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1. Introduction

In 2009, the second and third authors of the present paper proved in [5] that the semi-local

dynamics of first heteroclinic bifurcations associated with ‘slightly thick’ horseshoes

of surface diffeomorphisms usually can be described by the so-called non-uniformly

hyperbolic horseshoes.

In this article, we pursue the studies of Palis–Yoccoz [5] and Matheus–Palis [3] on

the Hausdorff dimensions of the stable and unstable sets of non-uniformly hyperbolic

horseshoes.

In order to state our main result (Theorem 1.4), first, we need to recall the setting of

the work by Palis–Yoccoz [5].

1.1. Heteroclinic bifurcations in Palis–Yoccoz regime

Fix a smooth diffeomorphism g0 : M → M of a compact surface M . Assume that ps
and pu are periodic points of g0 in distinct orbits such that W s(ps) and W u(pu) meet

tangentially and quadratically at some point q. Suppose that K is a horseshoe of g0
such that ps, pu ∈ K and q ∈ M \ K , and, for some neighborhoods1 U of K and V of the

orbit O(q), the maximal invariant set of U ∪ V is K ∪O(q). In summary, g0 has a first

heteroclinic tangency at q associated with periodic points ps, pu of a horseshoe K .

Let (gt )|t |<t0 be a one-parameter family of smooth diffeomorphisms of M generically

unfolding the first heteroclinic tangency of g0 described in the previous paragraph.

Assume that the continuations of W s(ps) and W u(pu) have no intersection near q for

−t0 < t < 0 but have two transverse intersections near q for 0 < t < t0.

Denote by Kgt :=
⋂

n∈Z g−n
t (U ) the hyperbolic continuation of K . In our context, it is

not hard to describe the maximal invariant set

3gt :=

⋂
n∈Z

g−n
t (U ∪ V ) (1.1)

in terms of Kgt when −t0 < t 6 0; indeed, 3gt = Kgt when −t0 < t < 0 and 3g0 = K ∪
O(q).

On the other hand, the study of 3gt for 0 < t < t0 represents an important challenge

when the Hausdorff dimension of the initial horseshoe K = Kg0 is larger than one.

1It is shown in Appendix A that it is often the case that the particular choices of U and V are not very
relevant.
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In their paper [5], Palis and Yoccoz studied strongly regular parameters 0 < t < t0
whenever Kg0 is slightly thick, i.e.,

(d0
s + d0

u )
2
+ (max{d0

s , d0
u })

2 < (d0
s + d0

u )+max{d0
s , d0

u }, (1.2)

where d0
s and d0

u (respectively) are the transverse Hausdorff dimensions of the invariant

sets W s(Kg0) and W u(Kg0) (respectively). In this setting, Palis and Yoccoz proved that

any strongly regular parameter t has the property that 3gt is a non-uniformly hyperbolic

horseshoe, and, moreover, the strongly regular parameters are abundant near t = 0:

lim
ε→0+

1
ε

Leb1({0 < t < ε : t is a strongly regular parameter}) = 1.

(Here Leb1 is the one-dimensional Lebesgue measure.)

Remark 1.1. This result of Palis and Yoccoz is a semi-local dynamical result; indeed,

Appendix A (by C. G. Moreira and the first two authors of this paper) shows that it is

often the case that U ∪ V can be chosen to be of almost full Lebesgue measure.

We refer the reader to the original paper [5] for the precise definitions of strongly regular

parameters and non-uniformly hyperbolic horseshoes. For the purpose of this article, we

will discuss some features of non-uniformly hyperbolic horseshoes in Section 2.

For the time being, we recall only that non-uniformly hyperbolic horseshoes are

saddle-like sets.

Theorem 1.2 (Cf. [5, Theorem 6] and [3, Theorem 1.2]). Under the previous assumptions,

if t is a strongly regular parameter, then

HD(W s(3gt )) < 2 and HD(W u(3gt )) < 2,

where HD stands for the Hausdorff dimension. In particular, 3gt does not contain

attractors or repellers.

As it turns out, this result leaves open the exact calculation of the quantities

HD(W s(3gt )); in fact, Palis and Yoccoz conjectured in [5, p. 14] that the stable sets

of non-uniformly hyperbolic horseshoes have Hausdorff dimensions very close or perhaps

equal to the expected dimension 1+ ds , where ds is a certain number close to d0
s measuring

the transverse dimension of the stable set of the ‘main non-uniformly hyperbolic part’

of 3gt .

Remark 1.3. The proof of Theorem 1.2 never allows to show that W s(3gt ) has the

expected dimension; see [3, Remark 8].

In this article, we give the following (partial) answer to this conjecture.

1.2. Statement of the main theorem

We show that the conjecture stated above is true at least when the transverse dimensions

d0
s and d0

u of the stable and unstable sets of the initial horseshoe Kg0 satisfy a stronger

constraint than (1.2).
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Theorem 1.4. In the same setting of Theorem 1.2, denote

β∗(d0
s , d0

u ) :=
(1−min{d0

s , d0
u })(d

0
s + d0

u )

max{d0
s , d0

u }(max{d0
s , d0

u }+ d0
s + d0

u − 1)
.

In addition to (1.2) (i.e., β∗(d0
s , d0

u ) > 1), let us also assume that the transverse

dimensions d0
s and d0

u of the stable and unstable sets of the initial horseshoe Kg0 satisfy

β∗(d0
s , d0

u ) 6 1+min
{
−log |λ(ps)|

log |µ(ps)|
,

log |µ(pu)|

−log |λ(pu)|

}
, (1.3)

where λ(pα) and µ(pα) are the stable and unstable eigenvalues of the periodic point pα,

respectively, for α = s, u, and

β∗(d0
s , d0

u ) >
5
3 . (1.4)

Then, for any strongly regular parameter t, one has

HD(W s(3gt )) = 1+ ds,

where 0 < ds = ds(gt ) < 1 is a certain quantity close to d0
s given by the transverse

dimensions of the lamination R̃∞+ of stable curves associated with the well-behaved parts

of 3gt (see [5, pages 12, 13 and 14]).

Remark 1.5. Analogously to [5], there is a symmetry between past and future in our

arguments. Thus, the analog of Theorem 1.4 for the unstable set W u(3gt ) holds after

exchanging the roles of d0
s and d0

u .

Remark 1.6. Of course, we believe that conditions (1.3) and (1.4) are not necessary for

the validity of the conclusion of Theorem 1.4, but our proof of this result in Section 3

does not allow us to bypass these technical conditions. We hope to come back to this

issue in the future.

Remark 1.7. Condition (1.3) is automatic in the conservative case (when g0 preserves

a smooth area form). Indeed, the multipliers λ(pα) and µ(pα) verify λ(pα)µ(pα) = 1 in

this situation, so that (1.3) becomes the requirement β∗(d0
s , d0

u ) 6 2 which is always true

when d0
s + d0

u > 1.

Similarly, condition (1.3) is automatic if Kg0 is a product of two affine Cantor

sets K s and K u of the real line obtained from affine maps with constant dilatations

1/λ > 1 and µ > 1 sending two finite collections of ` ∈ N disjoint closed subintervals

of [0, 1] surjectively on their convex hull [0, 1]. In fact, it is well known that the

transverse Hausdorff dimensions of such a horseshoe Kg0 are d0
s = log `/ log(1/λ) and

d0
u = log `/ logµ, so that requirement (1.3) becomes

β∗(d0
s , d0

u ) 6 1+min
{

log(1/λ)
logµ

,
logµ

log(1/λ)

}
= 1+min

{
d0

s

d0
u
,

d0
u

d0
s

}

=
d0

s + d0
u

max{d0
s , d0

u }

which is always valid when d0
s + d0

u > 1.
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In summary, it is ‘often’ the case that condition (1.3) is less restrictive than condition

(1.4) in ‘many’ applications of Theorem 1.4.

Remark 1.8. A natural question closely related to the statement of Theorem 1.4 is: given

a strongly regular parameter t , what is the Hausdorff dimension of the non-uniformly

hyperbolic horseshoe 3gt itself ? Of course, it is reasonable to conjecture that a

non-uniformly hyperbolic horseshoe 3gt has the ‘expected’ dimension HD(3gt ) = ds + du .

In this direction, let us observe that Theorem 1.4 implies only that HD(3gt ) 6 1+
min{ds, du} (since 3gt = W s(3gt )∩W u(3gt )), but this is still far from the ‘expected’ value

(as ds + du < 1+min{ds, du}). We plan to address elsewhere the question of computing

HD(3gt ) for strongly regular parameters t .

For the sake of comparison2 of conditions (1.2) and (1.4), we plot below (using

Mathematica) the portions of the regions

D = {(d0
s , d0

u ) ∈ [0, 1]× [0, 1] : (d0
s , d0

u ) satisfies (1.4)}

and

PY = {(d0
s , d0

u ) ∈ [0, 1]× [0, 1] : (d0
s , d0

u ) satisfies (1.2)}

below3 the diagonal 1 = {(d0
s , d0

u ) ∈ R2
: 1/2 < d0

s = d0
u < 1} (cf. Figure 1).

We have that D occupies slightly more than 3% of PY:

area(D)
area(PY)

= 0.030136 . . . .

These regions intersect the diagonal segment

1 = {(d0
s , d0

u ) ∈ R2
: 1/2 < d0

s = d0
u < 1}

along

PY ∩1 = {(d0
s , d0

u ) ∈ R2
: 1/2 < d0

s = d0
u < 3/5}

and

D∩1 = {(d0
s , d0

u ) ∈ R2
: 1/2 < d0

s = d0
u < 11/21}.

Remark 1.9. The symmetry in Remark 1.5 actually implies that HD(W s(gt )) = 1+ ds
and HD(W u(gt )) = 1+ du if t is a strongly regular parameter, (d0

s , d0
u ) satisfies (1.3) and

(d0
s , d0

u ) belongs to the region D.

1.3. Outline of the proof of the main result

Recall from the Palis–Yoccoz paper [5] that the stable set W s(3) of a non-uniformly

hyperbolic horseshoe 3 can be written as the disjoint union of an exceptional part E+ and

a lamination with C1+Lip-leaves, Lipschitz holonomy, and transverse Hausdorff dimension

0 < ds < 1 close to the stable dimension d0
s of the initial horseshoe Kg0 .

2In view of Remark 1.7, we can ‘ignore’ (1.3) (in some examples) when trying to compare the restrictions
imposed in Theorems 1.2 and 1.4.
3The other portion is obtained by reflection along the diagonal.
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Figure 1. D (in red) inside PY (in blue).

Hence, the proof of Theorem 1.4 is reduced to show that the Hausdorff dimension of

the exceptional part E+ of W s(3) is HD(E+) < 1+ ds .

By definition, the points of E+ visit a sequence of ‘strips’ (Pk)k∈N whose ‘widths’ decay

doubly exponentially fast (cf. [5, Lemma 24]). In particular, by fixing k ∈ N large and by

decomposing the strip Pk into squares, we obtain a covering of very small diameter of

the image of E+ under some positive iterate of the dynamics.

It was shown in [3] that the covering of the images of E+ in the previous paragraph can

be used to prove that HD(E+) < 2. More concretely, the negative iterates of the dynamics

take the covering of Pk back to E+ while alternating between affine-like (hyperbolic)

iterates and a fixed folding map. In principle, the folding effect accumulates very quickly,

but if we ignore the action of folding map by replacing all ‘parabolic shapes’ by ‘fat

strips’, then we obtain a cover of E+ with small diameter and controlled cardinality

thanks to the double exponential decay of Pj ’s. As it turns out, this suffices to establish

HD(E+) < 2, but this strategy does not yield HD(E+) < 1+ ds (cf. Remark 1.3).

For this reason, in the proof of Theorem 1.4, we do not completely ignore the ‘parabolic

shapes’ mentioned above. In fact, we estimate the contribution of the parabolic shapes

inside the Pj ’s to the Hausdorff dimension of E+ in terms of the derivative and Jacobian

of the dynamics thanks to an analytical lemma (cf. Lemma 3.4) saying that the Hausdorff

measure of scale 1 of the image f (D2) of the unit disk D2
= {(x, y) ∈ R2

: x2
+ y2 6 1}

under a C1-map f : D2
→ R2 is bounded by interpolation of the C0-norms of the
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derivative and Jacobian of f . Also, we prove that this estimate is sufficient to derive

HD(E+) < 1+ ds when the double exponential rate of decays of widths of Pj ’s is adequate

(namely, (1.4) holds). Furthermore, we prove the analytical lemma by decomposing

dyadically f (D2) and by interpreting the d-Hausdorff measure of f (D2) as a Ld -norm. In

this way, for 1 < d < 2, we can estimate this Ld -norm by interpolation between certain

L1 and L2 norms that are naturally controlled by the derivatives and Jacobians of f .

In summary, the novelty in the proof of Theorem 1.4 (in comparison with Theorem 1.2)

is the application of the analytical lemma described above to control the Hausdorff

measure of E+.

Remark 1.10. Similar to [3], our main result holds for the same strongly regular

parameters of Palis–Yoccoz [5].

Remark 1.11. The arguments outlined above provide sequences of good coverings of

the stable and unstable sets W s(3) and W u(3) permitting to calculate their Hausdorff

dimensions. However, in relation with Remark 1.8, let us observe that it is not obvious how

to combine these sequences to produce good coverings of the non-uniformly hyperbolic

horseshoe 3 itself allowing to compute its Hausdorff dimension. In fact, the naive idea

of taking intersections of elements of coverings of W s(3) and W u(3) in order to produce

a cover of 3 = W s(3)∩W u(3) does not work directly because of the possible ‘lack of

transversality’ (especially near E+ ∩ E−) that allows for a potentially bad geometry of

such coverings of 3.

1.4. Organization of the paper

We divide the remainder of this article into two parts. In Section 2, we recall some

facts from the Palis–Yoccoz article [5]. In Section 3, we prove an analytical lemma

(cf. Lemma 3.4) about Hausdorff measures of planar sets and we apply it to get

Theorem 1.4.

2. Preliminaries

In this section, we review some basic properties of the non-uniformly horseshoes

introduced in [5] (see also [3, Section 2]).

2.1. Strongly regular parameters

Let 0 < ε0 � τ � 1 be two very small constants, and define a sequence of scales

εk+1 = ε
1+τ
k , k ∈ N. The inductive scheme in [5] defining the strongly regular parameters

goes as follows. The initial candidate interval is I0 = [ε0, 2ε0]. The kth step of induction

consists in dividing the selected candidate intervals of the previous step into bε−τk c disjoint

candidates of lengths εk+1. These new candidates are submitted to a strong regularity

test and we select for the (k+ 1)th step of induction only the candidates passing this

test.

By definition, t ∈ I0 = [ε0, 2ε0] is a strongly regular parameter whenever {t} =
⋂

k∈N Ik ,

where I0 ⊃ · · · ⊃ Ik ⊃ . . . are selected candidate intervals.
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The strong regularity tests are relevant for two reasons (at least). First, they are rich

enough to ensure several nice properties of ‘non-uniform hyperbolicity’ of 3gt for strongly

regular parameters t ∈ I0. Second, they are sufficiently flexible to allow the presence

of many strongly regular parameters; by [5, Corollary 15], the set of strongly regular

parameters t ∈ I0 = [ε0, 2ε0] has Lebesgue measure > ε0(1− 3ετ
2

0 ).

The notion of strong regularity tests is intimately related to an adequate class R(I ) of

affine-like iterates attached to each candidate interval I .

In the next three subsections, we briefly recall the construction of R(I ).

2.2. Semi-local dynamics of heteroclinic bifurcations

We fix geometrical Markov partitions of the horseshoes Kgt depending smoothly on gt .

In other terms, we choose a finite system of smooth charts I s
a × I u

a → Ra ⊂ M indexed

by a finite alphabet a ∈ A with the properties that these charts depend smoothly on gt ,

the intervals I s
a and I u

a are compact, the rectangles Ra are disjoint, the horseshoe Kgt is

the maximal invariant set of the interior of R :=
⋃

a∈A Ra and the family (Kgt ∩ Ra)a∈A
is a Markov partition of Kgt . Moreover, we assume that no rectangle meets the orbits of

ps and pu at the same time.

Remark 2.1. The intervals I s
a = [x

−
a , x+a ], I u

a = [y
−
a , y+a ], a ∈ A, above can be replaced by

slightly larger intervals J s
a = [x

−
a −C−1, x+a +C−1

], J u
a = [y

−
a −C−1, y+a +C−1

] (where

C = C(g0) > 1 is a large constant) without changing any of the properties in the previous

paragraph. This fact will be used later during the discussion of affine-like iterates.

The Markov partition (Kgt ∩ Ra)a∈A allows to topologically conjugate the dynamics of

gt on Kgt and the subshift of finite type of AZ with transitions

B := {(a, a′) ∈ A2
: g0(Ra)∩ Ra′ ∩ Kg0 6= ∅}.

Furthermore, for each gt with t > 0, we have a compact lenticular region Lu ⊂ Rau

(near the initial heteroclinic tangency point q ∈ M \ K of g0) bounded by a piece of the

unstable manifold of pu and a piece of the stable manifold of ps . Moreover, Lu moves

outside R for N0− 1 iterates of gt before entering R (for some integer N0 = N0(g0) > 2)

because no rectangle meets both orbits of ps and pu . The image Ls = gN0
t (Lu) of Lu

under G := gN0
t |Lu defines another lenticular region Ls ⊂ Ras and the regions gi (Lu),

0 6 i 6 N0 are called parabolic tongues.

Let R̂ := R ∪
⋃

0<i<N0
gi (Lu). By definition, the set 3g introduced in (1.1) is the

maximal invariant set of R̂, i.e., 3gt =
⋂

n∈Z g−n
t (R̂).

The dynamics of gt on R̂ is driven by the transition maps

gaa′ = gt |Ra∩g−1(Ra′ )
: Ra ∩ g−1

t (Ra′)→ gt (Ra)∩ Ra′ , (a, a′) ∈ B,

related to the Markov partition R and the folding map G = gN0
t |Lu : Lu → Ls between

the parabolic tongues.

Qualitatively speaking, the transitions gaa′ correspond to ‘affine’ hyperbolic maps; for

our choices of charts, gaa′ contracts ‘almost vertical’ directions and expands ‘almost
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horizontal’ directions. Of course, this hyperbolic structure can be destroyed by the folding

map G, and this phenomenon is the source of non-hyperbolicity of 3gt .

For this reason, the notion of non-uniformly hyperbolic horseshoes is defined in [5] in

terms of a certain ‘affine-like’ iterate of gt . Before entering into this discussion, let us

quickly overview the notion of affine-like maps.

2.3. Generalities on affine-like maps

Let I s
0 , I u

0 , I s
1 and I u

1 be compact intervals with coordinates x0, y0, x1 and y1. A

diffeomorphism F from a vertical strip

P := {(x0, y0) : ϕ
−(y0) 6 x0 6 ϕ+(y0)} ⊂ I s

0 × I u
0

onto a horizontal strip

Q := {(x1, y1) : ψ
−(x1) 6 y1 6 ψ+(x1)} ⊂ I s

1 × I u
1

is affine-like whenever the projection from the graph of F to I u
0 × I s

1 is a diffeomorphism

onto I u
0 × I s

1 .

By definition, an affine-like map F has an implicit representation (A, B), i.e., there

are smooth maps A and B on I u
0 × I s

1 such that F(x0, y0) = (x1, y1) if and only if x0 =

A(y0, x1) and y1 = B(y0, x1).

For our purposes, we shall consider exclusively affine-like maps satisfying a cone

condition and a distortion estimate. More concretely, let λ > 1, u0 > 0, v0 > 0 with

1 < u0v0 6 λ2 and D0 > 0 be the constants fixed in [5, page 32]; their choices depend

solely on g0.

An affine-like map F(x0, y0) = (x1, y1) with implicit representation (A, B) satisfies a

(λ, u, v) cone condition if

λ|Ax | + u0|Ay | 6 1 and λ|By | + v0|Bx | 6 1,

where Ax , Ay, Bx , By are the first-order partial derivatives of A and B. Also, an affine-like

map F(x0, y0) = (x1, y1) with implicit representation (A, B) satisfies a 2D0 distortion

condition if

∂x log |Ax |, ∂y log |Ax |, Ayy, ∂y log |By |, ∂x log |By |, Bxx

are uniformly bounded by 2D0.

Remark 2.2. The widths of the domain P and the image Q of an affine-like map F :
P → Q with implicit representation (A, B) are

|P| := max |Ax | and |Q| := max |By |.

The widths satisfy |P| 6 C min |Ax | and |Q| 6 C min |By |, where C = C(g0) > 1.

The transitions gaa′ associated with the Markov partition R of the horseshoe Kgt

are affine-like maps satisfying the cone and distortion conditions with parameters

(λ, u0, v0, 2D0); see [5, Section 3.4].
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Moreover, we can build new affine-like maps using the so-called simple and parabolic

compositions of two affine-like maps.

Given compact intervals I s
j , I u

j , j = 0, 1, 2, and two affine-like maps F : P → Q
and F ′ : P ′→ Q′ with domains P ⊂ I s

0 × I u
0 and P ′ ⊂ I s

1 × I u
1 and images Q ⊂ I s

1 × I u
1

and Q′ ⊂ I s
2 × I u

2 satisfying the (λ, u0, v0) cone condition, the map F ′′ = F ′ ◦ F from

P ′′ = P ∩ F−1(P ′) to Q′′ = Q ∩ P ′ is an affine-like map satisfying the (λ2, u0, v0) cone

condition (see [5, Section 3.3]). The map F ′′ is the simple composition of F and F ′.
Given compact intervals I s

j , I u
j , j = 0, 1, and two affine-like maps F0 : P0 → Q0, F1 :

P1 → Q1 from vertical strips P0 ⊂ I s
0 × I u

0 , P1 ⊂ I s
as
× I u

as
to horizontal strips Q0 ⊂ I s

au
×

I u
au

, Q1 ⊂ I s
1 × I u

1 , we can introduce a quantity δ(Q0, P1) roughly measuring the distance

between Q0 and the tip of the parabolic strip G−1(P1) (where G is the folding map); see

[5, Section 3.5]. If

δ(Q0, P1) > (1/b)(|P1| + |Q0|)

and the implicit representations of F0 and F1 satisfy the bound

max{|(A1)y |, |(A1)yy |, |(B0)x |, |(B0)xx |} < b

for an adequate constant b = b(g0) > 0, the composition F1 ◦G ◦ F0 defines two affine-like

maps F± : P±→ Q± with domains P± ⊂ P0 and Q± ⊂ Q1 called the parabolic

compositions of F0 and F1.

2.4. The class R(I ) of certain affine-like iterates

Given a parameter interval I ⊂ [ε0, 2ε0], a triple (P, Q, n) = (Pt , Qt , n)t∈I is called an

I -persistent affine-like iterate if Pt ⊂ Ra and Qt ⊂ Ra′ are vertical and horizontal strips,

respectively, varying smoothly with t ∈ I , n > 0 is an integer such that gn
t |Pt : Pt → Qt

is an affine-like map for all t ∈ I and gm
t (Pt ) ⊂ R̂ for each 0 6 m 6 n.

Given a candidate parameter interval I , it is assigned in [5, Section 5.3] a class R(I )
of certain I -persistent affine-like iterates verifying seven requirements, (R1)–(R7):

(R1) the transitions gaa′ : Ra ∩ g−1
t (Ra′)→ gt (Ra)∩ Ra′ , (a, a′) ∈ B, belong to R(I ),

(R2) each (P, Q, n) ∈ R(I ) is an I -persistent affine-like iterate satisfying the (λ, u0, v0)

cone condition and the 2D0 distortion condition,

(R3) the class R(I ) is stable under simple compositions,

(R4) denote by Ps , respectively Qu , the smallest cylinder of the Markov partition of Kgt

containing Ls , respectively Lu ; if (P, Q, n) ∈ R(I ) and P ⊂ Ps , then |Ay |, |Ayy | 6
Cε0 for all t ∈ I ; similarly, if (P, Q, n) ∈ R(I ) and Q ⊂ Qu , then |Bx |, |Bxx | 6 Cε0
for all t ∈ I ,

(R5) the class R(I ) is stable under certain allowed parabolic compositions (cf. [5, page

33]),

(R6) each (P, Q, n) ∈ R(I ) with n > 1 is obtained from simple or allowed parabolic

compositions of shorter elements,

(R7) if the parabolic composition of (P0, Q0, n0), (P1, Q1, n1) ∈ R(I ) is allowed, then

δ(Q0, P1) > (1/C)(|P1|
1−η
+ |Q0|

1−η)
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where δ(Q0, P1) is the distance between Q0 and the tip of G−1(P1), C = C(g0) > 1,

and the parameter η relates to ε0 and τ via the condition 0 < ε0 � η � τ < 1.

Furthermore, [5, Theorem 1] ensures that the class R(I ) satisfying (R1)–(R7) is unique.

For technical reasons, we will need to work with extensions of the elements R(I ).
More concretely, we consider the intervals J s

a , J u
a from Remark 2.1 and we denote

by S :=
⋃

a∈A Sa the geometric Markov partition associated with smooth charts

J s
a × J u

a → Sa . We say that (P̃, Q̃, n) extends (P, Q, n) ∈ R(I ) if (P̃, Q̃, n) is an affine-like

map with respect to S satisfying the (λ, u0, v0) cone condition and the 3D0 distortion

condition such that the restriction of (P̃, Q̃, n) to R is (P, Q, n). Note that if (P̃, Q̃, n)
extends (P, Q, n), then P̃ is a strip of width 6 C |P| containing a C−1

|P|-neighborhood

of P and Q̃ is a strip of width 6 C |Q| containing a C−1
|Q|-neighborhood of Q (where

C = C(g0) > 1), thanks to the cone and distortion conditions.

Proposition 2.3. Each element (P, Q, n) ∈ R(I ) admits an extension.

Proof. Consider the subclass S(I ) of R(I ) consisting of elements admitting an extension.

We want to show that S(I ) = R(I ), and, in view of [5, Theorem 1], it suffices to check

that S(I ) verifies the requirements (R1)–(R7).

The fact that the transitions gaa′ can be extended was already observed in Remark 2.1.

In particular, S(I ) satisfies (R1).

The requirements (R2), (R4) and (R7) for S(I ) are automatic (because they concern

geometric properties of (P, Q, n) ∈ S(I ) ⊂ R(I ) themselves).

The condition (R3) for S(I ) holds because the simple composition of (P0, Q0, n0),

(P1, Q1, n1) ∈ S(I ) is extended by the simple composition of the extensions of (P0, Q0, n0)

and (P1, Q1, n1).

If (P0, Q0, n0), (P1, Q1, n1) ∈ S(I ) satisfy the transversality requirement Q0 tI P1
(from [5, page 34]) allowing parabolic composition, then their extensions (P̃0, Q̃0, n0),

(P̃1, Q̃1, n1) verify the same transversality requirement after replacing the constant 2 in

(T1), (T2), (T3) in [5, page 34] by 7/4. From this fact and the discussion of parabolic

compositions in [5, Sections 3.5 and 3.6], one sees that the parabolic composition of

(P̃0, Q̃0, n0) and (P̃1, Q̃1, n1) is an extension of the parabolic composition of (P0, Q0, n0)

and (P1, Q1, n1) ∈ S(I ). Therefore, S(I ) satisfies (R5).

At this point, it remains to check (R6) for S(I ). For this sake, we recall (from [5, Section

5.5]) that R(I0) consists of all affine-like iterates associated with the horseshoe Kgt . In

particular, S(I0) = R(I0) thanks to our discussion so far. On the other hand, if I is a

candidate interval distinct from I0 and S( Ĩ ) = R( Ĩ ) for the smallest candidate interval Ĩ
containing I , then we can apply the structure theorem (cf. [5, Theorem 2]) to write any

element (P, Q, n) ∈ R(I ) not coming from R( Ĩ ) as the allowed parabolic compositions

of shorter elements (P0, Q0, n0), . . . , (Pk, Qk, nk) ∈ R( Ĩ ), k > 0. Since S( Ĩ ) = R( Ĩ ), we

conclude that S(I ) verifies (R6).

2.5. Strong regularity tests

A candidate parameter interval I is tested for several quantitative conditions on the

family of so-called bicritical elements of R(I ). If a candidate interval I passes this strong
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regularity test, then all bicritical elements (P, Q, n) ∈ R(I ) are thin in the sense that

|P| < |I |β , |Q| < |I |β ,

where β > 1 depends only on g0; more precisely, one imposes the mild condition that

1 < β < 1+min{ωs, ωu}, (2.1)

where ωs = −
log |λ(ps )|
log |µ(ps )|

and ωu = −
log |µ(pu)|
log |λ(pu)|

with µ(ps), µ(pu) denoting the unstable

eigenvalues of the periodic points ps, pu and λ(ps), λ(pu) denoting the stable eigenvalues

of the periodic points ps, pu , and the important condition that

1 < β <
(1−min{d0

s , d0
u })(d

0
s + d0

u )

max{d0
s , d0

u }(max{d0
s , d0

u }+ d0
s + d0

u − 1)
:= β∗(d0

s , d0
u ) (2.2)

(cf. [5, Remark 8]).

2.6. Non-uniformly hyperbolic horseshoes and their stable sets

Let us fix once and for all a strongly regular parameter t ∈ I0 = [ε0, 2ε0], i.e.,

{t} =
⋂

m∈N Im for some decreasing sequence Im of candidate intervals passing the strong

regularity tests. In the sequel, gt = g denotes the corresponding dynamical system.

We define R :=
⋃

m∈NR(Im), and, given a decreasing sequence of vertical strips Pk
associated with some affine-like iterates (Pk, Qk, nk) ∈ R, we say that ω =

⋂
k∈N Pk is a

stable curve.

The set of stable curves is denoted by R∞+ . The union of stable curves

R̃∞+ :=
⋃

ω∈R∞+

ω

is a lamination by C1+Lip curves with Lipschitz holonomy (cf. [5, Section 10.5]).

The set R∞+ is naturally partitioned in terms of prime elements of R. More precisely,

(P, Q, n) ∈ R is called a prime element if it is not the simple composition of two shorter

elements. This notion allows to write R∞+ := D+ ∪N+, where N+ is the set of stable

curves contained in infinitely many prime elements and D∞+ is the complement of N+.

If ω ∈ D+ is a stable curve such that (P, Q, n) ∈ R is the thinnest prime element

containing ω, then gn(ω) is contained in a stable curve ω′ := T+(ω) ∈ R∞+ . In this way,

we obtain a partially defined dynamics T+ on R∞+ = D+ ∪N+. The map T+ : D+→ R∞+
is Bernoulli and uniformly expanding with countably many branches; see [5, Section 10.5].

These hyperbolic features of T+ permit to introduce a one-parameter family of

transfer operators Ld whose dominant eigenvalues λd > 0 detect the transverse Hausdorff

dimension of the lamination R̃∞+ , i.e., R̃∞+ has Hausdorff dimension 1+ ds where ds is

the unique value of d with λd = 1 (cf. [5, Theorem 4]).

The set {z ∈ W s(3) : gn(z) ∈ R̃∞+ for some n > 0} is the so-called well-behaved part of

the stable set W s(3g).

Following [5, Section 11.6], we write

W s(3) =
⋃
n>0

g−n(W s(3, R̂)∩ R))
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and we split the local stable set W s(3, R̂)∩ R into its well-behaved part and its

exceptional part :

W s(3, R̂)∩ R :=
⋃
n>0

(W s(3, R̂)∩ R ∩ g−n(R̃∞+ ))∪ E+

where

E+ := {z ∈ W s(3, R̂)∩ R : gn(z) /∈ R̃∞+ for all n > 0}. (2.3)

Since g is a diffeomorphism and the C1+Lip-lamination R̃∞+ has transverse Hausdorff

dimension 0 < ds < 1, we deduce that the Hausdorff dimension of the stable set W s(3)

is the following.

Proposition 2.4. HD(W s(3)) = max{1+ ds,HD(E+)}.

For the study of HD(E+), it is important to recall that the exceptional set E+ has a

natural decomposition in terms of the successive passages through the so-called parabolic

cores of vertical strips (cf. [5, Section 11.7]).

More precisely, the parabolic core c(P) of (P, Q, n) ∈ R is the set of points of W s(3, R̂)
belonging to P but not to any child4 of P. If we denote by C− the set of elements

(P0, Q0, n0) ∈ R with c(P0) 6= ∅, then

E+ =
⋃

(P0,Q0,n0)∈C−

E+(P0),

where E+(P0) := E+ ∩ c(P0).

Since (P0, Q0, n0) ∈ C− implies that gn0(E+(P0)) ⊂ Q0 ∩ Lu ∩ E+ and G(gn0(E+(P0)) =

gn0+N0(E+(P0)) ⊂ Ls ∩ E+, we can write

E+(P0) :=
⋃

(P1,Q1,n1)∈C−

E+(P0, P1),

where E+(P0, P1) := {z ∈ E+(P0) : gn0+N0(z) ∈ c(P1)}.

In general, we can inductively define

E+(P0, . . . , Pk) =
⋃

(Pk+1,Qk+1,nk+1)∈C−

E+(P0, . . . , Pk, Pk+1)

so that

E+ =
⋃

(P0,P1,...,Pk ) admissible

E+(P0, . . . , Pk),

where (P0, . . . , Pk) is admissible whenever E+(P0, . . . , Pk) 6= ∅.

The admissibility condition on (P0, . . . , Pk+1) is a severe geometrical constraint on the

elements (Pi , Qi , ni ) ∈ R: for example, (P0, Q0, n0) ∈ C−,

max{|P1|, |Q1|} 6 ε
β

0 (2.4)

4P ′ is a child of P if P ′ is the vertical strip associated with some (P ′, Q′, n′) ∈ R obtained by simple
compositions of (P, Q, n) with the transition maps gaa′ of the Markov partition of the horseshoe Kg or
parabolic composition of (P, Q, n) with some element of R (cf. [5, Section 6.2]).
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and, for β̃ := β(1− η)(1+ τ)−1,

max{|Pj+1|, |Q j+1|} 6 C |Q j |
β̃ (2.5)

for all j > 1 (cf. [5, Lemma 24]).

Hence, by taking 1 < β̂ < β̃, the admissibility condition implies that

max{|Pj |, |Q j |} 6 ε
β̂ j

0 (2.6)

(for ε0 sufficiently small). Therefore, the widths of the strips Pj and Q j confining the

dynamics of E+ decay doubly exponentially fast.

2.7. Hausdorff measures

Given a bounded subset X of the plane, 0 6 d 6 2, and δ > 0, the d-Hausdorff measure

md
δ (X) at scale δ > 0 of X is the infimum over open coverings (Ui )i∈I of X with diameter

diam(Ui ) < δ of the following quantity:∑
i∈I

diam(Ui )
d .

In other terms, md
δ (X) is the d-Hausdorff measure at scale δ > 0 of X . Observe that

md
δ

(⋃
α∈N

Xα

)
6
∑
α∈N

md
δ (Xα).

In this context, the Hausdorff dimension of X is

HD(X) := inf{d ∈ [0, 2] : md(X) = 0}.

3. The expected Hausdorff dimension of W s(3)

By Proposition 2.4, the proof of Theorem 1.4 is reduced to the following.

Theorem 3.1. In the setting of Theorem 1.4, HD(E+) < 1+ ds .

For the proof of this theorem, we need some facts about the Hausdorff measures of

images of maps with bounded geometry.

3.1. Planar maps with bounded geometry

We start with a lemma about the Hausdorff measure at scale 1 of the image of the unit

disk D2
:= {(x, y) ∈ R2

: x2
+ y2 6 1} under a map with bounded geometry:

Lemma 3.2. Let K > 1, L > 1 and f : D2
→ R2 be a C1 diffeomorphism onto its image

such that ‖D f ‖ 6 K and |Jac( f )| := |det D f | 6 L. Then, there is a universal constant C
(e.g., C = 170π) such that for all 1 6 d 6 2, we have

inf
(Ui ) covers f (D2),

diam(Ui )6
√

2∀ i

∑
i

diam(Ui )
d 6 C ·max{K , L}2−d Ld−1.
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Proof. Fix 0 < ε0 < 1 small enough so that f has an extension to the disk D2
1+ε0
:=

{(x, y) ∈ R2
: x2
+ y2 6 (1+ ε0)

2
}. By a slight abuse of notation, we still denote such an

extension by f .

Given 0 < ε < ε0, let U1+ε = f (D2
1+ε) and ∂U1+ε be its boundary. For later use, we set

Kε := supD2
1+ε
‖D f ‖ and Lε := supD2

1+ε
|Jac( f )|. For k > 0 integer, let Qk be the collection

of squares in the plane of side 1/2k and vertices on Z2/2k . Let C(ε)0 be the set of squares

Q in Q0 such that

area(Q ∩U1+ε) >
1
5 · area(Q).

For k > 0, let C(ε)k be the set of squares Q in Qk such that Q is not contained in some

Q′ ∈ C(ε)l , l < k and

area(Q ∩U1+ε) >
1
5 · area(Q).

Remark 3.3. In this construction, we are implicitly assuming that U1+ε = f (D2
1+ε) is

not entirely contained in a dyadic square Q ∈
⋃
∞

k=0 Qk . Of course, there is no loss of

generality in this assumption; if U1+ε ⊂ Q for some Q ∈ Qk , then the lemma follows

from the trivial bound diam(Q)d 6
√

2
d
.

Note that f (D2) is contained in the interior of U1+ε. In particular, each point of f (D2)

belongs to some dyadic square contained in U1+ε. Hence, (U (ε)
i )i∈N :=

⋃
∞

k=0 C
(ε)
k is a

covering of f (D2) with diam(U (ε)
i ) 6

√
2 and

∑
i

diam(U (ε)
i )d =

∞∑
k=0

N (ε)
k

(
1
2k

)d

,

where N (ε)
k := (

√
2)d#C(ε)k . By considering this expression as an Ld -norm and by applying

interpolation between the L1 and L2 norms, we see that

∞∑
k=0

N (ε)
k

(
1
2k

)d

6

(
∞∑

k=0

N (ε)
k

2k

)2−d ( ∞∑
k=0

N (ε)
k

(2k)2

)d−1

. (3.1)

We estimate these L1 and L2 norms as follows. First, we have

∑
k

N (ε)
k

(2k)2
= (
√

2)d
∑

k

∑
Q∈C(ε)k

area(Q)

6 5(
√

2)d
∑

k

∑
Q∈C(ε)k

area(Q ∩U1+ε)

6 10 area(U1+ε)

6 10π · (1+ ε)2Lε, (3.2)

for any 1 6 d 6 2. From the previous estimate, we obtain that N (ε)
0 6 10π(1+ ε)2 Lε.
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On the other hand, we claim that there exists an universal constant c′ > 0 (e.g.,

c′ = 1/20) such that for any k > 0 and Q ∈ Ck , we have

length(∂U1+ε ∩ Q) > c′/2k .

This claim implies ∑
k>0

N (ε)
k

2k = (
√

2)d
∑
k>0

∑
Q∈C(ε)k

1
2k

6 (
√

2)dc′−1
∑
k>0

∑
Q∈C(ε)k

length(∂U1+ε ∩ Q)

6 2(
√

2)dc′−1length(∂U1+ε)

6 8πc′−1(1+ ε)Kε,

for any 1 6 d 6 2. Hence,∑
k>0

N (ε)
k

2k = N (ε)
0 +

∑
k>0

N (ε)
k

2k 6 10π(1+ ε)2Lε + 8πc′−1(1+ ε)Kε

6 (10π + 8πc′−1)(1+ ε)2 max{Kε, Lε}. (3.3)

Thus, in view of (3.3), (3.2) and (3.1), since 0 < ε < ε0 is arbitrary and

K0 := limε→0 Kε, L0 := limε→0 Lε satisfy K0 6 K , L0 6 L, the Lemma follows (with

C = 170π when c′ = 1/20) once we prove the claim.

To show the claim, we observe that if length(∂U1+ε ∩ Q) < c′/2k , then ∂U1+ε ∩ Q is

contained in a c′/2k-neighborhood of ∂Q (thanks to Remark 3.3). So, the complement

of this neighborhood (whose area is (1− 2c′)2 · area(Q)) is either contained in U1+ε or

disjoint from U1+ε. This contradicts the definition of C(ε)k if c′ > 0 is small enough (e.g.,

c′ = 1/20).

After scaling, we obtain the following version of the previous lemma.

Lemma 3.4. Let K > L > 1 and f : D2
r → R2 be a C1 diffeomorphism from D2

r :=

{(x, y) ∈ R2
: x2
+ y2 6 r2

} on its image such that ‖D f ‖ 6 K and |Jac( f )| 6 L. Then,

there is an universal constant C (e.g., C = 170π) such that for all 1 6 d 6 2, we have

inf
(Ui ) covers f (D2

r ),

diam(Ui )6 Lr
√

2
K ∀ i

∑
i

diam(Ui )
d 6 C · rd

· K 2−d
· Ld−1.

3.2. Application of Lemma 3.4 to the proof of Theorem 3.1

Consider again the decomposition

E+ =
⋃

(P0,...,Pk ) admissible

E+(P0, . . . , Pk)

and let us estimate md
sk
(E+(P0, . . . , Pk)). For this sake, recall that the admissibility

condition on (Pi , Qi , ni ), i = 0, . . . , k implies that

gn0+N0+···+nk−1+N0(E+(P0, . . . , Pk))
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is contained in a rectangular region of width C |Qk |
(1−η)

2 |Pk | and height C |Qk−1|
(1−η)

2 (cf.

[5, proof of Proposition 62] and the beginning of [3, proof of Lemma 3.2]).

In order to alleviate the notations, we denote gni |Pi := Fi , G := gN0 |Lu , F (k) := G ◦
Fk−1 ◦ · · · ◦G ◦ F0, and we write δ j := |Q j | for j = 0, . . . , k− 1. In this language, we have

that

F (k)(E+(P0, . . . , Pk)) = gn0+N0+···+nk−1+N0(E+(P0, . . . , Pk))

is contained in a rectangular region of width C |Qk |
(1−η)

2 |Pk | and height Cδ
(1−η)

2
k−1 . Let us

divide this rectangular region into Nk := C2 δ
(1−η)/2
k−1

|Qk |
(1−η)

2 |Pk |

disks of diameters C |Qk |
(1−η)

2 |Pk |,

and let us denote by Ok the subcollection of such disks intersecting F (k)(E+(P0, . . . , Pk)).

Recall that Proposition 2.3 says that the affine-like iterate Fi can be extended

to an affine-like iterate F̃i with domain P̃i in such a way that |P̃i | 6 C |Pi | and a

C−1
|Pi |-neighborhood of Pi is included in the domain P̃i of Fi . Given a square S ∈ Ok ,

we have that its pre-image under G contains a point of F (k)(E+(P0, . . . , Pk)) and its

diameter is C |Qk |
(1−η)

2 |Pk |. Since max{|Pk |, |Qk |} 6 C |Qk−1|
β̃ with β̃ > 1 (cf. (2.5)), the

pre-image of S under G is contained in a C−1
|Qk−1|-neighborhood of Qk−1, and, hence,

it is contained in Q̃k−1. Therefore, the pre-image of S under G ◦ F̃k−1 contains a point

of F (k−1)(E+(P0, . . . , Pk)) and its diameter is 6 C |Qk |
(1−η)

2 |Pk |
|Qk−1|

. Hence, the pre-image of S

under G ◦ F̃k−1 ◦G is contained in a C−1
|Qk−2|-neighborhood of Qk−2 and, a fortiori, in

Q̃k−2 whenever

C
|Qk |

(1−η)
2 |Pk |

|Qk−1|
6 C−1

|Qk−2|.

Since max{|Pj |, |Q j |} 6 |Q j−1|
β̃ , the inequality above holds when

β̃

(
(3− η)

2
β̃ − 1

)
> 1, i.e.,

(3− η)
2

>
1
β̃
+

1
β̃2
.

In this case, the pre-image of S under G ◦ F̃k−1 ◦G ◦ F̃k−2 contains a point of

F (k−2)(E+(P0, . . . , Pk)) and its diameter is 6 C |Qk |
(1−η)

2 |Pk |
|Qk−1| |Qk−2|

. By induction, the pre-image

of S under G ◦ F̃k−1 ◦G ◦ · · · ◦ F̃ j+1 ◦G is contained in a C−1
|Q j | of Q j , and, a fortiori,

in Q̃ j , whenever

Ck− j |Qk |
(1−η)

2 |Pk |

|Qk−1| . . . |Q j+1|
6 |Q j |.

Since max{|P`|, |Q`|} 6 |Q`−1|
β̃ , the inequality above holds when

(3− η)
2

>
1
β̃
+ · · ·+

1
β̃k− j

.

In this case, the pre-image of S under G ◦ F̃k−1 ◦ · · · ◦G ◦ F̃ j contains a point of

F ( j)(E+(P0, . . . , Pk)) and its diameter is 6 C |Qk |
(1−η)

2 |Pk |
|Qk−1|...|Q j |

.
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In particular, we have that E+(P0, . . . , Pk) is covered by the pre-images under F̃ (k) :=
G ◦ F̃k−1 ◦ · · · ◦G ◦ F̃0 of the disks in Ok whenever we can take β̃ with

∑
∞

`=1 β̃
−` < 3/2,

i.e., β̃ > 5/3. Observe that, from the definitions, such a choice is possible if the quantity

β in (2.1) and (2.2) satisfies β > 5/3. Since assumption (1.3) in Theorem 1.4 says that

constraint (2.1) is superfluous, β can be taken arbitrarily close to

β∗ := β∗(d0
s , d0

u ) =
(1−min{d0

s , d0
u })(d

0
s + d0

u )

max{d0
s , d0

u }(max{d0
s , d0

u }+ d0
s + d0

u − 1)

and, hence, the property β > 5/3 is ensured by hypothesis (1.4).

Our plan to estimate md
sk
(E+(P0, . . . , Pk)) is to apply Lemma 3.4 to the image of each

of these disks under the map (F̃ (k))−1. Therefore, let us estimate the Lipschitz constant

and the Jacobian of this map on these squares.

Lemma 3.5. On the disks of the collection Ok , one has

|Jac((F̃ (k))−1)| 6 Ck
k−1∏
i=0

|Pi |

|Qi |
6 Ck

|P0|δ
−1
k−1 := Lk .

Proof. The Jacobian determinant of an affine-like map from a vertical strip P to a

horizontal strip Q with implicit representation (A, B) is

C−1
|P|/|Q| 6 A−1

x By 6 C |P|/|Q|

(see Remark 2.2).

By definition, (F̃ (k))−1
= (G ◦ F̃k−1 ◦ · · · ◦G ◦ F̃0)

−1, where G = gN0 is the folding map

(a fixed map with uniformly bounded Jacobian) and F̃i are the affine-like maps gni |P̃i
:

P̃i → Q̃i with |P̃i | 6 C |Pi | and |Q̃i | 6 C |Qi |. Therefore,

|Jac((F̃ (k))−1)| = |Jac((G ◦ F̃k−1 ◦ · · · ◦G ◦ F̃0)
−1)| 6 Ck

k−1∏
i=0

|Pi |

|Qi |
.

Since |Pi | 6 C |Qi−1|
β̃ with β̃ > 1 (cf. (2.5)), it follows that

|Jac((F̃ (k))−1)| 6 Ck
k−1∏
i=0

|Pi |

|Qi |
6 Ck |P0|

|Qk−1|
:= Ck

|P0|δ
−1
k−1.

This proves the lemma.

Lemma 3.6. On the disks of the collection Ok , one has

‖D(F̃ (k))−1
‖ 6 Ckδ−1

k−1(δk−2 . . . δ0)
−(1+η)/2

:= Kk .

Proof. Let uk be a unit vector at a point xk of a disk in Ok . We define inductively

y j−1 = G−1(x j ), x j = F̃−1
j (y j )

and

v j−1 = DG−1(x j )u j , u j = DF̃−1
j (y j )v j .

Observe that ‖vk−1‖ ∼ 1.
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Given an affine-like map F : P → Q, the vector field on Q obtained by pushing forward

by F the horizontal direction on P is called the horizontal direction in the affine-like

sense.

We will prove by induction on j that the following two facts:

‖uk− j‖ 6 C jδ−1
k−1(δk−2 . . . δk− j )

−(1+η)/2,

and, moreover, if the angle of vk− j with the horizontal direction in the affine-like sense

is at most δ
1/2
k− j , one has

‖uk− j‖ 6 C j (δk−1 . . . δ0)
−(1+η)/2.

For this sake, we consider three cases:

• ‖uk− j‖ 6 1: this means that the angle of vk− j with the horizontal direction in the

affine-like sense is 6 C |Qk−1|; in this case, the estimate follows by induction on j .

• ‖uk− j‖ > 1: in this case, we have

‖vk− j−1‖ ∼ ‖uk− j‖ 6 C |Qk− j |
−1
‖uk− j+1‖

and the angle of vk− j−2 with the horizontal direction in the affine-like sense is at most

|Qk− j−1|
(1−η)/2 (compared with the calculations in [5, page 192]).

• ‖uk− j‖ > 1 and the angle of vk− j−1 with the ‘horizontal’ direction is 6C |Qk− j−1|
(1−η)/2.

In this case, we have

‖vk− j−2‖ ∼ ‖uk− j−1‖ 6 C |Qk− j−1|
−(1+η)/2

‖uk− j‖.

Since ‖uk‖ = 1 and ‖vk−1‖ ∼ 1, this completes the argument.

By plugging Lemmas 3.5 and 3.6 into Lemma 3.4 for each of the squares Q ∈ Ok , we

obtain

md
sk
((F̃ (k))−1(Q)) 6 Crd

k · K
2−d
k · Ld−1

k ,

where 1 6 d 6 2, Kk = Ckδ−1
k−1(δk−2 . . . δ0)

−(1+η)/2, Lk = Ck
|P0|δ

−1
k−1, rk = C |Qk |

(1−η)
2 |Pk |,

and sk = Lkrk/Kk . This gives

md
sk
(E+(P0, . . . , Pk)) 6 Ck Nk · rd

k · K
2−d
k · Ld−1

k ,

where Nk = C2δ
(1−η)/2
k−1 /rk . This estimate can be rewritten as

md
sk
(E+(P0, . . . , Pk)) 6

Ck
|P0|

d−1
|Pk |

d−1
|Qk |

(d−1)(1−η)/2

|Qk−1|(1+η)/2(|Qk−2| . . . |Q0|)(2−d)(1+η)/2 . (3.4)

At this point, it is useful to recall that max{|Pj |, |Q j |} 6 C |Q j+1|
β̃ for j > 0 (cf. (2.5)),

where β̃ = β(1− η)(1+ τ)−1 is close to the parameter β satisfying constraints (2.1) and

(2.2). Furthermore, assumption (1.3) in Theorem 1.4 says that the constraint (2.1) is

superfluous, so that we can take β arbitrarily close to

β∗ := β∗(d0
s , d0

u ) =
(1−min{d0

s , d0
u })(d

0
s + d0

u )

max{d0
s , d0

u }(max{d0
s , d0

u }+ d0
s + d0

u − 1)
.

From these facts, we can use (3.4) to prove the following lemma:
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Lemma 3.7. For an appropriate choice of d = 1+ d0
s − o(1), one has

(a) md
sk
(E+(P0, . . . , Pk)) 6 Ck

|P0|
d−1
|Qk |

(d−1)(1−η)
2 whenever β∗ · d0

s >
1
2 +

1−d0
s

2(β∗−1) ;

(b) md
sk
(E+(P0, . . . , Pk)) 6 Ck

|P0|
d−1
|Qk |

(d−1)(3−η)
2 −

1
2β̃
−

(2−d)
2β̃(β̃−1) whenever β∗ · d0

s 6 1
2 +

1−d0
s

2(β∗−1) .

Proof. By (3.4), our task is to control

|Pk |
d−1
|Qk |

(d−1)(1−η)/2

|Qk−1|(1+η)/2(|Qk−2| . . . |Q0|)(2−d)(1+η)/2

for d − 1 = d0
s − o(1).

On the other hand, since |Qk−1| 6 C |Qk−2|
β̃ 6 · · · 6 Ck−1− j

|Q j |
β̃k−1− j

, |Pk | 6

C |Qk−1|
β̃ and

∑k−2
j=0

1
β̃k−1− j 6 1

β̃−1
, we see that

• if β̃ is close to β∗ and β∗ · d0
s >

1
2 +

1−d0
s

2(β∗−1) , then

|Pk |
d0

s |Qk |
d0

s (1−η)/2

|Qk−1|
1+η

2 (|Qk−2| . . . |Q0|)
(1−d0

s )(1+η)
2

6 Ck
|Qk−1|

β̃d0
s−(1+η)(

1
2+

1−d0
s

2(β̃−1)
)
|Qk |

d0
s (1−η)

2

6 Ck
|Qk |

(d−1)(1−η)/2
;

• if β̃ is close to β∗ and β∗ · d0
s 6 1

2 +
1−d0

s
2(β∗−1) , then

|Pk |
d0

s |Qk |
d0

s (1−η)/2

|Qk−1|(1+η)/2(|Qk−2| . . . |Q0|)
(1−d0

s )(1+η)/2
6 Ck |Qk |

d0
s (1−η)/2

|Qk−1|
(1+η)( 1

2+
1−d0

s
2(β̃−1)

)−β̃d0
s

6 Ck
|Qk |

d0
s (3−η)

2 −(1+η)( 1
2β̃
−

1−d0
s

2β̃(β̃−1)
)

.

This completes the proof of the lemma (for d − 1 = d0
s − o(1)).

This lemma enables us to complete the proof of Theorem 3.1.

Proof of Theorem 3.1. Take d = 1+ d0
s − o(1). The decomposition

E+ =
⋃

(P0,...,Pk ) admissible

E+(P0, . . . , Pk),

the fact that the number of admissible sequences (P0, . . . , Q0) with fixed extremities P0
and Qk is 6 C |Qk |

−Cη (cf. [5, page 193]), and Lemma 3.7 imply that

md
sk
(E+) 6

∑
P0 with Q0 critical,

Qk critical

|P0|
d−1
|Qk |

e(d)−Cη (3.5)

for all k ∈ N, where

e(d) =


d − 1

2
, if β∗ · d0

s >
1
2
+

1− d0
s

2(β∗− 1)
3(d − 1)

2
−

1

2β̃
−

(2− d)

2β̃(β̃ − 1)
, if β∗ · d0

s 6
1
2
+

1− d0
s

2(β∗− 1)
.
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By Hölder’s inequality, it follows from (3.5) that

md
sk
(E+) 6

 ∑
P with Q critical

|P|(d−1)p

1/p  ∑
Q critical

|Q|(e(d)−Cη)q

1/q

for any p, q > 1 with 1
p +

1
q = 1 (and k ∈ N).

As it is explained in [5, pages 186, 187 and 188], the two series above are uniformly

convergent and, hence,

md
sk
(E+) 6 C <∞ ∀k ∈ N, (3.6)

for the following choices of parameters:

(d − 1)p = ρs ∼ d0
s (3.7)

and

(e(d)−Cη)q = −
σ

1+ τ
+ τd∗u + τ ∼ d0

s + d0
u − 1, (3.8)

where d∗u , σ and ρs (respectively) are the quantities defined in pages 135 and 138

(respectively) of [5].

Since sk → 0 as k →∞, we proved that

HD(E+) 6 d

for d satisfying (3.7) and (3.8). In particular, our task is reduced to prove that we can

take d < 1+ d0
s verifying these constraints.

Note that the value of d verifying (3.7) and (3.8) is already imposed by the extra

relation 1/p+ 1/q = 1.

More precisely,

(i) if β∗ · d0
s >

1
2 +

1−d0
s

2(β∗−1) , then e(d) = d−1
2 ; therefore, the relations (3.7), (3.8) and

1/p+ 1/q = 1 imply that (d − 1) is close to

(d − 1) ∼
(

1
d0

s
+

1
2(d0

s + d0
u − 1)

)−1

(ii) if β∗ · d0
s 6 1

2 +
1−d0

s
2(β∗−1) , then e(d) = 3(d−1)

2 −
1

2β̃
−

(2−d)
2β̃(β̃−1)

; therefore, the value of

(d − 1) satisfying the constraints above is close to

(d − 1) ∼
(d0

s + d0
u − 1)+ 1

2β∗ +
1

2β∗(β∗−1)

3
2 +

(d0
s+d0

u−1)
d0

s
+

1
2β∗(β∗−1)

(here, we are using that β̃ is close to β∗).

In the first case (item (i)), we always have that d − 1 < d0
s because(

1
d0

s
+

1
2(d0

s + d0
u − 1)

)−1

< d0
s .
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In the second case (item (ii)), the fact that d − 1 < d0
s is a direct consequence of our

main assumption (1.4) in Theorem 1.4; indeed, a simple calculation reveals that the

inequality
(d0

s + d0
u − 1)+ 1

2β∗ +
1

2β∗(β∗−1)

3
2 +

(d0
s+d0

u−1)
d0

s
+

1
2β∗(β∗−1)

< d0
s

is equivalent to 1+ 1−d0
s

(β∗−1) < 3β∗d0
s . Since this inequality holds when β∗(d0

s , d0
u ) > 5/3

(i.e., our assumption (1.4) in Theorem 1.4), the proof of Theorem 3.1 (and Theorem 1.4)

is complete.

Acknowledgements. We are grateful to the following institutions for their hospitality

during the preparation of this article: Collège de France, Instituto de Matemática Pura e
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Appendix A. Large open sets generating non-uniformly hyperbolic

horseshoes by C. Matheus, C. G. Moreira and J. Palis

In this appendix, we show that a non-uniformly hyperbolic horseshoe of an

area-preserving real-analytic diffeomorphism is the maximal invariant subset of open

sets of almost full Lebesgue measure.

More concretely, in our note [2], we proved that the non-uniformly hyperbolic

horseshoes of Palis–Yoccoz [5] occur for many members of the standard family ϕλ(x, y) =
(−y+ 2x + λ sin(2πx), x) on the two-torus T2

= R2/Z2. In fact, it was shown that, for all

k ∈ R sufficiently large, there exists a subset L ⊂ (k− 4
k1/3 , k+ 4

k1/3 ) of positive Lebesgue

measure such that, for all r ∈ L, the maximal invariant subset 3r =
⋂

n∈Z ϕ
−n
r (Ur ) is a

non-uniformly hyperbolic horseshoe for a certain choice of open set Ur ⊂ T2 with total

area 25
256 + O( 1

k2/3 ).

One of our goals here is to show that the open sets Ur above (whose areas are about

9.7% of the total area of the two-torus) can be replaced by open sets of almost full area.

Actually, it is not hard to see that this fact is a consequence5 of the following general

statement.

Theorem A.1. Let ϕ : M2
→ M2 be an aperiodic diffeomorphism of a compact surface

M2. Suppose that ϕ possesses a non-uniformly hyperbolic horseshoe 3. Then, for each

ε > 0, there exists an open set W such that M2
\W has area <ε and 3 =

⋂
n∈Z ϕ

−n(W ).

The proof of this result takes two steps. In Section A.1, we construct an open set of

almost full area whose maximal invariant subset is empty; more concretely, we build a

high ‘Kakutani–Rokhlin tower’ via an elementary probabilistic argument (à la Erdös),

5The maps ϕλ are aperiodic for λ > 0 because its powers are not the identity (as the origin is a hyperbolic
fixed point), so that the set of periodic points must have zero Lebesgue measure (and, actually, Hausdorff
dimension 6 1) by real analyticity.
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so that the desired open set is obtained by deleting the base from the tower. After

that, in Section A.2, we ‘add’ this open set of almost full area to the definition of our

non-uniformly hyperbolic set; since the maximal invariant subset of this open set is

empty, we end up by obtaining exactly the same non-uniformly hyperbolic horseshoe as

the maximal invariant subset of an open set of almost full area.

Remark A.2. After the first version of this appendix was ready, J. Bochi communicated

to us that Theorem A.1 can also be derived (by slightly different methods) from [1,

Theorem 2 and Remark 2].

A.1. Large open sets with empty maximal invariant subsets

Lemma A.3. Under the same assumptions of Theorem A.1, for each ε > 0, there exists

N ∈ N and an open set V such that M2
\ V has area <ε and⋂

|n|6N

ϕ−n(V ) = ∅.

Proof. For the sake of simplicity, we restrict ourselves to the case M2
= T2

= R2/Z2

equipped with the Lebesgue measure, Leb.

Let ε > 0 be given and consider N ∈ N large. Since ϕ is aperiodic, the compact set

KN := {x ∈ M2
: ϕm(x) = x for some m 6 N } has zero Lebesgue measure. Thus, we can

fix δ > 0 such that Leb(Vδ(K )) < ε/2. Furthermore, given such a δ > 0, we can choose

δ/2 > µ > 0 such that if y ∈ M2
\ Vδ(K ), then ϕ− j (y) ∈ M2

\ V2µ(K ) for each 0 6 j < N .

Finally, given µ > 0, we can select µ > η > 0 such that if z ∈ M2
\ Vµ(K ), then the sets

ϕ j (B(z, η)), 0 6 j < N , are pairwise disjoints.

Given Y ⊂ M2
\ Vδ(K ), we claim that

∫
M2\Vµ(K )

Leb

Y ∩
N−1⋃
j=0

ϕ j (B(x, η))

 dx = Nπη2Leb(Y ). (A.1)

Indeed, note that Leb (Y ∩
⋃N−1

j=0 ϕ
j (B(x, η))) =

∑N−1
j=0 Leb(Y ∩ϕ j (B(x, η))) for all

x ∈ M2
\ Vµ(K ), so that

∫
M2\Vµ(K )

Leb

Y ∩
N−1⋃
j=0

ϕ j (B(x, η))

 dx =
N−1∑
j=0

∫
M2\Vµ(K )

∫
Y
χϕ j (B(x,η))(y) dy dx .

By Fubini’s theorem, we have

∫
M2\Vµ(K )

Leb

Y ∩
N−1⋃
j=0

ϕ j (B(x, η))

 dx =
N−1∑
j=0

∫
Y

∫
M2\Vµ(K )

χB(ϕ− j (y),η)(x) dx dy.
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Since B(ϕ− j (y), η) ⊂ M2
\ Vµ(K ) for 0 6 j < N (because y ∈ Y ⊂ M2

\ Vδ(K ) and η<µ),

we get that∫
M2\Vµ(K )

Leb

Y ∩
N−1⋃
j=0

ϕ j (B(x, η))

 dx =
N−1∑
j=0

∫
Y

Leb(B(ϕ− j (y), η)) dy

=

N−1∑
j=0

∫
Y
πη2 dy = Nπη2Leb(Y ).

In other terms, we showed (A.1).

Next, we affirm that, for each m ∈ N, there are x1, . . . , xm ∈ M2 such that

Leb

(M2
\ Vδ(K ))

∖ m⋃
i=1

N−1⋃
j=0

ϕ j (B(xi , η))

 6 (1−πNη2)m . (A.2)

In fact, let us prove this fact by induction: for m = 0, the affirmation is obvious;

assuming that it holds for m, we employ (A.1) with

Y = Ym := (M2
\ Vδ(K ))

∖ m⋃
i=1

N−1⋃
j=0

ϕ j (B(xi , η))

in order to obtain xm+1 ∈ M2 such that

Leb

Ym ∩

N−1⋃
j=0

ϕ j (B(xm+1, η))

 > πNη2Leb(Ym)

and, a fortiori,

Leb

(M2
\ Vδ(K ))

∖ m+1⋃
i=1

N−1⋃
j=0

ϕ j (B(xi , η))

 = Leb

Ym

∖ N−1⋃
j=0

ϕ j (B(xm+1, η))


6 (1−πNη2)Leb(Ym)

6 (1−πNη2)m+1,

so that the induction argument is complete.

Finally, let us construct the open set V satisfying the properties in the statement of

the lemma. In this direction, we apply (A.2) with m := b 1
π
√

Nη2 c and we set

V :=
m⋃

i=1

N−1⋃
j=0

ϕ j (B(xi , η))

∖ m⋃
i=1

B(xi , η).

Since Leb(Vδ(K )) < ε/2, Leb(
⋃m

i=1 B(xi , η)) 6 mπη2 6 1/
√

N and, by (A.2),

Leb(Ym) 6 (1−πNη2)m ∼ e
−

πNη2

π
√

Nη2
= e−

√
N , we have that

Leb(M2
\ V ) 6

ε

2
+

1
√

N
+ e−

√
N < ε.

Also,
⋂N−1

j=0 ϕ
j (V ) = ∅ (by definition). This proves the lemma.
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A.2. Proof of Theorem A.1

Let U ⊂ M2 be an open set whose maximal invariant subset 3 =
⋂

n∈Z ϕ
−n(U ) is a

non-uniformly hyperbolic horseshoe associated with an aperiodic diffeomorphism ϕ.

Given ε > 0, consider the integer N ∈ N and the open subset V ⊂ M2 provided by

Lemma A.3.

Since3 is compact, we can select a neighborhood Ũ of3 such that
⋃N

n=−N ϕ
−n(Ũ ) ⊂ U .

Let W := Ũ ∪ V . Note that M2
\W has area <ε (because V ⊂ W ). Thus, the proof of

the theorem will be complete once we show that

X :=
⋂
n∈Z

ϕ−n(W ) = 3.

Observe that 3 ⊂ X , so that our task is reduced to prove that X ⊂ 3. For this sake,

we consider x ∈ X . Since
⋂
|n|6N ϕ

−n(V ) = ∅, there exists |n| 6 N such that ϕn(x) ∈ Ũ ,

and, a fortiori, x ∈ U . In other words, we showed that X ⊂ U . By invariance, we get the

desired conclusion, namely X ⊂
⋂

n∈Z ϕ
−n(Ũ ) = 3.
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