted against 1/Rinf .

continued to exhibit a domain-size dependence. To circumvent this difficulty, we
obtained the viscometric coefficients for a rigid particle by extrapolating the results
for drops of high viscosity. Figure 14 shows the variation of the three viscometric
coefficients with λ for Re = 10 (which exhibited the greatest sensitivity to domain
size for Re � 1) and with Rinf = 28; a similar calculation for Rinf =56 gave nearly
coincident results. The large value of λ needed for attainment of the λ→ ∞ plateau
differs from one viscometric coefficient to the other. Nevertheless, regression fits show
that the values for λ=20 are already within 3 % of the corresponding values for
a rigid particle for Re = 10. Results obtained from computations of rigid particles
are consistent with the large λ limits found in the above manner, although minor
differences persist due to the restriction to smaller domain sizes in these cases.

It is seen from figures 9–12 that the three viscometric coefficients exhibit a near-
linear variation in the range 1 � Re � 10. The linearity appears consistent with the
expected O(ργ̇ 2a2) scaling for the stresses at moderate Re. This seems reasonable for
the diagonal components which are O(Re) in the limit Re → 0. The O(Re3/2) scaling
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plotted against 1/Rinf .

for the shear component arises from the fractional (O(Re−1/2)) scaling for the inertial
screening length for small Re; since the screening length is O(a) for Re of O(1) or
larger, an O(Re) scaling for moderate Re continues to be reasonable in this case. The
moderate-Re results may therefore be fitted by an expression of the form

S

Re
= P1 +

P2

Re
, (6.18)

where S is any one of S11 − S22, S22 − S33 or S12 − S12,0. On the other hand, taking the
analysis of earlier sections into account, S must reduce to the form

S

Re
= P̂1 + P̂2Re1/2, (6.19)

in the limit Re → 0; here, the coefficients P̂i may be obtained from the predictions for
the viscometric coefficients (see (6.3)–(6.5)). A simple empirical fit, applicable to the
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Figure 12. (Colour online) The plots of S11 − S22, S22 − S33 and S12 − S12,0 as a function of
Re for λ= 20; Rinf =28.

whole range of Re under consideration, may therefore be taken as

S

Re
= P̂1

1 + q1Re1/2 + p1Re

1 + q2Re1/2 + p2Re
. (6.20)

The undetermined parameters (p1, p2, q1, q2) may be determined by enforcing the
analytical form in the limit Re → 0, and in addition, using the computed values for
large Re. Equation (6.20) is, however, only applicable to the normal stress differences.
The shear component, S12 − S12,0, is O(Re3/2) for small Re, and hence, P̂1 = 0 in (6.19)
for this case. Thus, the empirical fit appropriate for S12 − S12,0 must be of the form

S

Re
= P̂2

Re1/2 + p1Re

1 + q2Re1/2 + p2Re
, (6.21)

where the unknown parameters may be determined in the manner described above.
The values of these parameters for different λ are shown in table 2. The accuracy
of the derived empirical fits for Re � 10 is highlighted in figures 15–18, where the
fits appear together with the predictions of the small-Re theoretical analysis and the
computed values in the intermediate range of Re.

In summary, the computations presented in this section confirm the analytical
predictions for the stresslet components, to O(Re3/2). In addition, the empirical fits
derived from the computed stresslet values extend up to a Reynolds number of 10
over a wide range of viscosity ratios.

7. Conclusions and discussion
In this paper, we have determined the dispersed-phase stress tensor for a dilute

emulsion in simple shear flow which, to O(φRe3/2), is given by

Σ (d) = φ

[
(5λ + 2)

2(λ + 1)
(1112 + 1211) − Re

(
2(3λ2 + 3λ + 1)

9(λ + 1)2
(1111 − 1212)

− 2λ

35(λ + 1)2
(1111 + 1212)

)
+ Re3/2 (5λ + 2)2

(λ + 1)2

(
1

6π2
{0.761111 − 1.281212
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Figure 13. (Colour online) (a–c) The plots of S12 − S12,0, S11 − S22 and S22 − S33 as a
function of Re for λ= 0.1, 1, 5 and 20; Rinf =28 and 56.

+ 1.02(1112 + 1211) + 0.521313} +
3

32π4
{−41.581111 − 74.741212

+ 7.4(1112 + 1211) − 18.041313}
)]

+ O(φRe2, φ2). (7.1)
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Parameters in the fitting expressions

λ Stresslet component Pre-factor q1 p1 q2 p2

0.1 S11 − S22 P̂1 = −2.05 0.27 0.69 0.64 1.60

S22 − S33 P̂1 = 1.32 0.33 0.97 0.83 2.41

S12 − S12,0 P̂2 = 0.37 – 4.15 1.91 7.92

1 S11 − S22 P̂1 = −3.26 0.21 0.55 0.76 1.94

S22 − S33 P̂1 = 2.28 0.18 0.47 0.87 2.26

S12 − S12,0 P̂2 = 0.88 – 15.88 3.05 48.47

5 S11 − S22 P̂1 = −4.71 0.18 0.46 0.80 2.01

S22 − S33 P̂1 = 3.40 0.13 0.32 0.89 2.14

S12 − S12,0 P̂2 = 1.46 – 19.31 3.37 65.06

20 S11 − S22 P̂1 = −5.32 0.18 0.45 0.82 2.07

S22 − S33 P̂1 = 3.88 0.13 0.31 0.90 2.17

S12 − S12,0 P̂2 = 1.70 – 24.09 3.49 84.09

Table 2. Coefficients of the fitting expressions for the components for Re � 10.
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Figure 14. (Colour online) The plots of S11 − S22, S22 − S33 and S12 as a function of λ for
Re = 10; the results shown are for Rinf =28.

The separate contributions of the stresslet and the Reynolds stresses, to this order,
are given by

(5λ + 2)

2(λ + 1)
(1112 + 1211) − Re

[
2(3λ2 + 3λ + 1)

9(λ + 1)2
(1111 − 1212) +

(43λ2 + 36λ + 8)

140(λ + 1)2

× (1111 + 1212)

]
+ Re3/2 (5λ + 2)2

6π2(λ + 1)2
[0.761111 − 1.281212 + 1.02(1112 + 1211)

+ 0.521313], (7.2)
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Figure 15. (Colour online) Variation of stresslet components with Re for λ= 0.1.
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Figure 16. (Colour online) Variation of stresslet components with Re for λ = 1.
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Figure 17. (Colour online) Variation of stresslet components with Re for λ= 5.
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Figure 18. (Colour online) Variation of stresslet components with Re for λ= 20.

and

− Re

4

(
2(5λ + 2)2

35(λ + 1)2
− 2λ(5λ + 2)

35(λ + 1)2
+

3λ2

35(λ + 1)2

)
(1111 + 1212)

+
3Re3/2

32π4
{−41.581111 − 74.741212 + 7.4(1112 + 1211) − 18.041313}, (7.3)

respectively. The resulting shear viscosity and the first and second normal stress
differences are respectively

µe = 1 + φ

[
(5λ + 2)

2(λ + 1)
+ 0.024Re3/2 (5λ + 2)2

(λ + 1)2

]
+ O(φRe2, φ2), (7.4)

N1 = φ

[
−Re

4(3λ2 + 3λ + 1)

9(λ + 1)2
+ 0.066Re3/2 (5λ + 2)2

(λ + 1)2

]
+ O(φRe2, φ2), (7.5)

N2 = φ

[
Re

2(105λ2 + 96λ + 35)

315(λ + 1)2
− 0.085Re3/2 (5λ + 2)2

(λ + 1)2

]
+ O(φRe2, φ2). (7.6)

The analytical predictions for the stresslet components are in agreement with the
computations for small Re and over a range of viscosity ratios. The numerical results
presented are based on a control volume formulation for a spherical drop, and extend
up to Re = 10. These results show that the predicted shear-thickening of the viscosity,
for small Re, becomes milder for Reynolds number of order unity or larger; a
similar change in the scaling of the normal stress differences is much weaker. The
analytical and numerical results together allow the development of empirical fits for
each viscometric coefficient valid for Re � 10. The fits are shown in figures 15–18 and
capture the above transition in the shear-thickening behaviour. In the limit λ→ ∞,
both the analysis and the numerical results agree with the earlier computations of the
rigid particle stresslet by Mikulencak & Morris (2004). The only available numerical
estimates for the Reynolds stress contributions are those of Li & Sarkar (2005) for
a dilute emulsion with a viscosity ratio of unity. A comparison of the theory and
numerics, however, shows a significant discrepancy even at the smallest Re. It is not
clear if the disagreement arises due to the neglect of higher-order inertial corrections
in the theoretical analysis, or due to the known sensitivity of the Reynolds stress
integrals, particularly at small Re, to the size of the computational domain.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
0.

65
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2010.654


The influence of inertia on emulsion rheology 353

From the theoretical expressions for the viscometric coefficients, we note that
the Reynolds stress integrals contribute significantly to the two normal stress
differences (48 % of the total N1 and 64 % of the total N2), but a partial cancellation
on account of the opposing signs of (R12 + R21) and Q12 leads to a smaller
contribution (less than 30 %) to the shear viscosity at O(φRe3/2). The earlier estimate
of Stone et al. (2000) for the inertial corrections to the suspension stress, which omitted
the contributions due to the Reynolds stresses, underpredicts the shear viscosity by
about 29 %. The relative dominance of the shear component of the stresslet implies,
however, that a large part of the shear-thickening owes its origin to the linear flow
set up in the matching region by the outer velocity field (the elements of whose
velocity gradient tensor are, within a proportionality factor, given by (4.69)–(4.73)).
This flow reinforces the extensional character of the ambient simple shear in the 12th
quadrant; the drop is thus stretched further along the 45◦ direction in this quadrant.
The amplitude of the former flow is O(Re3/2), a nonlinear function of the shear rate,
leading to the shear-rate-dependent increase in the viscosity.

The inertial shear-thickening for a suspension in an ambient linear flow (not just
simple shear) may, in fact, be deduced without a detailed calculation. The argument is
easiest for an extensional flow, in which case the particle angular velocity is identically
zero by symmetry, and both the Stokes and inertial velocity fields satisfy the same
boundary conditions. As pointed out by Ryskin (1980), it follows immediately from
Helmholtz’s minimum dissipation theorem (see Batchelor 1967; Kim & Karrila 1991)
that the inertial correction to the dissipation must be positive definite. Note that the
theorem only predicts the dissipation at finite Re to be greater than that at Re = 0,
and the extensional viscosity could, in principle, have a non-monotonic dependence
on Re (without dipping below the Stokes value). The first effects of inertia must
nevertheless lead to an extension-thickening. For linear flows with vorticity, the particle
angular velocity, and therefore the velocity boundary conditions, are a function of Re.
Although a direct application of Helmholtz’s theorem is not possible as a result, one
is led to the same conclusion starting from the following expression for the average
(non-dimensional) dissipation in a representative microscopic volume:

2µsE : E = 2

[
(1 + φ)E : E +

3φ

4π

∫
V −Vp

e : e dV

]
, (7.7)

where µs denotes the suspension viscosity and (V − Vp) denotes the unbounded fluid
domain. In (7.7), the excess dissipation due to the particulate phase is divided into two
parts: a kinematic enhancement that arises because the rate of strain in the suspending
fluid has to increase in order to conform to the specified average rate of strain (E)
in the suspension; and an additional integral, over the fluid domain, of a quadratic
functional of the perturbation strain rate (e) induced by the particle. If e(0) denotes
the corresponding perturbation strain rate at Re = 0, one may write (7.7) in the form

2µsE : E = 2

[
(1 + φ)E : E +

3φ

4π

(∫
V −Vp

e(0) : e(0) dV

+

∫
V −Vp

(e − e(0)) : (e − e(0)) dV + 2

∫
V −Vp

e(0) : (e − e(0)) dV

)]
, (7.8)

where the second integral is positive definite. Applying the divergence theorem to the
third integral, and noting that the first integral combines with the O(φ) contribution
in the first term contribution to give the Einstein coefficient (5φ/2), one obtains

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
0.

65
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2010.654


354 G. Subramanian, D. L. Koch, J. Zhang and C. Yang

2µsE : E = 2

[(
1 +

5

2
φ

)
E : E +

3φ

4π

(∫
V −Vp

(e − e(0)) : (e − e(0)) dV

−
∫

Sp

(u − u(0)) · (σ (0) · n) dS

)]
, (7.9)

where σ (0) · n denotes the Stokesian surface force density. Since (u − u(0)) on the
surface of the particle is a rigid-body rotation and σ (0) is a linear functional of E,
it is readily shown that the third integral must finally involve a contraction between
symmetric (E) and antisymmetric (ε) tensors, and is therefore identically zero. Thus,
the average dissipation at finite Re may be written as

2µsE : E = 2

[(
1 +

5

2
φ

)
E : E +

3φ

4π

∫
V −Vp

(e − e(0)) : (e − e(0)) dV

]
, (7.10)

for a rigid particle suspension, clearly pointing to a shear-thickening rheology.
However, the above simplistic argument does not hold for a dilute emulsion, since
the difference between the Stokes velocity field and the one at finite Re, on the
surface of a finite viscosity drop, is no longer a rigid-body rotation.

While the bulk stress calculation in this paper has primarily relied on the Fourier-
transformed velocity field (the spatial structure was only examined in the region of
overlap (a � r � aRe−1/2), this being needed to derive the stresslet to O(Re3/2)), it
is nevertheless of interest to further examine the disturbance velocity field due to a
drop (particle) at finite Re, with the intent of characterizing its structure in physical
space in the outer region. Such a solution would have the usual importance attached to
solutions of the linearized Navier–Stokes equations in other situations. For instance,
in the simpler case of a drop (particle) translating in a quiescent fluid, the solution in
the outer region, obtained for small Re, remains relevant even for Re ∼ O(1) or larger
in a region where the disturbance velocity field becomes small, and the linearization
accurate. In the limit Re � 1, this, of course, happens for distances greater than
O(aRe−1) with Re = aU/ν, U being the translational velocity. However, for any
Re (notwithstanding a wake instability), the far-field velocity disturbance induced by
a translating particle has the same source-wake structure as that contained in the
small-Re solution originally derived by Oseen (see Batchelor 1967). Such a structure
is typical for a point source of momentum in an ambient uniform flow. One may
attribute a similar significance to a solution of the linearized Navier–Stokes equations
for a point force or force dipole in simple shear flow. The axisymmetry of the uniform
flow problem ensures that there is no added difficulty in obtaining a solution in three
dimensions, and the structure of the far-field velocity disturbance due to a translating
sphere mirrors that of a translating cylinder. This may no longer be the case in
simple shear flow, and one expects the dynamics of the vorticity field to be quite
different in two and three dimensions. The two-dimensional problem has already
been analysed by Robertson & Acrivos (1970), who examined the simple shear flow
past a torque-free neutrally buoyant cylinder at small but finite Re. Since the ambient
flow is homogeneous, the axial vorticity field in the outer region, at leading order,
behaves as a passive scalar and satisfies a convection–diffusion equation. The solution
in two dimensions is thus readily obtained by analogy with a passive scalar (see
Bretherton 1962; Elrick 1962; Foister & Van de Ven 1980). On the other hand, the
general form for the three-dimensional disturbance vorticity field in physical space,
associated with a point-force dipole in simple shear flow, at finite Re (a Reynolds
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number in these cases may be defined using the length scale based on the magnitude
of the dipole (D/µΓ )1/2), remains unknown; the case of a point force has recently
been examined by Asmolov & Feuillebois (2010). Unlike the two-dimensional case,
the ambient flow now stretches and tilts the disturbance vorticity field in addition
to convecting it, and the ambient vorticity is in turn stretched and tilted by the
disturbance velocity field. The two-way coupling implies that the equation for the
disturbance vorticity field also involves the velocity field and may be written as

∂ω′

∂t
+ (Γ · r) · ∇ω′ − ω′ · Γ † = ω∞ · ∇u′ + ∇2ω′ + (E · ∇) ∧ ∇δ(x). (7.11)

One may, of course, still obtain a closed equation for the vorticity alone by taking
a curl of (7.11). The fundamental solution of the resulting system of equations
would yield the analogue of the Green’s function of a passive scalar, but now for a
three-dimensional solenoidal vector field.

The aforementioned distinction between two and three dimensions for a simple
shear flow has already been highlighted in the nearly inviscid limit. For instance,
Lighthill (1956) analysed the inviscid translation of a sphere in a simple shear flow
and showed that the bending of the vortex lines of the ambient field around the sphere
into horseshoe-shaped configurations provides a natural means for the production of
streamwise vorticity; the latter is an important ingredient for generating a lift on a
translating particle immersed in an inviscid rotational flow (see Auton 1987; Auton,
Hunt & Prud’homme 1988). The inviscid limit does retain some similarity with the
vorticity dynamics in the outer region at small Re. However, the viscous scenario
appears more complicated since the ambient simple shear flow may now be regarded
as acting on the more complicated vorticity field associated with the Stokes field for
a force dipole. The vorticity field in this case consists of twin families of vortex rings
generated as the curves of intersection of the one-parameter family of rectangular
hyperbolae (x1x2 = constant) with a second family of elliptic cylinders ((x1 ± x2)

2 +
x2

3 = constant). In fact, the differences between two and three dimensions at small
Re, for the flow field near a torque-free spherical particle (r ∼ O(a)), have already
been highlighted previously; a small amount of inertia was found to eliminate the
region of closed streamlines that envelopes a freely rotating sphere at Re = 0, and the
resulting spiralling streamlines have a profound effect on the rates of heat and mass
transfer (see Subramanian & Koch 2006). However, the differences in the far-field
behaviour, for distances of the order of the inertial screening length, remain to be
elucidated.

Finally, although the significance of micro-scale inertia in rheological context has
been highlighted in the Introduction, its study remains important for reasons other
than their rheological relevance. There have been recent experiments, both with single
spherical particles (see Bottin, Dauchot & Daviaud 1997; Bottin et al. 1998) and a
dilute suspension of such particles (see Matas, Morris & Guazzelli 2008), in an attempt
to understand the nature of the transition to turbulence in shearing flows and the
effect of particles on the same. It is a well-known fact that the simplest shearing flows,
including plane Couette flow (simple shear flow in a bounded domain) and pipe flow,
transition to turbulence beyond a certain threshold value of the Reynolds number
despite being linearly stable for all Reynolds numbers (see Schmid & Henningson
2001). The threshold Reynolds number values for plane Couette and pipe flows are
approximately 325 and 2000, respectively (these are now the macro-scale Reynolds
numbers based on the gap width and pipe diameter, respectively). The variance with
the predictions of the linear-stability analysis is attributed to the subcritical nature
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of the laminar–turbulent transition (Darbyshire & Mullin 1995; Dauchot & Daviaud
1995). The dynamical systems point of view of the turbulent dynamics, at least for
relatively modest values of the macro-scale Reynolds number corresponding to the
transitional regime, is that the turbulent state is essentially a wandering trajectory in an
appropriately defined state space comprising occasional close visitations of equilibria
connected by transient interludes (see Halcrow et al. 2009). These equilibria are exact
three-dimensional solutions, either stationary or time-periodic, of the Navier–Stokes
equations (Nagata 1990; Clever & Busse 1997). Despite being unstable (saddle-like),
the union of such equilibria, together with the heteroclinic connections between
them, forms a scaffold that helps organize a turbulent trajectory, and helps explain
the dynamics in shear flows. Such unstable equilibria are captured numerically via
a continuous deformation approach by first considering a modified problem with
known solutions, and deforming it progressively to recover the original problem
with the originally stable solutions being mapped onto the unstable solutions of
interest (see Cherhabili & Ehrenstein 1995). The easiest experimental equivalent of
such an approach would be a slight alteration of the geometry. For plane Couette
flow, Bottin et al. (1997) accomplished this by the insertion of both a thin wire and
a spherical bead in the central plane of the flow. The underlying idea in all the
above cases, either experimental or computational, is that the modification in either
the geometry or forcing serves to stabilize the otherwise unstable equilibria; a finite-
amplitude perturbation then accesses the resulting non-trivial basin of attraction in
the modified state. The recurring structures in almost all of the non-trivial equilibria,
occurring in the transitional range, are streamwise vortices and streaks. Indeed, Bottin
et al. (1997) found, for both the wire and the bead, the appearance of elongated
streamwise vortices, organized along the spanwise coordinate, beyond a threshold
value of the macro-scale Reynolds number. The disturbance due to the wire or the
bead remains localized (as inferred from the length of the streamwise vortices) below
this threshold. Interestingly, the threshold Reynolds number remains finite even as the
radius of the wire becomes vanishingly small, suggesting that the velocity field in the
outer region (characterized by the inertial screening length, (ν/γ̇ )1/2), and therefore,
independent of the wire diameter) may play an important role in the emergence of
such structures. The physical mechanism involving the stabilization is likely to be
either on account of a topological correspondence between the micro-scale flow in
the outer region and the structure of the emerging unstable equilibrium, or perhaps,
via an instability of the former. The experiments of Matas et al. (2003), examining
the transition to turbulence in pipe flow of a dilute suspension of density matched
particles, lend credence to the crucial role of micro-scale inertia in such a coupling
between the particle–scale flow field. The authors found the critical macro-scale
Reynolds number for a suspension to increase with an increase in φ for the smallest
particles (diameter ∼40 µm), as one would expect in the inertialess limit when the
particles enhance the effective viscosity in proportion to their volume fraction. On the
other hand, the transition Reynolds number decreased with increasing φ for larger-
sized particles. For small enough φ, this decrease appears to be linear in φ, and it is
likely that each particle acts independently in facilitating the appearance of streamwise
vorticity on the macro-scale, thereby promoting the onset of intermittent dynamics.
The particle size at which the decrease in the transition Reynolds number first occurs
corresponds to a micro-scale Reynolds number close to unity. It is of interest to note
that an inertial suspension, for small values of the micro-scale Reynolds numbers,
exhibits a shear-thickening rheology on the macro-scale, thereby leading to a reduced
macro-scale Reynolds number. On the other hand, for values of the micro-scale
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Reynolds number of order unity, when an inner region, in the usual sense (that is,
a region in the vicinity of the particle where inertial forces are negligible), ceases to
exist, the effect at the macro-scale mimics that of an increased macro-scale Reynolds
number.

D.L.K.’s contributions to this study were supported by NSF grant CBET-0730579.
C.Y.’s contributions to this study were supported by the National Natural Science
Foundation of China (20990224 and 20676134) and the National Science Fund for
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