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Abstract. Let b be the Borel subalgebra of the Lie algebra sl2 and V2 be the simple
two-dimensional sl2-module. For the universal enveloping algebra A := U(b� V2) of the
semi-direct product b� V2 of Lie algebras, the prime, primitive and maximal spectra are
classified. The sets of completely prime ideals of A are described. The simple unfaithful
A-modules are classified and an explicit description of all prime factor algebras of A is
given. The following classes of simple U(b� V2)-modules are classified: the Whittaker
modules, the K[X ]-torsion modules and the K[E]-torsion modules.

2010 Mathematics Subject Classification. 17B10, 16D25, 16D60, 16D70, 16P50

1. Introduction. In this paper, module means a left module, K is a field of
characteristic zero and K∗ :=K \ {0}.

Recall that the Lie algebra sl2 =KF ⊕KH ⊕KE is a simple Lie algebra over K,
where the Lie bracket is given by the rule: [H, E] = 2E, [H, F] = −2F and [E, F] = H .
Let V2 =KX ⊕KY be the two-dimensional simple sl2-module with basis X and Y : H ·
X = X , H · Y = −Y , E · X = 0, E · Y = X , F · X = Y and F · Y = 0. Let a := sl2 � V2 be
the semi-direct product of Lie algebras where V2 is viewed as an abelian Lie algebra. In
more detail, the Lie algebra a admits a basis {H, E, F, X , Y } and the Lie bracket is as
follows:

[H, E] = 2E, [H, F] = −2F, [E, F] = H, [E, X ] = 0, [E, Y ] = X ,

[F, X ] = Y , [F, Y ] = 0, [H, X ] = X , [H, Y ] = −Y , [X , Y ] = 0.

Let A = U(a) be the enveloping algebra of the Lie algebra a.
Let b=KH ⊕KE be the Borel subalgebra of the Lie algebra sl2. Then b� V2 is a Lie

subalgebra of a. It admits a basis {H, E, X , Y }, and the Lie bracket on b� V2 is given as
follows:

[H, E] = 2E, [H, X ] = X , [H, Y ] = −Y ,

[E, X ] = 0, [E, Y ] = X , [X , Y ] = 0.
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The universal enveloping algebra A= U(b� V2) of the Lie algebra b� V2 is a subal-
gebra of A. The Lie algebra b� V2 is known as the ageing algebra; see, e.g., [12, 17, 16].
Recently, the simple weight modules of the algebra A were classified in [13]. The quantum
analogue of the algebra A, the so-called quantum spatial ageing algebra, was introduced
and studied in [9]. In [9], for the quantum spatial ageing algebra, its prime, primitive and
maximal spectra are classified, the automorphism group was determined and the classes of
simple unfaithful modules and various torsion simple modules were classified.

The paper has the following structure. In Section 2, an explicit description of the
prime spectrum of the algebra A is given (Theorem 2.5). An explicit description of all the
prime factor algebras of A is given in Theorem 2.5. The inclusions of primes are given
in the diagram (2.9). The sets of maximal, completely prime and primitive ideals of A are
explicitly described (Corollaries 2.6, 2.7 and Proposition 2.8, respectively). In Section 3,
using the classification of all primitive ideals of the algebra A (Proposition 2.8) and
the explicit description of primitive factor algebras of A (Theorem 2.5), a classification
of simple unfaithful A-modules is given (Proposition 3.3). In Section 4, a classification of
simple K[X ]-torsion A-modules is given (Corollary 4.5). In Section 5, a classification of
simple Whittaker A-module is obtained (see (5.3), Theorems 5.4, 5.7 and Proposition 5.8).
In Section 6, we classify simple K[E]-torsion A-modules (see (6.5), Theorems 6.4, 6.6
and Proposition 6.7).

2. The prime ideals of A. The aim of this section is to describe the prime ideals of
the enveloping algebra A (Theorem 2.5). As a result, the sets of maximal, completely prime
and primitive ideals are described (Corollaries 2.6, 2.7 and Proposition 2.8). Theorem 2.5
gives an explicit description of all prime factor algebras of A.

The nth Weyl algebra An = An(K) is an associative algebra which is generated by ele-
ments x1, . . . , xn, y1, . . . , yn subject to the defining relations: [xi, xj] = 0, [yi, yj] = 0 and
[yi, xj] = δij, where [a, b] := ab − ba and δij is the Kronecker delta function. The Weyl alge-
bra An is a simple Noetherian domain of Gefand–Kirillov dimension 2n. For an algebra R,
we denote by Z(R) its centre. An element r of a ring R is called a normal element if Rr = rR.

2.1. The subalgebra E of A. Let E be the subalgebra of A generated by the
elements E, X and Y . The generators of the algebra E satisfy the defining relations

EY − YE = X , EX = XE and YX = XY .

Clearly, X is a central element of the algebra E. The algebra E is isomorphic to the univer-
sal enveloping algebra of the three-dimensional Heisenberg Lie algebra. In particular, the
algebra E is a Noetherian domain of Gelfand–Kirillov dimension 3. Let EX be the locali-
sation of the algebra E at the powers of the element X . Then the algebra EX is the tensor
product of two algebras

EX =K[X ±1] ⊗ A+
1 ,

where the algebra A+
1 :=K〈EX −1, Y 〉 is the (first) Weyl algebra since [EX −1, Y ] = 1. Since

the algebra A+
1 is a central algebra, we have Z(EX ) =K[X ±1]. Then Z(E) = Z(EX ) ∩E=

K[X ].
LEMMA 2.1. ([14, Lemma 14.6.5]). Let B be a K-algebra, S = B ⊗ An be the tensor

product of the algebra B and the Weyl algebra An, δ be a K-derivation of S and T =
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S[t; δ]. Then there exists an element s ∈ S such that the algebra T = B[t′; δ′] ⊗ An is a
tensor product of algebras, where t′ = t + s and δ′ = δ + ads.

2.2. The algebra A. Recall that the algebra A is the subalgebra of A generated by
the elements H, E, X and Y . Then

A=E[H; δ] (2.1)

is an Ore extension where the K-derivation δ of the algebra E is given by the rule: δ(E) =
2E, δ(X ) = X and δ(Y ) = −Y . Notice that X is a normal element of the algebra A since
X is central in E and XH = (H − 1)X . The localisation AX of the algebra A at the powers
of the element X is an Ore extension

AX =EX [H; δ] = (K[X ±1] ⊗ A+
1 )[H; δ], (2.2)

where δ(E) = 2E, δ(X ) = X and δ(Y ) = −Y . The element s = EX −1Y ∈EX satisfies
the conditions of Lemma 2.1. In more detail, the element H+ := H + s = H + EX −1Y
commutes with the elements of A+

1 and

AX =K[X ±1][H+; δ′] ⊗ A+
1 , where δ′(X ) = X . (2.3)

Notice that the algebra K[X ±1][H+; δ′] can be presented as a skew Laurent polynomial
algebra K[H+][X ±1; σ ], where σ(H+) = H+ − 1. This is a central simple algebra of
Gelfand–Kirillov dimension 2. Let ∂ := H+X −1. Then [∂, X ] = 1 and so the subalgebra
A1 =K〈∂, X 〉 of AX is the (first) Weyl algebra. Moreover, the algebra A1 is a subalgebra
of K[X ±1][H+; δ′] and the algebra K[X ±1][H+; δ′] = A1,X is the localisation of the Weyl
algebra A1 at the powers of the element X . Now,

AX = A1,X ⊗ A+
1 . (2.4)

LEMMA 2.2.

1. The algebra AX is a central simple algebra of Gelfand–Kirillov dimension 4.
2. Z(A) =K.

Proof.

1. Since both the algebras K[X ±1][H+; δ′] and A+
1 are central simple algebras of

Gelfand–Kirillov dimension 2, statement 1 then follows from (2.3).
2. Since K⊆ Z(A) ⊆ Z(AX ) =K, we have Z(A) =K.

2.3. The factor algebra B :=A/(X). We also denote by H, E and Y the images of
these elements in the factor algebra B :=A/(X ). Then the algebra B is generated by the
elements H, E and Y that satisfy the defining relations

[H, E] = 2E, [H, Y ] = −Y , [E, Y ] = 0.

Hence, the algebra B is an Ore extension,

B =K[E, Y ][H; δ], where δ(E) = 2E and δ(Y ) = −Y . (2.5)

It is clear that the element Z := EY 2 belongs to the centre of the algebra B. The elements Y
and E are normal elements in B. Let BY be the localisation of the algebra B at the powers
of element Y . Then

BY =K[Z] ⊗K[H][Y±1; σ ] :=K[Z] ⊗Y, (2.6)
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where the skew polynomial algebra Y=K[H][Y±1; σ ] is a central simple algebra, where
the K-automorphism σ of K[H] is defined as follows: σ(H) = H + 1. Hence, the centre of
the algebra BY is K[Z]. The algebras B and BY are Noetherian domains of Gelfand–Kirillov
dimension 3.

LEMMA 2.3. Z(B) = Z(BY ) =K[Z], where Z = EY 2.

Proof. Since K[Z] ⊆ Z(B) ⊆ Z(BY ) =K[Z], we have Z(B) =K[Z].

2.4. The prime spectrum of the algebra A. For an algebra R, let Spec (R) be the
set of its prime ideals. The set (Spec (R), ⊆) is a partially ordered set (poset) with respect to
inclusion of prime ideals. Each element r ∈ R determines two maps from R to R, r· : x �→ rx
and ·r : x �→ xr, where x ∈ R. For an element r ∈ R, we denote by (r) the ideal of R generated
by the element r. If {si | i ∈N} is a left denominator set of an algebra R, we denote by Rs

the localisation of R at the powers of s.

PROPOSITION 2.4([9]). Let R be a Noetherian ring and s be an element of R such that
Ss := {si | i ∈N} is a left denominator set of the ring R and (si) = (s)i for all i � 1 (e.g., if s is
a normal element such that ker(·sR) ⊆ ker(sR·)). Then Spec (R) = Spec(R, s) � Specs(R),

where Spec(R, s) := {p ∈ Spec (R) | s ∈ p}, Specs(R) = {q ∈ Spec (R) | s /∈ q} and

(a) the map Spec (R, s) → Spec (R/(s)), p �→ p/(s), is a bijection with the inverse
q �→ π−1(q), where π : R → R/(s), r �→ r + (s),

(b) the map Specs(R) → Spec (Rs), p �→ S−1
s p, is a bijection with the inverse q �→

σ−1(q), where σ : R → Rs := S−1
s R, r �→ r

1 .
(c) For all p ∈ Spec (R, s) and q ∈ Specs(R), p �⊆ q.

Let U := U(sl2) and U+ be the ‘positive part’ of U , i.e., U+ is the subalgebra of U
generated by the elements H and E. Then U+ =K[H][E; σ ] is a skew polynomial alge-
bra, where σ(H) = H − 2. The localised algebra U+

E =K[H][E±1; σ ] is a central simple
domain. The following diagram illustrates the idea of finding the prime spectrum of the
algebra A by repeated application of Proposition 2.4,

A AX

B =A/(X ) (A/(X ))Y =BY

U+ =A/(X , Y ) U+
E

K[H] = U+/(E). (2.7)

Using (2.7) and Proposition 2.4, we can represent the prime spectrum Spec (A) as the
disjoint union of the following subsets:

Spec (A) = Spec (K[H]) � Spec (U+
E ) � Spec (BY ) � Spec (AX ), (2.8)

where we identify the sets of prime ideals in (2.8) via the bijections given in the statements
(a) and (b) of Proposition 2.4.
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A prime ideal p of an algebra R is called a completely prime ideal if R/p is a domain.
We denote by Specc(R) the set of completely prime ideals of R; it is called the com-
pletely prime spectrum of R. The next theorem gives an explicit description of the poset
(Spec (A), ⊆) and of all the prime factor algebras of A. It also shows that every prime
ideal is a completely prime ideal.

THEOREM 2.5. The prime spectrum Spec (A) of the algebra A is the disjoint union of
the sets in (2.8). More precisely,

{(Y , E, p) | p ∈ Max (K[H])}

(Y , E)

(Y ) (E){(X , q) | q ∈ Max (K[Z]) \ {(Z)}}

(X )

0 (2.9)

where

1. Spec (K[H]) = {(Y , E, p) | p ∈ Spec (K[H])} = {(Y , E)} � {(Y , E, p) | p ∈
Max (K[H])} and A/(Y , E, p) �K[H]/p.

2. Spec (U+
E ) = {(Y )}, (Y ) = (X , Y ) and A/(Y ) � U+ =K[H][E; σ ] is a skew poly-

nomial algebra which is a domain where σ(H) = H − 2.

3. Spec (BY ) = {(X ), (E), (X , q) | q ∈ Max(K[Z]) \ {(Z)}} and

(a) A/(X ) =B =K[E, Y ][H; δ] is an Ore domain (see (2.5)) where δ(E) = 2E
and δ(Y ) = −Y,

(b) A/(E) �K[H][Y ; σ ] is a skew polynomial algebra which is a domain where
σ(H) = H + 1, and

(c) A/(X , q) �B/(q) �BY /(q)Y � Lq ⊗Y is a simple domain which is a tensor
product of algebras where Lq :=K[Z]/q is a finite field extension of K.

4. Spec (AX ) = {0}.

Proof. Recall that X is a normal element in the algebra A. By Proposition 2.4,

Spec (A) = Spec (A/(X )) � Spec (AX ). (2.10)

(i) Statement 4 holds: By Lemma 2.2.(1), the algebra AX is a simple algebra. Hence,
Spec (AX ) = {0} and we are done.

Recall that Y is a normal element of the algebra B =A/(X ). By Proposition 2.4,

Spec (A/(X )) = Spec (A/(X , Y )) � Spec ((A/(X ))Y ) = Spec (U+) � Spec (BY ).

(2.11)

(ii) (Y ) = (X , Y ) and (E) = (X , E): Both equalities follow from the relation X =
[E, Y ].
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(iii) Statements 1 and 2 hold: The element E is a normal element of the algebra U+.
By Proposition 2.4,

Spec (U+) = Spec (U+/(E)) � Spec (U+
E ). (2.12)

Since K[H] = U+/(E), statement 1 follows. Now, (2.8) holds by (2.10), (2.11) and (2.12).
The algebra U+

E �K[H][E±1; σ ] is a central simple domain, where σ(H) = H − 2. By the
statement (ii), A/(Y ) =A/(X , Y ) = U+ is a domain. The set Spec (U+

E ), as a subset of
Spec (A), consists of the single ideal (Y ), and statement 2 follows.

(iv) Statement 3 holds: By (2.6), BY =K[Z] ⊗Y, where Y is a central simple algebra.
Hence, Spec (BY ) = Spec (K[Z]), and the set Spec (BY ), as a subset of Spec (A), is equal
to {A∩ (X )Y , A∩ (X , Z)Y , A∩ (X , q)Y | q ∈ Max (K[Z]) \ {(Z)}}. We have to show that
A∩ (X )Y = (X ), A∩ (X , Z)Y = (E) and A∩ (X , q)Y = (X , q).

A∩ (X )Y = (X ): Let u ∈A∩ (X )Y , then Y iu ∈ (X ) for some i ∈N. Since A/(X ) =B
is domain and Y �∈ (X ), we must have u ∈ (X ). Hence, A∩ (X )Y = (X ).

A∩ (X , Z)Y = (E): By the statement (ii), (E) = (X , E). So, (E)Y = (X , E)Y =
(X , Z)Y . Let u ∈A∩ (X , Z)Y =A∩ (E)Y , then Y iu ∈ (E) for some i ∈N. Since A/(E) =
A/(X , E) �K[H][Y ; σ ] is a domain where σ(H) = H + 1 and Y �∈ (E), we have u ∈ (E).
Therefore, A∩ (X , Z)Y = (E). So, statement (b) holds and (E) is a completely prime ideal
of the algebra A.

A∩ (X , q)Y = (X , q) for q ∈ Max (K[Z]) \ {(Z)}: Let us first show that the statement
(c) holds. It is clear that A/(X , q) �B/(q). Since q �= (Z), the non-zero element Z = EY 2

of Lq is invertible in the field Lq. Hence, the element Y is invertible in the algebra B/(q).
Now, B/(q) �BY /(q)Y � Lq ⊗Y, see (2.6). This proves the statement (c). Since A/(X , q)
is a simple algebra (by the statement (c)), the ideal (X , q) of A is a maximal ideal and
(X , q) ⊆A∩ (X , q)Y �A, we must have A∩ (X , q)Y = (X , q).

(v) Clearly, we have the inclusions as in the diagram (2.9) (see the statement (ii)). It
remains to show that there are no other inclusions. Recall that Z = EY 2. Hence, (Z) ⊆ (E)

and (Z) ⊆ (Y ). The ideals {(X , q) | q ∈ Max (K[Z]) \ {(Z)}} are maximal in A and (q) +
(Z) = (1). Therefore, none of the maximal ideals (X , q) contains (Y ) or (E). Therefore,
picture (2.9) represents the poset (Spec (A), ⊆).

For an algebra R, let Max(R) be the set of its maximal ideals. The next corollary is an
explicit description of the set Max(A).

COROLLARY 2.6. Max (A) =P � Q, where P :=
{
(Y , E, p) | p ∈ Max (K[H])

}
and

Q :=
{
(X , q) | q ∈ Max (K[Z]) \ {(Z)}

}
.

Proof. The corollary follows from (2.9).

COROLLARY 2.7 . Every prime ideal of the algebra A is completely prime, i.e.,
Specc(A) = Spec (A).

Proof. The corollary follows from Theorem 2.5.

Corollary 2.7 can also be obtained directly from [15, Corollary 2.6].
Let R be an algebra and M be an R-module. For a ∈ R, let aM · : M → M, m �→ am.

The ideal of R, annR(M) := {a ∈ R | aM = 0}, is called the annihilator of the R-module M .
An R-module is called faithful if it has zero annihilator. The annihilator of each simple
R-module is a prime ideal. Such prime ideals are called primitive and the set Prim (R) of
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all primitive ideals is called the primitive spectrum of R. The next proposition gives an
explicit description of the set Prim (A).

PROPOSITION 2.8. Prim(A) = Max(A) � {(Y ), (E), 0}.
Proof. Clearly, Prim (A) ⊇ Max (A). The ideals (X ) and (Y , E) are not primitive ide-

als as the corresponding factor algebras contain the central elements Z and H , respectively.

(i) (Y ) ∈ Prim (A): For λ ∈K∗, let I(λ) = (Y ) +A(E − λ). Since A/(Y ) � U+ (see
Theorem 2.5.(2)), the left A-module M(λ) :=A/I(λ) � U+/U+(E − λ) �K[H]1̄ is a
simple A-module/U+-module, where 1̄ = 1 + I(λ). By the definition of the module M(λ),
its annihilator p := annA(M(λ)) contains the ideal (Y ) but does not contain the ideal
(Y , E), since otherwise we would have 0 = E1̄ = λ1̄ �= 0, a contradiction. By (2.9), we have
p= (Y ).

(ii) (E) ∈ Prim (A): For λ ∈K∗, let Jλ = (E) +A(Y − λ). Since A/(E) �K[H][Y ; σ ],
where σ(H) = H + 1 (see Theorem 2.5.(3b)), the left A-module T(λ) :=A/Jλ �K[H]1̄ is
a simple module, where 1̄ = 1 + Jλ. Clearly, the prime ideal q := annA(T(λ)) contains the
ideal (E) but does not contain the ideal (Y , E) since otherwise we would have 0 = Y 1̄ =
λ1̄ �= 0, a contradiction. By (2.9), we have q= (E).

(iii) It follows from Theorem 4.4 that 0 is a primitive ideal of A.

The fact that (Y ) and (E) are primitive ideals of A also follows from [10, Proposition
5.2].

The next lemma is a faithfulness criterion for simple A-modules.

LEMMA 2.9. Let M be a simple A-module. Then M is a faithful A-module iff
ker(XM ·) = 0.

Proof. The A-module M is simple, so annA(M) ∈ Prim (A). Recall that the element
X is a normal element of the algebra A. So, ker(XM ·) is a submodule of M . Then either
ker(XM ·) = 0 or ker(XM ·) = M , and in the second case annA(M) ⊇ (X ). If ker(XM ·) = 0,
then annA(M) = 0 since otherwise, by (2.9), (X ) ⊆ annA(M), a contradiction.

3. A classification of simple unfaithful A-modules. In this section, all simple
unfaithful A-modules are classified (Proposition 3.3). The problem of classification is
reduced to the one for algebras for which the simple modules are classified but we have to
select faithful simple modules. The set Â (unfaithful) of isomorphic classes of unfaithful
simple A-modules can be partitioned according to their annihilators

Â (unfaithful) =
⊔

P∈Prim(A)\{0}
Â (P), (3.1)

where Â (P) = {[M] ∈ Â | annA(M) = P}. By Theorem 2.5 and Proposition 2.8, there are
four types of non-zero primitive ideals. We consider all four cases separately.

Â (P) where P = (Y , E, p) and p ∈ Max(K[H]). In this case, the factor algebra
A/(Y , E, p) is isomorphic to K[H]/p (Theorem 2.5.(1)) and the next Lemma is obvious.

LEMMA 3.1. For all p ∈ Max(K[H]), ̂A/(Y , E, p) = K̂[H]/p= {K[H]/p}.
Â (P) where P = (X , q) and q ∈K[Z] \ {(Z)}. By Theorem 2.5.(3c), the algebra

A/(X , q) is isomorphic to the skew Laurent polynomial algebra Lq[H][Y±1; σ ], where
σ is an Lq-automorphism of the polynomial algebra Lq[H] over the field Lq given by the
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rule σ(H) = H + 1. The algebra Lq[H] is a commutative Dedekind domain. The algebra
Lq[H][Y±1; σ ] is a particular case of the ring R (see in the following) for which all simple
modules are classified.

3.1. Classification of simple R-modules. Let us recall the classification of simple
R-modules where R = D[t, t−1; σ ]; here D is a commutative Dedekind domain and σ sat-
isfies the condition (I) – see in the following. These results are very particular cases of
classification of simple modules over a generalized Weyl algebra D(σ, a) obtained in
[1, 2, 3, 5, 6, 7, 8].

Let S = D \ {0} and k = S−1D be the field of fractions of the ring D. The ring R is
a subring of B := k[t, t−1; σ ]. The ring B = S−1R is a (left and right) localisation of R at
S . The ring B is a Euclidean ring and so is a principle left and right ideal domain. Every
simple B-module is isomorphic to B/Bb for some irreducible element b ∈ B (i.e., b = ac
implies either a or c is a unit in B). Two simple B-modules B/Ba and B/Bb are isomorphic
iff the irreducible elements a and b are similar; that is, there exists an element c ∈ B such
that 1 is the greatest common right divisor of b and c, and ac is the least common left
multiple of b and c.

Let G := 〈σ 〉 be the subgroup of Aut(D) generated by σ . The group G acts on the set
Max(D) of maximal ideals of D. For each p ∈ Max(D), O(p) := {σ i(p) | i ∈Z} is the orbit
of p. The set of all G-orbits in Max(D) is denoted by Max(D)/G. The orbit O(p) is called
an infinite or linear orbit if |O(p)| = ∞; otherwise the orbit O(p) is called a finite or cyclic
orbit. If O(p) is an infinite orbit, then the map Z→ O(p), i �→ σ i(p), is a bijection, and
we write σ i(p)� σ j(p) if i � j. So, the total ordering of Z is passed to O(p). This ordering
does not depend on the choice of the ideal p in the orbit O(p).

Given elements α, β ∈ D \ {0}, we write α < β if there are no maximal ideas p and q
that belong to the same infinite orbit and such that α ∈ p, β ∈ q and p� q. In particular, if
α ∈ D∗ is a unit of D then α < β for all β ∈ D \ {0}. The relation < is not a partial order on
D \ {0} as 1 < 1. Clearly, α < β iff σ j(α) < σ j(β) for some/all j ∈Z.

DEFINITION: An element b = tmβm + tm+1βm+1 + · · · + tnβn ∈ R, where βi ∈ D,

m < n and βm, βn �= 0, is called an l-normal element if βn < βm.

DEFINITION: We say that the automorphism σ of D is of (I)-type, if all G-orbits in
Max(D) are infinite.

Let R̂ be the set of isomorphism classes [M] of simple R-modules M . Then

R̂ = R̂(D-torsion) � R̂(D-torsionfree)

is a disjoint union, where R̂(D-torsion) := {[M] ∈ R̂ | S−1M = 0} and R̂(D-torsionfree) :=
{[M] ∈ R̂ | S−1M �= 0}. An R-module M is called a weight R-module if M is a semi-simple
D-module, i.e.,

M =
⊕

p∈Max(D)

Mp,

where Mp = {v ∈ M | pv = 0} is called the component of M of weight p. The set Supp(M) =
{p ∈ Max(D) | Mp �= 0} is called the support of the weight A-module M . It is also denoted
SuppD(M) and is called D-support if we want to stress over which ring D we consider
weight modules. Every simple weight R-module is a simple D-torsion R-module, and vice
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versa. We denote by R̂(D-torsion, infinite) and R̂(D-torsion, finite) the sets of isomorphism
classes of simple, weight R-modules with infinite and finite support, respectively.

The next theorem classifies the simple R-modules.

THEOREM 3.2. Suppose that σ is of (I)-type. Then

1. [4] the map Max(D)/G −→ R̂(D-torsion), O(p) �→ R/Rp, is a bijection with the
inverse M �→ Supp(M).

2. [4] R̂(D-torsionfree) = {[R/R ∩ Bb] | b ∈ R is an l-normal, irreducible element of B
}
.

The simple R-modules R/R ∩ Bb and R/R ∩ Bb′ are isomorphic iff the B-modules
B/Bb and B/Bb′ are isomorphic.

The next proposition describes the sets Â (P) for all non-zero primitive ideals of A,
hence gives a classification of simple unfaithful A-modules.

PROPOSITION 3.3.

1. For all p ∈ Max (K[H]), Â ((Y , E, p)) = ̂A/(Y , E, p) = K̂[H]/p= {K[H]/p}.
2. For all q ∈ Max (K[Z]) \ {(Z)}, Â ((X , q)) = ̂A/(X , q) = L̂q ⊗Y.

3. Â ((Y )) = Â/(Y ) (faithful) = Û+ (faithful) = Û+\
( ⊔

p∈Max (K[H]) Â
(
(Y , E, p)

))
.

4. Â ((E)) = Â/(E) (faithful) = ̂K[H][Y ; σ ] (faithful) = ̂K[H][Y ; σ ] \( ⊔
p∈Max (K[H]) Â

(
(Y , E, p)

))
.

Proof. All the statements are obvious. The algebras U+ and K[H][Y ; σ ] (where
σ(H) = H + 1) are isomorphic to the enveloping algebra of the Borel subalgebra of sl2,
the simple modules of which were classified by Block [11]; see also [7]. The algebra
Y=K[H][Y±1; σ ] is a skew polynomial algebra with the coefficients from a Dedekind
domain; the classification of simple Y-modules can be found in [7].

4. A classification of simple K[X]-torsion A-modules. In this section, K is an
algebraically closed field of characteristic zero. The aim of this section is to classify all the
simple K[X ]-torsion A-modules (Corollary 4.5).

The set S =K[X ] \ {0} is a left and right Ore set of the domain A. An A-module M is
called an S-torsion module or a K[X ]-torsion module if S−1M = 0. Then

Â (K[X ]-torsion) = Â (K[X ]-torsion, faithful) � Â (K[X ]-torsion, unfaithful). (4.1)

For each λ ∈K, consider the A-module

V(λ) :=A/A(X − λ) =
⊕

i,j,k�0

KHiEjY k 1̄ where 1̄ := 1 +A(X − λ). (4.2)

The Gelfand–Kirillov dimension of the A-module V(λ) is 3. Since the field K is an alge-
braically closed field, each simple K[X ]-torsion A-module is an epimorphic image of the
A-module V(λ) for some λ ∈K.

LEMMA 4.1.

1. If λ �= 0 then the map X · : V(λ) −→ V(λ), v �→ Xv, is a bijection.
2. If λ = 0 then V(0) =A/(X ) and annA(V(0)) = (X ).
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Proof.

1. The A-module V(λ) admits two sets of bases {HiEjY k 1̄ | i, j, k ∈N} and {(H −
1)iEjY k 1̄ | i, j, k ∈N}. Now, the lemma follows from the equalities X · HiEjY k 1̄ =
λ(H − 1)iEjY k 1̄.

2. The element X is a normal element of A, and so statement 2 is obvious.

For each λ ∈K∗, the A1,X -module

A1,X (λ) := A1,X /A1,X (X − λ) =
⊕
i�0

K∂ i1̄ =
⊕
i�0

K(H+)i1̄

is a simple A1,X -module. By (2.4), the algebra AX = A1,X ⊗ A+
1 is a tensor product of

algebras. So, the AX -module

V(λ) = A1,X (λ) ⊗ A+
1 (4.3)

is the tensor product of A1,X -module A1,X (λ) and the A+
1 -module A+

1 .
Let R be an algebra and S be a non-empty subset of R. The algebra CR(S) = {r ∈

R | rs = sr for all s ∈ S} is called the centraliser of S in R. The next lemma describes the
centraliser of the element X in A.

LEMMA 4.2. CA(X ) =E.

Proof. Clearly, E⊆ CA(X ) and XHi = (H − 1)iX for all i � 0. So, the result follows
from the equality A=E[H; δ]; see (2.1).

The element X is a central element of the algebra CA(X ) =E (Lemma 4.2). For
λ ∈K∗, the factor algebra E(λ) :=E/E(X − λ) is isomorphic to the Weyl algebra since
[E, Y ] ≡ λ mod E(X − λ). Using the equality A=E[H; δ] (see (2.1)), the A-module
V(λ) (where λ �= 0) can be written as

V(λ) =K[H] ⊗E(λ) =
⊕
i�0

Hi ⊗E(λ), (4.4)

where K[H] ⊗E(λ) is a tensor product of vector spaces. The next proposition gives an
explicit description of all submodules of the A-module V(λ).

PROPOSITION 4.3. Let λ ∈K∗.

1. The set {K[H] ⊗ I | I is a left ideal of the Weyl algebra E(λ)} is the set of all distinct
submodules of the A-module V(λ).

2. The set {K[H] ⊗ I | I is a maximal left ideal of E(λ)} is the set of all distinct
maximal submodules of the A-module V(λ).

Proof.

1. Let M be a submodule of the A-module V(λ) = ⊕
i�0 Hi ⊗E(λ); see (4.4). We

have to show that M =K[H] ⊗ I for some left ideal I of the algebra E(λ).
The A-module V(λ) = ⋃

i�0 V(λ)�i is the union of the vector spaces V(λ)�i =
{∑i

j=0 Hj ⊗ rj | rj ∈E(λ)}. Then M ∩ V(λ)�0 = M ∩E(λ) = I , where I is a left
ideal of E(λ). We claim that M =K[H] ⊗ I . We have to show that, for all i � 0,

https://doi.org/10.1017/S0017089519000302 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089519000302


THE PRIME IDEALS AND SIMPLE MODULES S87

M ∩ V(λ)�i = Mi := ⊕i
j=0 Hj ⊗ I . To prove this, we use induction on i. The ini-

tial case when i = 0 is trivial. So, let i > 0, and we assume that the result holds for
all i′ < i. Clearly, (X − λ)V(λ)�i ⊆ V(λ)�i−1 for all i � 0 (where V(λ)�−1 := 0)
since, for all r ∈E(λ), (X − λ)Hi ⊗ r1̄ = [X , Hi] ⊗ r1̄ = λ((H − 1)i − Hi) ⊗ r1̄ =
λ(−iHi−1 + · · · ) ⊗ r1̄, where the three dots mean a polynomial of degree < i − 1.
Moreover,

X − λ : V(λ)�i

V(λ)�i−1
→ V(λ)�i−1

V(λ)�i−2
, Hi ⊗ r1̄ + V(λ)�i−1 �→ − λiHi−1 ⊗r1̄ + V(λ)�i−2.

(4.5)

It follows from (4.5) and induction on i that if w = ∑i
j=0 Hj ⊗ rj1̄ ∈ M ∩ V(λ)�i,

then −λiri ∈ I , i.e., ri ∈ I . Hence, Hi ⊗ ri ∈ Mi, and so
∑i−1

j=0 Hj ⊗ rj = w − Hi ⊗
ri ∈ M ∩ V(λ)�i−1 = Mi−1, by induction. Therefore, w ∈ Mi, i.e., M ∩ V(λ)�i = Mi,
as required.

2. Statement 2 follows from statement 1.

Let V be a vector space. A linear map f : V → V is called a locally nilpotent linear
map if V = ⋃

n�1 ker(f n). We also say that the map f acts locally nilpotently on V . The
next theorem gives a classification of simple faithful K[X ]-torsion A-modules.

THEOREM 4.4 . Â (K[X ]-torsion, faithful) = {K[H] ⊗ M | [M] ∈ Ê(λ), λ ∈K∗} and
the simple A-modules K[H] ⊗ M and K[H] ⊗ M ′ (where [M] ∈ Ê(λ) and [M ′] ∈ Ê(λ′))
are isomorphic iff λ = λ′ and M � M ′ as E(λ)-modules.

Proof. Since X is a normal element of the algebra A, all simple factor mod-
ules of the A-module V(0) =A/AX =A/(X ) are annihilated by (X ) and, there-
fore, are unfaithful. Let S= {K[H] ⊗ M | [M] ∈ Ê(λ), λ ∈K∗}. By Proposition 4.3.(2),
Â (K[X ]-torsion, faithful) ⊆ S. Conversely, let M=K[H] ⊗ M ∈ S, where [M] ∈ Ê(λ)

for some λ �= 0. Clearly, the A-module M has the form K[H] ⊗ E(λ)

I , where I is a maximal
left ideal of the Weyl algebra E(λ). By Proposition 4.3.(2), the A-module M is simple
since M� K[H]⊗E(λ)

K[H]⊗I . By (2.9), the A-module M is faithful since XM = λM = M �= 0.

Therefore, Â (K[X ]-torsion, faithful) = S.
The element (X − λ) acts locally nilpotently on the A-module M=K[H] ⊗ M , where

M ∈ Ê(λ) since (X − λ)Hi ⊗ m = λ((H − 1)i − Hi) ⊗ m for i � 1 on m ∈ M . But then,
for all μ �= λ, the element X − μ acts bijectively on M. So, the scalar λ is a unique
scalar for the A-module M such that the element (X − λ) acts locally nilpotently. Let
M ∈E(λ) and [M ′] ∈E(λ′), where λ, λ′ ∈K∗. The simple A-modules K[H] ⊗ M and
K[H] ⊗ M ′ are isomorphic iff λ = λ′ and the E(λ)-modules ker(X − λ)K[H]⊗M = M and
ker(X − λ)K[H]⊗M ′ = M ′ are isomorphic.

By Proposition 2.8 and (2.9), all the non-zero primitive ideals of A contain the ideal
(X ). Hence,

Â (K[X ]-torsion, unfaithful) = Â (unfaithful). (4.6)

COROLLARY 4.5. Theorem 4.4 and Proposition 3.3 give a classification of all simple
K[X ]-torsion A-modules.

Proof. The proof follows from (4.1) and (4.6).
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5. Whittaker A-modules. In this section, K is an algebraically closed field. In this
section, a classification of Whittaker A-modules is given (see (5.3), Theorems 5.4, 5.7 and
Proposition 5.8).

Let h := H+X = HX + EY . Then the Ore extension A1,X =K[X ±1][H+; δ′], where
δ′(X ) = X (see (2.4)), can be written as the Ore extension

A1,X =K[X ±1][h; δ] where δ(X ) = X 2 ([h, X ] = X 2). (5.1)

LEMMA 5.1.

1. CAX (Y ) = A1,X ⊗K[Y ].
2. The centraliser of the element Y in A, CA(Y ) =K[Y ] ⊗ R, is a tensor product of

algebras, where R :=K[X ][h; δ] is an Ore extension, h = H+X = HX + EY and
δ(X ) = X 2.

3. The centre of the algebra CA(Y ) is K[Y ].

Proof.

1. By (2.4), AX = A1,X ⊗ A+
1 and Y ∈ A+

1 . Then CAX (Y ) = A1,X ⊗ CA+
1
(Y ) = A1,X ⊗

K[Y ].
2. Now, CA(Y ) =A∩ CAX (Y ) =A∩ A1,X ⊗K[Y ] (5.1)= A∩K[X ±1][h; δ] ⊗K[Y ] =

K[X ][h; δ] ⊗K[Y ] (since h = HX + EY and X is a normal element of A) and so
the result.

3. By statement 2, Z
(

CA(Y )
)

=K[Y ] ⊗ Z(R) =K[Y ] ⊗K=K[Y ].
For an A-module M , an element m ∈ M is called a Whittaker vector if Ym = λm for

some λ ∈K. An A-module M is called a Whittaker module if there is a Whittaker vector
m ∈ M which generates the A-module M , i.e., M =Am. For a given λ ∈K, the universal
Whittaker module W(λ) is defined as follows:

W(λ) :=A/A(Y − λ) =
⊕

i,j,k�0

KHiEjX k 1̄ where 1̄ := 1 +A(Y − λ). (5.2)

Any Whittaker module M is an epimorphic image of the A-module W(λ) for some λ ∈K,

and vice versa.

LEMMA 5.2. Let M be a Whittaker A-module, i.e., M is an epimorphic image of the
A-module W(λ) for some λ ∈K. Then

1. the element Y − λ acts locally nilpotently on M but the elements Y − μ, where
μ ∈K \ {λ}, act bijectively on M.

2. If V ⊆ M is a non-zero submodule of M, then V contains a non-zero Whittaker
vector.

Proof.

1. The inner derivation adY acts locally nilpotently on A. Recall that W(λ) =
A1̄, where 1̄ = 1 +A(Y − λ). It follows from the equalities (where a ∈A)
(Y − λ)a1̄ = [Y , a]1̄ + a(Y − λ)1̄ = adY (a)1̄ that the element Y − λ acts locally
nilpotently on M . Then for all μ �= λ, the element Y − μ acts bijectively
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on M since (Y − μ)−1
M =

(
λ − μ + (Y − λ)

)−1

M
= (λ − μ)−1

(
1 − (μ − λ)−1(Y −

λ)
)−1

M
= (λ − μ)−1

∑
i�0(μ − λ)−i(Y − λ)i

M is the inverse map of (Y − μ)M :
M → M, m �→ (Y − μ)m.

2. Let V be a non-zero submodule of M and 0 �= v ∈ V . Then there exists i � 0
such that v′ := (Y − λ)iv �= 0 and (Y − λ)i+1v = 0. Then v′ is a Whittaker vector
in V .

Let Â (Whittaker) be the set of isomorphism classes of simple Whittaker A-modules.
Then, by Lemma 5.2.(1), the set

Â (Whittaker) =
⊔
λ∈K

Â (Whittaker, λ) (5.3)

is a disjoint union, where Â (Whittaker, λ) := {[M] ∈ Â (Whittaker) | ker(Y − λ)M �= 0}.
The sets Â (Whittaker, λ) where λ ∈K∗. It follows from the equality h = HX + EY

that E = (h − HX )Y−1, and so the localisation of A at the powers of Y

AY = R[Y , Y−1][H; δ] = CAY (Y )[H; δ] (5.4)

is an Ore extension, where R[Y , Y−1] = R ⊗K[Y , Y−1] is a Laurent polynomial algebra
with coefficient in the algebra R and the derivation δ of the algebra R[Y , Y−1] is defined as
δ(X ) = X , δ(h) = h and δ(Y ) = −Y . Let λ ∈K∗. By Lemma 5.2.(1) and (5.4),

W(λ) = W(λ)Y =AY /AY (Y − λ) =K[H] ⊗ R1̄ =
⊕
i�0

Hi ⊗ R1̄, (5.5)

where K[H] ⊗ R is the tensor product of vector spaces. The next proposition gives an
explicit description of all the submodules of the A-module W(λ), where λ ∈K∗.

PROPOSITION 5.3. Let λ ∈K∗.

1. The set {K[H] ⊗ I 1̄ | I is a left ideal of R} is the set of all distinct submodules of the
A-module W(λ).

2. The set {K[H] ⊗ I 1̄ | I is a maximal left ideal of R} is the set of all distinct maximal
submodules of the A-module W(λ).

Proof.

1. Let M be a submodule of the A-module W(λ) = ⊕
i�0 Hi ⊗ R1̄; see (5.5). We

have to show that M =K[H] ⊗ I 1̄ for some left ideal I of the algebra R. The
A-module W(λ) = ⋃

i�0 W(λ)�i is the union of the vector spaces W(λ)�i =
{∑i

j=0 Hj ⊗ rj1̄ | rj ∈ R}. Then M ∩ W(λ)�0 = M ∩ R1̄ = I 1̄, where I is a left ideal

of R (since RR1̄ � RR). We claim that M =K[H] ⊗ I 1̄. We have to show that,
for all i � 0, M ∩ W(λ)�i = Mi := ⊕i

j=0 Hj ⊗ I 1̄. To prove this, we use induc-
tion on i. The initial case when i = 0 is trivial. So, let i > 0, and we assume
that the result holds for all i′ < i. Clearly, (Y − λ)W(λ)�i ⊆ W(λ)�i−1 for all
i � 0 (where W(λ)�−1 := 0) since, for all r ∈ R, (Y − λ)Hi ⊗ r1̄ = [Y , Hi] ⊗ r1̄ =
λ((H + 1)i − Hi) ⊗ r1̄ = λ(iHi−1 + · · · ) ⊗ r1̄, where the three dots mean a poly-
nomial of degree < i − 1. Moreover,
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Y − λ : W(λ)�i

W(λ)�i−1
→ W(λ)�i−1

W(λ)�i−2
, Hi ⊗ r1̄ + W(λ)�i−1 �→λiHi−1 ⊗ r1̄ + W(λ)�i−2.

(5.6)

It follows from (5.6) and induction on i that if w = ∑i
j=0 Hj ⊗ rj1̄ ∈ M ∩ W(λ)�i,

then λiri ∈ I , i.e., ri ∈ I . Hence, Hi ⊗ ri1̄ ∈ Mi, and so
∑i−1

j=0 Hj ⊗ rj1̄ = w − Hi ⊗
ri1̄ ∈ M ∩ W(λ)�i−1 = Mi−1, by induction. Therefore, w ∈ Mi, i.e., M ∩ W(λ)�i =
Mi, as required.

2. Statement 2 follows from statement 1.

The next theorem gives an explicit description of the sets Â (Whittaker, λ) for all
λ ∈K∗.

THEOREM 5.4. Let λ ∈K∗. Then Â (Whittaker, λ) =
{[

K[H] ⊗ M
]
| [M] ∈ R̂

}
and the

simple A-modules K[H] ⊗ M and K[H] ⊗ M ′ (where [M], [M ′] ∈ R̂) are isomorphic iff the
R-modules M and M ′ are isomorphic.

Proof. By Proposition 5.3.(2), every simple module in the set Â (Whittaker, λ), where
λ �= 0, is isomorphic to the factor module

W(λ)

K[H] ⊗ I 1̄
� K[H] ⊗ R1̄

K[H] ⊗ I 1̄
�K[H] ⊗ R/I �K[H] ⊗ M,

where I is a maximal left ideal of R and M := R/I is a simple R-module. If simple
A-modules K[H] ⊗ M and K[H] ⊗ M ′ are isomorphic (where M and M ′ are simple
R-modules) then the R-modules ker(Y − λ)K[H]⊗M = M and ker(Y − λ)K[H]⊗M ′ = M ′ are
isomorphic (see (5.6)).

LEMMA 5.5. Suppose that T is a ring, x is a normal element of T and M is a sim-
ple T-module. Then either xM = 0 or, otherwise, the map xM : M → M, m �→ xm, is a
bijection.

Proof. The element x is normal. Hence, ker(xM ) and im(xM ) are submodules of M . So,
either ker(xM ) �= 0, or, otherwise, im(xM ) is a non-zero submodule of the simple module
M , i.e., im(xM ) = M – here xM is a bijection.

The set Â (Whittaker, 0). Clearly,

Â (Whittaker, 0) = Â (Whittaker, 0, faithful) � Â (Whittaker, 0, unfaithful). (5.7)

The set Â (Whittaker, 0, faithful). The element X is a normal element of A. By
Lemma 5.5, for every [M] ∈ Â (Whittaker, 0, faithful), the map XM : M → M, m �→ Xm,

is a bijection. Therefore, the A-module M coincides with its localisation MX at {X i | i � 0},
i.e., M = MX is an AX -module. By (2.4), the algebra AX is the tensor product A1,X ⊗ A+

1
of algebras. Recall that Y ∈ A+

1 and CAX (Y ) = A1,X ⊗K[Y ] (Lemma 5.1.(1)). The A+
1 -

module V := A+
1 /A+

1 Y =K[EX −1]1̄ = ⊕
i�0 K(EX −1)i1̄ is a simple A+

1 -module, where

1̄ = 1 + A+
1 Y . The AX -module V :=AX /AX Y � A1,X ⊗ V is a tensor product of the A1,X -

module A1,X and the A+
1 -module V . The next proposition describes all the submodules of

the AX -module V and its simple factor modules.

PROPOSITION 5.6. Let Il(A1,X ) be the set of all left ideals of the algebra A1,X . Then

1. {I ⊗ V | I ∈ Il(A1,X )} is the set of distinct submodules of the AX -module V .
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2. {M ⊗ V | [M] ∈ Â1,X } is the set of all simple factor modules of the AX -module V .
The AX -modules M ⊗ V and M ′ ⊗ V are isomorphic iff the A1,X -modules M and
M ′ are isomorphic.

Proof.

1. Let M be an AX -submodule of V = A1,X ⊗ V = ⊕
i�0 A1,X ⊗ (EX −1)i1̄. We have to

show that M = I ⊗ V for some left ideal of the algebra A1,X . We may assume that
M �= 0. Each element m of M is a unique sum m = ∑n

i=0 ai ⊗ (EX −1)i1̄ for unique
elements ai ∈ A1,X . Let I be the left ideal of the algebra A1,X generated by all the
elements ai for all m ∈ M . Then M is a submodule of the AX -module M ′ := I ⊗ V . It
remains to show that M ′ ⊆ M . To prove this, it suffices to show that for all elements
m = ∑n

i=0 ai ⊗ (EX −1)i1̄ of M , we have ai ⊗ 1̄ ∈ M (since then M ⊇ A+
1 ai ⊗ 1̄ =

ai ⊗ A+
1 1̄ = ai ⊗ V , hence M ⊇ ∑

A1,X ai ⊗ V = I ⊗ V ).

To prove this statement, we use induction on the degree n := deg(m) = max{i | ai �= 0}
of the element m. The case n = 0 is obvious. So, let n � 1 and we assume that the statement
holds for all elements of degree < n. The element

Ym = −
n∑

i=1

ai ⊗ i(EX −1)i−11̄ ∈ M

has degree n − 1. Hence, by induction, a1 ⊗ 1̄, . . . , an ⊗ 1̄ ∈ M . Then m′ := ∑n
i=1 ai ⊗

(EX −1)i1̄ ∈ M , and so a0 ⊗ 1̄ = m − m′ ∈ M , as required.

2. Statement 2 follows from statement 1.

The algebra A1,X contains the skew polynomial algebra 	 =K[H+][X ; σ ], where
σ(H+) = H+ − 1. The element X is a normal element of 	 and 	X = A1,X . By Lemma
5.5, for a simple 	-module M, the following conditions are equivalent:

ker(XM ) = 0 ⇔ XM �= 0 ⇔ XM : M → M, m �→ Xm is a bijection ⇔ ann	(M) = 0. (
)

Let 	̂ (
) be the set of all simple 	-modules that satisfy one of the equivalent conditions
(
).

The next theorem gives an explicit description of the set Â (Whittaker, 0, faithful).

THEOREM 5.7. Â (Whittaker, 0, faithful) = {M ⊗ V | [M] ∈ 	̂ (
) } and simple
A-modules M ⊗ V and M ′ ⊗ V are isomorphic (where [M], [M ′] ∈ 	̂ (
)) iff the 	-
modules M and M ′ are isomorphic.

Proof. Let [N] ∈ Â (Whittaker, 0, faithful). The element X is a normal element of A.
By Lemma 5.5, N = NX . Hence, NX is a simple factor module of the AX -module V . By
Proposition 5.6.(2), NX � M ⊗ V for some [M] ∈ Â1,X .

Claim: If M ′ is a 	-submodule of M, then M ′ ⊗ V is an A-submodule of M ⊗ V:

XM ′ ⊗ V = (XM ′) ⊗ V ⊆ M ′ ⊗ V ,

YM ′ ⊗ V = M ′ ⊗ YV ⊆ M ′ ⊗ V ,

EM ′ ⊗ V = XM ′ ⊗ (EX −1)V ⊆ M ′ ⊗ V ,

HM ′ ⊗ V = (H+ − EX −1Y )M ′ ⊗ V ⊆ H+M ′ ⊗ V − M ′ ⊗ EX −1YV ⊆ M ′ ⊗ V .
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By the Claim and the simplicity of the A-module M ⊗ V , we must have M = M ′, i.e.,
M ∈ 	̂ (
).

Conversely, let L := M ⊗ V for some [M] ∈ 	̂ (
). The element X is a normal element
of 	. By Lemma 5.5, the element X acts bijectively on M . So, M = MX is a simple A1,X -
module, since A1,X = 	X . Hence, L is an AX -module and A-module. Let us show that the
A-module L is simple. It suffices to show that Au = L for all non-zero elements u ∈ L. Fix
a non-zero element u ∈ L. Then u = ∑n

i=0 mi ⊗ (EX −1)i1̄, where mi ∈ M and mn �= 0. Then
Y nu = (−1)nn!mn ⊗ 1̄ ∈ M = M ⊗ 1̄. The action of the element H on M ⊗ 1̄ coincides with
the action of the element H+ = H + EX −1Y since H+m ⊗ 1̄ = Hm ⊗ 1̄ + m ⊗ EX −1Y 1̄ =
Hm ⊗ 1̄ (since Y 1̄ = 0), where m ∈ M . Therefore, to say that M ⊗ 1̄ is a 	-module is the
same as to say that M ⊗ 1̄ is a 	̃-module, where 	̃ =K[H][X ; σ ] is a skew polynomial
algebra, where σ(H) = H − 1. Since M is a simple 	-module, it is a simple 	̃-module.
Hence, Au ⊇Amn ⊗ 1̄ ⊇ 	̃mn ⊗ 1̄ = 	mn ⊗ 1̄ = M ⊗ 1̄. Now, for all i � 0,

Au ⊇ EiM ⊗ 1̄ = (EX −1)iX iM ⊗ 1̄ = X iM ⊗ (EX −1)i1̄ = M ⊗ (EX −1)i1̄.

Therefore, Au = M ⊗ V , as required.

The set Â (Whittaker, 0, unfaithful). Notice that

Â (Whittaker, 0, unfaithful) =
⊔

P∈Prim(A)\{0}
Â (Whittaker, 0, P), (5.8)

where Â (Whittaker, 0, P) := {[M] ∈ Â (Whittaker, 0) | annA(M) = P}. An explicit
description of the set Â (Whittaker, 0, unfaithful) is given in the following proposition.

PROPOSITION 5.8 . Â (Whittaker, 0, unfaithful) = Â/(Y ) (faithful)
⊔

p∈Max(K[H])
̂A/(Y , E, p). In more detail,

(a) Â (Whittaker, 0, (Y )) = Â/(Y ) (faithful).
(b) For all p ∈ Max(K[H]), Â (Whittaker, 0, (Y , E, p)) = ̂A/(Y , E, p) = K̂[H]/p.
(c) Â (Whittaker, 0, (E)) = ∅.

(d) Â (Whittaker, 0, (X , q)) = ∅ for all q ∈ Max(K[Z]) \ {(Z)}.

Proof. In view of the disjoint union (5.8) and the explicit description of primitive ideals
of the algebra A given in Proposition 2.8, it suffices to show the statements (a)–(d) hold.
The statements (a) and (b) are obvious. By Theorem 2.5.(3b), A/(E) � L :=K[H][Y ; σ ]
is a skew polynomial algebra, where σ(H) = H + 1. Since Y is a normal element of the
algebra L, the annihilator of the L-module L/LY = L/(Y ) �K[H] is equal to (Y ) �= 0. So,
all simple factor modules of the L-module L/LY are unfaithful L-modules, and so statement
(c) follows. Finally, for all q ∈ Max(K[Z]) \ {(Z)}, the algebra A/(X , q) is isomorphic to
the algebra Y since K is an algebraically closed field; see Theorem 2.5.(3c). The element
E is a unit of the algebra A/(X , q), since the element Z = EY 2 is a non-zero element of the
field K. Hence, the statement (d) follows.

6. A classification of simple K[E]-torsion A-modules. In this section, K is an
algebraically closed field of characteristic zero. The aim of this section is to give a classi-
fication of simple K[E]-torsion A-modules (see (6.5), Theorems 6.4, 6.6 and Proposition
6.7).

Using the equality [E, YX −1] = 1, we see that the subalgebra A′
1 :=K〈E, YX −1〉 of AX

is the (first) Weyl algebra. Then EX =K[X ±1] ⊗ A+
1 =K[X ±1] ⊗ A′

1 is the tensor product
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of algebras. By (2.2), AX = (K[X ±1] ⊗ A′
1)[H; δ], where δ is as in (2.2). By Lemma 2.1,

the algebra

AX = R′ ⊗ A′
1 (6.1)

is a tensor product of algebras where R′ :=K[X ±1][H ′; δ′] is an Ore extension, H ′ := H +
2YX −1E and δ′(X ) = X . Then h′ := H ′X = HX + 2YE ∈A and

R′ =K[X ±1][h′; δ], where δ(X ) = X 2. (6.2)

Notice that the elements H ′X −1 = h′X −2 and X of R′ satisfy the commutation relation
[H ′X −1, X ] = 1. Therefore, the subalgebra A1 :=K〈H ′X −1, X 〉 of R′ is the (first) Weyl
algebra and the algebra R′ = A1,X is the localisation of the Weyl algebra A1 at the powers
of the element X . In particular, the algebra R′ is a central simple domain.

LEMMA 6.1.

1. CAX (E) = R′ ⊗K[E].
2. The centraliser of the element E in A, CA(E) =K[E] ⊗R, is a tensor product of

algebras where R :=K[X ][h′; δ] is an Ore extension, h′ = H ′X = HX + 2YE and
δ(X ) = X 2.

3. The centre of the algebra CA(E) is K[E].

Proof.

1. By (6.1), AX = R′ ⊗ A′
1 and E ∈ A′

1. Then CAX (E) = R′ ⊗ CA′
1
(E) = R′ ⊗K[E].

2. Now, CA(E) = A∩ CAX (E) =A∩ R′ ⊗K[E] (6.2)= A∩K[X ±1][h′; δ] ⊗K[E] =
K[X ][h′; δ] ⊗K[E] (since h′ = HX + 2EY and X is a normal element of A) and so
the result.

3. By statement 2, Z(CA(E)) =K[E] ⊗ Z(R) =K[E] ⊗K=K[E].
The set S :=K[E] \ {0} is a left and right Ore set in A. An S-torsion A-module is

called a K[E]-torsion A-module. We aim to classify all simple K[E]-torsion A-modules
(see (6.5), Theorems 6.4, 6.6 and Proposition 6.7).

For each λ ∈K, consider the A-module

U(λ) :=A/A(E − λ) =
⊕

i,j,k�0

KHiX jY k 1̄ where 1̄ := 1 +A(E − λ). (6.3)

The Gelfand–Kirillov dimension of the A-module U(λ) is 3. Since the field K is an alge-
braically closed field, each simple K[E]-torsion A-module is an epimorphic image of the
A-module U(λ) for some λ ∈K.

LEMMA 6.2. Let λ ∈K. Then the element E − λ acts locally nilpotently on U(λ) but
the elements E − μ, where μ ∈K \ {λ}, act bijectively on U(λ).

Proof. Repeat the proof of Lemma 5.2.(1).

It follows from the equality h′ = HX + 2YE that Y = 1
2 (h′ − HX )E−1, and so the

localisation of A at the powers of the element E

AE =R[E, E−1][H; δ] = CAE(E)[H; δ] (6.4)
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is an Ore extension, where R[E, E−1] =R⊗K[E, E−1] is a Laurent polynomial algebra
with coefficients in the algebra R and the derivation δ of the algebra R[E, E−1] is defined
as δ(X ) = X , δ(h′) = h′ and δ(E) = 2E.

By Lemma 6.2, the set

Â (K[E]-torsion) =
⊔
λ∈K

Â (K[E]-torsion, λ) (6.5)

is a disjoint union, where Â (K[E]-torsion, λ) := {[M] ∈ Â (K[E]-torsion) | ker(E −
λ)M �= 0}.

The set Â (K[E]-torsion, λ) where λ ∈K∗. Let λ ∈K∗. By Lemma 6.2 and (6.4),

U(λ) = U(λ)E =AE/AE(E − λ) =K[H] ⊗R1̄ =
⊕
i�0

Hi ⊗R1̄, (6.6)

where K[H] ⊗R is the tensor product of vector spaces. The next proposition is an explicit
description of all the submodules of the A-module U(λ), where λ ∈K∗.

PROPOSITION 6.3. Let λ ∈K∗ and Il(R) be the set of all left ideals of the algebra R.

1. The set {K[H] ⊗ I 1̄ | I ∈ Il(R)} is the set of distinct submodules of the A-module
U(λ).

2. {K[H] ⊗ I 1̄ | I is a maximal left ideal of R} is the set of all maximal submodules of
the A-module U(λ).

Proof.

1. Let M be a submodule of the A-module U(λ) = ⊕
i�0 Hi ⊗R1̄; see (6.6). We have

to show that M =K[H] ⊗ I 1̄ for some left ideal I of the algebra R. The A-module
U(λ) = ⋃

i�0 U(λ)�i is the union of the vector spaces U(λ)�i = {∑i
j=0 Hj ⊗

rj1̄ | rj ∈R}. Then M ∩ U(λ)�0 = M ∩R1̄ = I 1̄ for some left ideal I of the alge-
bra R (since RR1̄ � RR). We claim that M =K[H] ⊗ I 1̄. We have to show that,
for all i � 0, M ∩ U(λ)�i = Mi := ⊕i

j=0 Hj ⊗ I 1̄. To prove this we use induction
on i. The initial case when i = 0 is trivial. So, let i > 0, and we assume that the
result holds for all i′ < i. Clearly, (E − λ)U(λ)�i ⊆ U(λ)�i−1 for all i � 0 (where
U(λ)�−1 := 0) since, for all r ∈R, (E − λ)Hi ⊗ r1̄ = [E, Hi] ⊗ r1̄ = λ((H − 2)i −
Hi) ⊗ r1̄ = λ(−2iHi−1 + · · · ) ⊗ r1̄ where the three dots means a polynomial of
degree < i − 1. Moreover,

E − λ : U(λ)�i

U(λ)�i−1
→ U(λ)�i−1

U(λ)�i−2
,

Hi ⊗ r1̄ + U(λ)�i−1 �→ −2λiHi−1 ⊗ r1̄ + U(λ)�i−2. (6.7)

It follows from (6.7) and the induction on i that if w = ∑i
j=0 Hj ⊗ rj1̄ ∈ M ∩

U(λ)�i, then −2λiri ∈ I , i.e., ri ∈ I . Hence, Hi ⊗ ri1̄ ∈ Mi, and so
∑i−1

j=0 Hj ⊗ rj1̄ =
w − Hi ⊗ ri1̄ ∈ M ∩ U(λ)�i−1 = Mi, by induction. Therefore, w ∈ Mi, i.e., M ∩
U(λ)�i = Mi, as required.

2. Statement 2 follows from statement 1.
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The next theorem gives an explicit description of the sets Â (K[E]-torsion, λ) for all
λ ∈K∗.

THEOREM 6.4. Let λ ∈K∗. Then Â (K[E]-torsion, λ) = {[K[H] ⊗ M] | [M] ∈ R̂} and
the simple A-modules K[H] ⊗ M and K[H] ⊗ M ′ (where [M], [M ′] ∈ R̂) are isomorphic
iff the R-modules M and M ′ are isomorphic.

Proof. By Proposition 6.3.(2), every simple module in Â (K[E]-torsion, λ), where λ �=
0, is isomorphic to the factor module

U(λ)

K[H] ⊗ I 1̄
� K[H] ⊗R1̄

K[H] ⊗ I 1̄
�K[H] ⊗R/I �K[H] ⊗ M,

where I is a maximal left ideal of R and M :=R/I is a simple R-module. If sim-
ple A-modules K[H] ⊗ M and K[H] ⊗ M ′ are isomorphic (where M and M ′ are simple
R-modules), then the R-modules ker(E − λ)K[H]⊗M = M and ker(E − λ)K[H]⊗M ′ = M ′ are
isomorphic (see (6.7)).

The set Â (K[E]-torsion, 0, faithful). The element X is a normal element of A. By
Lemma 5.5, for every [M] ∈ Â (K[E]-torsion, 0, faithful), the map XM : M → M, m �→
Xm, is a bijection. Therefore, the A-module M coincides with its localisation MX at
{X i | i � 0}; that is, M = MX is an AX -module. By (6.1), AX = R′ ⊗ A′

1 is the tensor
product of algebras. Recall that E ∈ A′

1 and CAX (E) = R′ ⊗K[E] (Lemma 6.1.(1)). The
A′

1-module V ′ := A′
1/A′

1E =K[YX −1]1̄ = ⊕
i�0 K(YX −1)i1̄ is a simple A′

1-module, where

1̄ = 1 + A′
1E. The AX -module V ′ :=AX /AX E � R′ ⊗ V ′ is a tensor product of the R′-

module R′ and the A′
1-module V ′. The next proposition describes all the submodules of

the AX -module V ′ and all its simple factor modules.

PROPOSITION 6.5. Let Il(R′) be the set of all left ideals of the algebra R′. Then

1. {I ⊗ V ′ | I ∈ Il(R′)} is the set of distinct submodules of the AX -module V ′.
2. {M ⊗ V ′ | [M] ∈ R̂′} is the set of all simple factor modules of the AX -module V ′.

The AX -modules M ⊗ V ′ and M ′ ⊗ V ′ are isomorphic (where [M], [M ′] ∈ R̂′) iff
the R′-modules M and M ′ are isomorphic.

Proof.

1. Let M be an AX -submodule of V ′ = R′ ⊗ V ′ = ⊕
i�0 R′ ⊗ (YX −1)i1̄. We have to

show that M = I ⊗ V ′ for some left ideal of the algebra R′. We may assume that
M �= 0. Each element m of M is a unique sum m = ∑n

i=0 ai ⊗ (YX −1)i1̄ for unique
elements ai ∈ R′. Let I be the left ideal of the algebra R′ generated by all the ele-
ments ai for all m ∈ M . Then M is a submodule of the AX -module M ′ := I ⊗ V ′. It
remains to show that M ′ ⊆ M . To prove this, it suffices to show that for all elements
m = ∑n

i=0 ai ⊗ (YX −1)i1̄ of M , we have ai ⊗ 1̄ ∈ M (since then M ⊇ A′
1ai ⊗ 1̄ =

ai ⊗ A′
11̄ = ai ⊗ V ′, hence M ⊇ ∑

R′ai ⊗ V ′ = I ⊗ V ).
To prove this statement, we use induction on the degree n := deg(m) =
max{i | ai �= 0} of the element m. The case n = 0 is obvious. So, let n � 1 and we
assume that the statement holds for all elements of degree < n. The element

Em =
n∑

i=1

ai ⊗ i(YX −1)i−11̄ ∈ M
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has degree n − 1. Hence, by induction, a1 ⊗ 1̄, . . . , an ⊗ 1̄ ∈ M . Then m′ :=∑n
i=1 ai ⊗ (YX −1)i1̄ ∈ M , and so a0 ⊗ 1̄ = m − m′ ∈ M , as required.

2. Statement 2 follows from statement 1.

The algebra R′ contains the skew polynomial algebra 	′ =K[H ′][X ; σ ], where H ′ =
H + 2YX −1E and σ(H ′) = H ′ − 1. The element X is a normal element of 	′ and 	′

X = R′.
By Lemma 5.5, for a simple 	′-module M the following conditions are equivalent:

ker(XM ) = 0 ⇔ XM �= 0 ⇔ XM : M → M, m �→ Xm is a bijection ⇔ ann	′(M) = 0.

(∗)

Let 	̂′ (∗) be the set of all simple 	′-modules that satisfy one of the equivalent conditions
(∗).

The next theorem gives an explicit description of the set Â (K[E]-torsion, 0, faithful).

THEOREM 6.6. Â (K[E]-torsion, 0, faithful) = {M ⊗ V ′ | [M] ∈ 	̂′ (∗)} and simple
A-modules M ⊗ V ′ and M ′ ⊗ V ′ are isomorphic (where [M], [M ′] ∈ 	̂′ (∗)) iff the
	′-modules M and M ′ are isomorphic.

Proof. Let [N] ∈ Â (K[E]-torsion, 0, faithful). The element X is a normal element of
A. By Lemma 5.5, N = NX . Hence, NX is a simple factor module of the AX -module V ′.
By Proposition 6.5.(2), NX � M ⊗ V ′ for some simple R′-module M .

Claim: If M ′ is a 	′-submodule of M, then M ′ ⊗ V ′ is an A-submodule of M ⊗ V ′:

XM ′ ⊗ V ′ = (XM ′) ⊗ V ′ ⊆ M ′ ⊗ V ′,

YM ′ ⊗ V ′ = XM ′ ⊗ YX −1V ′ ⊆ M ′ ⊗ V ′,
EM ′ ⊗ V ′ = M ′ ⊗ EV ′ ⊆ M ′ ⊗ V ′,

HM ′ ⊗ V = (H ′ − 2YX −1E)M ′ ⊗ V ′ ⊆ H ′M ′ ⊗ V ′ − M ′ ⊗ 2YX −1EV ′ ⊆ M ′ ⊗ V ′.

By the Claim and the simplicity of the A-module M ⊗ V ′, we must have M = M ′, i.e.,
M ∈ 	̂′ (∗).

Conversely, let L := M ⊗ V ′ for some M ∈ 	̂′ (∗). The element X is a normal element
of 	′. By Lemma 5.5, the element X acts bijectively on M . So, M = MX is a simple R′-
module, since 	′

X = R′. Hence, L is an AX -module and A-module. Let us show that the
A-module L is simple. It suffices to show that Au = L for all non-zero elements u ∈ L.
Fix a non-zero element u ∈ L. Then u = ∑n

i=0 mi ⊗ (YX −1)i1̄, where mi ∈ M and mn �= 0.
Then Enu = n!mn ⊗ 1̄ ∈ M = M ⊗ 1̄. The action of the element H on M ⊗ 1̄ coincides with
the action of the element H ′ = H + 2YX −1E since H ′m ⊗ 1̄ = Hm ⊗ 1̄ + 2m ⊗ YX −1E1̄ =
Hm ⊗ 1̄ (since E1̄ = 0), where m ∈ M . Therefore, to say that M ⊗ 1̄ is a 	′-module is the
same as to say that M ⊗ 1̄ is a 	̃-module, where 	̃ =K[H][X ; σ ] is a skew polynomial
algebra, where σ(H) = H − 1. Since M is a simple 	′-module, it is a simple 	̃-module.
Hence, Au ⊇Amn ⊗ 1̄ ⊇ 	̃mn ⊗ 1̄ = M ⊗ 1̄. Now, for all i � 0,

Au ⊇ Y iM ⊗ 1̄ = X iM ⊗ (YX −1)i1̄ = M ⊗ (YX −1)i1̄.

Therefore, Au = M ⊗ V ′, as required.

The set Â (K[E]-torsion, 0, unfaithful). Clearly,

Â (K[E]-torsion, 0, unfaithful) =
⊔

P∈Prim(A)\{(0)}
Â (K[E]-torsion, 0, P), (6.8)
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where Â (K[E]-torsion, 0, P) := {[M] ∈ Â (K[E]-torsion, 0) | annA(M) = P}. The next
proposition gives an explicit description of the set Â (K[E]-torsion, 0, unfaithful).

PROPOSITION 6.7. Â (K[E]-torsion, 0, unfaithful) = Â/(E) (faithful)
⊔

p ∈ Max(K[H])
̂A/(Y , E, p). In more detail,

(a) Â (K[E]-torsion, 0, (E)) = Â/(E) (faithful).
(b) For all p ∈ Max(K[H]), Â (K[E]-torsion, 0, (Y , E, p)) = ̂A/(Y , E, p) = K̂[H]/p.
(c) Â (K[E]-torsion, 0, (Y )) = ∅.

(d) Â (K[E]-torsion, 0, (X , q)) = ∅ for all q ∈ Max(K[Z]) \ {(Z)}.

Proof. In view of (6.8) and an explicit description of primitive ideals of A (Proposition
2.8), it suffices to show that statements (a)–(d) hold. The statements (a) and (b) are
obvious. The statement (c) follows from the fact that A/(Y ) �K[H][E; σ ] =: L, where
σ(H) = H − 2 and the annihilator of the A-module L/LE is (E, Y ) �= (Y ); see (2.9).
(Hence, every simple factor module of the A/(Y )-module L/LE has nozero annihilator
in A/(Y ).) Finally, by Theorem 2.5.(3c), for all q ∈ Max(K[Z] \ {(Z)}), the element E is a
unit in the factor algebra A/(X , q), and the statement (d) follows.
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