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CONSTRUCTING NONPROXY SMALL TEST MODULES FOR THE
COMPLETE INTERSECTION PROPERTY

BENJAMIN BRIGGS , ELOÍSA GRIFO and JOSH POLLITZ

Abstract. A local ring R is regular if and only if every finitely generated

R-module has finite projective dimension. Moreover, the residue field k is a

test module: R is regular if and only if k has finite projective dimension. This

characterization can be extended to the bounded derived category Df(R), which

contains only small objects if and only if R is regular. Recent results of Pollitz,

completing work initiated by Dwyer–Greenlees–Iyengar, yield an analogous

characterization for complete intersections: R is a complete intersection if and

only if every object in Df(R) is proxy small. In this paper, we study a return to

the world of R-modules, and search for finitely generated R-modules that are

not proxy small whenever R is not a complete intersection. We give an algorithm

to construct such modules in certain settings, including over equipresented rings

and Stanley–Reisner rings.

§1. Introduction

Auslander, Buchsbaum, and Serre [1], [37] characterized regular local rings in homological

terms: a local ring R is regular if and only if every finitely generated R-module has finite

projective dimension. Moreover, it is enough to test if the residue field of R has finite

projective dimension. The characterization can be phrased in homotopical terms, using

only the triangulated category structure of the derived category D(R): R is regular if and

only if every complex of R-modules with finitely generated homology is quasi-isomorphic to

a bounded complex of finitely generated projective R-modules, that is, a perfect complex,

or a small object in D(R).

In [22], Dwyer, Greenlees, and Iyengar proposed an analogous characterization for

complete intersections. The third author recently settled their question in the positive in

[35], and in turn established a homotopical characterization of complete intersections akin

to the homotopical version of the Auslander, Buchsbaum, and Serre theorem. Even more

recently, the first and third authors, along with Iyengar and Letz (see [18]), have provided

a new proof, even in the relative case, of this homotopical characterization for complete

intersections.

The characterization in [35] involves understanding how objects in Df(R) build small

objects; we say that a complex of R-modules M finitely builds a complex of R-modules N

if one can obtain N using finitely many cones and shifts and retracts starting from M.

The main result of [35] says that R is a complete intersection if and only if every object

in Df(R) finitely builds a nontrivial small object; the forward implication had previously

been shown in [22]. One can in fact require that each M in Df(R) builds a perfect complex

with the same support as M, in which case we say that M is proxy small. This should be
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understood as a weakening of the small property. Since its introduction, the proxy small

property has been studied by various authors [14], [18], [21], [22], [24], [26], [32], [35], [38].

In this paper, our main goal is to complete the picture with a statement involving only

finitely generated R-modules. We aim to show that if every finitely generated R-module

is proxy small, then R must be a complete intersection. Furthermore, we would like to

explicitly construct finitely many test modules M1, . . . ,Mt, playing a role akin to the role

that k plays with respect to regularity—if R is not a complete intersection, one of the Mi

must fail to be proxy small. There is another characterization of complete intersections

in terms of properties of finitely generated modules—namely, in terms of finiteness of

CI-dimension [8]. Finite CI-dimension implies proxy smallness [32, Proposition 5.8], but

the two notions are not the same—in particular, the residue field is always proxy small, but

its finite CI-dimension is a test for the complete intersection property.

We succeed in this goal when R is equipresented, meaning that given a minimal Cohen

presentation R̂ ∼= Q/I, where Q is a regular local ring, every minimal generator of I has

the same m-adic order.

Theorem 2 (See Corollary 4.11). For an equipresented local ring R, the following are

equivalent:

1. R is a complete intersection;

2. every finitely generated R-module is proxy small;

3. every finite length R-module is proxy small.

If the residue field of R is infinite, these are also equivalent to:

4. every quotient R � S with S an Artinian hypersurface is proxy small.

For equipresented rings, Theorem 2 strengthens the characterization of complete

intersections established in [35] (and [18]) with a new proof. We also give an algorithm

to find quotients of R that are Artinian hypersurfaces but not proxy small, whenever R is

not a complete intersection and has infinite residue field.

Equipresented rings are part of a larger class of rings for which the theorem holds (cf.

Theorem 4.8), which are said to have large enough cohomological support (see Definition

4.3). Over such rings, provided the residue field is infinite,

R is a complete intersection if and only if every surjection to an Artinian

hypersurface is proxy small.

We expect this property to characterize coxsmplete intersections among all local rings,

analogously to the characterization of regular local rings in terms of their residue fields.

This remains open in general.

For all equipresented rings, and more generally all rings of large enough cohomological

support, we also answer a question of Gheibi, Jorgensen, and Takahashi [24, Question 3.9].

This question proposes yet another characterization of complete intersections: that R is

a local complete intersection if and only if every finitely generated R-module has finite

quasi-projective dimension (see the end of Section 5 and [24] for a definition and other

details).
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In the last section, we construct explicit modules that are not proxy small over various

rings. Our methods are not limited to equipresented rings, and we include here all Stanley–

Reisner rings (see Example 5.5) and short Gorenstein rings (see Example 5.2).

In Sections 2 and 3, we recall the definition and basic properties of proxy small modules

and of cohomological support, respectively. In Section 5, we prove our main result, and

give an algorithm for finding modules that are not proxy small. In Section 8, we apply the

results of the previous section in various examples.

§2. Proxy small objects

Let R be a commutative Noetherian ring. We let D(R) denote its derived category of

(left) R-modules (see [31, Section 1.2] for more on the derived category). Much of the

homological information of R is captured by how several of its subcategories are related to

each other using the triangulated category structure of D(R). In what follows, we clarify

this point and introduce the main objects of interest. First, we need some terminology.

Definition 2.1. A thick subcategory of D(R) is a full subcategory T that is closed

under taking shifts, cones, and direct summands. That is, if X =X ′⊕X ′′ is an object of

T, then X ′ and X ′′ are objects of T. The smallest thick subcategory of D(R) containing an

object M of D(R) is denoted thickM and is called the thick closure of M ; this exists since

an intersection of thick subcategories is again thick. Alternatively, one can define thickM

inductively as in [6].

In the terminology used in the Introduction, M finitely builds X precisely when X is in

the thick closure of M.

Example 2.2. The full subcategory of D(R) consisting of objects M such that H(M)

is a finitely generated graded R-module forms a thick subcategory of D(R), since R is

Noetherian. This category is denoted Df(R). The category of finitely generated R-modules,

denoted mod(R), sits inside Df(R) as a full subcategory by including each finitely generated

R-module as a complex concentrated in degree zero; however, mod(R) is not a thick

subcategory (it fails even to be triangulated).

Example 2.3. The full subcategory of D(R) consisting of complexes of R-modules that

are quasi-isomorphic to a bounded complex of finitely generated projective R-modules forms

a thick subcategory of D(R). Moreover, this category is exactly thickR and its objects are

called small ; note that these are also referred to as perfect complexes [6], but we have

opted for the former terminology, since it describes these complexes categorically as objects

of D(R). Namely, for each small object M, HomD(R)(M,−) commutes with arbitrary (set-

indexed) direct sums [22, 3.7].

Fact 2.4. The relation between the categories discussed in Examples 2.2 and 2.3 can

be used to detect the singularity of R. Namely, the following are equivalent:

1. R is regular (meaning that each localization is a regular local ring);

2. each object of Df(R) is small;

3. each object of mod(R) is small;

4. each residue field of R is small.

This is essentially the Auslander—Buchsbaum—Serre theorem [1], [37] combined with a

local-to-global result of Bass and Murthy [13, Lemma 4.5] (see also [11, Theorem 4.1]).

https://doi.org/10.1017/nmj.2021.7 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2021.7


CONSTRUCTING NONPROXY SMALL TEST MODULES FOR THE COMPLETE INTERSECTION PROPERTY 415

The analogous characterization for locally complete intersections is in terms of proxy

small objects of D(R). These were introduced and studied by Dwyer, Greenlees, and Iyengar

in [21], [22]. To define them, we recall that the support of a complex X is SuppRX := {p ∈
SpecR :Xp �� 0}, extending the usual notion for R-modules.

Definition 2.5. A complex of R-modules M is proxy small if thickM contains a small

object P such that SuppRP = SuppRM .

Remark 2.6. Let M be a proxy small object. It follows easily that the support of M is

a closed subset of SpecR [22, Proposition 4.4]. Furthermore, as a consequence of a theorem

of Hopkins and Neeman [29], [34], the object P witnessing M as proxy small can be taken

to be the Koszul complex on an ideal I defining SuppRM , that is,

SuppR(M) = SuppR(R/I).

In particular, when R is local and M has finite length homology, M is proxy small if and

only if thickM contains the Koszul complex on a list of generators for the maximal ideal

of R.

Fact 2.7. In a similar fashion to Fact 2.4, the following are equivalent:

1. R is locally a complete intersection, meaning that each localization is a local complete

intersection;

2. each object of Df(R) is proxy small.

This is [35, Theorem 5.2] combined with a local-to-global result of Letz [32, Proposition

4.5]. This can also be recovered by recent work in [18]. One of the main points of this

article is to fill in the missing analogous conditions to Conditions (3) and (4) from Fact 2.4.

As mentioned previously, the difficulties arise as mod(R) does not respect the triangulated

structure of Df(R).

§3. Cohomological support for local rings

In this section, we review the necessary theory of cohomological supports over a local

ring (see [30, Section 2], [35, Section 3], and [36, Sections 4 and 5] for further details). This

theory offers a method to detect thick subcategory containment, an idea that goes back to

[29], [34]. In particular, its utility is in showing that an object cannot be proxy small.

The theory of cohomological support utilized in the present article originated in the

pioneering work of Avramov [2] and in his collaboration with Buchweitz [5]; these supports

were defined over complete intersections and were successfully linked to cohomological

information ultimately revealing remarkable symmetries in the asymptotic information of

Ext and Tor modules over a complete intersection. The varieties were later extended and

studied outside of the realm of complete intersections in [10], [20], [30], [35], [36]. As it was

shown in [36], these theories of supports are all recovered by the cohomological support in

[36]. For this article, we take the definition from [30] (or more generally, the one from [10])

while exploiting some of the properties from [35], [36] (see Fact 3.3).

We fix once and for all a local ring R along with a minimal Cohen presentation

R̂∼=Q/I,

so (Q,m,k) is a regular local ring and I ⊆m2.
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Definition 3.1 (See [10], [30]). We define VR to be the vector space I/mI. For a finitely

generated R-module M �= 0, we define the cohomological support of M to be

VR(M) :=
{
[f ] ∈VR | pdQ/f M̂ =∞ or [f ] = 0

}
.

By convention, VR(0) is empty.

The vector space VR is also known as π2(R), or, in older literature, as V2(R) (cf. [2]).

Note that VR is intrinsic to R, and does not depend on our choice of a minimal Cohen

presentation, since in fact the definition of cohomological support we are using coincides

with that of [36, Definition 5.2.4], which is independent of the choice of Cohen presentation

[36, Proposition 5.1.3].

Remark 3.2. We briefly indicate an alternative perspective on the cohomological

support, explained in more detail in [35], [36]. Let S = k[VR] be the graded ring of

polynomials on VR, generated by (VR)
∗ in degree 2. By definition, VR identifies with

the set of k -points in SpecS. Let E = KosQ(f) be the Koszul complex on some minimal

generating set f for I, regarded as a dg Q-algebra in the usual way. By [4, Theorem

2.4], there is a natural inclusion S ⊆ ExtE(k,k) making ExtE(k,k) a flat, module-finite

S-algebra; when f is a Q-regular sequence, S agrees with the cohomology operators of

Gulliksen [27] and Eisenbud [23], up to sign [12]. In any case, it follows that ExtE(M̂,k) is

a finitely generated graded S-module for each M in Df(R) [35, Proposition 3.2.5]. Finally,

the set VR(M) defined above can be identified with the k -points of the reduced subscheme

SuppS ExtE(M̂,k) ⊆ SpecS [36, Definition 5.2.4]. From this, we deduce that VR(M) is a

Zariski closed, conical subset of VR.

We will explicitly use the vector space structure of VR, so our definition of cohomological

support is the most convenient in this context.

The invariant VR(R) is interesting in its own right; besides detecting the complete

intersection property, as we note below, it contains more information about the structure

of R in general.

Fact 3.3. We recall two facts regarding these cohomological supports (see [35, Thereom

3.3.2]).

1. If M is a proxy small object of Df(R), then VR(R)⊆VR(M).

2. VR(R) = 0 if and only if R is a complete intersection.

Strategy 3.4. Recall that our primary goal is to show that if R is not a complete

intersection, then there are finitely generated R-modules that are not proxy small, which

we ultimately do in Theorem 4.8. We isolate, and slightly modify, the strategy from

[35, Theorem 5.2]. Our goal in the present paper is to provide an explicit list of finitely gener-

ated

R-modules M1,M2, . . . ,Mt satisfying

VR(R) �⊆VR(M1)∩VR(M2)∩· · ·∩VR(Mt),

provided that R is not a complete intersection. When such modules M1,M2, . . . ,Mt exist,

Fact 3.3 implies at least one Mi fails to be proxy small.

In the next result, and below, we will need some notation:
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Notation 3.5. Let R be a local ring with residue field k. For any local homomorphism

ϕ : R→ S, there is an induced map of k -vector spaces

Vϕ : VR −→VS ,

constructed as follows. Completing if necessary, one can choose Cohen presentations R =

Q/I and S =Q′/J and a compatible lift ϕ̃ : (Q,m)→ (Q′,m′) of ϕ (see [7]). In particular,

ϕ̃(I)⊆ J , so there is an induced map of k -vector spaces

I/mI −→ J/m′J,

which we denote by Vϕ.

We now prove a key lemma, which gives us an explicit formula for the cohomological

support in a very specific but important case.

Lemma 3.6. Let (Q,m)→ (Q′,m′) be a finite flat extension of regular local rings such

that mQ′ =m′, inducing a map ϕ : R =Q/I → S =Q′/J . If J is generated by a Q′-regular

sequence, then VR(S) = ker(Vϕ).

Proof. Unraveling the notation, the claim is that for any f ∈ I, we have

pdQ/f (Q
′/J) =∞ if and only if f ∈mJ =m′J in Q′.

If f ∈ J \m′J , then it forms part of a regular sequence f,g2, . . . ,gm generating J, and the

Koszul complex

A=KosQ
′/f (g2, . . . ,gm) =Q′/f〈x2, . . . ,xm | ∂xi = gi〉

is a finite free resolution of Q′/J over Q′/f (the latter notation is explained in [28] or [3,

Section 6], for example). But Q′/f is free over Q/f , so this is also a finite free resolution

over Q/f , and the forward implication holds.

If, on the other hand, f ∈m′J , then we may write f =
∑

aigi with ai ∈m′ and g1, . . . ,gn
a regular sequence generating J. We can then form the Tate model

KosQ
′/f (g1, . . . ,gm)〈y〉=A〈y | ∂(y) =

∑
aixi〉,

where the xi are the degree one Koszul variables with ∂(xi) = gi. By [39, Theorem 4], a

minimal free resolution of Q′/J over Q′/f is

KosQ
′/f (g1, . . . ,gm)〈y〉 �−→Q′/J .

Finally, as mQ′ =m′, it is also minimal as a complex of free Q/f modules, and we conclude

that pdQ/f (Q/J) =∞.

Remark 3.7. In particular, if J is an ideal of Q generated by a regular sequence and

I ⊆ J , then

VR(Q/J) = ker(I/mI → J/mJ) .

§4. Main result

Lemma 4.1. Let S = k[x1, . . . ,xe] be a standard graded polynomial ring over an infinite

field k. For a homogeneous ideal I of S, if h is a homogeneous generator of I of minimal

degree, then there exists a regular sequence of linear forms �= �2, . . . , �e in S such that h is

a nonzero element of minimal degree in I(S/�).
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Proof. As h is homogeneous, S/h is a standard graded k -algebra of dimension e−1. By

[19, Theorem 1.5.17], since k is infinite, there exists an algebraically independent system of

parameters g = g2, . . . ,ge for S/h such that each gi has degree 1. Let �i be a lift of gi back

to a linear form of S. Since h,� is a homogeneous system of parameters for S, it follows that

h is nonzero in S/�. The only thing left to remark is that since � consists of linear forms (in

fact, homogeneous is enough), the image of h still has minimal degree among homogeneous

elements of I(S/�).

The next lemma establishes the existence of certain complete intersection quotients that

are defined by exactly one of the defining relations for the given local ring. Ultimately, these

quotients are the ones that will serve as the sought after test modules, provided that R has

enough of them.

Lemma 4.2. Let R be a local ring with fixed minimal Cohen presentation R̂ = Q/I,

where (Q,m,k) is regular and k is infinite. For any f ∈ I \mI with minimal m-adic order

among elements of I, there exists a singular Artinian hypersurface S which is a quotient of

R, say R � Q/J ∼= S, such that f ∈ J \mJ .

Proof. Let e be the embedding of R, that is, the Krull dimension of Q. Fix a Q-regular

sequence x= x1, . . . ,xe generating m. As x is Q-regular, the associated graded ring of Q

grQ :=
∞⊕
i=0

mi/mi+1,

is a standard graded polynomial ring on grx1, . . . ,grxe, the image of x in grQ, over k.

Applying Lemma 4.1 with h = grf , we obtain a regular sequence of linear forms � =

�2, . . . , �e in grQ such that the image of grf is nonzero and has minimal degree in grQ/(�)

among all elements of grI. The sequence � determines a sequence y = y2, . . . ,ye in Q such

that the image of y is linearly independent in m/m2 and gryi = �i for each i.

Let ( ) denote reduction modulo (y). Since Q is a regular local ring and y is a regular

sequence in m/m2, there is an isomorphism of graded k -algebras

grQ/(�)∼= gr(Q)(1)

such that the degree of gr(f) is exactly the m-adic order of f . By the assumptions on the

image of grf in grQ/(�) and the isomorphism of graded k -algebras in (1), it follows that f

is a nonzero element of Q that has minimal degree among elements of IQ. However, Q is a

DVR and so (f) = IQ.

So, setting J = (f,y2, . . . ,ye), we have shown that J contains I and has f as a minimal

generator, and also that Q/J is an Artinian hypersurface. Furthermore, as f was part of a

defining system for a minimal Cohen presentation, the m-adic order of f is at least 2; thus,

Q/J is nonregular.

Finally, since Q/J is Artinian, the composition R→ R̂→Q/J is surjective.

Fix a local ring R with minimal Cohen presentation (Q,m,k)
π−→ R̂ and let I denote kerπ.

In Lemma 4.2, we showed the existence of Artinian hypersurfaces that are quotients of R

defined by a minimal relation of R̂. When R has “enough” of these hypersurface quotients,

we can appeal to Strategy 3.4 with these quotients serving as our list of test modules. The

condition below guarantees that R has “enough” of the quotients from Lemma 4.2.
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Definition 4.3. We say that a local R with minimal Cohen presentation

R̂∼= (Q,m,k)/I

has large enough cohomological support provided that

dimk

(
md+1∩ I

mI

)
< dimk (spanVR(R)) ,(2)

where d denotes the order of I, meaning the minimal m-adic order of an element of I in the

regular local ring Q.

Remark 4.4. If R has large enough cohomological support, then it is not a complete

intersection (see Fact 3.3(2)). The defining Condition (2) means that there exists a minimal

generating set

{f1, . . . ,fc,fc+1, . . . ,fn}

for the ideal I, where every k -linear combination of f1, . . . ,fc has minimal m-adic order

among elements of I, and

n− c < dimk(spanVR(R)).

Recall that by [35], VR(R) is zero whenever R is a complete intersection.

As we will see, if R has large enough cohomological support VR(R), that does not mean

that VR(R) is necessarily a large set, rather that it is “large enough” for us to be able to find

the modules we are looking for. There are two extremes among noncomplete intersections

which are easily seen to satisfy this condition, as we see in Examples 4.5 and 4.6.

Example 4.5 (Equipresented rings). Suppose that a minimal Cohen presentation Q
π−→

R̂ of R is such that every minimal generator of I = kerπ has the same m-adic order; we

say such a ring is equipresented. If R is not a complete intersection, then (2) is satisfied

trivially. These include:

1. Short Gorenstein rings (see Example 5.2), Veronese rings of polynomial rings, and indeed

all Koszul algebras.

2. More generally, any quadratic ring.

3. The truncated rings Q/md (see Example 5.1).

4. Generic determinantal rings.

Example 4.6 (Rings with spanning support). Let n denote the minimal number of

generators for a defining ideal I of R̂ in a minimal Cohen presentation of (Q,m)
π−→ R̂.

Assume R is not a complete intersection and that it satisfies dimk(spanVR(R)) = n. Such

rings are said to have spanning support.

If d denotes the minimal m-adic order of an element in I, then

dimk

(
md+1∩ I

mI

)
< n.

Hence, (2) is trivially satisfied for rings with spanning support. Here are some examples of

rings with spanning support:

1. Short Gorenstein rings (see Example 5.2).
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2. By [36, Theorem 5.2.2], if R is not a complete intersection and dimQ− depthR � 3,

then

VR(R) = VR

except when Q admits an embedded deformation, meaning that R̂ ∼= P/(f) for some

local ring P and some P -regular element f. So the generic noncomplete intersection

which satisfies dimQ−depthR � 3 has spanning support, and hence has large enough

cohomological support.

3. Suppose (Q,m) → R̂ is a minimal Cohen presentation of R where the minimal free

resolution F
�−→ R̂ admits a dg Q-algebra structure. If F1F1 ⊆mF2, then R has spanning

support (see the argument in [36, Theorem 5.3.3]). Similarly, a direct calculation shows

that if F1Fp−1 ⊆mFp, where p= pdQ R̂, then R again has spanning support.

Here is a procedure to construct examples that are not in either of the two classes above,

in Examples 4.5 and 4.6, yet have large enough cohomological support.

Example 4.7. Let R′ be a noncomplete intersection local k -algebra which is

equipresented in degree d, and let S be a complete intersection k -algebra whose defining

ideal is generated in degrees strictly greater than d. Set

R :=R′⊗k S.

It can easily be checked that R has large enough cohomological support while not falling

into the two classes of rings above.

Furthermore, the tensor product (over k) of any two noncomplete intersections, each

without spanning support and not equipresented, yields a k -algebra with not falling into

either class above; this is a fairly large class of examples of rings with large enough

cohomological support that are not in the extremal cases of Examples 4.5 and 4.6 above.

Theorem 4.8. Let R be a commutative Noetherian local ring with residue field k. If R

has large enough support, then there exists a finite length R-module that is not proxy small.

Moreover, when k is infinite, there is a surjective homomorphism R � S such that S is an

Artinian hypersurface and S is not a proxy small R-module.

Proof. Consider a minimal Cohen presentation (Q,m)
π−→ R̂ with kernel I. Since R has

large enough support, by Remark 4.4, I is generated by

{f1, . . . ,fc,fc+1, . . . ,fn},

where each k -linear combination of f1, . . . ,fc has minimal m-adic order among elements of

I, and

n− c < dimk (spanVR(R)) .

First, we assume that k is infinite. With this setup, we build t � c Artinian hypersurface

quotients R � Q/Ji, for 1 � i � t, such that

VR(Q/J1)∩VR(Q/J2)∩· · ·∩VR(Q/Jt)

is a subspace of codimension at least c in VR, and thus cannot contain VR(R). We will

then use Strategy 3.4 to conclude that at least one of these Artinian hypersurface quotients

cannot be proxy small.
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First, Lemma 4.2 provides an Artinian hypersurface R � Q/J1 such that g1 := f1 ∈
J1\mJ1. In particular, by Lemma 4, VR(Q/J1) is a subspace of I/mI of codimension at least

1. If possible, pick a minimal generator g2 := a1f1+ · · ·+acfc of I such that g2 ∈mJ1; note

that g2 has minimal m-adic order by construction. If there is no such g2, then VR(Q/J1)

is a subspace of codimension at least c, and we are done. If such a g2 does exist, then

we again use Lemma 4.2 to build an Artinian hypersurface quotient R � Q/J2 such that

g2 ∈ J2\mJ2. Note that the codimension of VR(Q/J1)∩VR(Q/J2) must necessarily increase,

by construction, and so in particular it is at least 2. Proceeding by induction, we build

Artinian quotients Q/J1, . . . ,Q/Jt of R, t � c, such that
⋂t

j=1VR(Q/Jj) is a subspace of

I/mI of codimension at least c. From the assumption that R is not a complete intersection

and k is infinite, we have constructed a finite length nonproxy small R-module.

Now, we deal with the case when k is finite. By [15, Appendice, Section 2] (see also

[33, Theorem 10.14]), one can construct a flat extension of regular local rings (Q,m,k)→
(Q′,m′,k′) such that mQ′ = m′ and such that k′ is infinite. Moreover, choosing k′ to be

algebraic over k, we can do this in such a way that Q′ is a colimit of regular local rings

(Qi,mi,ki) each finite and flat over Q, each satisfying mQi =mi.

Since mQ′ =m′, the m-adic order of an element of Q is the same as its m′-adic order in

Q′. So applying the above argument to IQ′ yields a sequence of ideals J ′
1, . . . ,J

′
t of Q

′ such

that

t⋂
j=1

ker
(
I/mI → J ′

j/m
′J ′

j

)
has codimension at least c in VR = I/mI.

There is an i such that all of the ideals J1, . . . ,Jt are defined over Qi. In other words, we

can find ideals J1, . . . ,Jt of Qi for which JjQ
′ = J ′

j . Now, applying Lemma 4, we see that

t⋂
j=1

VR(Qi/Ji) =
t⋂

j=1

ker(I/mI → Jj/mJj) =
t⋂

j=1

ker
(
I/mI → J ′

j/m
′J ′

j

)
has codimension at least c in VR; the second equality here uses flatness of Qi →Q′. Finally,

we can conclude as above that one of Qi/Ji must fail to be proxy small as an R-module.

Remark 4.9. The finite length modules that are constructed in Theorem 4.8 are shown

to exist based on the specified ring theoretic information in Condition (2); the latter

property is on the m-adic order of elements in I/mI, where (Q,m)→Q/I is a minimal Cohen

presentation for R. Moreover, these finite length modules are shown to exist for any singular

local ring R since n−c > 0, where n and c are as in Remark 4.4. So this set of modules acts

as a list of test modules provided Condition (2) in Theorem 4.8 holds. However, it remains

to determine whether one can construct a canonical list of finitely generated modules that

detect whether R is a complete intersection as discussed in Strategy 3.4; it may be worth

exploring this idea further.

Remark 4.10. One natural guess for a test module would be the conormal module I/I2.

While proxy small modules seem to govern the complete intersection property, so does the

conormal module [9], [16], [40]. In particular, [16] succeeded in showing that smallness of

the conormal does, in fact, characterize a complete intersection (see also [17]). However,

the conormal module is often proxy small even if R is not a complete intersection: if R
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admits an embedded deformation, then I/I2 has a free summand [40], and thus I/I2 is

proxy small.

As a special case of Theorem 4.8, we can completely solve the case of equipresented rings.

Corollary 4.11. For an equipresented local ring R with residue field k, the following

are equivalent:

1. R is a complete intersection;

2. every finitely generated R-module is proxy small;

3. every finite length R-module is proxy small.

If k is infinite, then these are equivalent to:

4. for every surjective homomorphism R � S such that S is an Artinian hypersurface, S is

a proxy small R-module.

In fact, the proof of Theorem 4.8 provides an algorithm to find modules that are not

proxy small.

Algorithm 4.12. Suppose that R ∼= Q/I, where Q is a regular ring and I = (f 1, . . .,

f n) is such that every k -combination of f 1, . . ., f n has the same m-adic order.

Step 1 Find x2, . . . ,xe ∈ m\m2 regular on R/(f 1), and set J1 := (f1,x2, . . . ,xe) and M1 :=

R/J1. As we have shown in Theorem 4.8, the ideal J1 contains I.

Step 2 Compute

K1 = ker

(
I

mI
→ J1

mJ1

)
.

Note that this map is well defined, because I ⊃ J1.

Step 3 For a fixed r � 1, suppose we have constructed J1, . . . ,Jr and K1, . . . ,Kr. Check

if there is an equality K1 ∩ · · · ∩Kr = 0; if so, we are done. If not, take gr+1 ∈ R

of minimal m-adic order such that [gr+1] ∈ K1 ∩ · · · ∩Kr. Repeat Step 1 for gr+1,

that is, find y2, . . . ,ye ∈ m\m2 such that gr+1,y2, . . . ,ye is a regular sequence. Set

Jr+1 = (gr+1,y2, . . . ,ye) and Mr+1 =Q/Jr+1. Repeat also Step 2, by setting

Kr+1 := ker

(
I

mI
→ Jr+1

mJr+1

)
.

In each step, the dimension of the vector space K1 ∩· · · ∩ Kr goes down by at least 1;

therefore, the process stops after at most n steps, since [f 1] �∈K1 and thus K1 has dimension

at most n − 1. Once this process is completed, we are left with R-modules M1, . . ., M t

such that VR(M1) ∩· · · ∩VR(M t) = 0. If R is not a complete intersection, at least one of

the M i cannot be proxy small.

When Q is a polynomial ring over a field k and R is a quotient of Q by some homogeneous

ideal I, this can be done with the computer algebra system Macaulay2 [25]. If f 1 is a homoge-

neous generator of minimal degree in I, the method inhomogeneousSystemOfParameters

from the Depth package will find a linear system of parameters [x2], . . ., [xe ] in R/(f 1),

and thus f 1, x2, . . ., xe form a regular sequence. Moreover, as shown in Theorem 4.8, I ⊃
J1:=(f 1, x2, . . ., xe).

We apply this algorithm in Section 8 to compute various examples.
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Remark 4.13. If I is not equigenerated, but still satisfies the hypothesis of Theorem

4.8, a variation of Algorithm 4.12 still produces our candidates for nonproxy small modules.

Suppose that I is a homogenous ideal in Q = k[x1, . . . ,xv], minimally generated by n

elements, and that

n− r := dimk

(
(x1, . . . ,xv)

d+1∩ I

(x1, . . . ,xv)I

)
< dimk (spanVR(R)) := s.

Find homogeneous generators f1, . . . ,fn for I such that every k -combination of f1, . . . ,fr has

minimal degree in I, and such that fr+1, . . . ,fn have nonminimal degree in I. We then run

Algorithm 4.12 on (f1, . . . ,fr), but rather than checking at each step that K1∩· · ·∩Kt = 0,

we check that

dimk (K1∩· · ·∩Kt)< s.

We use this more general algorithm in Section 8.

We now discuss a connection with a definition introduced and investigated by Gheibi,

Jorgensen, and Takahashi in [24].

Definition 4.14. Let M be an R-module. A quasi-projective resolution of M is a

complex of projective R-modules

P = · · · �� P2
�� P1

�� P0
�� 0

such that for each i � 0, Hi(P ) =M⊕ri , for some ri � 0, not all equal to zero. The module

M has finite quasi-projective dimension if there exists a quasi-projective resolution of M

with Pi = 0, for i� 0.

Question 4.15. (Gheibi–Jorgensen–Takahashi [24, Question 3.12]). If every finitely

generated R-module has finite quasi-projective dimension, is R a complete intersection?

In [24, Corollary 3.8], it is shown that if R is complete intersection, then every finitely

generated R-module has finite quasi-projective dimension. Furthermore, every module of

finite quasi-projective dimension is proxy small (see [24, Proposition 3.11]); however, finite

quasi-projective dimension is not equivalent to a module being proxy small, as shown in

[24, Example 4.9]. Regardless, Theorem 4.8 answers Question 4.15 in the affirmative in the

following setting.

Corollary 4.16. Whenever R has large enough cohomological support, then from

Theorem 4.8, there exists a finite length R-module that has infinite quasi-projective

dimension. Moreover, when the residue field is infinite, there exists a singular quotient

of R which is an Artinian hypersurface of infinite quasi-projective dimension over R.

Corollary 4.17. If R is an equipresented local ring, then the following are equivalent:

1. R is a complete intersection;

2. every finitely generated R-module has finite quasi-projective dimension;

3. every finite length R-module has finite quasi-projective dimension.

Moreover, when k is infinite, then these are equivalent to:

4. each singular Artinian hypersurface which is a quotient of R has finite quasi-projective

dimension.
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§5. Examples

Example 5.1. Let Q be a regular local ring with maximal ideal m = (x1, . . . ,xd), and

consider R=Q/ms, for some s � 2. As R is an equipresented noncomplete intersection, we

know from Theorem 4.8 that there exists a finite length R-module that is not proxy small

over R. The point of this example is that even without the assumption that the residue

field is infinite we can explicitly construct a single Artinian hypersurface quotient of R that

is not proxy small.

Indeed, define the Q-module M to be

M :=Q/(xs
1,x2, . . . ,xd).

It is evident that

ms ⊆ (xs
1,x2, . . . ,xd)

andM is an Artinian singular hypersurface. Therefore, by Lemma 4, VR(M) is a hyperplane

in VR. However, pdQ/f R =∞, for any f ∈ ms (see, e.g., [3, Corollary 10.3.8]) and hence

VR(R) = VR. Thus, M is a singular Artinian hypersurface quotient of R that is not proxy

small over R.

Example 5.2. Let k be any field, e � 3, Q = k[[x1, . . . ,xe]], and let I be the ideal

generated by

{x2
1−x2

i : 2 � i � e}∪{xixj : 1 � i < j � e}.

The ring R=Q/I is well known to be Gorenstein but not a complete intersection, and I is

minimally generated by the quadratics listed above. As R is an equipresented noncomplete

intersection, by Corollary 4.11, we conclude that there exists a nonproxy small module over

R. In fact, more can be said in this case. Namely, we claim that

VR(R) = VR

is full, and so each test module constructed in using Algorithm 4.12 fails to be proxy small.

Indeed, let A be the polynomial ring k[x1, . . . ,xe]. In [22, Example 9.14], the authors

show that for any element f of A contained in the ideal

J =A{x2
1−x2

i : 2 � i � e}+A{xixj : 1 � i < j � e},

pdA/(f)(A/J) =∞. By completing at (x1, . . . ,xe), it follows

pdQ/(f)(R) =∞

for any f in I that is in the image of the completion A→Q mapping J into I. Therefore,

pdQ/(f)(R) = ∞ for any f that is a nonzero k -linear combination of the generators for I,

and hence,

VR(R) = VR,

as claimed.

To give an explicit illustration of how Algorithm 4.12 works, we consider the case when

e= 3. Following Algorithm 4.12, we produce modules Mi =R/Ji defined by the ideals

J1 = (x2−y2,y−z,x), J2 = (y2−z2,y,x), J3 = (xy,x−y,x−z),

J4 = (x2−y2+yz−xy,y−z,x−y−z) and J5 = (xy−xz,y,x−z).
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A priori, just considering R as an equipresented noncomplete intersection, all we know is

that at least one of these is not proxy small. However, as discussed above,

VR(R) = VR = k5,

and hence, each Mi is not proxy small over R. Furthermore, in this example, we do not need

the assumption that k is infinite to construct the singular Artinian hypersurface quotients

Mi over R that are not proxy small over R. Finally, it is also worth remarking that a similar

conclusion was made in [22, Example 9.14], but the use of cohomological supports gives a

simpler argument that these quotients cannot be proxy small R-modules.

Despite the fact that Theorem 4.8 only applies to rings satisfying Condition (2), we can

still apply our strategy in some cases that do not satisfy Condition (2), as the following

example shows.

Example 5.3. Let k be a field of characteristic not 2, Q= k[[x,y,z]], and take R=Q/I,

where I = (x2 + y2 + z2,xyz,x3). We can make use of our techniques to find a module

that is not proxy small; however, R does not satisfy (2), and thus is not covered by

Theorem 4.8. In fact, n− c = 3− 1 = 2, and, on the other hand, R has an embedded

deformation (cf. Example 4.6(2)) defined by x2 + y2 + z2. Thus, by [36, Theorem 5.2.2],

VR(R) is a hyperplane in VR = k3, and so it is a two-dimensional subspace.

Consider the following ideals in Q :

J1 = (x2+y2+z2,y,x3) and J2 = (x2−2z,xyz,y+z).

First, note that I ⊇ J1 and I ⊇ J2, and that both M1 =Q/J1 and M2 =Q/J2 are Artinian

codimension two complete intersection rings. Moreover, since both x2 + y2 + z2 and x3

are minimal generators of J1, and xyz is not, the kernel K1 of the k -vector space map

I/mI −→ J1/mJ1 has dimension 1, and it is generated by the image of xyz in I/mI. In

contrast, xyz is a minimal generator of J2, and thus K1∩K2 = 0, where K2 is the kernel

of the map corresponding to J2. By Lemma 4,

VR(M1)∩VR(M2) = 0,

and therefore one of these two modules is not proxy small. However, since VR(Mi) is a

one-dimensional subspace of VR, it follows from Fact 3.3(1) that both M1 and M2 fail to

be proxy small over R.

Example 5.4. Consider Q = k[x,y,z,w], I = (x4,xy,yz,zw,w3) and R = Q/I.

According to Macaulay2 [25] computations, VR(R) is the union of two hyperplanes in

VR = k5:

VR(R) = {(a1, . . . ,a5) ∈ k5 : a1 = 0 or a5 = 0}.

Note that R is not equipresented but R has spanning support, so any minimal generator of

order 2 gives rise to a nonproxy small module via Algorithm 4.12. For example, considering

the minimal generator yz, we obtain the nonproxy small module

M =Q/(yz,x,w,y−z).

The algorithm does not apply to minimal generators of order 3 or 4, yet we can

still produce nonproxy small modules corresponding to, for example, x4 or w3: namely,
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M1 = Q/(x4,y,z,w) and M2 = Q/(w3,x,y,z), respectively. Indeed, one can directly check

that

VR(M1) = {(a1, . . . ,a5) ∈ k5 : a1 = 0} and VR(M2) = {(a1, . . . ,a5) ∈ k5 : a5 = 0},

and (x4,y,z,w)⊇ I and (w3,x,y,z)⊇ I, justifying these are not proxy small R-modules.

Example 5.5 (Stanley–Reisner rings). Let k be any field, Q = k[x1, . . . ,xd], and let

I = (f1, . . . ,fn)⊆ (x1, . . . ,xd)
2 be a monomial ideal in Q, minimally generated by monomials

f1, . . . ,fn. Assume that R=Q/I is not a complete intersection. If I is square-free, then we

can always find an Artinian quotient of R that is not proxy small, independently of whether

I satisfies the hypothesis of Theorem 4.8. In fact, the process we will describe works as long

as we assume that the supports1 of any two of f1, . . . ,fn are incomparable.

Fix one of those fi, say f = f1 = xa1
1 · · ·xad

d , and assume without loss of generality that

a1 �= 0. Then, consider the ideal

J = (f,x1−xi,xj | for all i, j such that ai �= 0,aj = 0) .

This ideal J has some useful properties.

• Our given set of generators for J is a regular sequence.

We gave d generators, and Q/J ∼= k[x1]/(x
a1+···+an
1 ) has dimension 0.

• I ⊆ J .

By assumption, the support of each of the monomials f2, . . . ,fn contains a variable xj not

in the support of f1, and thus f2, . . . ,fn ∈ J .

• f2, . . . ,fn ∈ (x1, . . . ,xd)J .

Each of these monomials is in (xj) for some j with aj = 0, and has degree at least 2.

• f /∈ (x1, . . . ,xd)J .

It’s enough to check that f /∈ (x1−xi |ai �=0), which is immediate once we set all variables

to 1.

Now, if we follow this recipe and construct J1, . . . ,Jn for each f1, . . . ,fn, each one of these

ideals contains exactly one of the fi as a minimal generator, and thus

n⋂
i=1

kerVR→Q/Ji
= 0 .

By Strategy 3.4 and Lemma 4, one of Q/J1, . . . ,Q/Jn is not a proxy small module.

Finally, what are examples of rings where we cannot apply our strategy as of yet? A

minimal example of a ring not satisfying (2) would be presented by an ideal I with three

minimal generators of different m-adic orders, and such that

dimk (spanVR(R)) = 1 ,

since in that setting, we would have

dimk

(
md+1∩ I

mI

)
� 1 = dimk (spanVR(R)) .

1 The support of a monomial f is the set of variables that appear in f with nonzero coefficient.
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Note, however, that even given such a ring, it is not immediate that our strategy would not

apply—we just have not yet proved that it does. However, we have no examples of such

rings.

Question 5.6. Is there a noncomplete intersection R with dimk (spanVR(R)) = 1? That

is, can VR(R) be a line?

By [35, Theorem 6.3.5], no such examples can exist when the codepth of R is less than

4. Furthermore, the investigations in this article seem to suggest that the generic variety

VR(R) tends to be “large,” in the sense that it has small codimension, when R is not a

complete intersection.
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