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We derive here Lagrangian fluctuation–dissipation relations for advected scalars in
wall-bounded flows. The relations equate the dissipation rate for either passive or
active scalars to the variance of scalar inputs from the initial values, boundary values
and internal sources, as those are sampled backward in time by stochastic Lagrangian
trajectories. New probabilistic concepts are required to represent scalar boundary
conditions at the walls: the boundary local-time density at points on the wall where
scalar fluxes are imposed and the boundary first hitting time at points where scalar
values are imposed. These concepts are illustrated both by analytical results for
the problem of pure heat conduction and by numerical results from a database of
channel-flow turbulence, which also demonstrate the scalar mixing properties of
near-wall turbulence. As an application of the fluctuation–dissipation relation, we
examine for wall-bounded flows the relation between anomalous scalar dissipation
and Lagrangian spontaneous stochasticity, i.e. the persistent non-determinism of
Lagrangian particle trajectories in the limit of vanishing viscosity and diffusivity. In
Part I of this series, we showed that spontaneous stochasticity is the only possible
mechanism for anomalous dissipation of passive or active scalars, away from walls.
Here it is shown that this remains true when there are no scalar fluxes through walls.
Simple examples show, on the other hand, that a distinct mechanism of non-vanishing
scalar dissipation can be thin scalar boundary layers near the walls. Nevertheless, we
prove for general wall-bounded flows that spontaneous stochasticity is another possible
mechanism of anomalous scalar dissipation.

Key words: mathematical foundations, turbulence theory, turbulent mixing

1. Introduction
This paper is the second in a series which initiates a new approach to the theory of

turbulent scalar dissipation based upon a Lagrangian fluctuation–dissipation relation
(FDR). This relation is derived within a representation of the scalar field by stochastic
fluid particles, which naturally extends Lagrangian methods for ideally advected
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scalars to realistic problems with both advection and diffusion. In Part I of the
series (Drivas & Eyink 2017; hereafter, I) the stochastic representation and FDR
were obtained for flows in finite domains without any boundaries. Using the FDR,
we resolved an on-going controversy regarding the phenomenon of Lagrangian
spontaneous stochasticity, or the persistent stochasticity of Lagrangian trajectories and
breakdown of uniqueness of particle trajectories for high Reynolds numbers. In the
ground-breaking work of Bernard, Gawȩdzki & Kupiainen (1998) on the Kraichnan
(1968) model of turbulent advection, the property of Lagrangian spontaneous
stochasticity was first discovered and shown to be a consequence of the classical
(Richardson 1926) theory of turbulent particle dispersion. Bernard et al. (1998)
furthermore showed that anomalous scalar dissipation within the Kraichnan model is
due to spontaneous stochasticity. The validity of this concept for scalars advected by
a true turbulent flow has, however, been strongly questioned (e.g. Tsinober 2009). A
key result of Part I was the demonstration that spontaneous stochasticity is the only
possible mechanism of anomalous dissipation for both passive and active scalars with
any advecting velocity field whatsoever, away from walls.

Wall-bounded flows are, on the other hand, ubiquitous both in engineering
applications and in nature. Nearly every turbulent flow encountered in our daily
experience involves solid walls and obstacles that are either stationary or moving,
flexible membranes or free surfaces. Geophysical turbulent flows are most commonly
constrained by topography, basin boundaries or surfaces separating multiple phases
(e.g. air–water). These boundaries can profoundly affect the organization of the
turbulence and driving from the boundary is very often the origin of the turbulence
itself. Thus, any perspective on turbulent scalar dissipation with a claim of generality
must be applicable to flows with boundaries. Our aim in this work is to extend the
approach and results of Part I to the most canonical examples of wall-bounded flows.
To be specific, we consider a scalar field θ (such as temperature, dye concentration,
etc.) transported by a fluid with velocity u, governed by the advection–diffusion
equation in the interior of a finite domain Ω:

∂tθ + u · ∇θ = κ1θ + S, (1.1)

with appropriate conditions specified on the boundary ∂Ω . Here κ >0 is the molecular
diffusivity of the scalar and S(x, t) is a bulk source field. Typical situations are those
in which the scalar field is held fixed on the boundary (Dirichlet conditions), those
in which the scalar flux through the wall is fixed (Neumann conditions) or a mixture
of these along different parts of the boundary decomposed as ∂Ω = ∂ΩD ∪ ∂ΩN .

More formally, for a function ψ(x, t) specifying scalar boundary values and a
function g(x, t) specifying the fluxes through the wall, one solves (1.1) subject to the
conditions

Dirichlet: θ(x, t)=ψ(x, t), x ∈ ∂ΩD (1.2)
Neumann: −µ(x, t) · ∇θ(x, t)= g(x, t) x ∈ ∂ΩN, (1.3)

where µ = κn with n(x) being the unit inward normal to the boundary ∂Ω . (All
of our considerations in this paper apply with straightforward modifications to the
more general situation where the scalar flux is given by an anisotropic Fick’s law as
j(x, t) = −K (x, t)∇θ(x, t) for a positive–definite, symmetric diffusivity tensor K . In
that case, the component of the flux normal to the boundary is jn = n · j=−µ · ∇θ
with the so-called ‘co-normal vector’ µ = Kn satisfying µ · n = n>Kn > 0.)
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238 T. D. Drivas and G. L. Eyink

Additionally, appropriate boundary conditions must be specified for the velocity
field at the wall. Throughout this paper, we consider the most common stick (or
no-slip) boundary conditions:

u(x, t)= 0, x ∈ ∂Ω. (1.4)

We shall further discuss in this paper advection only by an incompressible fluid
satisfying

∇ · u= 0, (1.5)

since only then does fluid advection conserve scalar integrals of the form∫
ddxf (θ(x, t)). However, we place no other general constraints on the velocity

u, which may obey, for example, an equation of motion involving θ itself. Thus, our
considerations apply not only to passive but also to active scalar fields.

For all wall-bounded flows of the above classes we derive Lagrangian fluctuation–
dissipation relations generalizing those in Part I and we exploit them to precisely
characterize for wall-bounded flows the connection between Lagrangian spontaneous
stochasticity and anomalous scalar dissipation. To avoid confusion, we note that our
Lagrangian FDRs have no obvious relation to the fluctuation–dissipation theorems
traditional in non-equilibrium statistical physics (see the discussion in Part I, §5). To
our knowledge, both these FDRs and the results derived for wall-bounded flows have
never been discussed previously, as all related works (e.g. Buaria, Yeung & Sawford
2016) discuss only flows without boundaries. These FDRs are obtained, however,
within known stochastic representations for solutions of the scalar advection equation,
with boundary conditions either of Dirichlet, Neumann or mixed form (see e.g. Soner
2007). Our discussion of the stochastic representations themselves involves only very
modest originality and involves mainly a convenient compilation of existing results
from multiple sources. The key concepts from probability theory to derive these
representations are the boundary local-time density and the boundary hitting time,
which are carefully described and illustrated with numerical results from a turbulent
channel-flow simulation. The new FDRs derived within these representations express
an exact balance between the time-averaged scalar dissipation and the input of
stochastic scalar variance from the initial data, interior scalar sources and boundary
conditions as these are sampled by stochastic Lagrangian trajectories backward in
time.

With no-flux (zero Neumann) boundary conditions for the scalar, we obtain results
identical to those of Bernard et al. (1998) for domains without a boundary: namely,
spontaneous stochasticity is both necessary and sufficient for anomalous dissipation
of a passive scalar, and necessary for anomalous dissipation of an active scalar.
However, for general imposed fluxes (Neumann conditions), imposed scalar values at
the wall (Dirichlet conditions) or mixed Dirichlet/Neumann conditions, the necessity
statement is not generally true. Simple examples, such as pure thermal conduction
with imposed heat fluxes at the walls, show that thin scalar boundary layers can in
such flows provide an entirely distinct mechanism of non-vanishing scalar dissipation
with a vanishing molecular diffusivity. Nevertheless, we obtain from our FDRs a
lower bound on the passive scalar dissipation rate, which implies that spontaneous
stochasticity is sufficient for anomalous dissipation. With some additional, physically
plausible but unproven assumptions, we can extend this sufficiency statement also
to active scalars. It thus remains true for all wall-bounded flows that spontaneous
stochasticity is a viable source of anomalous scalar dissipation. This is the main
theoretical result of the present paper. The potential of our FDRs is not, however,
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exhausted by this single result and our paper sets up the framework for more general
applications. In Part III of this series (Eyink & Drivas 2017) we apply our FDR to
turbulent Rayleigh–Bénard convection and obtain a novel Lagrangian formulation of
the Nusselt–Rayleigh scaling law.

The detailed contents of the present paper are as follows: in § 2, we derive the
FDR in the case of wall-bounded flows with imposed scalar fluxes (§ 2.1) and we
relate spontaneous stochasticity and anomalous dissipation (§ 2.3). The next section
(§ 3) discusses flows with imposed scalar values at the wall and mixed conditions,
deriving first an FDR inequality (§ 3.1), using it to relate spontaneous stochasticity
to anomalous dissipation (§ 3.3), then deriving an FDR equality (§ 3.4) and lastly
discussing mixed boundary conditions (§ 3.5). The numerical results for turbulent
channel flow (§§ 2.2 and 3.2) serve not only to illustrate key probabilistic concepts
for a fluid mechanics audience but also investigate the joint effects of turbulence
and walls on scalar mixing rates, which are important in our subsequent study of
Rayleigh–Bénard convection (III). In the summary and discussion § 4 we discuss
some future challenges. Three appendices give further details, including analytical
results for a test case of pure diffusion used to assess the effects of fluid advection
(appendices A and B), rigorous details of the new proofs relating spontaneous
stochasticity and anomalous dissipation (appendix C) and explanation of the numerical
methods employed for our turbulent channel-flow studies (appendix D).

2. Imposed scalar fluxes at the wall

We consider in this section a scalar θ(x, t) with pure Neumann boundary conditions
(∂ΩN = ∂Ω), satisfying

∂tθ + u · ∇θ = κ1θ + S x ∈Ω,
−µ(x, t) · ∇θ(x, t)= g(x, t) x ∈ ∂Ω

}
(2.1)

for given initial data θ0, source field S, flux function g and co-normal vector field µ.

2.1. Stochastic representation and fluctuation–dissipation relation
The stochastic representation of solutions of pure Neumann problems has been
discussed in many earlier publications, such as Freı̆dlin (1985), Burdzy, Chen
& Sylvester (2004) and Soner (2007) on fundamental mathematical theory and
Mil’shtein (1996), Keanini (2007) and Słomiński (2013) for numerical methods.
In order to impose Neumann conditions, essentially, one averages over stochastic
trajectories which reflect off the boundary of the domain, contributing to the solution
a correction related to their sojourn time on the walls. We briefly review the subject
here. Our presentation is somewhat different than in any of the above references
and, in particular, is based on backward stochastic integration theory. This framework
yields, in our view, the simplest and most intuitive derivations. We also specify
appropriate physical dimensions for all quantities, whereas the mathematical literature
is generally negligent about physical dimensions and studies only the special value
of the diffusivity κ = 1/2, in unspecified units. We have been careful to restore a
general value of the diffusivity κ in all positions where it appears.

The fundamental notion of the representation is the boundary local time density
˜̀t,s(x) (Stroock & Varadhan 1971; Lions & Sznitman 1984; Burdzy et al. 2004),
which, for a stochastic Lagrangian particle located at x ∈ Ω at time t, is the time
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240 T. D. Drivas and G. L. Eyink

within the interval [s, t] which is spent near the boundary ∂Ω per unit distance. Its
physical units are thus (time)/(length) or 1/(velocity). Note that we consider here the
backward-in-time process, whereas Burdzy et al. (2004) employed the forward-time
process and time reflection to derive an analogous representation. We thus take the
boundary local-time density to be a non-positive non-increasing random process which
decreases (backward in time) only when the stochastic particle is on the boundary.
This stochastic process is defined via the ‘Skorohod problem’, in conjunction with
the (backward) stochastic flow ξ̃ ν,κt,s (x) with reflecting boundary conditions which
satisfies

d̂ξ̃t,s(x)= uν(ξ̃t,s(x), s) ds+
√

2κ d̂W̃s −µ(ξ̃t,s(x), s) d̂ ˜̀t,s(x), (2.2)

with ξ̃t,t(x)= x as usual. The boundary local time is then given by the formula

˜̀t,s(x)=
∫ s

t
drδ(dist(ξ̃t,r(x), ∂Ω))≡ lim

ε→0

1
ε

∫ s

t
drχ∂Ωε(ξ̃t,r(x)), s< t, (2.3)

in terms of an ‘ε-thickened boundary’

∂Ωε = {x ∈Ω : dist(x, ∂Ω) < ε}. (2.4)

See Burdzy et al. (2004, Theorem 2.6). (Note that (2.7) of Burdzy et al. (2004)
contains an additional factor of 1/2, because their local-time density is our κ ˜̀t,s(x)
and they consider only the case κ = 1/2.) In (2.3) we denote by χA the characteristic
function of a set defined as

χA(x)=
{

1 x ∈ A
0 x /∈ A. (2.5)

Lions & Sznitman (1984) have proved existence and uniqueness of stochastic
processes as strong solutions to this ‘Skorohod problem’ with Lipschitz velocity
fields u and sufficient regular normal vectors n at a smooth boundary. Of some
interest for the consideration of non-smooth velocity fields that might appear in the
limit ν→ 0, Stroock & Varadhan (1971) obtain stochastic process solutions when u
is merely bounded, measurable and establish uniqueness in law, i.e. uniqueness of
probability distributions. The spatial regularity in x of the processes (ξ̃t,s(x), ˜̀t,s(x))
defined jointly as above is the subject of recent works on stochastic flows with
reflecting boundary conditions (Pilipenko 2005, 2014; Burdzy 2009). Note that the
stochastic particles described by ξ̃t,s(x) are reflected in the direction of µ when they
hit the wall, thus staying forever within Ω, and the flow preserves the volume within
the domain when ∇ · uν = 0, as assumed here. It follows formally from (2.3) that the
boundary local-time density can be written as

˜̀t,s(x)=
∫ s

t
dr
∫
∂Ω

dHd−1(z)δd(z− ξ̃t,r(x)), (2.6)

where Hd−1 is the (d − 1)-dimensional Hausdorff measure (surface area) over the
smooth boundary ∂Ω of the domain. We have not found this intuitive formula
anywhere in the probability theory literature, but it should be possible to prove
rigorously with suitable smoothness assumptions on the boundary.
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By means of the above notions one can obtain a stochastic representation for
solutions to the initial-value problem of the system (2.1). The backward Itō formula
(Kunita 1997; Friedman 2006) applied to θ(ξ̃t,s(x), s) gives

d̂θ(ξ̃t,s(x), s) = [(∂sθ + u · ∇θ − κ1θ)ds− (∇θ ·µ)d̂ ˜̀t,s +
√

2κ d̂W̃s · ∇θ ](ξ̃t,s(x),s)

= S(ξ̃t,s(x), s)ds+ g(ξ̃t,s(x), s)d̂ ˜̀t,s +
√

2κ d̂W̃s · ∇θ(ξ̃t,s(x), s), (2.7)

where in the second line we have used the fact that θ(x, s) solves the boundary-value
problem (2.1). We find upon integration from 0 to t,

θ(x, t) = θ0(ξ̃t,0(x))+
∫ t

0
ds S(ξ̃t,s(x), s)+

∫ t

0
g(ξ̃t,s(x), s) d̂ ˜̀t,s

+
√

2κ
∫ t

0
d̂W̃s · ∇θ(ξ̃t,s(x), s) (2.8)

and thus expectation over the Brownian motion yields the representation

θ(x, t)=E
[
θ0(ξ̃t,0(x))+

∫ t

0
ds S(ξ̃t,s(x), s)+

∫ t

0
g(ξ̃t,s(x), s) d̂ ˜̀t,s

]
. (2.9)

By means of (2.6), this formula can be written equivalently in terms of the transition
probability density function pν,κ(y, s|x, t)=E[δd(ξ̃ ν,κt,s (x)− y)] for the reflected particle
to be at position y at time s< t, given that it was at position x at time t:

θ(x, t) =
∫
Ω

ddx0 θ0(x0)p(x0, 0|x, t)+
∫ t

0
ds
∫
Ω

ddy S(y, s) p(y, s|x, t)

+

∫ t

0
ds
∫
∂Ω

dHd−1(z) g(z, s) p(z, s|x, t). (2.10)

Clearly, the scalar value θ(x, t) is an average of the randomly sampled initial data and
the scalar inputs from the internal source and the scalar flux through the boundary
along a random history backward in time.

Just as for domains without walls in Part I, we introduce a stochastic scalar field
which represents the contribution for a specific stochastic Lagrangian trajectory

θ̃ (x, t)≡ θ0(ξ̃t,0(x))+
∫ t

0
ds S(ξ̃t,s(x), s)+

∫ t

0
g(ξ̃t,s(x), s) d̂ ˜̀t,s, (2.11)

that now includes the boundary-flux term, so that θ(x, t) = E[θ̃ (x, t)] (For all
s < t the quantity θ̃ (x, t; s) = θ(ξ̃t,s(x), s) +

∫ t
s S(ξ̃t,r(x), r) dr +

∫ t
s g(ξ̃t,r(x), r) d̂ ˜̀t,r

is equal to θ(x, t) −
√

2κ
∫ t

s d̂W̃r · ∇θ(ξ̃t,r(x), r), analogous to (2.8). It is thus a
martingale backward in time, i.e. it is statistically conserved and, on average, equals
θ(x, t) for all s < t. Clearly, θ̃ (x, t) = θ̃ (x, t; 0). This backward martingale property
shows that the stochastic representation employed here is a natural generalization
to diffusive advection of the standard deterministic Lagrangian representation for
non-diffusive, smooth advection). As in Part I, we warn the reader that the quantity
θ̃ (x, t) is entirely different from the conventional ‘turbulent’ scalar fluctuation θ ′(x, t)
defined with respect to ensembles of scalar initial conditions, advecting velocities
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or random sources. An application of the Itō-isometry (see Oksendal 2013, § 3.1)
exactly as in Part I yields for the scalar variance

1
2

Var[θ̃ (x, t)] = κ E
∫ t

0
ds |∇θ(ξ̃t,s(x), s)|2, (2.12)

which is a local version of our FDR. Integrating over the bounded domain and
invoking volume preservation by the reflected flow, we obtain

1
2
〈Var θ̃ (t)〉Ω = κ

∫ t

0
ds
〈
|∇θ(s)|2

〉
Ω
. (2.13)

This, together with (2.11), is our exact FDR for scalars (either passive or active) with
general Neumann boundary conditions. Just as for (2.20) of Part I in the case of
domains without walls, we obtain for the infinite-time limit of the local scalar variance

lim
t→∞

1
2t

Var[θ̃ (x, t)] =
〈
κ|∇θ |2

〉
Ω,∞

, for all x ∈Ω, (2.14)

when the reflected stochastic particle wanders ergodically over the flow domain Ω .
This will generally be true when κ > 0, and the ergodic average thus coincides
with the average over the stationary distribution of the particle. This is uniform
(Lebesgue) measure because of incompressibility of the flow. The long-time limit is
thus independent of the space point x. We shall not make use of (2.14) in the present
work, but it plays a central role in our analysis of steady-state turbulent convection
in Part III.

2.2. Numerical results
To provide some additional insight into these concepts, we present in appendix A
an elementary analytical example: pure diffusion on a finite interval with a constant
scalar flux imposed at the two ends. To be concrete, we shall use the language of heat
conduction, and thus refer to temperature field, heat flux, etc. In addition, we present
now some numerical results on stochastic Lagrangian trajectories and boundary local-
time densities for a proto-typical wall-bounded flow, turbulent channel flow. These
numerical results are directly relevant to turbulent thermal transport in a channel with
imposed heat fluxes at the walls. They also have relevance to the problem of Rayleigh–
Bénard convection which will be discussed in Part III, since channel flow provides
the simplest example of a turbulent shear flow with a logarithmic law of the wall of
the type conjectured to exist at very high Rayleigh numbers in turbulent convection
(Kraichnan 1962). For the purpose of our study, we use the Reτ = 1000 channel-
flow dataset in the Johns Hopkins Turbulence Database (see Graham et al. (2016)
and http://turbulence.pha.jhu.edu). We follow the notation in these references and, in
particular, the x direction is streamwise, y is wall-normal and z is spanwise. For the
details of our numerical methods, see appendix D.1. We plot in figure 1 for three
choices of Prandtl number (Pr = 0.1, 1, 10) a single realization of (ξ̃t,s(x), ˜̀t,s(x))
for a stochastic particle released at a point x on the lower wall y = −h at the final
time tf in the database, then evolved backward in time. Using Cartesian coordinates
ξ̃t,s= (ξ̃t,s, η̃t,s, ζ̃t,s), figure 1(a) plots the wall-normal particle position η̃t,s(x) as height
above the wall 1y= y+ h and the right panel plots the local-time density ˜̀t,s(x), both
as functions of shifted time s− tf . All quantities are expressed in wall units, in terms
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FIGURE 1. (Colour online) Realizations of wall-normal position (a) and local-time density
process (b) for a particle released on the lower wall at (x, z)= (3543.84δν, 1891.56δν) for
Prandtl values Pr= 0.1 (green, medium), 1.0 (blue, heavy) and 10 (red, light).

of the friction velocity uτ , the viscous length δτ =ν/uτ and the viscous time τν=ν/u2
τ .

Important features to observe in figure 1 are the jumps in the local-time density at the
instants when the particles are incident upon the wall and reflected. These incidences
occur predominantly near the release time and eventually cease (backward in time) as
the particles are transported away from the wall. This escape from the wall occurs
slower for smaller κ or larger Pr, and the local times at the wall are correspondingly
larger magnitude for larger Pr.

We next discuss statistics of the entire ensemble of stochastic particles for two
specific release points at the wall, one point selected inside a low-speed streak
and the other a high-speed streak. We are especially interested here in the role of
turbulence in enhancing heat transport away from the wall, compared with pure
thermal diffusion. It has sometimes between questioned whether turbulence close to
the wall indeed increases thermal transport, because of the restrictions imposed on the
vertical motions (e.g. Niemela & Sreenivasan 2003, §7.2). We thus select two points,
one in a low-speed streak with mean motion toward the wall (backward in time) and
the other in a high-speed streak with mean motion away from the wall (backward
in time). Comparing these two points helps to identify any possible strictures on
turbulent transport imposed by the solid wall. The selection is illustrated in figure 2,
which plots the streamwise velocity in the buffer layer at distance 1y= 10δτ above
the bottom channel wall. The low-speed streaks associated with ‘ejections’ from the
wall and high-speed streaks associated with ‘sweeps’ toward the wall seen there are
characteristic of turbulent boundary layers (Kline et al. 1967). The x–z coordinates of
the two release points are indicated by the diamonds (6) in figure 2 (and note that
the point selected in the low-speed streak is that featured in the previous figure 1).
For each of these two release points and for the three choices of Prandtl number
Pr= 0.1, 1, 10, we used N = 1024 independent solutions of equations (2.2) and (2.3)
to calculate the dispersion of the stochastic trajectories and the probability density
functions (PDFs) of the local-time densities backward in time. Error bars in the plots
represent the standard error of the mean (s.e.m.) for the N-sample averages and in
addition, for the PDFs, the effects of variation in kernel density bandwidth.
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FIGURE 2. Streamwise velocity at normal distance 1y = 10δν from the lower wall
non-dimensionalized by the friction velocity uτ . The open diamonds (6) mark the
(x, z) coordinates, (3291.73δν, 1644.98δν) and (3543.84δν, 1891.56δν), of the selected
release points at wall-parallel positions of high-speed (dark) and low-speed (light) streaks,
respectively.

In figure 3(a,b), we show 30 representative particle trajectories for the two release
points (left within a high-speed streak, right in a low-speed) and for each of the three
Prandtl numbers. By eye, the ensembles of trajectories for the three different Prandtl
numbers appear quite similar. In figure 3(c,d), we plot the mean-squared dispersion of
the stochastic particles for the two release points and the three Prandtl numbers. There
is an initial period (backward in time) where the dispersion grows with ŝ= tf − s as
4κ(3− 2/π)ŝ, which is the analytical result for a three-dimensional Brownian motion
reflected from a plane (if W̃(t) is standard one-dimensional Brownian motion with
diffusivity κ , then |W̃(t)| is the Brownian motion reflected at 0 and it is elementary
to show that E1,2

[{|W̃ (1)(t)| − |W̃ (2)(t)|}2] = 4κ(1− 2/π)t). There is then a cross-over
to a limited regime of super-ballistic separation that is close to ŝ3-growth. At still
larger ŝ, the growth clearly slows but remains super-ballistic. Recall from Part I that
Richardson dispersion with a cubic growth of dispersion is the physical mechanism
of spontaneous stochasticity in homogeneous, isotropic turbulence. It would be quite
surprising to observe Richardson dispersion in this channel-flow dataset, since the
energy spectra published in Graham et al. (2016) and http://turbulence.pha.jhu.edu
show that the Reynolds number is still too low to support a Kolmogorov-type inertial
range. We believe that the cubic power-law growth observed arises instead from a
simple combination of stochastic diffusion and mean shear, a molecular version of the
turbulent shear dispersion discussed by Corrsin (1953). A toy model which illustrates
this mechanism is a two-dimensional shear flow with u(x)= (Sy, 0), where

dξ̃t = Sη̃t +
√

2κ dW̃x(t), dη̃t =
√

2κ dW̃y(t). (2.15a,b)
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FIGURE 3. (Colour online) (a,c,e) Are for release at bottom wall near a high-speed
streak, (b,d, f ) for release near a low-speed streak. See markers on figure 2. (a,b) Show
30 representative reflected stochastic trajectories for Pr= 0.1 (green, medium), 1.0 (blue,
heavy) and 10 (red, light). (c,d) Plot particle dispersion (heavy) and short-time results
4κ(3− 2/π)ŝ (light) for each Pr with Pr = 0.1 (green, dot, · · · · · ·), 1.0 (blue, dash-dot,
— · —) and 10 (red, dash, - - - -) and a plot (black,solid, ——) of g(ν/τ 2

ν )ŝ
3 with g= 0.1.

(e, f ) Plot PDFs of (absolute values of) boundary local times for channel flow (heavy) and
pure diffusion (light) for the three Pr values with the same line styles as (c,d).
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Integration gives ξ̃t =
√

2κ(S
∫ t

0 W̃y(s) ds+ W̃x(t)) and η̃t =
√

2κ W̃y(t) when (ξ̃0, η̃0)=

(0, 0), and the shear contributes a t3-term to the x-component of the dispersion:

E1,2
|ξ̃ (1)t − ξ̃

(2)
t |

2
= 4κ

(
t+ 1

3 S2t3
)
. (2.16)

See Schütz & Bodenschatz (2016) for a very similar discussion of cubic-in-time
dispersion in the context of bounded shear flows and weakly turbulent Rayleigh-
Bénard convection in two dimensions. In the toy model (2.15a,b) the y-component of
dispersion grows only diffusively. In qualitative agreement with this simple model, we
have found that the cubic power-law growth in the channel-flow particle dispersion
indeed arises solely from the streamwise component of the particle separation vector.
We do not show this here, but the effect can be observed in the particle trajectories
plotted in figure 3(a,b), where the particles are dispersed farthest along the streamwise
direction. The t3 dispersion in (2.16) differs notably from Richardson dispersion in
that it is proportional to κ and it produces no spontaneous stochasticity, since it
vanishes as κ→ 0. In the channel-flow ŝ3-regime in figure 3(c,d) (101 . ŝ/tη . 102)
there is likewise an observable dependence on the diffusivity. These cautionary results
are an admonition against interpreting any cubic or super-ballistic growth of pair
separation whatsoever as evidence of spontaneous stochasticity. Richardson dispersion
produces spontaneous stochasticity because of non-smooth relative advection, not
simply because of super-ballistic separation.

In figure 3(e,f ), we plot PDFs of the local-time density ˜̀tf ,0(x) accumulated
backward over the entire time interval of the channel-flow database (one flow-through
time), for the two release points and the three values of Prandtl number. As could be
expected, smaller κ (or larger Pr) correspond to more time at the wall and a PDF
supported on larger local-time densities. Comparing the results for the two release
points, it can be seen that particles starting on the wall inside the high-speed streak
tend to spend somewhat less time near the wall than those starting near the low-speed
streak. This is easy to understand, if one recalls that low-speed streaks correspond
to ‘ejections’ from the wall and high-speed streaks to ‘sweeps’ toward the wall.
Backward in time, however, the fluid motions are exactly reversed. Thus, particles
starting at the wall inside high-speed streaks are being swept away from the wall by
the fluid motion backward in time, and those starting inside low-speed streaks are
brought toward the wall. However, the location of the release point has a quite small
effect on the PDF of the local-time density accumulated over one flow-through time,
and it is plausible that this effect would be reduced by taking tf even larger.

Finally, we have also plotted in figure 3(e,f ) the analytical results for the local-
time PDFs of a pure Brownian motion with diffusivity κ that is reflected from a
planar wall (see appendix A.3 and (2.25) below). Compared with these results for
Brownian motion, the corresponding channel-flow local-time PDFs exhibit in all cases
a substantial reduction of time spent at the wall. These results show that turbulent
fluctuations enhance transport away from the wall, even when the local flow initially
carries the particles toward the wall (backward in time). Although we show these
results only for two release points here, we have observed similar behaviour at all
other locations on the wall that we have examined. This observation has importance
for the problem of turbulent convection, where it was it was argued by Kraichnan
(1962) that ‘. . . the effect of the small-scale turbulence that arises locally in the shear
boundary layer should be to increase heat transport’. We shall return to this issue in
Part III.
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2.3. Spontaneous stochasticity and anomalous dissipation
As an application of our FDR (2.13) for flows with imposed scalar fluxes at the walls,
we now discuss the equivalence between spontaneous stochasticity and anomalous
scalar dissipation in this context. As we shall see, the effects of the walls can be
profound.

The simplest situation is the case of vanishing wall fluxes, g≡ 0, which corresponds
to insulating/adiabatic walls when the scalar is the temperature and to impermeable
walls when the scalar is the concentration of an advected substance (e.g. a dye,
aerosol, etc.). In this case, the flux contribution proportional to the local-time density
in (2.11) vanishes, and our FDR then becomes simply

1
2

〈
Var
[
θ0(ξ̃t,0)+

∫ t

0
ds S(ξ̃t,s, s)

]〉
Ω

= κ

∫ t

0
ds
〈
|∇θ(s)|2

〉
Ω
. (2.17)

This is formally identical to the relation (2.9) and (2.12) of Part I for flows in
domains without boundaries, with the simple stochastic flow replaced by a reflected
stochastic flow. We can therefore repeat verbatim the arguments from Part I, § 4
to conclude that, for walls that do not support fluxes, spontaneous stochasticity
is equivalent to anomalous dissipation for passive scalars and for active scalars
spontaneous stochasticity is (at least) necessary for anomalous scalar dissipation. For
the sake of completeness, we briefly review the main ideas of this argument here.
Assuming that S≡ 0 for simplicity, the left-hand side of the FDR (2.17) becomes

Var[θ0(ξ̃t,0(x))] =
∫

ddx0

∫
ddx′0 θ0(x0)θ0(x′0)

×
[

pν,κ2 (x0, 0; x′0, 0|x, t)− pν,κ(x0, 0|x, t)pν,κ(x′0, 0|x, t)
]
, (2.18)

where we have introduced the 2-time (backward-in-time) transition density

pν,κ2 (y, s; y′, s′|x, t)=E[δd(y− ξ̃ ν,κt,s (x))δ
d(y′ − ξ̃

ν,κ
t,s′ (x))], s, s′ < t. (2.19)

It can be shown using Young measure techniques that, at least along suitably chosen
subsequences, the transition probabilities approach limiting values p∗(y, s; y′, s|x, t),
p∗(y, s|x, t) as ν, κ→ 0 whenever the flow domain is compact (Part I, appendix A.1).
If in this limit the Lagrangian particle positions ξ ∗t,s are deterministic, then the 2-time
transition probability factorizes:

p∗2(y, s; y′, s′|x, t)= δd(y− ξ ∗t,s(x))δ
d(y′ − ξ ∗t,s′(x))= p∗(y, s|x, t)p∗(y′, s′|x, t). (2.20)

Thus, non-factorization in the limit ν, κ → 0 is the signature of spontaneous
stochasticity, i.e. of the limiting particle positions ξ ∗t,s remaining random as ν, κ→ 0.
Note that the variance (2.17) can only be non-vanishing in the limit if factorization
fails. Consequently, anomalous dissipation requires spontaneous stochasticity. This
is true both for passive and for active scalars. In the other direction, if there is
spontaneous stochasticity on a positive-measure set of x ∈ Ω , one can choose (at
least for passive scalars) a suitable θ0 which will make the variance (2.17) positive.
This implies a positive lower bound to the cumulative, volume-integrated scalar
dissipation through the FDR (2.17). Thus spontaneous stochasticity and anomalous
scalar dissipation are seen to be equivalent. See Part I, appendix A.2 for detailed
mathematical proofs of these claims.
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This result is relevant for many physical situations, such as a dye injected into a
turbulent Taylor–Couette flow. The commonplace example of cream stirred into coffee
is also essentially of this type, since the cup walls and surface of the stirrer are
impermeable boundaries and there is also no transport of cream across the free fluid
surface. The extension of our FDR (2.17) to problems with moving walls and free
fluid surfaces should be relatively straightforward (and, indeed, the main result of the
paper of Burdzy et al. (2004) was the construction of reflected Brownian processes for
domains enclosed by moving boundaries). In all of these situations, any evidence for
anomalous scalar dissipation is also evidence for (requires) spontaneous stochasticity.

The situations with non-vanishing fluxes through the walls are, however, essentially
different. From a mathematical point of view, the problem is ‘loss of compactness’.
While the trajectories of the reflected diffusion process satisfy uniformly in ν, κ the
condition that ξ̃ ν,κt,s (x)∈ Ω̄, a closed, bounded domain, the local-time densities ˜̀ν,κt,s (x)
may become unboundedly large as ν, κ→ 0. This creates a fundamental difficulty for
arguments of the type employed previously, where limits as ν, κ→ 0 were guaranteed
to exist (along subsequences). To understand better the problem, consider how we
might try to adapt those arguments to the present context. We can rewrite our FDR
(2.13) and (2.11) as

κ

∫ t

0
ds〈|∇θ(s)|2〉Ω =

1
2
〈Var[θ̃ ν,κ(t)]〉Ω

=
1
2

〈∫
dψ
∫

dψ ′ ψψ ′ [pν,κ2 (ψ, ψ ′|·, t)− pν,κ(ψ |·, t)pν,κ(ψ |·, t)]
〉
Ω

, (2.21)

where
pν,κ(ψ |x, t)=E[δ(ψ − θ̃ ν,κ(x, t))] (2.22)

and

pν,κ2 (ψ,ψ ′|x, t)=E[δ(ψ − θ̃ ν,κ(x, t))δ(ψ ′− θ̃ ν,κ(x, t))] = δ(ψ −ψ ′)pν,κ(ψ |x, t), (2.23)

with θ̃ ν,κ(x, t) given by (2.11). If weak limits p∗(ψ |x, t) = w-limν,κ→0pν,κ(ψ |x, t)
existed, then arguments of exactly the type given before would show that anomalous
dissipation requires non-factorization of p∗2 into p∗ · p∗ and, hence, spontaneous
stochasticity. The reverse argument that spontaneous stochasticity implies anomalous
dissipation for passive scalars would also be essentially the same.

Simple examples show, however, that weak limits p∗(ψ |x, t)=w-limν,κ→0 pν,κ(ψ |x, t)
may not exist when wall fluxes are not vanishing. Consider the case where θ0= S≡ 0
and the flux into the domain is a space–time constant g(x, s)= J > 0. In that case

θ̃ (x, t)=
∫ t

0
g(ξ̃t,s(x), s) d̂ ˜̀t,s(x)=−J ˜̀t,0(x)> 0, (2.24)

and the stochastic scalar field for one realization of the Brownian process is
proportional by a constant to the local-time density itself. Consider furthermore
the simple case of pure heat conduction, where the advecting velocity field also
vanishes, uν ≡ 0. In this case, the distribution of ˜̀t,0(x) is known analytically in many
cases. A very simple example which serves to make our point takes the domain to
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be the semi-infinite one-dimensional interval Ω = [0,∞) with boundary at 0. In that
case, for x > 0

pκ(ψ |x, t)=
1
J

√
κ

πt
exp

[
−
(x+ κψ/J)2

4κt

]
η(ψ)+

[
2Φκ,t(x)− 1

]
δ(ψ), (2.25)

where η(ψ) is the Heaviside step function and

Φκ,t(x)=
1

√
4κπt

∫ x

−∞

dy exp(−y2/4κt). (2.26)

For details see appendix A.3. It is easy to see mathematically from the above
expression that weak limits exist for fixed x> 0 and, indeed,

w-lim
κ→0

pκ(ψ |x, t)= δ(ψ), x> 0. (2.27)

This is also intuitively obvious, because a stochastic particle released at x> 0 never
makes it to the boundary at 0 when κ→ 0. However, the distribution pκ(ψ |0, t) does
not converge weakly as κ → 0, but (2.25) implies instead that it tends to become
uniformly spread on the semi-infinite interval. This also makes sense, because a
particle released at 0 should tend to stay there as κ→ 0 and the local-time density
at 0 will diverge (in fact, if we consider the 1-point compactification [0,∞] of the
range [0, ∞) of possible scalar values, then limκ→0 pκ(ψ |0, t) = δ∞(ψ), the delta
function at infinity. However, this compactification of the problem does not yield any
result on spontaneous stochasticity).

The physical origin of the divergence in this simple example is a scalar boundary
layer near x = 0. A direct solution of the Neumann problem for the scalar field or
integration over the above distribution shows that

θ(x, t)=−JE[ ˜̀t,0(x)] ∼ J

√
t
κ

f
(

x
√
κt

)
(2.28)

for a suitable scaling function f . See appendix A.1. There is thus a scalar boundary
layer of thickness ∼

√
κt near 0 where the scalar field diverges as θ ∼ J

√
t/κ as κ→ 0.

Because there is a constant flux J into the domain and diffusive transport into the
interior vanishes as κ→ 0, there is a ‘pile up’ of the scalar near x = 0. The scalar
dissipation field due to this boundary layer is

εθ(x, t)= κ|∂xθ(x, t)|2 ∼
J2

κ

∣∣∣∣f ′ ( x
√
κt

)∣∣∣∣2 , (2.29)

from which one can infer a total scalar dissipation ∝ J2√t/κ→∞ as κ→ 0. This
‘dissipative anomaly’ occurs even though there is clearly no spontaneous stochasticity
in this simple example with uν ≡ 0!

The above example shows that the ‘loss of compactness’ is not a mere technical
mathematical difficulty, but instead that there may no longer be equivalence of
spontaneous stochasticity and non-vanishing dissipation. Scalar boundary layers in
wall-bounded flow domains with flux through the walls are a new possible source of
scalar dissipation that can be non-zero (or even diverging) as ν, κ→ 0, quite distinct
from the spontaneous stochasticity mechanism. Another perhaps more elementary way
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to see the problem posed by wall fluxes is to exploit formula (2.6) for the boundary
local time to write

Var
[∫ t

0
g(ξ̃t,s(x), s) d̂ ˜̀t,s(x)

]
=

∫ t

0
ds
∫ t

0
ds′
∫

dHd−1(z)
∫

dHd−1(z′) g(z, s)g(z′, s′)

×[pν,κ2 (z, s; z′, s′|x, t)− pν,κ(z, s|x, t)pν,κ(z′, s′|x, t)], (2.30)

where pν,κ2 (y, s; y′, s′|x, t) for s, s′ < t is the 2-time transition probability density
function with respect to the Lebesgue measure, defined in (2.19). On the face of it,
this appears to be quite similar to the analogous formulae for the scalar variance
associated with the initial data or internal sources, e.g. (2.18). However, in the
variance associated with θ0 or S, the transition probability densities appear only in
the combinations ddy ddy′ pν,κ2 (y, s; y′, s′|x, t) and ddy pν,κ(y, s|x, t), and thus only
involve the probability measures themselves and not their densities. Compactness
arguments suffice to show that limits of the probability measures and associated
integrals exist (along subsequences) as ν, κ → 0. On the other hand, the formula
(2.30) involves the probability density function evaluated on the boundary of the
domain. Even if the (weak) limit of the particle probability measures have density
functions p∗2(y, s; y′, s′|x, t) and p∗(y, s|x, t), they are undefined at the boundary ∂Ω ,
which is a Lebesgue zero-measure set. In general, the probability density functions
will not have pointwise limits as ν, κ→ 0 and, in the example of pure diffusion on
the half-line discussed above, they diverge when all three points x, y, y′ are located
on the left boundary at 0!

On the other hand, we can extend all of our results relating spontaneous
stochasticity and anomalous scalar dissipation to general choices of wall fluxes,
if we make the additional assumption that pointwise limits of densities exist for all
x, y, y′ ∈Ω

lim
ν,κ→0

pν,κ2 (y, s; y′, s′|x, t)= p∗2(y, s; y′, s′|x, t), lim
ν,κ→0

pν,κ(y, s|x, t)= p∗(y, s|x, t),

(2.31a,b)
so that the limit of the variance in (2.30) exists and is given by the formula

lim
ν,κ→0

Var
[∫ t

0
g(ξ̃t,s(x), s) d̂ ˜̀t,s(x)

]
=

∫ t

0
ds
∫ t

0
ds′
∫

dHd−1(z)
∫

dHd−1(z′)

×g(z, s)g(z′, s′) [p∗2(z, s; z′, s′|x, t)− p∗(z, s|x, t)p∗(z′, s′|x, t)]. (2.32)

This assumption, of course, rules out the presence of scalar boundary layers of the
type discussed above. The necessity of spontaneous stochasticity for anomalous scalar
dissipation is immediate, because factorization p∗2(y, s; y′, s′|x, t) = p∗(y, s|x, t)p∗
(y′, s′|x, t) of the limit densities implies that all variances tend to zero. If the scalar is
passive, then sufficiency holds as well. Consider, for simplicity, the case of vanishing
internal source S ≡ 0. As in Part I, § 4 and appendix A, we can make a smooth
choice of scalar initial data θ0 so that the volume average of the limiting variance in
(2.18) is strictly positive, whenever non-factorization holds for a positive-measure set
of x ∈Ω . The limit variance in (2.32) involving the boundary flux g is non-negative

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

57
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.571


Fluctuation–dissipation relation 251

when it exists at all. If the covariance term involving both θ0 and g is negative,
then by taking θ0→−θ0 the covariance can be made positive without changing the
sign of either of the two variances involving θ0 and g separately. In this manner,
for any possible choice of wall fluxes g, an initial condition θ0 for the passive
scalar advection equation always exists so that scalar dissipation is non-vanishing as
ν, κ→ 0. The same conclusion holds also for an active scalar, barring a ‘conspiracy’
in which all Lagrangian particles at time 0 originating from almost every point x∈Ω
at time t are confined to a single isoscalar surface of θ0 for that x, even when varying
over all possible θ0. It is this unlikely coincidence which must be ruled out by a
rigorous proof. In this manner we see that all of our previous conclusions for flows
without walls or for zero fluxes at the walls, can be extended to the case of general
wall-fluxes g, whenever the stringent assumption (2.31) on pointwise limits is valid.

3. Imposed scalar values at the wall and mixed conditions

In this section we extend our previous results as far as possible to advection–
diffusion of scalars in wall-bounded domains with the general mixed Dirichlet–
Neumann conditions (1.2), (1.3). It turns out that imposing scalar values (Dirichlet
conditions) on even part of the boundary leads to much more essential difficulties than
imposing fluxes (Neumann conditions). In particular, the arguments used earlier for
deriving a Lagrangian fluctuation–dissipation relation no longer allow us to express
the total volume-integrated scalar dissipation in purely Lagrangian terms. Instead,
we can derive two distinct FDRs, one relation giving a lower bound on total scalar
dissipation in purely Lagrangian terms and another relation of mixed Euler–Lagrangian
character for the total scalar dissipation. The inequality relation allows us to deduce
that anomalous dissipation can result from spontaneous stochasticity, but not that
spontaneous stochasticity is necessary (In fact, we provide an analytical example
of pure heat conduction exhibiting a dissipative anomaly due entirely to thin scalar
boundary layers (appendix B).). The equality relation is more useful for physical
purposes. We thus derive both relations. We first consider the special case of a scalar
θ(x, t) with pure Dirichlet boundary conditions (∂ΩD = ∂Ω):

∂tθ + u · ∇θ = κ1θ + S for x ∈Ω,
θ(x, t)=ψ(x, t) for x ∈ ∂Ω,

}
(3.1)

for given initial data θ0, boundary data ψ, and source field S(x, t). Of course, pure
Dirichlet conditions are often encountered in practice, e.g. turbulent channel flow with
opposite walls held at two fixed temperatures. This special case already presents the
essential new difficulties and, after analysing it in detail, we shall briefly comment on
modifications required for the general mixed case.

3.1. Stochastic representation and fluctuation–dissipation relation
The standard stochastic representation of solutions of the problem (3.1) involves
stochastic particles which are stopped at the boundary, contributing a term due to
the value maintained at the wall (Keanini 2007; Soner 2007; Oksendal 2013). The
stochastic flow may again be defined with reflection at the boundary, governed by
the equation (2.2) involving the boundary local time. The new notion is the boundary
(first) hitting time or stopping time, which is defined for x ∈ Ω by the larger of
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x

yt

FIGURE 4. A schematic of the space–time domain D for a disk-shaped space domain
Ω ⊆ R2, together with realizations of the process ξ̃t,s(x) satisfying (2.2) and stopped at
the exit surface S = Sb ∪ Ss. Some trajectories reach the base Sb at random points ξ̃t,0(x)
whereas others hit the side surface Ss at points ξ̃t,τ̃ (x,t)(x) and are stopped there.

sup{s : ξ̃t,s(x) ∈ ∂Ω}, the first time going in reverse to hit the spatial boundary, and
the initial time 0, or

τ̃ (x, t)=max{sup{s : ξ̃t,s(x) ∈ ∂Ω}, 0}. (3.2)

This is the first time (going backward) at which the stochastic Lagrangian particle
hits the space–time exit surface S, the union of the ‘side surface’ Ss = ∂Ω × [0, t)
and the ‘base’ Sb = Ω × {0} of the right cylindrical domain D = Ω × [0, t) in
(d + 1)-dimensional space–time, when starting at a point (x, t) in the ‘top’
St =Ω × {t}. See figure 4.

To state conveniently the stochastic representation, we define the function which
gives the data on S:

Θ(x, s)=

{
ψ(x, s), s> 0 and x ∈ ∂Ω
θ0(x), s= 0 and x ∈Ω.

(3.3)

Using the backward Itō formula (2.7) and integrating from time t down to the hitting
time τ̃ (x, t) gives

θ(x, t) = Θ(ξ̃t,τ̃ (x,t)(x), τ̃ (x, t))+
∫ t

τ̃ (x,t)
dt′ S(ξ̃t,t′(x), t′)

+
√

2κ
∫ t

τ̃ (x,t)
d̂W̃t′ · ∇θ(ξ̃t,t′(x), t′), (3.4)

where we used the fact that ˜̀t,s(x) ≡ 0 for all τ̃ (x, t) < s < t and also used the
system (3.1). Taking the expectation over the Brownian motion then yields for
solutions of the initial boundary-value problem the following stochastic representation:

θ(x, t)=E
[
Θ(ξ̃t,τ̃ (x,t)(x), τ̃ (x, t))+

∫ t

τ̃ (x,t)
ds S(ξ̃t,s(x), s)

]
. (3.5)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

57
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.571


Fluctuation–dissipation relation 253

See Keanini (2007), Soner (2007) and Oksendal (2013) for more details. In particular,
the Itō integral in (3.4) is a (backward) martingale by the optional stopping theorem
(Oksendal 2013). This formula represents the solution θ(x, t) to the scalar advection–
diffusion equation as an average over randomly sampled sources and initial boundary
data.

It is now straightforward to obtain our first version of a fluctuation–dissipation
relation by mimicking previous arguments. Applying the Itō isometry valid with the
random stopping time as the lower range of the integral (see e.g. Oksendal 2013,
Theorem 7.4.1)

E
∣∣∣∣∫ t

τ̃ (x,t)
d̂W̃s · ∇θ(ξ̃t,s(x), s)

∣∣∣∣2 =E
[∫ t

τ̃ (x,t)
ds |∇θ(ξ̃t,s(x), s)|2

]
. (3.6)

Thus we obtain from (3.4), (3.5) that

Var
[
Θ(ξ̃t,τ̃ (x,t)(x), τ̃ (x, t))+

∫ t

τ̃ (x,t)
ds S(ξ̃t,s(x), s)

]
= 2κ E

[∫ t

τ̃ (x,t)
ds |∇θ(ξ̃t,s(x), s)|2

]
. (3.7)

Finally, averaging over the space domain yields

1
2

〈
Var
[
Θ(ξ̃t,τ̃ (t), τ̃ (t))+

∫ t

τ̃ (t)
ds S(ξ̃t,s, s)

]〉
Ω

= κ

〈
E
[∫ t

τ̃ (t)
ds |∇θ(ξ̃t,s, s)|2

]〉
Ω

. (3.8)

This exact result is one possible version of a fluctuation–dissipation relation for scalar
turbulence with general Dirichlet boundary conditions.

Unlike our previous relations, however, the right-hand side of (3.8) above is not the
total time-integrated scalar dissipation over the entire domain of the flow. The relation
easily yields a lower bound on the total scalar dissipation by simply extending the
time integration down to s= 0,

1
2

〈
Var
[
Θ(ξ̃t,τ̃ (t)(τ̃ (t)))+

∫ t

τ̃ (t)
ds S(ξ̃t,s, s)

]〉
Ω

6 κ

〈
E
[∫ t

0
ds |∇θ(s)|2

]〉
Ω

, (3.9)

because the s-integrand is non-negative and the reflected stochastic flow is volume
preserving, so that the Jacobian of the change of variables from ξ̃t,s(x) to x is unity.
The difference between the right-hand and left-hand sides is

∆ν,κ(t) ≡ κ

∫ t

0
ds

1
|Ω|

∫
Ω

ddx|∇θ(x, s)|2 − κ E
[

1
|Ω|

∫
Ω

ddx
∫ t

τ̃ (x,t)
ds|∇θ(ξ̃t,s(x), s)|

2
]

= κ

∫ t

0
ds E

[
1
|Ω|

∫
Ω̃t,s

ddx|∇θ(ξ̃t,s(x), s)|
2
]
, (3.10)

where

Ω̃t,s = {x ∈Ω : τ̃ (x, t) > s} (3.11)
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is the set of positions x for which the stochastic particle has already hit the boundary
by time s (going backward). The inequality (3.9) thus fails to be an equality because
of the missing contributions to total dissipation at positions of reflected particles. We
shall discuss further below the sharpness of the inequality (3.9) and whether it should,
in a suitable limit, become equality.

3.2. Numerical results
To gain further insight, we present now some numerical results on PDFs of hitting
times for the channel-flow database. We considered two release points in the buffer
layer at height 1y = 10δτ above the bottom wall and at the final time tf of the
database. The wall-parallel positions of the release points are those shown in figure 2,
and thus one is in a high-speed streak and the other in a low-speed streak. It turns
out that to calculate hitting-time PDFs accurately using N-sample ensembles of
particles is quite difficult, because most particles take a very long time to first hit
the boundary. For our results presented here, we evolved N = 14 336 samples of
stochastic particles solving (2.2) for three Prandtl numbers Pr = 0.1, 1, 10 at both
release points. Note that hitting times τ satisfying tf − τ � τν and tf − τ � τν are
both very rare events which could not be observed even with so many samples. We
thus consider here the logarithmic variable λ≡ ln((tf − τ)/τν) which is appropriate to
typical values and calculate PDFs p(λ|x, tf ). The numerical procedures are discussed
at length in appendix D.2. Here we just note that the PDFs are obtained up to the
largest available λ= ln(tf /τν)

.
= 7.17 and down to λ=−1, but the PDFs at the two

extremes contain further errors that are not indicated by the error bars (representing
both s.e.m. for N-samples averages and variation with kernel bandwidth). The PDFs
for λ < 1.6 are shifted to the right by approximately 5 %, because our time step
1s .= 2 × 10−3 cannot fully resolve the smaller hitting times. For λ > 6.5 the PDFs
from kernel density estimates are too small, because of the end point effect due to
unavailability of samples for λ > 7.17. Our numerical procedures show the same
deficiencies when applied to pure Brownian motion, but successfully recover the
known analytical results for that case in the range 1.6< λ< 6.5.

We plot in figure 5 the PDFs p(λ|x, tf ) for the two choices of x, the left panel
corresponding to particles released in a high-speed streak and the right to particles
released in a low-speed streak. We also plot for comparison the analytical results for
hitting-time PDFs with pure diffusion (see (D 4) of appendix D.2). One can see in
figure 5 a very strong effect of the release point on the hitting-time statistics, unlike
the situation for the boundary local times accumulated over one flow-through time.
At Pr = 0.1 and 1, hitting times are clearly larger than those of pure diffusion for
release in a high-speed streak and smaller for release in a low-speed streak. This
effect is easy to understand, because particles released in a low-speed streak are
advected toward the wall backward in time, and those released in a high-speed streak
swept away from the wall. This effect is not observed for Pr= 10, with hitting times
for pure diffusion very obviously shorter than those for advected particles started in
both high-speed and low-speed streaks. This occurs presumably because advection
alone can never bring a particle to the wall in a finite time (because of the vanishing
velocity there) and as diffusivity κ decreases one sees more strongly the effect of
fluid advection, which transports the particles away from the wall. One can see in
general a strong effect of diffusivity on the hitting times, with smaller values of κ
(or larger Pr) leading to larger hitting times backward in time. We shall refer to this
property in our discussion below of the sharpness of the inequality (3.9). However,
we first exploit this inequality to prove also for Dirichlet boundary conditions that
spontaneous stochasticity is sufficient for anomalous dissipation of passive scalars.
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FIGURE 5. (Colour online) PDFs of the logarithmic hitting-time variable λ = ln((tf −

τ)/τν). (a) Particles released in a high-speed streak, (b) particles released in a low-speed
streak, for channel flow (heavy) and pure diffusion (light) for Prandtl numbers Pr = 0.1
(green, dot, · · · · · ·), 1.0 (blue, dash-dot, — · —) and 10 (red, dash, - - - -).

3.3. Spontaneous stochasticity implies anomalous dissipation
The argument is very similar to those given earlier. To present it first in the simplest
context, we consider a decaying scalar with vanishing source (S = 0). We first
introduce an analogue of the formula (2.18) for the variance which constitutes the
lower bound. There is a natural measure on the exit surface S (see figure 4) which
is just the d-dimensional Hausdorff measure Hd on subsets of (d + 1)-dimensional
space–time, restricted to S. This can be described in elementary terms using natural
d-dimensional coordinates σ on S, where on Sb we have σ = (y, 0) for y ∈Ω and
on Ss we have σ = (z, τ ) for z ∈ ∂Ω, the presumed smooth bounding wall surface,
and τ ∈ [0, t]. Then for σ ∈ S

Hd(dσ )=

{
ddy σ = (y, 0) ∈ Sb

dHd−1(z)dτ σ = (z, τ ) ∈ Ss.
(3.12)

Here Hd−1 is the (d− 1)-dimensional Hausdorff measure on the smooth wall surface
∂Ω (that is, the usual (d− 1)-dimensional surface area dS). We can then also define
the delta distribution δS(σ ′, σ ) on S with respect to measure Hd, so that∫

S
Hd(dσ ′)f (σ ′)δS(σ ′, σ )= f (σ ) (3.13)

for all smooth functions on S, and we can likewise decompose this delta function as

δS(σ
′, σ )=

{
δd(y′ − y) σ ′, σ ∈ Sb

δ∂Ω(z′, z)δ(τ ′ − τ) σ ′, σ ∈ Ss.
(3.14)

Denoting by σ̃ (x, t)= (ξ̃t,τ̃ (x,t)(x), τ̃ (x, t)) the space–time point where the trajectory first
hits S (going backward in time), we can then introduce 1-time transition probability
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densities for a particle to go backward in time from points (x, t) on the ‘top’ surface
Ω × {t} of the space–time cylinder and to arrive first to S at the point σ ∈ S:

qν,κ(σ |x, t) = E[δS (σ , σ̃ (x, t))]

=

{
E[δd(y− ξ̃t,0(x))] σ = (y, 0) ∈ Sb

E[δ∂Ω(z− ξ̃t,τ (x))δ(τ − τ̃ (x, t))] σ = (z, τ ) ∈ Ss.
(3.15)

This probability density is normalized with respect to Hd on S so that∫
S

Hd(dσ )q(σ |x, t)= 1. (3.16)

In these terms we obtain a simple formula for the stochastic representation (3.5) in
the case of vanishing scalar source:

θ(x, t)=E[Θ(σ̃ (x, t))] =
∫
S

Hd(dσ ) Θ(σ ) q(σ |x, t). (3.17)

We note in passing here that there is another representation for q(σ |x, t) in terms of a
process of stochastic Lagrangian particles which is distinct from that considered so far.
Rather than letting the particles reflect off the wall, one can instead kill the particles
when they hit the wall (absorbing boundary conditions). If k(a, s|x, t) for s< t is the
transition probability density for this killed process backward in time, then

q(σ |x, t)=
{

k(y, 0|x, t) σ = (y, 0) ∈ Sb

µ(z, τ ) · ∇zk(z, τ |x, t) σ = (z, τ ) ∈ Ss.
(3.18)

Here we make use of the general connection between the joint density function
of the hitting time and location and between the normal derivative of the transition
probability for the killed process; see Freı̆dlin (1985) and Hsu (1986). This alternative
stochastic interpretation will prove useful for calculations in appendix B.

We can obtain a similar formula as (3.17) for the variance, if we introduce also the
corresponding twofold transition probabilities

qν,κ2 (σ , σ ′|x, t)=E[δS(σ , σ̃ (x, t))δS
(
σ ′, σ̃ (x, t)

)
] = δS(σ , σ

′)q(σ |x, t), (3.19)

so that

Var[Θ(σ̃ (x, t))] =
∫
S

Hd(dσ )

∫
S

Hd(dσ ′) Θ(σ )Θ(σ ′)

×[q2(σ , σ
′
|x, t)− q(σ |x, t)q(σ ′|x, t)]. (3.20)

These results are formally identical to those for the sourceless (S = 0) scalar
in domains without boundary or with zero-flux Neumann conditions at the wall.
Furthermore, S is a compact subset of space–time. Thus, we can exactly mimic our
previous arguments with no change. Limits q∗, q∗2 as νj, κj → 0 always exist along
suitable subsequences νj, κj. If the limits were deterministic, then one would have

q∗2(σ , σ
′
|x, t)= q∗(σ |x, t)q∗(σ ′|x, t) (3.21)
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Fluctuation–dissipation relation 257

so that q∗2 would factorize in a product of two q∗ values. However, if the limits
are non-deterministic so that q∗2 does not factorize for a positive-measure set of x
at time t, then there must be some smooth choice of Θ = (θ0, ψ) that makes the
non-negative space-averaged variance in (3.20) in fact non-zero. For such choice of
initial condition θ0 and boundary conditions ψ , the space-averaged and time-integrated
scalar dissipation will then be non-zero taking the limit νj, κj → 0. As before, this
argument works rigorously only for a passive scalar, not an active one. An additional
limitation discussed further in appendix C is that we cannot use this argument to
prove, for a fixed choice of the boundary data ψ, that spontaneous stochasticity
implies there exists a smooth initial datum θ0 for which the scalar dissipation rate
is positive (These comments have implications for the problem of Rayleigh–Bénard
convection with fixed temperatures at top/bottom plates, which is discussed in Part III.
There is some evidence for Richardson dispersion of Lagrangian particles in numerical
simulations of turbulent convection (Schumacher 2008). However, even if there were
compelling evidence for spontaneous stochasticity associated with this effect, we
could not rigorously conclude from our results that there is anomalous thermal
dissipation. First, the temperature is an active scalar in that case and, second, our
present arguments do not work with fixed boundary data). Minor changes to these
arguments are needed to incorporate a bulk source S and we leave details also to
appendix C.

The previous arguments do not imply that spontaneous stochasticity is required
for anomalous scalar dissipation with imposed scalar values at the wall. Even if
the factorization (3.21) holds and there is no spontaneous stochasticity, the variance
in (3.20) provides only a lower bound to the scalar dissipation. Hence, the scalar
dissipation rate can tend to a non-zero limit even when the variance vanishes! This is
not just a failure of the proof, but also an indication that other physical mechanisms
are available to produce anomalous dissipation with Dirichlet boundary conditions.
The most obvious alternative mechanism is a narrow scalar boundary layer at the
walls. One can imagine a flow with extremely rapid advective mixing in the interior
and with opposite scalar values ±ψ0 imposed at two ends, so that large scalar
gradients of the order ∇θ ∼ O(ψ0/κ) are achieved in a boundary layer of thickness
∼O(κ) and a near-zero scalar amplitude θ ' 0 occurs over the bulk of the domain.
Such a flow would be the simplest that provides anomalous scalar dissipation from a
scalar boundary-layer mechanism. For example, one might consider a fluid undergoing
solid-body rotation with frequency ω in the interior of the domain and an imposed
inhomogeneous temperature distribution on the boundary varying between −ψ0 and
+ψ0. In the rotating frame of reference, this would correspond to a motionless fluid
(pure heat conduction) but with a time-dependent boundary temperature oscillating
with frequency ω between the extreme values ±ψ0.

As the simplest example of this type, consider pure diffusion on the interval [0,H]
with θ0 = S ≡ 0 and boundary temperatures specified as ψ(0, t) = ψ0 sin(ωt) and
ψ(H, t)= 0. In this case, the stochastic scalar field is simply

θ̃ (x, t)=ψ0 sin(ωτ̃ (x, t)). (3.22)

The scalar field θ(x, t) = E[θ̃ (x, t)] can be constructed with the knowledge of the
hitting-time distribution at zero for Brownian motion on the half-line, which is

pκ(τ |x, t)=


x

√
4πκ(t− τ)3

exp
(
−

x2

4κ(t− τ)

)
τ < t

0 τ > t.
(3.23)
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See appendix B. The solution θ(x, t) of the conduction problem can be obtained by
integration over the above distribution, and scalar gradients can then be explicitly
computed; see (B 23). Temperature fluctuations are found to propagate with velocity
(κω)1/2 and travel to distances (κ/ω)1/2 away from the wall. In this small boundary-
layer region, the scalar field gradients diverge as ∂xθ ∼ ψ0(ω/κ)

1/2 as κ → 0. We
obtain ∫ L

0
dx κ|∂xθ(x, t)|2 ∝ (κ/ω)1/2 · κ ·ψ2

0 (ω/κ)∼ψ
2
0

√
κω. (3.24)

See (B 14) for a more precise statement. The scalar field in this simple example
exhibits anomalous dissipation if ω is very large for κ → 0, e.g. with ω ∼ κ−α for
α> 1. In particular, for α= 1 the limiting scalar dissipation rate is non-zero and finite
as κ → 0, with scalar gradients and boundary-layer thicknesses as suggested in the
previous paragraph. Thus, just as for flux boundary conditions, thin scalar boundary
layers can be a source of non-zero (possibly diverging) dissipation as ν, κ→ 0.

3.4. Equality fluctuation–dissipation relation
We now return to the question whether our lower bound (3.9) on the cumulative (time-
and space-integrated) scalar dissipation may in fact be an equality. This is certainly
not true in the t→∞ limit with κ, ν fixed. We note that

lim
t→∞

Ω̃t,s =Ω, any fixed s> 0 (3.25)

since the boundary hitting times are finite almost surely for κ, ν > 0 (see Karlin &
Taylor 1981, chap. 15, § 11) and, thus, the particle released in the far distant future t
will certainly hit the space boundary ∂Ω before s (moving backward in time). Thence
by dominated convergence

lim
t→∞

E

[∫
ξ̃t,s(Ω̃t,s)

ddx κ |∇θ(x, s)|2
]
= κ

∫
Ω

ddx |∇θ(x, s)|2 (3.26)

and the contribution of reflected particles coincides at long times with the total
dissipation. A strengthened conclusion is that

lim
t→∞

Ω̃t,s =Ω, uniformly for all s such that t− δ(t)> s > 0, (3.27)

for some function δ(t)> 0 such that limt→∞ δ(t)=∞, limt→∞ δ(t)/t= 0. This is true
because the difference t− s> δ(t) for all such s. In that case, however, we see that

lim
t→∞

1
t
∆ν,κ(t)= lim

t→∞

1
t

∫ t

0
ds

1
|Ω|

∫
Ω

ddx κ|∇θ(x, s)|2, (3.28)

where ∆ν,κ(t) is the difference in (3.10). Thus, our lower bound (3.9) on space–time
average dissipation becomes vacuous as t→∞, with the long-time limit of the lower
bound simply tending to zero as reflected particles fill the entire domain.

Now consider the opposite limit with ν, κ → 0 for fixed t. If we keep ν fixed
so that the velocity stays smooth, then no particles will reach the boundary in the
finite time interval [0, t] as κ→ 0. An increase of hitting times with decreasing κ for
fixed ν is clearly observed in figure 5. In this limit, the inequality in our lower bound

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

57
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.571


Fluctuation–dissipation relation 259

becomes equality. However, as long as u is smooth, then there will be no dissipative
anomaly and the scalar dissipation will vanish! Thus, this limit is of little interest.
On the other hand, if we take ν, κ→ 0 together, then it is possible that the particles
will hit the boundary and reflect. In fact, this must be the case if there is a scalar
dissipative anomaly at finite times t for flux boundary conditions and vanishing initial
data of the scalar and vanishing scalar sources, since then the FDR (2.13) is solely
due to the contribution of the boundary local times in (2.11). If particles continue to
hit the boundary as ν, κ→ 0 for fixed time t, then our lower bound must be a strict
inequality (but possibly non-vanishing for finite t).

It is straightforward, however, to obtain an equality relation for the scalar dissipation
by using the same derivation as for flux boundary conditions, namely, by using the
backwards Itō formula (2.7) and integrating from time t down to 0, rather than
stopping when hitting the boundary. This argument yields for the scalar itself

θ(x, t)=E
[
θ0(ξ̃t,0(x))+

∫ t

0
ds S(ξ̃t,s(x), s)− κ

∫ t

0
µ · ∇θ(ξ̃t,s(x), s) d̂ ˜̀t,s(x)

]
(3.29)

and for the variance

1
2

〈
Var
[
θ0(ξ̃t,0)+

∫ t

0
ds S(ξ̃t,s, s)− κ

∫ t

0
µ · ∇θ(ξ̃t,s(x), s) d̂ ˜̀t,s

]〉
Ω

= κ

∫ t

0
ds
〈
|∇θ(s)|2

〉
Ω
, (3.30)

which is our second version of a fluctuation–dissipation relation for Dirichlet
boundary conditions of the scalar. The total scalar dissipation is now obtained,
with the contribution of the reflected particles represented by the boundary local-time
density term on the left. Unfortunately, this new formula is not very convenient for
mathematical analysis, because the scalar boundary flux g(x, t)=−µ · ∇θ(x, t) is no
longer a known input, but is instead a space–time fluctuating quantity which must be
determined from the solution of the scalar advection–diffusion equation. This relation
thus has a mixed Euler–Lagrangian character, because it involves both the Eulerian
scalar field θ(x, t) and the stochastic Lagrangian flow ξ̃t,s. Despite being clumsy for
mathematical use, this relation is the physically most natural version of the FDR for
scalar Dirichlet boundary conditions, and provides insight into the Lagrangian origin
of scalar dissipation. In appendix B.2, we explicitly demonstrate the equivalence of
the formula (3.29) to the more standard representation (3.17) for the simple example
of heat conduction with oscillating wall temperature.

3.5. Mixed boundary conditions
The extension of the previous results to scalars with general mixed Dirichlet–Neumann
conditions (1.2), (1.3) is straightforward. Again, one considers the backward stochastic
flow with reflection at the boundary. To derive an FDR in the form of an inequality
like (3.8), one must stop those particles which hit ∂ΩD before time 0 (going
backward). The particles which hit ∂ΩN are simply reflected. Results like (3.7)
and (3.8) are obtained, except that now the stopping time τ̃ (x, t) is the first time to
hit ∂ΩD (or 0, whichever is larger) and the variance on the left includes contributions
from the local-time density at the piece ∂ΩN of the boundary. This FDR inequality
omits the contribution to scalar dissipation at locations of particles reflected from ∂ΩD.
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It is also easy to obtain an FDR equality like (3.30) by stopping no particles. It has
an identical form to (3.30) and the sole difference is that g(x, t)=−µ · ∇θ(x, t) is a
specified function for points x ∈ ∂ΩN but must be obtained for x ∈ ∂ΩD by solving
the advection–diffusion equation. We shall make use of this version of the FDR in
our discussion of turbulent Rayleigh–Bénard convection in the following Part III.

4. Summary and discussion

This paper has extended to flows in wall-bounded domains the Lagrangian
fluctuation–dissipation relation introduced in Part I for scalars advected by an
incompressible fluid. This relation expresses an exact balance between molecular
dissipation of the scalar and input of scalar variance from the initial values, boundary
fluxes and internal sources as these are sampled by stochastic Lagrangian trajectories
backward in time. We have exploited this relation to prove, for domains with no
scalar flux through the wall, that spontaneous stochasticity of Lagrangian trajectories
is necessary and sufficient for anomalous dissipation of passive scalars, and necessary
(but possibly not sufficient) for anomalous dissipation of active scalars. Cream stirred
into coffee is an everyday example of this type, as is any scalar advected by a fluid
in a container with impermeable walls. For more general mixed boundary conditions
on the scalar, with imposed values at the wall or imposed non-zero fluxes, simple
examples show that thin scalar boundary layers provide a distinct mechanism for
non-vanishing scalar dissipation. Nevertheless, we can still show rigorously for general
scalar boundary conditions that spontaneous stochasticity is sufficient for anomalous
dissipation of passive scalars, and this result plausibly extends to active scalars as
well. Thus, in addition to scalar boundary layers, Lagrangian spontaneous stochasticity
is shown here to be another possible source of anomalous scalar dissipation in
wall-bounded flows.

An interesting issue for further study is whether Lagrangian spontaneous stochasticity
plays any role in anomalous dissipation of kinetic energy in wall-bounded flows. There
is some evidence from experimental measurements of turbulence in closed containers
that, while the kinetic energy dissipation due to viscous boundary layers decreases
very slowly with increasing Reynolds number, the energy dissipation in the bulk of
the turbulent flow is very nearly Reynolds number independent (Cadot et al. 1997).
It appears possible that such ‘anomalous dissipation’ in the bulk is produced by very
similar mechanisms as energy dissipation in homogeneous, isotropic turbulence and
thus may be related to spontaneous stochasticity in the bulk, as discussed in Part I.
Note that the stochastic Lagrangian representation of incompressible Navier–Stokes
solutions discussed in Part I has been successfully extended to wall-bounded flows
with stick boundary conditions for the velocity at the wall (Constantin & Iyer 2011).
The Lagrangian dynamics of vorticity in this stochastic formulation generalizes the
classical Helmholtz theorem for ideal Euler solutions. Indeed, similar to the case of
scalar fields with Dirichlet conditions discussed in § 3, the vorticity field at a point
is an average of ‘frozen-in’ vorticity vectors that are transported along an ensemble
of stochastic Lagrangian trajectories backward in time. Those trajectories that hit
the wall transport the vorticity that they encounter there, while those that never hit
the wall before time 0 transport the initial vorticity. See Constantin & Iyer (2011)
for detailed discussion and proofs. These results make it possible to study in detail
the contribution of Lagrangian vorticity dynamics, e.g. stretching of vortex filaments,
to turbulent energy dissipation in wall-bounded flows. A crucial difference from
homogeneous, isotropic turbulence, however, is that random stretching dynamics is
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insufficient to explain energy dissipation in the presence of walls, but instead vortex
lines generated at the wall must undergo organized motion away from the wall (Taylor
1932; Huggins 1970; Eyink 2008). We therefore expect that the effects of walls on
Lagrangian mechanisms of turbulent energy dissipation are quite profound.

The Lagrangian fluctuation–dissipation relation proved in the present paper is valid
in wall-bounded flows for all scalars, passive or active, whether either Lagrangian
spontaneous stochasticity or scalar anomalous dissipation occur or not in a particular
flow. In general, the FDR provides a novel Lagrangian view of turbulent scalar
dissipation. In the following Part III we apply the FDR derived here to turbulent
Rayleigh–Bénard convection, where the mean thermal dissipation rate and the mean
kinetic energy dissipation rate are closely related to each other and also to the
vertical heat transport through the convection cell. In Rayleigh–Bénard turbulence it
is well known that dissipative anomalies for kinetic energy and thermal fluctuations,
if they exist, lead to an ‘ultimate regime’ of convection at high Rayleigh numbers,
with scaling of the heat flux as predicted by Spiegel (1971) or, with a logarithmic
correction, by Kraichnan (1962). The absence of dissipative anomalies instead leads
to a weaker dependence of heat flux on Rayleigh number than predicted by the
Kraichnan–Spiegel theories. Exploiting our Lagrangian FDRs (2.13) and (3.30) we
are able to relate the thermal dissipation rate in Rayleigh–Bénard turbulence to the
integral mixing time required for passive tracers released at the top or bottom wall to
attain to their final uniform value near those walls. We conclude from our analysis that
dissipative anomalies and Kraichnan–Spiegel scaling will hold, unless this near-wall
mixing time is asymptotically much longer than the gravitational free-fall time or,
nearly, the large-scale circulation time. This concrete application thus provides a
wider window into the Lagrangian mechanisms of turbulent dissipation.
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Appendix A. Heat conduction with imposed fluxes
As an illustration of the general formalism and also as basis of comparison for

advected scalars, we consider here the Neumann problem for the diffusion equation
on the interval [0, H], with imposed fluxes at the end points. As in the main text,
we adopt the terminology of heat conduction and thus consider the scalar to be
temperature. We work out explicit analytical results for the stochastic representation
and fluctuation–dissipation relation in the limit κ→ 0 at any fixed time t.

The problem considered is stated precisely as

∂tT = κ∂2
x T for x ∈ [0,H]

κ∂xT =−J at x= 0,H

T = 0 at t= 0.

 (A 1)
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The scalar flux J at the boundaries is a space–time constant and also independent of κ .
The Green’s function for the problem (A 1) or, equivalently, the transition probability
density of the reflected Brownian motion, satisfies, for all t > 0 and x ∈ [0, H], the
backward evolution equation:

∂sp(a, s|x, t)=−κ∂2
a p(a, s|x, t) for (a, s) ∈ [0,H] × [0, t]

∂ap(a, s|x, t)= 0 at a= 0,H

p(a, t|x, t)= δ(a− x).

 (A 2)

The solution to (A 2) can be represented using Fourier cosine series:

p(a, s|x, t)=
1
H
+

2
H

∞∑
n=1

cos
(nπ

H
x
)

cos
(nπ

H
a
)

e−κ(nπ/H)2(t−s). (A 3)

A.1. Temperature profile and boundary layer
The temperature field can be represented via mean boundary local times at x= 0 and
x=H using the general stochastic representation formula (2.9):

T(x, t)=−J(E ˜̀0t,0(x)−E ˜̀Ht,0(x))= J
∫ t

0
ds (p(0, s|x, t)− p(H, s|x, t)) . (A 4)

We first study the limiting profile T(x, t) as κ→ 0 via the stochastic representation
(A 4). In the coarsest sense, this limit can be obtained from the convergence of the
mean local times to delta distributions at the boundary. Indeed, integrating against an
arbitrary smooth test function ϕ ∈ C∞[0, H] satisfying ϕ′(0) = ϕ′(H) = 0, we have,
using the representation (A 3):

−

∫ H

0
dx ϕ(x) E ˜̀σH

t,0 (x)= a0t+
H2

κπ2

∞∑
n=1

(−1)nσ

n2
(1− e−κ(nπ/H)2t)an, (A 5)

where σ = 0, 1 and

a0 =
1
H

∫ H

0
ϕ(x) dx, an =

2
H

∫ H

0
ϕ(x) cos

(nπ

H
x
)

dx. (A 6a,b)

Because the Fourier coefficients an are rapidly decaying in n for smooth ϕ, the series
is absolutely convergent and the κ→ 0 limit yields

lim
κ→0

∫ H

0
dx ϕ(x)

(
−E ˜̀σH

t,0 (x)
)
= t

[
a0 +

∞∑
n=1

(−1)nσan

]
= tϕ(σH), (A 7)

where we have used ϕ(x)= a0 +
∑
∞

n=1 an cos((nπ)/Hx). Therefore we find

−lim
κ→0

E[ ˜̀0t,0(x)] = tδ(x), −lim
κ→0

E[ ˜̀Ht,0(x)] = tδ(x−H), (A 8a,b)

in the sense of distributions and thus

lim
κ→0

T(x, t)= Jt(δ(x)− δ(x−H)) (A 9)

in the sense of distributions.
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These delta functions represent thin thermal boundary layers for small values of
κ > 0. The small-κ asymptotics can be inferred by rewriting the transition density
(A 3) as

p(a, s|x, t)

=
1
H

∞∑
n=−∞

cos
(nπ

H
x
)

cos
(nπ

H
a
)

e−κ(nπ/H)2(t−s)

=
1

√
4κπ(t− s)

∞∑
n=−∞

(
exp
(
−
(x− a+ 2nH)2

4κ(t− s)

)
+ exp

(
−
(x+ a+ 2nH)2

4κ(t− s)

))
,

(A 10)

where we have employed the Poisson summation formula (see e.g. Katznelson 2004)
in passing to the second equality. This is a useful reformulation since series (A 10)
is rapidly convergent for κ(t − s)/H2

� 1 whereas (A 3) converges rapidly for κ(t −
s)/H2

� 1. Thus, at fixed t and H we can study the zero-diffusion limit κ→ 0 directly
from this formula. In particular, since x,a∈[0,H], the asymptotic transition probability
is

p(a, s|x, t) ∼
1

√
4κπ(t− s)

(
exp

(
−
(x− a)2

4κ(t− s)

)
+ exp

(
−
(x+ a)2

4κ(t− s)

)
+ exp

(
−
(x+ a− 2H)2

4κ(t− s)

))
as κ→ 0. (A 11)

All other terms in the sum (A 10) vanish transcendentally. In fact, for 0 6 a, x� H
only two terms remain,

p(a, s|x, t)∼
1

√
4κπ(t− s)

(
exp

(
−
(x− a)2

4κ(t− s)

)
+ exp

(
−
(x+ a)2

4κ(t− s)

))
as κ→ 0,

(A 12)

which may be recognized as the transition probability for the diffusion process X̃(s)=
|x +
√

2κW̃(t − s)| on the half-line [0, ∞), which is a (scaled) Brownian process
starting at x at time t moving backward in time s and reflected at the origin. This
result is intuitively clear, since the right boundary of the interval at H should play
no role for a, x � H in the limit κ → 0 at fixed times. By the exact symmetry
p(H − a, s|H − x, t)= p(a, s|x, t), there is a similar asymptotics with only two terms
surviving in (A 11) for a, x near H. We shall thus restrict our asymptotic analysis of
the thermal boundary layer to that near x = 0, and infer the result near x = H by
symmetry.

We introduce a scaled coordinate ξ = x/
√
κt which is held fixed as κ→ 0. From

the mean value −E ˜̀0t,0(x)=
∫ t

0 ds p(0, s|x, t) and (A 12) one easily obtains that

−E ˜̀0t,0
(√
κtξ
)
∼

( t
κ

)1/2

f (ξ), as κ→ 0, with f (ξ)=
1
√

π

∫ 1

0

du
√

u
exp

(
−
ξ 2

4u

)
.

(A 13)

The scaling function f (ξ) satisfies f (0)= 2/
√

π,
∫
∞

0 dξ f (ξ)= 1, and vanishes rapidly
for ξ � 1. The mean of the boundary local time ˜̀0t,0(x) vanishes transcendentally for
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x in the interior (0,H) of the domain, but the convergence is highly non-uniform. In
particular, at points within a distance

√
κt of the walls, the mean local times are of

order
√

t/κ . We immediately conclude for the temperature field that

T(x, t) ∼ J
( t
κ

)1/2
[

f
(

x
√
κt

)
− f

(
H − x
√
κt

)]
(A 14)

when κ � H2/t. This asymptotics refines the earlier result (A 9). Without the aid of
the diffusivity to spread it, the temperature rises unboundedly at the walls as κ→ 0.

We can use the above asymptotics to study also the temperature gradient and
the scalar dissipation. Indeed, by differentiating the formula (A 14) and using
f ′(ξ)=−erfc(ξ/2) in terms of the complementary error function, we obtain

∂xT(x, t)∼−
J
κ

[
erfc

(
x
√

4κt

)
+ erfc

(
H − x
√

4κt

)]
(A 15)

for κ � H2/t. This clearly satisfies the flux boundary conditions in (A 1). We can
exploit this formula to evaluate the space–time average of the thermal dissipation field
εT(x, t)= κ|∂xT(x, t)|2 in the limit κ→ 0. Using the improper integral

∫
∞

0 erfc2(z) dz=
1/
√

π(2−
√

2) (Ng & Geller 1969), it is straightforward to show that

〈εT〉V,t ≡
1
t

∫ t

0
ds

1
H

∫ H

0
dx κ|∂xT(x, s)|2 ∼

8
3
√

π
(2−
√

2)
J2

H

√
t
κ
. (A 16)

Apart from the precise numerical prefactor, this is the scaling that one would expect
for temperature gradients of magnitude ∂xT ∼ J/κ in a boundary layer of thickness
∼
√
κt.

A.2. Fluctuation–dissipation relation
We calculate next the variance in our local FDR (2.12) for the problem (A 1):

〈ε
fluc
T (x)〉t =

J2

2t
Var[( ˜̀Lt,0(x)− ˜̀

R
t,0(x))]. (A 17)

This ‘fluctuational dissipation’ has the same average over space as the time-averaged
molecular dissipation 1/t

∫ t
0 ds εT(x, s) and the two quantities are presumably spatially

well correlated at short times. To evaluate the space average of (A 17), we employ the
general formula (2.30) to write

〈ε
fluc
T 〉V,t =

2J2

H

∫ H

0
dx

1
t

∫ t

0
ds
∫ t

s
ds′

× ([p(0, s|0, s′)− p(0, s|x, t)]−[p(H, s|0, s′)− p(H, s|x, t)])p(0, s′|x, t). (A 18)

Here we have used the symmetry of the integral in s, s′ and the backward Markov
property of the transition probabilities. We have also made use of the 0↔H symmetry
after integrating over [0,H]. Using the asymptotics (A 11), we have for any x∈ [0,H],
keeping only the leading terms:
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[p(H, s|0, s′)− p(H, s|x, s′)]p(0, s′|x, t)

∼

exp
(
−

H2

4κ(t− s)

)
√

4κπ(s′ − s)
−

exp
(
−
(x−H)2

4κ(t− s)

)
√

4κπ(t− s)


exp

(
−

x2

4κ(t− s′)

)
√

4κπ(t− s′)


−→ 0 transcendentally, as κ→ 0. (A 19)

Thus, all heterohedral terms vanish as κ→ 0 and only homohedral terms contribute to
the scalar variance. Because of our use of the 0↔H symmetry, only the contributions
from 〈εfluc

T (x)〉t for 0 6 x�H survive (multiplied by 2), where as κ→ 0

〈ε
fluc
T ((κt)1/2ξ)〉t ∼

J2

t

∫ t

0
ds
∫ t

s
ds′[p(0, s|0, s′)− p(0, s|

√
κt ξ, t)]p(0, s′|

√
κt ξ, t)

∼
J2

κπt

∫ t

0
ds
∫ t

s
ds′

exp
(
−

ξ 2t
4(t− s′)

)
√
(s′ − s)(t− s′)

−

exp
(
−
ξ 2t(2t− s− s′)
4(t− s)(t− s′)

)
√
(t− s)(t− s′)

.
(A 20)

Integrating over ξ from 0 to ∞ and multiplying by 2/H gives, after a change of
variables to u= s/t, u′ = s′/t,

〈ε
fluc
T 〉V,t ∼

2
√

π

J2

H

( t
κ

)1/2 ∫ 1

0
du
∫ 1

u
du′
[

1
√

u′ − u
−

1
√

2− (u+ u′)

]
. (A 21)

The double integral is easily reduced to elementary integrals, with the value 4/3(2−
√

2). Thus, we obtain finally

〈ε
fluc
T 〉V,t ∼

8
3
√

π
(2−
√

2)
J2

H

√
t
κ
, κ→ 0, (A 22)

in exact agreement with (A 16).
The local dissipation measures 〈εfluc

T (x)〉t and 〈εT(x)〉t need not be the same
pointwise, but they should be closely correlated. To test this idea for pure heat
conduction, we have numerically evaluated the x-integrand in (A 18) after re-
symmetrization under the reflection x↔H − x, by using the analytical representation
(A 10) of the transition probabilities truncated to a finite number of terms. The double
time integral in (A 18) was evaluated using the Matlab function integral2, setting
absolute tolerance abstol=1e-10 and relative tolerance reltol=1e-8. In figure 6
we plot the resulting local scalar variance 〈εfluc

T (x)〉t using the three-term expansion
(A 11), but we have verified that adding further terms from the full expansion (A 10)
made no observable change. We also plot for comparison the local dissipation 〈εT(x)〉t
obtained from the asymptotic temperature gradient (A 15). Though not identical, we
see a close qualitative correspondence of the spatial behaviour of these two dissipation
measures, particularly for small dimensionless time τ ≡ κt/H2 when the dissipation
accumulates at the walls.
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FIGURE 6. Local thermal dissipation (black, solid) and scalar variance (grey, dashed) for
pure heat conduction on a one-dimensional interval, non-dimensionalized by J2/κ , plotted
for three dimensionless times τ ≡ κt/H2

= 5× 10−2, 5× 10−3, 5× 10−4. The dissipation
and variance both localize near the walls as τ decreases.

A.3. Boundary local-time density of reflected Brownian on the half-line
The formula (2.25) invoked in § 2.3 is a standard result for a Brownian motion on
the half-line (0,∞) reflected at 0, at least forward in time. Since the Wiener process
is time reversible, the formula holds also backward in time. However, even forward
in time we could find no reference which gave the result (2.25) for general values of
diffusivity κ > 0. Thus, we here very succinctly review the standard arguments which
lead to (2.25), with references to more detailed discussions.

If B̃(t) is a standard Brownian motion (Wiener process), then the Brownian motion
with diffusivity κ started at x> 0 and reflected at 0 is given by the simple formula

X̃(t)= |
√

2κB̃(t)− x|. (A 23)

Note that B̃(t) has units of (time)1/2 whereas X̃(t) has units of (length). The evolution
of X̃(t) can be obtained from the Tanaka equation for a > 0:

|B̃(t)− a| = a+
∫ t

0
sign(B̃(t)− a) dB̃(t)+

∫ t

0
ds δ(B̃(s)− a)

= a+ W̃(t)+ L̃t(a), (A 24)

where W̃(t)=
∫ t

0 sign(B̃(t)− a) dB̃(t) is another standard Brownian motion and L̃t(a)
is the local time of B̃(t) at point a. For these well-known results, see Karatzas
& Shreve (1991, § 3.6) and Rogers & Williams (2000, §§ IV.6.43–44). (Possibly
confusingly, there are different normalizations of local time in the literature, as
discussed by Karatzas & Shreve (1991, Remark 3.6.4) and Rogers & Williams (2000,
Remark IV.6.43.12). We follow the conventions of the latter.) Setting a = x/

√
2κ in
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Fluctuation–dissipation relation 267

the Tanaka equation and multiplying through by
√

2κ gives

X̃(t) = x+
√

2κW̃(t)+ κ
∫ t

0
ds δ(X̃(s))

= x+
√

2κW̃(t)+ κ ˜̀0,t(x). (A 25)

We used here that δ(X̃(t) − ε) = δ(
√

2κB̃(t) − x − ε) + δ(
√

2κB̃(t) − x + ε) for any
ε > 0, in order to relate the local times of B̃(t) and X̃(t). See Rogers & Williams
(2000, p. 101) and Karatzas & Shreve (1991, Remark 3.7.4). We have also used our
normalization convention for the boundary local-time density ˜̀0,t(x), which does not
incorporate the factor of κ into the definition of the local-time density.

We next note the expression for the boundary local-time density given by the
Skorohod equation

κ ˜̀0,t(x)=max
{

0, sup
06s6t

(−x−
√

2κW̃(s))
}
. (A 26)

See Karatzas & Shreve (1991, Lemma 3.6.14). Define W̃−(t) = −W̃(t), which
is another standard Brownian motion, and denote its maximum up to time t by
M̃(t)= sup06s6t W̃−(s), so that

κ ˜̀0,t(x)=max{0,−x+
√

2κM̃(t)}. (A 27)

It is well known (and easy to see) that if τ̃ (z) is the time for W̃−(t) to first hit z,
then

P(M̃(t) > z)= P(τ̃ (z) < t). (A 28)

The latter probability can be evaluated by the reflection principle:

P(τ̃ (z) < t)= 2P(W̃−(t) > z). (A 29)

See Karatzas & Shreve (1991, § 2.6). Thus, for z> 0,

P(M̃(t) < z)= 2P(W̃−(t) < z)− 1= 2Φt(z)− 1, (A 30)

with

Φt(z)=
1
√

2πt

∫ z

−∞

dy exp(−y2/2t). (A 31)

Using this result and (A 27) gives

P( ˜̀0,t(x) < `)=

2Φt

(
x+ κ`
√

2κ

)
− 1 for ` > 05

0 for ` < 0.
(A 32)

Finally, differentiating with respect to ` gives (2.25) in the main text.
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268 T. D. Drivas and G. L. Eyink

Appendix B. Heat conduction with oscillating temperature boundary conditions

We consider here consider the heat equation on the interval [0, H] with an
oscillating temperature imposed at the left end point. We work out explicit analytical
results for both stochastic representations (3.17)–(3.18) and (3.29), and briefly discuss
the fluctuation–dissipation relation (3.30) in the limit κ→ 0 at any fixed time t.

The problem considered is stated precisely as

∂tT = κ∂2
x T for x ∈ [0,H],

T = sin(ωt) at x= 0,
T = 0 at x=H,
T = 0 at t= 0.

 (B 1)

Here T is made dimensionless by division with ψ0, so that the maximum value at the
boundary x= 0 is unity. The Green’s function for the problem (B 1) or, equivalently,
the transition probability density of killed Brownian motion (absorbing boundaries),
satisfies, for all t> 0 and x ∈ [0,H], the backward evolution equation:

∂sk(a, s|x, t)=−κ∂2
a k(a, s|x, t) for (a, s) ∈ [0,H] × [0, t]

k(a, s|x, t)= 0 at a= 0,H
k(a, t|x, t)= δ(a− x).

 (B 2)

The solution to (B 2) can be represented using Fourier sine series:

k(a, s; x, t) =
2
H

∞∑
n=1

sin
(nπx

H

)
sin
(nπa

H

)
e−κ(nπ/L)2(t−s) (B 3)

=
1

√
4πκt

∞∑
n=−∞

(
exp

(
−
(x− a+ 2nH)2

4κt

)
− exp

(
−
(x+ a+ 2nH)2

4κt

))
.

(B 4)

The sum (B 3) converges rapidly for large |t− s| whereas the second (B 4), obtained
by an application of the Poisson summation formula, converges rapidly for small κ .
We employ the latter form for subsequent analysis in this section.

B.1. Temperature profile and boundary layer
According to the Feynman–Kac formula (3.17)–(3.18), the temperature is represented
by

T(x, t)= κ
∫ t

0
ds sin(ωs)

[
∂

∂a
k(a, s; x, t)

]
a=0

, (B 5)

where the probability flux through the boundary

κ

[
∂

∂a
k(a, s; x, t)

]
a=0

=
1

√
4πκ(t− s)3

∞∑
n=−∞

(x+ 2nL) exp
(
−
(x+ 2nL)2

4κ(t− s)

)
. (B 6)
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Fluctuation–dissipation relation 269

This can be interpreted as the probability distribution function for the first hitting time
at the left boundary of Brownian motion on the finite interval [0,H] starting at (x, t)
(see Hsu 1986). As κ→ 0 at fixed t, all terms in (B 6) vanish transcendentally except

κ

[
∂

∂a
k(a, s; x, t)

]
a=0

∼
x

√
4πκ(t− s)3

e−x2/4κ(t−s) as κ→ 0. (B 7)

Formula (B 7) is identified as the first boundary hitting-time density function for
Brownian motion on the half-line [0, ∞), equation (3.23). This well-known result
(Karatzas & Shreve 1991, § 2.6) can be obtained by differentiating P(τ̃ (z) < t) in
(A 29) with respect to t and setting t→ t − s. As a result, the temperature is given
by

T(x, t)∼
x
√

4πκ

∫ t

0
ds

sin(ωs)
(t− s)3/2

e−x2/4κ(t−s) as κ→ 0. (B 8)

This is the exact solution to the heat equation on the half-line [0, ∞) with the
oscillating boundary conditions at x= 0 in (B 1). It follows from (B 8) that, with x, t
fixed, T(x, t)→ 0 as κ→ 0. In that limit the temperature field is non-vanishing only
in a thin boundary layer.

To analyse behaviour in this layer, we introduce the scaling variable ξ = x
√
ω/κ

and a dimensionless time β =ω(t− s) so that

T(ξ , t)∼
ξ

2
√

π

∫ ωt

0
dβ

sin(ωt− β)
β3/2

e−ξ
2/4β . (B 9)

Since the integral (B 9) is absolutely convergent at β =∞, we can divide it into two
pieces, T(ξ , t)=Tqs(ξ , t)+Ttr(ξ , t), the first with the upper integration range extended
to infinity

Tqs(ξ , t)=
ξ

2
√

π

∫
∞

0
dβ

sin(ωt− β)
β3/2

e−ξ
2/4β (B 10)

and the complementary piece

Ttr(ξ , t)=−
ξ

2
√

π

∫
∞

ωt
dβ

sin(ωt− β)
β3/2

e−ξ
2/4β, (B 11)

which tends to zero as t→∞. The first term (B 10) represents quasi-steady conduction
with long-time oscillation of the temperature at the frequency ω imposed by the
boundary conditions, while the second term (B 11) describes the transient heating-up
phase that results from a uniformly cold, semi-infinite ‘rod’ being exposed suddenly to
a periodic temperature variation at its end. The quasi-stationary part can be evaluated
explicitly by a standard Laplace transform (Erdélyi 1954, 4.5(28), p. 146)∫
∞

0
dβ β−3/2 exp (−σβ − α/4β)= 2

(π

α

)1/2
exp(−

√
σα), Re(σ )> 0, Re(α) > 0,

(B 12a−c)

implying, with α = ξ 2, σ = i and
√

i= (1+ i)/
√

2, that

Tqs(ξ , t)= e−ξ/
√

2 sin(ωt− ξ/
√

2). (B 13)
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The thermal dissipation in the scaled variables is given by

〈εT〉V,t ≡
1
t

∫ t

0
ds

1
H

∫ H

0
dx κ|∂xT(x, s)|2

=
√
ωκ ·

1
t

∫ t

0
ds

1
H

∫ H(ω/κ)1/2

0
dξ |∂ξT(ξ , s)|2. (B 14)

In the limit κ→ 0, the upper range H(ω/κ)1/2 of the ξ -integral can be set to infinity,
since the integrand decays rapidly to zero as ξ → ∞. This is equivalent to the
statement that the thermal dissipation occurs entirely within the narrow temperature
boundary layer of thickness ∼(κ/ω)1/2. The quasi-steady contribution due to (B 13)
is found from

∂ξTqs(ξ , t)=−e−ξ/
√

2 sin
(
ωt− ξ/

√
2+

π

4

)
(B 15)

and

1
t

∫ t

0
ds
∫
∞

0
dξ |∂ξTqs(ξ , s)|2 =

1

2
√

2
−

cos(2ωt)− 1
2ωt

1

4
√

2
−

sin(2ωt)
2ωt

1

4
√

2
. (B 16)

To evaluate the contribution from the transient, we use the derivative of (B 11)

∂ξTtr(ξ , t)=−
1

2
√

π

∫
∞

ωt
dβ

sin(ωt− β)
β3/2

(
1−

ξ 2

2β

)
e−ξ

2/4β, (B 17)

which is again an absolutely convergent integral. Substituting this integral and
performing the Gaussian integrals over ξ, one easily finds that∫
∞

0
dξ |∂ξTtr(ξ , t)|2 =

3
4
√

π

∫
∞

ωt
dβ1 sin(ωt− β1)

∫
∞

ωt
dβ2 sin(ωt− β2)

1
(β1 + β2)5/2

6
3
4

( π

ωt

)1/2
∫
∞

1
du1

∫
∞

1
du2

1
(u1 + u2)5/2

=

( π

2ωt

)1/2
, (B 18)

which provides an O(1/
√
ωt) correction to the quasi-stationary result. Likewise, the

cross-term between the quasi-stationary and transient parts is

2
∫
∞

0
dξ∂ξTqs(ξ , t)∂ξTtr(ξ , t)

=
1
√

π

∫
∞

ωt

dβ
β3/2

sin(ωt− β)
∫
∞

0
dξ sin

(
ωt−

ξ
√

2
+

π

4

)(
1−

ξ 2

2β

)
e−ξ/

√
2−ξ2/4β,

(B 19)

which is bounded by∣∣∣∣2 ∫ ∞
0

dξ∂ξTqs(ξ , t)∂ξTtr(ξ , t)
∣∣∣∣ 6 1
√

π

∫
∞

ωt

dβ
β3/2

∫
∞

0
dξ

(
1+

ξ 2

2β

)
e−ξ/

√
2

= 2
(

2
πωt

)1/2 (
1+

2
3ωt

)
. (B 20)
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0 0.125 0.250 0.375 0.500

FIGURE 7. Temperature distribution for pure conduction on a one-dimensional interval
with oscillating Dirichlet boundary conditions, depicted at a fixed instant t∗ such that
t∗
√
ωκ/H= 1. Plotted are solutions for three pairs of (ω, κ) satisfying (ωt∗)(κt∗/H2)= 1;

these are ωt∗ = 9π/2 (light grey), ωt∗ = 21π/2 (grey) and ωt∗ = 101π/2 (black). The
dashed vertical lines, which indicate the boundary-layer region, are placed at (2κ/ω)1/2.

Gathering all these results together,

〈εT〉V,t =
ψ2

0

√
ωκ

2
√

2H

[
1+O

(
1
√
ωt

)]
, (B 21)

with the leading contribution coming from time average of the quasi-steady term.
Here we have restored the factor ψ2

0 from the amplitude of the oscillating boundary
temperature.

Apart from the numerical pre-factor, this result could have been expected on
dimensional grounds; see (3.24) of § 3.3. In order to obtain a result non-vanishing
in the limit κ → 0, the frequency ω must go to infinity and, in that case, the
time-dependent corrections all vanish. Assuming that ω∼ κ−α as κ→ 0, we have

0 6 α < 1 then lim
κ→0
〈εT〉V,t = 0,

α = 1 then lim
κ→0
〈εT〉V,t = (const.),

α > 1 then lim
κ→0
〈εT〉V,t =+∞.

 (B 22)

Note that ω ∼ κ−1 illustrates the scenario described in § 3.3 since the temperature
gradients have magnitude ∂xT∼1/κ in a boundary layer of thickness (κ/ω)1/2∼κ . See
figure 7 for plot of steepening profile (B 8), indicating temperature gradients growing
unboundedly large in the boundary layer as κ→ 0, ω= κ−1

→∞.

B.2. Alternative Feynman–Kac formula and fluctuation–dissipation relation
In § 3.4 of the main body of the text, we showed that there are two equivalent
stochastic representations valid for scalars supplied with Dirichlet boundary conditions.
One of these representations involves first hitting times (3.18) and the other involves
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272 T. D. Drivas and G. L. Eyink

local-time integrals (3.29). The utility of the former representation (3.18) was
demonstrated in the previous subsection where it was used to explicitly solve the heat
equation (B 9). The latter formula (3.29) is also theoretically useful as it allows us to
obtain an FDR equality for Dirichlet boundary conditions (see (3.30) of § 3.4). On the
other hand, the formula (3.29) is computationally unwieldy since it requires sampling
the (a priori unknown) flux g(x, t) := κ∂xT(x, t) at the boundary with reflecting
(not killed) Brownian motion. Here, as a consistency check, we demonstrate the
equivalence of these formulae directly for conduction on the semi-infinite space
interval (0,∞) with oscillating boundary condition at x= 0.

A formula for the flux follows by direct differentiation of (B 8), which yields

g(x, t) = −
√
κ

π

∫ t

0
ds

sin(ωs)
(t− s)3/2

1
2

(
1−

x2

2κ(t− s)

)
e−x2/4κ(t−s)

= −

√
κ

π

∫ t

0
ds sin(ωs)

∂

∂s

[
e−x2/4κ(t−s)

(t− s)1/2

]

= ω

√
κ

π

∫ t

0
ds

cos(ωs)
(t− s)1/2

exp
(
−

x2

4κ(t− s)

)
, (B 23)

after an integration by parts. Thus, the temperature profile according to the local-time
representation (3.29) is given by

T(x, t) =
∫ t

0
ds g(0, s)p(0, s|x, t)

=
ω

π

∫ t

0
ds
∫ s

0
ds′

cos(ωs′)
√

s− s′
√

t− s
exp

(
−

x2

4κ(t− s)

)
, (B 24)

where we have used the transition density for reflecting Brownian motion (A 12).
Interchanging the order of the integrals,

T(x, t)=
ω

π

∫ t

0
ds′ cos(ωs′)

∫ t

s′
ds

exp
(
−

x2

4κ(t− s)

)
√

s− s′
√

t− s
. (B 25)

Under the substitutions u = x2/4κ(t − s) and b = x2/4κ(t − s′) the inner integral
becomes

∫ t

s′
ds

exp
(
−

x2

4κ(t− s)

)
√

s− s′
√

t− s
=
√

b
∫
∞

b
du

e−u

(u− b)1/2u
=π erfc(

√
b), (B 26)

in terms of the complementary error function erfc(z), by Erdélyi (1954, 4.2(26),
p. 136). The local-time representation formula (B 25) therefore gives

T(x, t)=ω
∫ t

0
ds′ cos(ωs′) erfc

(
x

√
4κ(t− s′)

)
. (B 27)

Using the expression (B 27) and ω cos(ωs′) = (∂/∂s′) sin(ωs′), a straightforward
integration by parts in s′ recovers the formula (B 8) from the hitting-time representation.
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Thus, the two stochastic representations are verified to yield identical results for this
problem.

Additionally, as we did in appendix A.2 for the case of temperature supplied with
Neumann conditions, one can verify directly that the second form (3.30) of our
fluctuation–dissipation relation equals the total dissipation (B 14). The FDR (3.30) for
the present problem on the space interval (0,H) reduces asymptotically as κ→ 0 to

〈ε
fluc
T (x)〉V,t =

1
H

∫ H

0
dx

1
2

Var
[∫ t

0
κ∂xT(ξ̃t,s(x), s) d̂ ˜̀Lt,s(x)

]
=

1
H

∫ H

0
dx
∫ t

0
ds
∫ t

s
ds′g(0, s)g(0, s′)[p(0, s|0, s′)− p(0, s|x, t)]p(0, s′|x, t),

(B 28)

where, again, the fluxes g(0, t) are explicitly defined by (B 23). A straightforward
but lengthy calculation, similar to the one we performed to show the equivalence of
the two Feynman–Kac representations, verifies that one obtains the same asymptotic
expression for the dissipation (B 14) directly from our exact fluctuation–dissipation
relation.

Appendix C. Spontaneous stochasticity implies anomalous scalar dissipation for
Dirichlet scalar boundary conditions

We supply here details of the proofs in § 3.3 that spontaneous stochasticity implies
anomalous dissipation of a passive scalar with appropriate choices of initial data,
Dirichlet boundary data and bulk scalar sources. For active scalars, it seems likely
that this remains true but, due to lack of freedom in choosing the scalar data, we
cannot rigorously draw such conclusions.

C.1. Vanishing scalar sources
For zero scalar sources, we exactly mimic the arguments of appendix A of Part I
with virtually no change to show that, if there is spontaneous stochasticity, so that
non-factorization occurs in (3.21) for a set of x of positive measure, then there exists
a smooth function Θ = (θ0, ψ) on S which makes the variance (3.20) positive. This
provides a positive lower bound to the global cumulative dissipation with that choice
of Θ for a suitable subsequence νj, κj→ 0.

Unfortunately, it seems to be very difficult to show that, with boundary conditions
ψ fixed, spontaneous stochasticity implies anomalous dissipation for a suitable choice
of initial data θ0. The difficulties are made apparent by the following easily proved
identity for the variance (3.20), which separates contributions from θ0 and ψ :

Var[Θ(σ̃ (x, t))] =Var[θ0(ξ̃t,0(x))|τ̃ (x, t)= 0]P(τ̃ (x, t)= 0)

+Var[ψ(ξ̃t,τ̃ (x,t)(x), τ̃ (x, t))|τ̃ (x, t) > 0]P(τ̃ (x, t) > 0). (C 1)

Here the variances are conditioned upon the events τ̃ (x, t)= 0 or τ̃ (x, t) > 0 and the
symbol P(· · ·) denotes the probability measure of these same events. By non-negativity
of the variance, one readily obtains

Var[Θ(σ̃ (x, t))]> Var[θ0(ξ̃t,0(x))|τ̃ (x, t)= 0]P(τ̃ (x, t)= 0). (C 2)
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If one assumes that there is spontaneous stochasticity for the sub-ensembles
specified by τ̃ (x, t) = 0 for a positive-measure set of x ∈ Ω (which is not an
entirely straightforward assumption), then we can again use the arguments of Part I,
appendix A to prove that

lim
j→∞

Var[θ0(ξ̃
νj,κj
t,0 (x))|τ̃ νj,κj(x, t)= 0]> 0 (C 3)

for a suitable smooth initial datum θ0 and for a suitable subsequence νj, κj→ 0, on a
positive-measure set of x∈Ω. However, two difficulties appear. One is that, possibly,

lim
j→∞

P(τ̃ νj,κj(x, t)= 0)= 0 a.e. x ∈Ω! (C 4)

Another technical difficulty is that vague topology of Young measures can be used to
establish convergence of the space average

lim
j→∞
〈Var[θ0(ξ̃

νj,κj
t,0 )|τ̃ νj,κj(t)= 0]〉Ω (C 5)

whenever θ0 is a continuous function, but to obtain convergence of the needed space
average

lim
j→∞
〈Var[θ0(ξ̃

νj,κj
t,0 )|τ̃ νj,κj(t)= 0]P(τ̃ νj,κj(t)= 0)〉Ω (C 6)

by using the same arguments, one must know that the functions

gν,κ(x, t)≡ P(τ̃ ν,κ(x, t)= 0) (C 7)

converge as ν, κ→ 0 to a continuous (non-zero) function g(x, t) uniformly in x. This
is a non-trivial statement which cannot be obtained by mere compactness arguments.

C.2. Non-vanishing scalar sources
To deal with scalar sources, we must introduce a new type of transition probability

qν,κ(τ , y, s|x, t)=E[δ(τ − τ̃ (x, t))δd(y− ξ̃t,s(x))], y ∈Ω, 0 6 τ < s< t, (C 8)

which gives the joint probability for the particle released at x at time t to first hit the
space boundary ∂Ω at time τ (going backward) and also to pass through point y at
time s satisfying τ < s< t. We can then rewrite the stochastic representation (3.5) as

θ(x, t)=
∫
S

Hd(dσ ) Θ(σ ) q(σ |x, t)+
∫ t

0
dτ

∫ t

τ

ds
∫
Ω

ddy S(y, s)q(τ , y, s|x, t). (C 9)

To obtain a similar expression for the source variance term, we must introduce
corresponding 2-time transition densities

qν,κ2 (τ ; y, s; τ ′, y′, s′|x, t)

=E[δ(τ − τ̃ (x, t))δd(y− ξ̃t,s(x))δ(τ ′ − τ̃ (x, t))δd(y′ − ξ̃t,s′(x))],
y, y′ ∈Ω, τ < s< t, τ ′ < s′ < t, (C 10)

and
q2(τ , y, s; τ ′, y′, s′|x, t)= δ(τ − τ ′)q2(τ ; y, s; y′, s′|x, t). (C 11)
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With this quantity we can write

Var
[∫ t

τ̃ (x,t)
ds S(ξ̃t,s(x), s)

]
=

∫ t

0
dτ
∫ t

0
dτ ′
∫

ddy
∫

ddy′
∫ t

τ

ds
∫ t

τ ′
ds′ S(y, s)S(y′, s′)

×[q2(τ , y, s; τ ′, y′, s′|x, t)− q(τ , y, s|x, t)q(τ ′, y′, s′|x, t)]. (C 12)

We can also write the initial condition source covariance in a similar fashion, using
the 2-time probability density

qν,κ2 (σ ; τ ′, y′, s′|x, t)=E[δS (σ , σ̃ (x, t)) δ(τ ′ − τ̃ (x′, t))δd(y′ − ξ̃t,s′(x′))], (C 13)

which is proportional to δ(τ − τ ′), if we write σ = (y, τ ). We have

Cov[Θ(ξ̃t,τ̃ (x,t)(x), τ̃ (x, t)),
∫ t

τ̃ (x,t)
dt′S(ξ̃t,t′(x), t′)]

=

∫
S

Hd(dσ )

∫ t

0
dτ ′
∫

ddy′
∫ t

τ ′
ds′ Θ(y, s)S(y′, s′)

×[q2(σ ; τ
′, y′, s′|x, t)− q(σ |x, t)q(τ ′, y′, s′|x, t)], (C 14)

as the corresponding representation. The very close similarity of these formulae
to those derived previously for advected scalars in flows without boundaries and for
scalars with insulating/adiabatic walls allows us to prove that spontaneous stochasticity
is sufficient for anomalous dissipation of passive scalars also for Dirichlet boundary
conditions in the presence of smooth sources. The existence of a smooth source S on
Ω × [0, t] which makes the variance (C 12) positive is likewise shown by arguments
like those in appendix A of Part I. We leave details to the reader. The statement
here is that a smooth source S can be chosen for which there is anomalous scalar
dissipation, either with zero initial boundary data or else with a smooth non-zero
choice Θ = (θ0, ψ) of such data.

Appendix D. Numerical methods
D.1. Methods for § 2.1

As in our previous numerical study of isotropic turbulence, we solve the stochastic
equations (2.2) and (2.3) with interpolated velocities retrieved using the getVelocity
database function. To solve these backward Itō stochastic differential equations (SDEs),
we use a reflected time ŝ= tf − s which transforms them into forward Itō SDEs. To
implement the reflecting boundary conditions at the channel walls we have found it
convenient to use the very simple Euler algorithm of Lépingle (1995), which is ideally
suited to the parallel plane boundaries of the channel flow. This method reduces to
the standard Euler–Maruyma scheme at some specified small distance ε away from
the walls. This algorithm (dropping hats on the reflected time) takes at the kth time
step

ξ̃(sk+1)= ξ̃(sk)+1ξ̃(sk+1; sk)+ κn+ 1 ˜̀+(sk)+ κn− 1 ˜̀−(sk), (D 1)

where 1ξ̃(s; sk) is given by the Euler–Maruyama discretization

1ξ̃(s; sk)= u(ξ̃(sk), sk)(s− sk)+
√

2κ(W̃(s)− W̃(sk)) (D 2)
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and where 1 ˜̀±(sk) = ˜̀
±(sk+1) − ˜̀

±(sk) is given by the Skorohod equation (see
Karatzas & Shreve (1991, Lemma 3.6.14) and (A 26)):

κ1 ˜̀±(sk)=max
{

0, max
sk6s6sk+1

{
−n± · [ξ̃(sk)+1ξ̃(s; sk)]

}
− h
}
. (D 3)

At the top wall y = +h, n+ = −ŷ and at the bottom wall y = −h, n− = +ŷ. The
stochastic solution of the Skorohod equation (D 3) is exactly realized by a closed
formula involving an independent exponential random variable. See Lépingle (1995),
Theorem 1. To minimize the additional computational cost of solving the Skorohod
equation (D 3), the algorithm of Lépingle (1995) adds the local-time density terms into
(D 1) only when the particle is within a distance ε of the walls, fixed independent
of 1s = sk+1 − sk (In principle, the boundary local-time densities for channel flow
that appear in figures 1 and 3 are thus a sum of contributions from both top and
bottom walls. However, in practice, no particles released at the bottom wall were
ever observed to be incident upon the top wall within the entire time available in the
database and thus ˜̀(s)= ˜̀−(s). This is to be expected, since wall-normal velocities in
turbulent channel flow generally have maximum magnitudes of order uτ and, in the
archived flow, advection at this maximum speed would require approximately double
the archived time interval for a particle to transit from the bottom wall to the top
wall.). We chose ε = 10δν in our channel-flow simulations.

The Lépingle (1995) algorithm outlined above yields strong approximations to the
joint process (ξ̃t,s(x), ˜̀t,s(x)) for any x. To study numerically the strong convergence
of the approximate solutions of equations (D 1) and (D 3) for the results presented
in figure 1, we first generated a realization of a Brownian motion W̃(si) sampled on
an extremely fine grid of times si with a very small time step δs. We then applied
the above algorithm of Lépingle (1995) for a larger time step 1s = mδs which is
a multiple of δs by a big integer m, using the same previously sampled Brownian
motion W̃(si) for all 1s=mδs. We reduced the size of m until the numerical results
for the joint process (ξ̃(s), ˜̀(s)) were converged to within 0.1 %, which required a
very small time step 1s = 6.5 × 10−6, or 1/1000th of the time between the stored
database frames. The requirements are much less stringent for weak convergence of
statistical averages over Brownian motions than for the strong convergence at fixed
W̃s. The averages presented in § 2.1 were calculated with a time step of 1s= 2.16̄×
10−3, or 1/3 of the time between database frames. To check for weak convergence, we
numerically integrated the equations with double this time-step and found a relative
change in the ensemble averages of less than 0.1 %.

The N-sample averages used for particle dispersions and PDFs were the same as
those for isotropic turbulence discussed in appendix C of Part I. In particular, local-
time PDFs were estimated with kernel density techniques. One key difference is that
the absolute local times | ˜̀t,0| are positive quantities, so that their PDFs have a support
boundary at 0 and naive application of kernel density estimators leads to ‘seepage’
of mass to negative values. Since the exact PDF is expected to have a maximum at
0 (highest probability for particles never to hit the wall), we employ the ‘reflection
method’ (Karunamuni & Alberts 2005). This procedure involves performing the kernel
density estimation on a symmetric dataset constructed by augmenting the original data
by its negation. The optimal bandwidth was again chosen by the ‘principle of minimal
sensitivity’. Using these procedures and the same number of samples (N = 1024) as
for channel flow, we were able to recover the analytical results in appendix A.3 for
the PDF of local times of a Brownian motion on the half-axis reflected at the origin.
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FIGURE 8. (Colour online) Hitting-time PDFs of Brownian motion for Pr = 0.1 (green,
dot, · · · · · ·), 1.0 (blue, dash-dot, — · —) and 10 (red, dash, - - - -). Numerical results are
plotted with heavy lines, analytical results with light lines.

D.2. Methods for § 3.1
To obtain the hitting times for channel flow from the numerical solution of the SDE
(2.2) with the Euler–Maruyama scheme, we simply monitored the solution until the
first time step where the y-component satisfied η̃(sk) >−h but η̃(sk+1) <−h. We then
stopped the integration and set τ̃ = (sk+ sk+1)/2. With a time step of 1s=2.16̄×10−3,

this gives the hitting time accurately to within 1.083̄× 10−3, or 5.41 % of the viscous
time τν . To obtain PDFs of λ= ln((tf − τ)/τν) from the channel-flow data, we applied
the same kernel density techniques as in appendix C of Part I. Note for Brownian
motion (see (D 4) below) the mean hitting is infinite and with fluid advection the
hitting times are expected to be even larger. Thus, many solutions do not ever hit the
wall over the total time available in the channel-flow database and this necessitates a
very large number of samples. The results presented in the text were for N = 14 336
samples. The PDFs were verified to be converged with 1s = 2.16̄ × 10−3 to within
0.1 % and the plotted error bars represent both s.e.m. and the change due to 10 %
increase in h∗, as described in appendix D.1.

We applied identical numerical procedures to calculate the PDFs of λ = ln((tf −

τ)/τν) for a Brownian motion with diffusivity κ started at position y>−h at time t= tf

and going backward in time to t= 0. The analytical result to be used for comparison
with channel flow is given by formula (3.23) with x→1y := y+h>0, t− s→ tf − τ :

pκ(τ |y, tf )=


1y√

4πκ(tf − τ)3
exp

(
−

(1y)2

4κ(tf − τ)

)
τ < tf

0 τ > tf

. (D 4)

Numerical and analytical results for Brownian motion are plotted together in figure 8.
For λ< 1.6 one can see that the error from time discretization leads to a ∼5 % shift
of the PDF to the right, toward larger hitting times. To correct this would require
either a smaller time step or a more sophisticated stochastic interpolation scheme. For
λ>6.5, the lack of samples for λ= ln(tf /τν)

.
=7.17 leads the kernel density estimators

to clearly underpredict the PDFs. Similar errors must exist in the channel-flow results.
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