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We use a three-dimensional computational model to study the fluid transport and
mixing due to the beating of an infinite array of cilia. In accord with recent
experiments, we observe two distinct regions: a fluid transport region above the
cilia and a fluid mixing region below the cilia tip. The metachronal wave due to
phase differences between neighbouring cilia is known to enhance the fluid transport
above the ciliary tip. In this work, we show that the metachronal wave also enhances
the mixing rates in the sub-ciliary region, often simultaneously with the flow rate
enhancement. Our results suggest that this simultaneous enhancement in transport and
mixing is due to an enhancement in shear flow. As the flow above the cilia increases,
the shear rate in the fluid increases and this shear enhances stretching, which is
an essential ingredient for mixing. Estimates of the mixing time scale indicate that,
compared to diffusion, the mixing due to the cilia beat may be significant and
sometimes dominates chemical diffusion.
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1. Introduction
Cilia are micro-scale hair-like structures that cover many eukaryotic cells, from

single-celled protozoa to mammalian epithelial surfaces. Motile cilia function in both
fluid transport across the cell surface as well as in the sensing of environmental cues
(Bloodgood 2010). The distribution of cilia in animal tissues is highly correlated with
the animal’s habitat (Ibañez-Tallon, Heintz & Omran 2003). In aquatic species, cilia
commonly occur along external and internal epithelial surfaces, where they have a
broad array of functions, from food capture to acquisition of microbial partners. A
well-studied example is the harvesting of the bacterium Vibrio fischeri, the luminous
symbiont of the Hawaiian squid, during the onset of the model squid-vibrio symbiosis
(Altura et al. 2013; Kremer et al. 2013). These bacteria aggregate along ciliated
surfaces of a nascent light organ, where they present signals critical for normal onset
and development of the symbiotic relationship. When animals invaded terrestrial
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habitats, cilia became restricted to internal epithelial surfaces to reduce water loss
across mucociliary membranes, rendering them difficult subjects for direct study.
In mammals, they serve a number of functions including mucus clearance in the
respiratory system, left–right asymmetry determination during embryonic development
and transport of egg cells in fallopian tubes (see Satir & Christensen 2007, and
the references therein). Also, as in the squid-vibrio system, mammals have intimate
interactions with bacteria along their ciliary surfaces. In addition to their role in
biological systems, cilia also provide an attractive paradigm for fluid manipulation in
microfluidic devices. This potential is particularly compelling in the light of the rapid
developments in micro-scale manufacturing technologies and applications such as
‘lab-on-a-chip’ devices for synthesis of chemicals (e.g. Alexeev, Yeomans & Balazs
2008; Shields et al. 2010).

Cilia are usually 4–10 µm long in mammals and can reach up to 25 µm long
in aquatic invertebrates such as the Hawaiian squid. Their slenderness ratio ranges
between 10 and 100. Their beating motion usually consists of two asymmetric
strokes: an effective stroke where the cilium is relatively straight and generates a
flow in the same direction as its motion, and a recovery stroke where the cilium
bends towards the surface and generates a relatively smaller backward flow (see e.g.
Blake & Sleigh 1974). Cilia often beat in accord and form wave patterns, known as
metachronal waves. A metachronal wave is called symplectic when it propagates in
the direction of the effective stroke. It is called antiplectic when the wave propagates
in the direction opposite to the effective stroke (figure 2). Cilia-driven flows are
characterized by velocities less than 100 µm s−1 and oscillatory frequency less than
20 Hz (Blake & Sleigh 1974). The associated Reynolds numbers are typically ∼ 10−3,
even for fluid viscosities as low as water, so inertia is negligible and viscous forces
are dominant. Manipulating the surrounding fluid in this drag-dominated microscale
is not intuitive. Cilia are successfully used by biological systems to manipulate the
fluid at this scale and, as such, have attracted a great deal of research effort in
theoretical and computational mechanics, see e.g. the reviews by Blake & Sleigh
(1974), Brennen & Winet (1977), and Smith, Blake & Gaffney (2008). In particular,
the coupling between the metachronal waves and the fluid motion was considered
in a number of studies, most of which focus on either examining the role of the
hydrodynamic coupling in generating the metachronal waves or examining the effect
of the metachronal waves on the fluid transport. In the following, we present a partial
review of the related literature.

The ‘envelope’ model where the tips of the cilia are modelled as a continuum was
proposed by Blake (1971) and has been used in numerous studies on the swimming
of ciliated micro-organisms, see e.g. Michelin & Lauga (2010, 2011). The envelope
model is only capable of describing symplectic metachronal waves and is only valid
in the case of very densely spaced cilia. Slender-body theory, coupled with elastic
models of the internal structure of the cilium, has been used to model individual and
arrays of cilia. For instance, it was used by Gueron & Liron (1992), Gueron et al.
(1997) and Gueron & Levit-Gurevich (1999) to demonstrate that, for closely packed
ciliary arrays, hydrodynamic interactions between neighbouring cilia are sufficient
to account for antiplectic metachrony. The role of hydrodynamic coupling in the
emergence of the metachronal wave was also confirmed by Elgeti & Gompper (2013).
Eloy & Lauga (2012) focused on computing the energy-optimal kinematics of a
wall-bound elastic cilium. Osterman & Vilfan (2011) used a measure of energetic
efficiency based on the ciliary performance in pumping fluid and computed, according
to this criterion, optimal beating patterns of cilia acting individually and collectively.
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The flow fields generated by beating cilia were examined numerically using the
Stokeslet method (see Smith, Gaffney & Blake 2007; Ainley et al. 2008; Cortez
2001, and references therein) as well as the immersed boundary method, see e.g.
Lukens, Yang & Fauci (2010) for a description of the flow field generated by a
single cilium and Khaderi, den Toonder & Onck (2011), Khaderi & Onck (2012) for
the flow field generated by a finite number of artificial cilia.

These studies focus primarily on the performance of the ciliary systems in fluid
transport and pumping. However, the way by which ciliary motion serves the
simultaneous tasks of fluid transport and sensing is less well understood. Transport
implies that fluid is being moved above the cilia tip whereas, for sensing, chemicals
in the fluid need to be brought closer to the base of the ciliated surface. It is unclear
if chemical diffusion is the sole mechanism for sensing or whether cilia-generated
flows enhance diffusion by chaotic advection and mixing. At this microscale, lack of
turbulence makes mixing by chaotic advection a non-trivial task (Aref 1990; Ottino
1989; Otto, Yannacopoulos & Blake 2001). The computational results of Lukens
et al. (2010) showed some evidence of mixing in the flow around a single cilium. A
transition from unidirectional flow above the cilium to vortical flow below the cilium
was reported by Supatto, Fraser & Vermot (2008) based on in vivo experiments that
mapped the velocity field surrounding a single beating cilium in a zebrafish embryo.
Enhanced diffusion below the cilia tip was also reported in experiments on artificial
cilia (e.g. Shields et al. 2010), albeit for cilia beating in synchrony (no metachronal
wave). This suggests that the beating of ciliary carpets may be an effective way to
induce chaotic mixing.

The goal of this paper is, therefore, to obtain understanding of the transport and
mixing properties of flows generated by a doubly periodic array of asymmetrically
beating cilia. In particular, we ask how the transport and mixing properties of
the ciliary-generated flows depend on the metachronal wave, and whether there
is a trade-off between these two properties. To answer these questions, we use
a computational model based on the regularized Stokeslet method (§ 2). We find,
consistent with previous studies, that the flow is characterized by a transport region
above the cilia tip and a mixing region below the cilia tip with fluid ‘leaking’
between the two regions (§ 3). In § 3 we also quantify the transport and mixing rates
and their dependence on the metachronal wave. Comparing the mixing time scales
to diffusion time scales, we conclude that the mixing time scale is comparable to or
more favourable than that of pure diffusion (§ 4).

2. Model

We consider a regular array of cilia whose base points are placed on the infinite
plane z = 0, with (x, y, z) being the Cartesian coordinates. The spacing between the
base points of the cilia is a in the x-direction and b in the y-direction, see figure 2.
The length of each cilium is `. We assume that the cilia beat is in the x-direction with
frequency ω and period T = 2π/ω, and that the metachronal wave is propagating in
the x-direction such that all cilia having the same value of x are in phase with each
other. In order to model the metachronal wave, each cilium goes through exactly the
same cyclic motion as its neighbour but with a phase difference 1φ.

For concreteness, consider the cilium whose base point is located at the origin.
Let xc ≡ (xc, yc, zc) denote the coordinates of the centreline of this cilium. The
motion (effective and recovery stroke) of the cilium is described by xc(s, t) where
s is the arclength along the cilium’s centreline from its base (0 < s < `) and t is
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FIGURE 1. Beating pattern of an individual cilium based on Fulford & Blake (1986). The
effective stroke is shown in dark grey and recovery stroke in light grey.

time (0 < t < T). Throughout this work, we prescribe two-dimensional kinematics
(yc= 0) of the cilium using a Fourier series expansion in s and Taylor series in t with
coefficients based on experimental data, as shown in figure 1 (see Fulford & Blake
1986, for details). This two-dimensional beating kinematics is chosen to facilitate the
analysis and the visualization of the flow field. Previous studies suggest that, while
three-dimensional beating kinematics may be more efficient in transporting fluid, the
mechanisms of generating a directional flow are the same in both two and three
dimensions (Elgeti & Gompper 2013; Eloy & Lauga 2012). Therefore, we expect our
results to be valid for three-dimensional kinematics as well. The metachronal wave in
the x-direction implies that the kinematics of a cilium based at the point (ma, nb, 0),
where m, n ∈Z, at time t is given by

xc
m,n(s, t)= (ma+ xc(s, tm), nb, zc(s, tm)

)
, tm =ωt+m1φ. (2.1)

The metachronal wave has a wavelength of 2πa/1φ, frequency of ω/2π and wave
velocity of aω/1φ.

We use the cilia length ` to scale all length variables and 1/ω to scale time. That is
to say, all variables are considered to be dimensionless with `= 1, ω= 1 and T = 2π.
To explore the effect of the phase difference 1φ from 0 to 2π and avoid overlapping
of neighbouring cilia, we use a spacing a= 1.44 in the x-direction and b= 0.4 in the
y-direction, see figure 2(b).

To compute the flow field generated by the ciliary motion, each cilium is
approximated by a distribution of regularized Stokeslets along its centreline, together
with an ‘image’ distribution to satisfy zero-flow boundary conditions at a plane wall
(Cortez 2001). Note that the regularization parameter determines the size of a region
with nearly uniform velocity, and therefore can be used as an approximation of the
finite radius of the cilium (Ainley et al. 2008). Therefore, we set the regularization
parameter to 0.05, which gives a radius-to-length ratio close to that of a typical
cilium (Blake 1972). The Stokeslet strengths F depend on their position on the
cilium and time and are obtained by imposing no-slip boundary conditions at the
cilia. Let G(x, xo) be the Green’s function associated with a regularized Stokeslet of
unit strength situated at a point xo and such that the no-slip condition is satisfied on
the plane z= 0. The total velocity induced by all cilia is given by

u(x, t)=
∞∑

n=−∞

∞∑
m=−∞

∫ `

0
G(x, xc

m,n(s, t)) ·F(xc
m,n(s, t))ds. (2.2)
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FIGURE 2. Schematic of ciliary array in (a) synchronized beating, (b) symplectic
metachronal wave, and (c) antiplectic wave. Top: single cilium or single row of cilia along
the x-axis. Bottom: two-dimensional ciliary carpet. In the synchronized case, i.e. with a
phase difference of zero, no metachronal wave is generated. A negative phase difference
creates symplectic waves due to compression of the cilia during the effective stroke phase.
A positive phase difference results in antiplectic waves by compression on the cilia during
the recovery stroke.

An expression for G(x, xo) is given by (Ainley et al. 2008). Note that the right-hand
side of (21) in Ainley et al. (2008) has a sign error: the minus sign ‘−’ before the
first term starting with ‘2hk’ should be a plus sign ‘+’. No-slip boundary conditions
imply that the fluid velocity at the cilia centreline is equal to the prescribed velocity
of the cilia u(xc

m,n, t)= d xc
m,n/dt. Substituting (2.2) into this equation, one gets a linear

system of equations to be solved for the Stokeslet strengths F. Having the Stokeslet
strengths, the velocity field can be reconstructed everywhere. For more details on the
regularized Stokeslet method, the interested reader is referred to Cortez (2001) and
Ainley et al. (2008).

Given that we apply the regularized Stokeslet method to an infinite array of cilia,
a comment on convergence is in order here. Because of the presence of the plane
wall, the velocity generated by a Stokeslet and its image decays as 1/r2, where r is
the distance from the Stokeslet. Therefore, the infinite summations in (2.2) converge
conditionally. This is in contrast to an infinite summation over Stokeslets (no image
system), where the flow given by a Stokeslet decays as 1/r. Techniques to overcome
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FIGURE 3. (Colour online) Cilia array in (a) synchronized beating 1φ= 0, (b) symplectic
metachronal wave with 1φ=−π/4, and (c) antiplectic metachronal wave with 1φ=π/4
(c). The colour represents the magnitude of velocity field at three representative planes:
y= 0.08, y= 3.00, and x= 0.

this challenge using Fourier transform and Ewald’s summation date back to the
work of Hasimoto (1959) for point Stokeslets and have been recently extended to
the context of regularized Stokeslets by Leiderman et al. (2013). However, in this
work we simply use truncated sums

∑Nmax
n=−Nmax

and
∑Mmax

m=−Mmax
as approximations of

the infinite summations over m and n, while numerically verifying that these sums
converge to a constant value for large r. In other words, we approximate the infinite
ciliary array using a computational domain with a large but finite number of cilia.
To avoid any edge effects, we report the results for flow transport and mixing in the
middle section of the computational domain.

3. Results
The flow field generated by ciliary motion is studied for three distinct cases: (a)

all the cilia beat together in a synchronized way; (b) the ciliary beat generates a
symplectic metachronal wave that propagates in the same direction as the effective
stroke of the individual cilium (1φ is negative); (c) the ciliary beat generates an
antiplectic wave propagating in the opposite direction to the effective stroke (1φ is
positive). For each case, the flow field is depicted in figure 3 at three representative
planes y= 0.08, y= 3.00, and x= 0. Notice that because the cilia are closely spaced
and their motion is synchronized in the y-direction, variations in the flow field in the
y-direction are small and the flow field is nearly two-dimensional.

A close-up on the velocity field near one of the cilia is depicted in figure 4 at three
distinct instances of the beat cycle (top to bottom). The behaviour of a passive tracer
particle is superimposed. In the synchronized case, the instantaneous velocity field is
in the same direction as the cilia motion. The high fluid velocities achieved during the
effective stroke get reversed during the recovery stroke so that the net fluid flow over
one cycle is small. In the two cases of the metachronal beating, the instantaneous
velocity field is attenuated but, at the same time, the variation in the instantaneous
velocities is smaller. This results in larger net flow over one cycle in the antiplectic
case. Roughly speaking, in the antiplectic case, the cilia undergoing recovery stroke
‘cluster’ together, thus minimizing reverse flow whereas in the symplectic case, the
cilia undergoing effective stroke cluster together thus minimizing flow in the effective
stroke direction. To quantify these statements, we compute the volumetric flow rate
generated by the cilia as a function of time. To this end, we adapt a formula for
the flow rate generated by a point force near an infinite wall given by Smith et al.
(2008), namely, Q= (1/µπ)Fxz, where µ is the viscous coefficient, Fx is the force in
the flow direction, and z is the distance of the point force from the wall. The flow
rate generated by the cilia in figure 4 is plotted in figure 5(a) as a function of time
over one ciliary beat cycle. Clearly, during the effective stroke, the instantaneous flow
rate is higher for the synchronized cilia than the metachronally beating cilia. However,
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FIGURE 4. (Colour online) Velocity field in the plane y = 0.08 for (a) 1φ = 0
(synchronized), (b) 1φ = −π/4 (symplectic), and (c) 1φ = π/4 (antiplectic) at three
snapshots in time t= 0, 0.94 and 1.89, from top to bottom. Representative cilia located at
y= 0 are superimposed. The difference in the cilia configuration is because the window
we show is not centred around the cilium at the origin. Except for the cilium at the
origin, when beating in metachrony (with a phase lag), each cilium is at a different stage
of the stroke cycle at the same time t. Background colour represents flow speed. The
black circles represent tracer particles and their trajectories. The black arrows represent
the velocity of the cilia.

the flow rate is lower during the recovery stroke such that the net flow rate
∫ T

0 Qdt
over one ciliary beat cycle is small, see figure 5(b). Similar results were obtained by
Khaderi et al. (2011) and Khaderi & Onck (2012), who noted that the blocking effect
of reverse flow by the antiplectic metachronal wave is the mechanism the cilia use to
enhance fluid transport.

The displacement of a tracer particle over a cycle is given by d(x)= ∫ T
0 u(x(t), t)dt.

The displacement field is depicted in figure 6 for the three cases shown in figure 4.
Above the cilia tip, tracer particles move in the x-direction almost uniformly in the
synchronized and antiplectic cases with larger magnitude in the antiplectic case. Below
the cilia, in the synchronized case, the displacement field shows a vortex-like structure
whereas in the antiplectic case, there is little or no backward displacement. In the
symplectic case, vortex-like structures appear both below and above the cilia tip with a
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FIGURE 5. (a) Flow rate and (b) accumulated flow volume as a function of time,
generated by synchronized beating, a symplectic wave with 1φ=−π/4, and an antiplectic
wave with 1φ =π/4.
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FIGURE 6. Displacement field in a vertical plane (y= 0.08) generated by (a) synchronized
beating; (b) a symplectic wave with 1φ=−π/4; and (c) an antiplectic wave with 1φ=
π/4.

narrow band of forward displacement in between. Note that the details of these vortex-
like structures depend on 1φ. For example, for 1φ<−π/3, the vortex above the cilia
tip disappears and the displacement field is analogous to that of the synchronized case.

We compute the average displacement in the x-direction as a function of z using
〈dx〉(z)= 1/(λb)

∫ λ
0

∫ b
0 dxdxdy where dx is the x-component of the displacement field

d and λ is the wavelength of the metachronal wave. The dependence of 〈dx〉 on z is
depicted in figure 7. The average displacement is small close to the surface due to the
no-slip boundary condition. It reaches a plateau above the cilia tip, and decreases for
large z further away from the cilia (results not shown). Such a displacement profile
is reminiscent of that of a shear flow. Clearly, the details from z = 0 to z ≈ 1.2 (at
which the displacement plateaus) depend on 1φ.

In order to examine the shearing properties of the displacement field shown in
figure 6, we compute the gradient of the displacement field ∇d. We neglected
the y-component of the displacement field d and consider only the gradient in
the (x, z) plane averaged over y-direction. The gradient ∇d can be decomposed
into two components: an antisymmetric component R = (∇d − (∇d)T)/2, where
()T is the transpose, that corresponds to rotations, and a symmetric component,
S = (∇d + (∇d)T)/2, that corresponds to shear deformations. The two eigenvalues
of S are of the form ±λ (by incompressibility) and indicate the rates of stretching
(+λ) and compression (−λ). The unit eigenvector eλ corresponding to the positive
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FIGURE 7. Average displacement in the x-direction as a function of height for:
synchronized beating 1φ = 0, a symplectic wave 1φ = −π/4 and an antiplectic wave
1φ =π/4.

eigenvalue (+λ) indicates the direction of stretching. Note that the eigenvector
corresponding to −λ is orthogonal to eλ, hence it suffices to show the vector field
associated with λeλ. In order to understand the significance of the vector field λeλ,
recall that in the case of a uniform linear shear profile dx= cz (where c is a constant),
λeλ is a uniform vector field of magnitude c/2 oriented at a 45◦ to the x-direction.
The stretching rate and direction λeλ are depicted in figure 8 for the three cases
shown in figure 6. In all three cases, the stretching rate is highest near the upper part
of the cilia, and the stretching rate is enhanced by the metachronal wave, especially
in the antiplectic case 1φ=π/4. The λeλ field is oriented at 45◦ to the x-direction in
regions where the shear rate λ is maximum, but, overall, the stretching orientation is
a nonlinear function of space. The change in the stretching orientation as a function
of (x, z) indicates the presence of ‘folding’ in the displacement field d (Kelley &
Ouellette 2011). We will return to this point later. In figure 11(a) below, we show
the spatially averaged shear rate over the whole domain as a function of the phase
lag. The average shear rate is characterized by two local maxima: one corresponding
to a symplectic wave (1φ≈−π/2) and the other one corresponding to an antiplectic
wave (1φ ≈π/2).

We now return to our discussion on fluid transport. To assess the magnitude of
the fluid transport in the x-direction, we use two interdependent quantities: (i) the
net displacement above the cilia tip and (ii) the net volume flow. We define the
net displacement as (1/0.4)

∫ 1.4
1 〈dx〉dz, which corresponds to the net displacement

in the grey region of figure 7. We calculate the time-averaged net flux generated
per cilium as (1/T)

∫ T
0 Qdt, where Q is adapted from Smith et al. (2008) as noted

earlier. The dependence of fluid transport in the x-direction on 1φ is depicted in
figure 11(b) below. Both quantities, the net displacement and net flow, exhibit a
similar dependence on 1φ. It is clear that both symplectic and antiplectic waves
can enhance fluid transport in comparison with the synchronized case (1φ = 0) but,
for small phase lag, the symplectic wave does slightly reduce the fluid transport.
Maximal transport occurs for antiplectic waves near 1φ = π/2 and a smaller peak
occurs for symplectic waves near 1φ =−π/2.

The displacement field d(x) can be used as a discrete map x(t+ T)= x(t)+ d(x(t))
to study the long-term behaviour of tracer particles. The behaviour of tracer particles
under repeated iterations of this map is equivalent to a Poincaré section associated
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FIGURE 8. (Colour online) Stretching of the fluid in the vertical plane for
(a) synchronized beating 1φ = 0, (b) a symplectic wave with 1φ = −π/4, and (c) an
antiplectic wave with 1φ = π/4. The colour map represents the stretching magnitude
whereas the orientation of the black lines indicates the direction of the stretching.

with the underlying flow field. Poincaré sections of the flow fields generated by the
synchronized, symplectic and antiplectic ciliary beat are shown in figure 9(b,c,d) for
three different initial seeding of particles (figure 9a). Particles of two different colours
are used such that initially, they occupy equal volumes, that is to say, the two colours
are in 50:50 ratio. In figure 9 (top row), the initial seeding is chosen such that the
black particles occupy the region between z= 0.7 and z= 1.4. Note that 0.7 is chosen
because it corresponds to the average height of the cilium over a cycle (the actual
length of the cilium is 1 but its average height is smaller due to its bending motion
during the effective and recovery strokes). Clearly, the tracer particles from the upper
layer leak into the lower layer. This is also evident in figure 9 (middle row) with
initial seeding consisting of four layers of alternating colours from z = 0 to z = 1.4.
Again, black particles from the transport region between z= 1.05 and z= 1.4 leak and
mix with subciliary particles. The two regions, namely, the transport region above the
cilia tip and mixing region below, are most distinguishable in figure 9 (bottom row)
where the initial seeding consists of regions of alternating colours in the x-direction.
We emphasize that these two regions are not separated by clear boundaries and that
fluid particles leak between them over the course of multiple stroke cycles.

A common way to measure mixing is to quantify how the distance between
these initially separated and differently coloured tracer particles decays as a function
of time. Several (somewhat related) measures of mixing exist; see, for example,
Mathew, Mezić & Petzold (2005), Wiggins & Ottino (2004) and references therein.
Here, we use the shortest distance between particles with different colours as
a measure, following (Stone & Stone 2005), and define the mixing number as
m = (∏i=N

i=1 min(|xi − xj|)2)1/N , where xi and xj are positions of tracer particles of
different colours and j= 1, 2, . . . ,N (N is the total number of same-colour particles).
We find (see figure 10) that m decreases with the number of cycles indicating
enhanced mixing. The decay in m seems exponential, which is an indication of chaotic
mixing. The mixing number m is ill-defined for large times when the separation
distance between particles of different colours gets closer to the spatial resolution of
the initial seeding (which is 0.04). For the time scales before this limit is reached,
we approximate the decay by an exponential fit using m/m0 = exp(−ηmN) with m0
being the initial mixing number, ηm the mixing rate, and N the number of cycles.
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FIGURE 10. (Colour online) Mixing rates: mixing numbers normalized to their initial
value as a function of number of cycles for the three initial particle seedings shown in
figure 9(a).

We use the resulting mixing rate ηm to compare the mixing efficiency as a function
of the phase lag 1φ. The dependence of the mixing rate ηm on 1φ is depicted in
figure 11(c). Interestingly, we find that the values of 1φ that correspond to optimal
transport (figure 11(b)) are also optimal for mixing.
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FIGURE 11. (a) Average stretching rate over the entire domain as a function of the phase
difference 1φ between adjacent cilia. (b) Net forward displacement (squares) and net
volume flow (circles) generated per cycle as a function of the phase difference 1φ. (c)
Mixing rate as a function of the phase difference 1φ. All three exhibit local maxima near
1φ =π/2 (antiplectic wave) and near 1φ =−π/2 (symplectic wave).

It is worth noting that, for certain phase differences 1φ, the actual decay deviates
slightly from the exponential fit, especially as N increases (see figure 10). We attribute
this decrease in the mixing rate to the no-slip boundary condition at the fixed wall,
which is known to slow down the mixing rate, see e.g. Thiffeault, Gouillart & Dauchot
(2011) and references therein. Thiffeault et al. (2011) propose moving the wall as a
mechanism for attenuating the effect of the no-slip wall and restoring the exponential
decay in the bulk of the fluid. In many systems, it is not biologically viable to move
the cell wall to which the cilia are attached. However, by design, the cilia during the
recovery stroke align themselves almost tangentially to the fixed wall and, roughly
speaking, act as a moving wall parallel to the no-slip fixed wall, thus shielding the
fluid from the presence of the no-slip fixed wall and attenuating its effect on the
fluid motion. The amount of ‘coverage’ of the no-slip fixed wall by the moving cilia
depends on the phase difference 1φ, and therefore we observe that, for certain 1φ,
this attenuation is smaller and the mixing rate is not exactly exponential. This slight
deviation from the exponential decay does not affect our comparative study of the
effect of the metachronal wave on the mixing rate, given that we are mainly interested
in a relative measure of mixing as 1φ varies and not its absolute details.

These results on the role of the metachronal wave in enhancing the fluid mixing
can be understood by recalling that stretching and folding are the building blocks of
mixing. The higher mixing rate associated with antiplectic waves can be attributed to
the higher shear rate and therefore, higher stretching (see figures 7 and 8). This shear
rate argument also explains why for 1φ between −π/4 and 0, the fluid transport is
reduced compared to the synchronized case but the mixing rate is enhanced (figure 11).
Indeed, for these values of 1φ, although the net flow is small, the rate of change in
the displacement as a function of height (figure 7) and consequently the average shear
rate (figure 11a) is greater than that in the synchronized case.

We conclude this section by comparing the time scales associated with mixing
by fluid advection to those associated with mixing by molecular diffusion. This
comparison is motivated by the fact that cilia often serve two biological functions:
fluid transport and sensing. For sensing, chemicals have to come close to the base
of the ciliated surface, where molecules would diffuse into the ciliated cells. In the
absence of fluid motion, the only mechanism for sensing is molecular diffusion. The
main question here is whether the flow generated by the ciliary motion results in
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FIGURE 12. Ciliary beat frequency versus diffusivity coefficient. The lines show when the
mixing time scale due to diffusion is equal to that due to advection by ciliary beating.
Representative mixing rates from figure 11(c) are chosen such that ηm = 0.1, 0.2 and 0.3.
The grey region indicates the typical beating frequencies of cilia. Dashed lines indicate the
diffusion coefficients for human IgG in mucus (Saltzman et al. 1994), green florescent
protein (GFP) in aqueous saline (Swaminathan, Hoang & Verkman 1997), and CO2 in
water (Fridlyand, Kaplan & Reinhold 1996).

enhancing the time scales associated with sensing. To this end, consider particles of
different colours initially at a distance so apart. We seek to compare the time scales
for which the distance between them decreases by, say, a ratio of α, where α ∈ (0, 1).
From the standpoint of mixing by fluid advection, assuming it takes N cycles for
the separation distance between the particles to become sN = (1− α)so and assuming
exponential decay in particle separation distance s2

N = s2
o exp(−ηmN), one finds that

the mixing time scale is given by

tmixing = 2πN
ω
=−4π log(1− α)

ηmω
, (3.1)

where ω is the frequency of the ciliary beat, as defined in § 2. On the other hand,
particles moving a distance α so by molecular diffusion with diffusivity coefficient D
would take, on average,

tdiffusion = (α so)
2

D
. (3.2)

Equating the two time scales tmixing = tdiffusion, one gets

ω= 4π log(1− α)
(α so)

2 ηm
D. (3.3)

For given α, so and ηm (dictated by 1φ), (3.3) provides a linear relationship between
ω and D which defines the boundary in the parameter space (D,ω) between advection-
dominant mixing and diffusion-dominant mixing. This parameter space is depicted in
figure 12 for α = 0.9, so = l = 10 µm, which is the length of a typical cilium, and
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ηm = 0.1, 0.2, 0.3, which are representative values of the mixing rates obtained from
figure 11(c). One can readily see that there exists a range of diffusivity coefficients
and ciliary beat frequencies where the time scales associated with mixing by fluid
advection are dominant.

4. Conclusions
We examined the fluid transport and mixing induced by ciliary carpets. Our results

can be summarized as follows.

(i) The fluid motion can be described by two distinct regions: a fluid transport region
above the cilia and a fluid mixing region below the cilia tip, with fluid particles
leaking between the two regions. This is in accord with the experimental work
on artificial cilia beating in synchrony (Shields et al. 2010).

(ii) We showed that both transport and mixing can be enhanced, often simultaneously,
when the cilia beat produces a metachronal wave. Further, the optimal wavelengths
for transport and mixing are practically the same. Two optima are identified: one
for antiplectic waves 1φ≈π/2 and one for symplectic waves 1φ≈−π/2, with
better transport in the antiplectic case but comparable mixing in both cases.

(iii) Our fluid transport results are qualitatively consistent with the previous studies
of Gauger, Downton & Stark (2009) and Khaderi & Onck (2012). A direct
numerical comparison is not feasible due to differences in the cilia beat stroke,
density and shape. However, a rough comparison between these various studies
shows some consistency in the resulting flow rates. In Gauger et al. (2009), the
normalized flow rate per cycle generated by the optimal beating pattern of a
single cilium is close to 0.09 per cycle. In our model, we obtain a flow rate of
0.13 per cycle for a single cilium, whereas Khaderi & Onck (2012) obtained a
flow rate close to 0.1 per cycle per cilium for a finite number of ‘flat’ cilia (cilia
with plate-like geometry as opposed to circular cross-section). However, while
Khaderi & Onck (2012) report an enhancement in the flow rate of up to 2 times
due to the metachronal wave, in our study, we observe a greater enhancement
(up to 4 times) in the flow rate. We attribute this more significant enhancement
in the flow rate to the higher cilia density in our study; other factors such as
beating pattern may also contribute to the difference.

(iv) To our knowledge, our study is the first that quantifies mixing by chaotic
advection in a doubly periodic array of cilia. The possibility of mixing by
chaotic advection below the cilia tips is suggested in the experimental studies of
Supatto et al. (2008) on a single beating cilium in a zebrafish embryo and Shields
et al. (2010) on arrays of artificial cilia beating in synchrony. More concrete
evidence of mixing by chaotic advection was reported in the computational
studies of Lukens et al. (2010) on a single cilium in a two-dimensional fluid
and Khatavkar et al. (2007) on single and two cilia in a two-dimensional
rectangular channel. In the case of two cilia (micro-actuators) beating at a phase
difference 1φ, Khatavkar et al. (2007) reported exponential growth in the length
of a fluid strip for 1φ between π/3 and 2π/3 with the optimal value being
π/2, which is consistent with our results.

(v) We explained the mixing below the cilia tip by the stretching and folding
properties of the flow field generated by the ciliary array: the no-slip boundary
condition at the base surface together with the asymmetric stroke of the beating
cilia generate a shear-like flow field with stretching and folding as depicted in
figure 8. This is most likely a general phenomenon in all ciliary beat patterns.
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We conclude by noting that, whereas all the results shown here were based
on two-dimensional beating kinematics, the computational framework that we use
is general and can easily incorporate three-dimensional ciliary motion. Indeed,
our preliminary results on three-dimensional nodal cilia show qualitatively similar
separation of transport and mixing regions and similar effects due to the metachronal
waves. We limited the discussion here to two-dimensional beating kinematics to better
illustrate the main ideas and for easier visualization of the resulting flows. Future
extensions of this work will include coupling these models to advection–diffusion
models for chemicals (e.g. Michelin & Lauga 2010), as well as studying the transport
and mixing of non-passive inanimate and motile particles in the presence of mucus
(non-Newtonian fluids).
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