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Particle transport in a moving corner
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This paper describes particle transport in Stokes flow in a two-dimensional corner
whose walls oscillate, which is a simple model for particle transport in the pulmonary
alveoli. Formally speaking, the wall motion produces a perturbation to the well-
known Moffatt corner eddies. However, this ‘perturbation’ is dominant as the corner
is approached. The motion of particles is regular near to the corner. Far from
the corner, chaotic motion within the main part of the flow is restricted to very
small regions. We deduce that there is competition between the far-field motion that
generates eddies and the wall motion. The relative strengths of these two motions
determines whether a given particle moves regularly or chaotically. Consequently,
there is an intermediate region in which chaotic transport is maximized.

1. Introduction
This mathematical study is motivated by an ongoing investigation into particle

motion in the lung, led by Tsuda, that combines physiological, mathematical and
computational studies of chaos in alveoli. These are cavities in the lower airway walls
in which recirculation can occur. Tsuda, Henry & Butler (1995) examined the effects
of cyclic expansion and contraction of alveolar walls on fluid flow in such a cavity by
developing a numerical model. It was observed that low-Reynolds-number alveolar
flow can be extremely complex; it was presumed that the alveolated duct structure
and its time-dependent motion induced this complexity. In a related study, Haber
et al. (2000) developed an analytical model of a cyclically expanding and contracting
spherical alveolus and its vicinity. Their results supported the observation that there
is a level of complexity of particle mixing in this region of the lungs. Moreover, the
geometric features of structural alveolation and rhythmic expansion were given as
the mechanism for chaotic mixing of particles. The numerical simulations of Henry,
Butler & Tsuda (2002) quantified the effects of cyclic expansion and contraction of
an alveolated duct upon particle motion in the model alveoli. Lagrangian tracking of
fluid particles indicated that the trajectories exhibit unpredictable stretched and folded
patterns. These observations led Tsuda et al. (2002) to hypothesize that chaotic flow
can occur in alveolated airways, and that this can result in flow-induced aerosol mixing
and deposition deep in the lung. Tsuda’s group tested this hypothesis by performing
flow visualization experiments in excised animal lungs. They ventilated lungs with
ultra-low-viscosity, polymerizable, Newtonian fluids of two colours. Each lung was
first filled with white fluid, then ventilated with blue fluid for a number of cycles,
ensuring that the Reynolds number remained low throughout the experiment. Then
ventilation was halted and the fluids were polymerized to make casts that showed the
final position of fluid particles. Recirculation had occurred in many alveoli, and there
was substantial mixing of the fluids after just two cycles of inspiration and expiration.
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The current paper investigates the mechanism by which chaotic particle motion can
occur in a two-dimensional cavity with recirculating fluid, when the cavity expands
and contracts periodically. We restrict attention to Stokes flow, which is the flow
regime that operates in the alveoli. Furthermore, it is assumed that particles move
passively with the fluid. For boundary conditions, we chose a simple shape that admits
recirculation, namely a corner region. This study aims to qualify the phenomena
occurring when recirculating particles are affected by rhythmic wall motion and this
will be achieved by drawing from the mathematical theory developed for Hamiltonian
dynamical systems.

Corner flows – and their three-dimensional counterparts – have been considered
in the literature by many authors, including Moffatt (1964), Liu & Joseph (1978),
Weidman & Calmidi (1999), Shankar (2000), Chetan, Weidman & Davis (2005). The
seminal work on Stokes flow in a corner is Moffatt (1964), which demonstrated that a
sequence of eddies can be generated by a flow past the corner, provided that the angle
between the walls of the corner does not exceed 2φcritical ≈ 146.3◦. As the corner is
approached, successive eddies are of decreasing size and greatly decreasing intensity.
Each eddy is at least 350 times weaker than its larger neighbour.

Corner eddies can be generated in a triangular container of viscous fluid when
a cylinder is rotated anywhere inside it. Moffatt hypothesized that it should be
straightforward to observe one eddy, but that to observe a sequence of them might
present insurmountable experimental difficulties. Fifteen years later, Taneda (1979)
realized two eddies in succession.

The purpose of the current paper is to investigate the qualitative nature of particle
transport when an externally driven antisymmetric Stokes flow in a corner of angle
less than 2φcritical is perturbed by wall motion. The flow field is described in § 2. In § 3,
the equations of motion for a passive particle are written as a Hamiltonian system.
This formulation plays an important part in revealing the behaviour of particle trajec-
tories, and gives some insight into the requirements for the breakup of recirculating
particle paths, as discussed in § 4.

2. The flow field
2.1. Steady flow in the unperturbed corner

Throughout the paper, we use carets to denote dimensional variables; these are
removed when variables are non-dimensionalized.

Moffatt (1964) considered two-dimensional Stokes flow in a rigid corner, which
is induced by an arbitrary flow past the corner at a large distance. In plane polar
coordinates (r̂ , θ), the Stokes equation for the streamfunction ψ̂(r̂ , θ), namely ∇4ψ̂ =0,
admits separated solutions of the form ψ̂ = Re{r̂λ0f (θ; λ0)}. If the walls are at θ = ±φ0

then the boundary conditions are

ψ̂,r̂ = ψ̂,θ = 0 at θ = ±φ0;

the comma denotes partial differentiation. For antisymmetric flow with λ0 �∈ {0, 1, 2},
which occurs in corner eddies,

f (θ; λ0) = K0[cos((λ0 − 2)φ0) cos(λ0θ) − cos(λ0φ0) cos((λ0 − 2)θ)],

where K0 is a complex constant that is determined by conditions far from the corner.
The eigenvalues λ0 are related to the angle φ0 by

(λ0 − 2) tan((λ0 − 2)φ0) = λ0 tan(λ0φ0), (2.1)
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which is trigonometrically equivalent to

sin(2φ0µ0) = −µ0 sin(2φ0), where µ0 = λ0 − 1.

Moffatt showed that every eigenvalue is complex if φ0 <φcritical, and thus the flow
is a sequence of eddies. Following Moffatt, we consider only the flow corresponding
to the dominant eigenvalues λ0 and λ0 (in other words, the pair of eigenvalues with
smallest positive real part). Here

λ0 =

(
1 +

ξ

2φ0

)
+ i

(
η

2φ0

)
,

where ξ ≈ 4 and η is O(1). Note that as φ0 tends to zero, λ0R ≡ Re{λ0} grows rapidly.
The range of values of r̂ for which the Stokes approximation is valid is given by the
condition

Re =
Dr̂ λ0R

ν
� 1,

where Re is the Reynolds number based on distance from the corner, ν is the
kinematic viscosity of the fluid, and D is a dimensional constant such that f (θ; λ0)/D
is of order unity. As λ0R is positive, inertial forces are negligible for sufficiently small
r̂ . From here on, such a flow is referred to as ‘Moffatt flow’. Figure 1 illustrates typical
particle paths in Moffatt flow. The initial conditions are spaced out along the line
y = 0. The particles on the right-hand eddy move clockwise, while the particles on the
left-hand eddy move anticlockwise. Consequently, a separatrix lies between these two
eddies; it is a curved line that is attached to each wall. Moffatt flow has an infinite
sequence of eddies in the corner, which have been generated by the far-field flow.
Each eddy lies in its own cell, whose boundaries are the walls of the corner and a
separatrix on either side. The pair of eddies of figure 1 has been chosen specifically
so that the two distinct types of behaviour that appear when the walls are moved can
be clearly observed (see later figures).

2.2. Quasi-steady flow

Now consider what happens when the steady flow is perturbed by a periodic wall
motion that keeps the maximum angle of the corner less than 2φcritical. Let û = ûr er +
ûθ eθ be the velocity field with respect to the steady frame coordinates (r̂ , θ). The
incompressibility condition in cylindrical polar coordinates is

1

r̂
(r̂ ûr ),r̂ +

1

r̂
(ûθ ),θ = 0.

As the corner region is simply connected, there exists a streamfunction ψ̂(r̂ , θ, t̂)
such that ûr = ψ̂,θ /r̂ and ûθ = −ψ̂,r̂ . Therefore particle motion is described by the
equations

dr̂

dt̂
=

1

r̂
ψ̂,θ , r̂

dθ

dt̂
= −ψ̂,r̂ .

The walls are at θ = ±φ, where

φ = φ0[1 + ε sin(ωt̂)];

here ω is the frequency of oscillation and 0 � ε < 1. Therefore the boundary conditions
are

ψ̂,θ = 0, ψ̂,r̂ = ∓εφ0ωr̂ cos(ωt̂) on θ = ±φ.
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Figure 1. (a) Moffatt flow when 2φ0 = 20◦ and K0 = 1/2π. Eight initial conditions along y = 0
(each marked by a circle) have been evolved; each trajectory is composed of 2000 points. Two
consecutive eddies are shown. As the flow is steady, particle paths coincide with streamlines
(see Acheson 1990). (b) The speed (s) of the eight particles of Moffatt flow when 2φ0 = 20◦

and K0 = 1/2π are tracked for t = 0 . . . 10, where t relates to the ‘non-dimensionalized time’ of
the quasi-steady flow. The highest five curves represent particles belonging to the right-hand
eddy, while the lower line represents three particles in the left-hand eddy (the three curves here
coincide at this scale). Scanning from left to right of (a), and reading from bottom to top of
(b), the periods of the particles are approximately 1717, 1038, 731, 68.1, 18.7, 7.8, 4.2, 2.3 time
units, respectively.

To non-dimensionalize the problem, let

t =
ωt̂

2π
, r =

r̂

a
, ψ =

ψ̂

a2ω
,

where a is a convenient length scale. We discuss our choice of a at the end of this
section. Define α2 = a2ω/ν to be the Womersley number. Provided that α2/2π � 1,
unsteady inertia can be neglected and the flow is quasi-steady. Thus the combined
flow is simply a superposition of Moffatt flow and the flow generated through wall
motion alone (which we shall call the squeeze flow for brevity). Hence ψ = ψM + ψW ,
where ψM is the non-dimensional Moffatt streamfunction for a corner whose walls
are at θ = ±φ, and where ψW is the non-dimensional streamfunction associated with
the flow driven by the wall motion. Specifically,

ψM (r, θ, t) = KRe{rλ[cos((λ − 2)φ) cos(λθ) − cos(λφ) cos((λ − 2)θ)]}, (2.2)

where λ, which is time dependent, and φ satisfy

(λ − 2) tan((λ − 2)φ) = λ tan(λφ). (2.3)

As for the steady flow, only the dominant eigenvalues are considered. The amplitude K

depends on the far-field flow and is assumed to be a real constant for this investigation.
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The solution (2.2) satisfies ψM,θ = ψM,r = 0 on the walls. Therefore the non-zero
boundary condition produced by the wall motion generates the squeeze flow

ψW (r, θ, t) = −εφ0

(
r2

2

)
cos(2πt)

[
sin(2θ) − 2θ cos(2φ)

sin(2φ) − 2φ cos(2φ)

]
, (2.4)

which is described in Moffatt (1964). According to Moffatt & Duffy (1980), this
describes the Stokes flow produced by wall motion when 2φ < tan(2θ) and r is not
too large. Although the squeeze flow is unsteady, the acceleration terms in the Navier–
Stokes equations are negligible in the region near the corner for which∣∣∣∣dφ

dt̂

∣∣∣∣ r̂
2

ν
� 1, that is, εφ0α

2r2 � 1.

We restrict attention to this region from here on, so that the combined flow is quasi-
steady. Convective inertia is negligible provided that Re is sufficiently small.

The squeeze flow is integrable, which can be observed by numerically tracking
particles during a half-cycle and noting that they faithfully retrace their paths during
the next half-cycle. Moreover, particle motion in the squeeze flow satisfies

1

2π

dr

dt
=

1

r

∂ψW

∂θ
and

1

2π

dθ

dt
= −1

r

∂ψW

∂r
.

Therefore

dr

dθ
= − r

2

[
2 cos(2θ) − 2 cos(2φ)

sin(2θ) − 2θ cos(2φ)

]
(2.5)

and

dθ

dt
= 2πεφ0 cos(2πt)

[
sin(2θ) − 2θ cos(2φ)

sin(2φ) − 2φ cos(2φ)

]
. (2.6)

As φ is a function of t it follows that φ can be written as a function of θ by solving
the first-order differential equation (2.6). Substituting this into equation (2.5) gives a
first-order differential equation, which can be integrated (in principle) to obtain a first
integral. The flow ψW is integrable essentially because of the reversibility of steady
Stokes flow. The adapted Moffatt flow (Moffatt flow for ε �= 0) is not integrable;
moreover this flow cannot occur independently as it does not satisfy the moving
boundary conditions.

Formally, the squeeze flow and the modification to the Moffatt flow caused by the
wall motion combine to produce an O(ε) perturbation to the steady Moffatt flow.
However, the steady Moffatt flow diminishes far more rapidly than the squeeze flow
as the corner is approached. To a first approximation, for 2φ0 the decay is O(r1+ξ/2φ0 )
where ξ ≈ 4. (For example, for 2φ0 = 20◦ the decay is O(r13), and for 2φ0 = 60◦ the
decay is O(r5).) By contrast, the squeeze flow is O(r2). Consequently, for r < 1, the
‘perturbation’ to the steady Moffatt flow has an increasingly great effect as r → 0. For
instance, in the right-hand eddy of figure 2, the perturbation is small in the central
region, and has an increasing effect in the outer region where r is smaller for much
of the particle’s motion.

There is no intrinsic length scale for the steady Moffatt flow. However, when the
wall motion is added, the two motions are of comparable size only in a limited range
of values of r̂ . Therefore the appropriate length scale a is the order of magnitude of
these values. In dimensionless terms this ensures that the two motions are comparable
for r = O(1).
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3. Particle motion in the perturbed flow
For any two-dimensional flow with a streamfunction ψ(r, θ, t) that is non-

dimensionalized as above, particle trajectories are obtained from the Lagrangian
equations of motion

1

2π

dr

dt
=

1

r

∂ψ

∂θ
,

1

2π

dθ

dt
= −1

r

∂ψ

∂r
.

These equations can be written as a Hamiltonian system for R = r2 and θ , as follows:

dR

dt
= −∂H

∂θ
,

dθ

dt
=

∂H

∂R
, (3.1)

where the Hamiltonian H is

H (R, θ, t) = −4πψ
(
R1/2, θ, t

)
.

In particular, in the absence of wall motion, the Hamiltonian is

H0(R, θ) = −4π lim
ε→0

ψM

(
R1/2, θ, t

)
.

The system

dR

dt
= −∂H0

∂θ
,

dθ

dt
=

∂H0

∂R
, (3.2)

is integrable; H0 is conserved during a particle’s motion. Consequently there exist
action-angle coordinates in terms of which the flow on each streamline is a steady
rotation.

For the moving corner, the Hamiltonian is H = H0 + H1, where

H1(R, θ, t) = −4πψM

(
R1/2, θ, t

)
− 4πψW

(
R1/2, θ, t

)
− H0(R, θ).

Note that H1 vanishes as ε → 0. Formally, H1 is of order ε provided that

λ = λ0 + O(ε).

The Hamiltonian H has been constructed in this way so that ideas from KAM
(Kolmogorov–Arnol’d–Moser) theory can be consulted. KAM theory is a methodo-
logy of how to approach certain problems in perturbation theory that are linked
with small devisors. Although there are many variants of the KAM theorem, it
is the classical KAM theorem, which is concerned with the stability of motions
in Hamiltonian systems constructed from slightly perturbed integrable Hamiltonian
systems, that will be referred to as the ‘KAM theorem’ here. For H , H0 is the integrable
part, which is essentially ψM evaluated at ε = 0, while H1 is some non-integrable
perturbation, which accounts for the additional terms generated by the perturbation
parameter ε through ψW and the compensation of ψM to ε �= 0. An assumption of the
theory is that ε � 1.

The KAM theorem implies that, if ε is sufficiently small, most particles will remain
on closed curves (called KAM tori ) that are only slight perturbations of the original
streamlines. However, some streamlines break up, in accordance with the Poincaré–
Birkhoff theorem, to form chains of ‘islands’ bounded by KAM tori which are
surrounded by chaotic trajectories. Within each island the same types of structure
occur in a self-similar manner. As the perturbation increases, KAM tori break up
to form Cantor sets called cantori, and the chaotic regions increase in size. For even
larger perturbations, all KAM tori are destroyed.

The KAM theorem is explained in detail in Lichtenberg & Lieberman (1992); a
simple overview can be found in Tabor (1989). Since Aref’s famous paper on chaotic
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Figure 2. A Poincaré section of particle motion in the perturbed flow; 2φ0 = 20◦, K = 1/2π
and ε = 0.001. Eighteen initial conditions have been evolved, eight of which are the original
initial conditions for ε = 0, while another ten have been chosen for further detail; each regular
trajectory is composed of 2000 points.

advection (Aref 1984), KAM and Poincaré–Birkhoff fixed-point theorems have found
many uses in describing the breakup of particle paths into self-similar structures within
Lagrangian fluid mechanics. For larger perturbations, this geometry disintegrates
to chaotic advection of particles as can be witnessed, for example, within a fixed
rectangular cavity at moderate Reynolds numbers, which has been described by
Ottino (1989) and Horner et al. (2002).

Figures 2 to 4 show Poincaré sections of particle trajectories, which are constructed
by plotting particle positions at t = 0, 1, 2, . . . , 1999. Each figure shows several
trajectories. The equations of motion have been integrated numerically using an
explicit fourth-order Runge–Kutta scheme with a step size of 0.01; there is no obvious
change in the figures when the step size is halved. Figures 2 and 3 show how the
trajectories change as ε is increased from 0.001 to 0.5 for a corner with 2φ0 = 20◦. For
2φ0 = 60◦, figure 4 shows the qualitative differences between ε = 0 and ε = 0.1. Within
the assumptions of this study, these examples are qualitatively typical of particle
transport in a moving corner. As the parameter values for these illustrations are
representative, attention will be restricted to describing the nature of particle motion
occurring there. The interpretation of these figures is discussed in the next section.

4. Discussion
Before examining the qualitative nature of particle paths for ε �=0, it is helpful

to consider the unperturbed motion shown in figure 1. Here the corner angle is
2φ0 = 20◦. Based on Moffatt’s analysis of relative intensities, the left-hand eddy is
around 380 times weaker than the right-hand eddy. So, by the time it takes a particle
near the middle of the left-hand eddy to complete a circuit, one near the middle of
the right-hand eddy has completed many circuits. This is reflected in the trajectory
output for particles. For the left-hand eddy, each successive point on the path plotted
is close to the previous point and the closed orbit is slowly traced out over time. For
the right-hand eddy, successive points have a much larger gap between them and the
particle completes many circuits before the orbit appears to be closed. So, particles in
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Figure 3. (a) A Poincaré section of particle motion in the perturbed flow; 2φ0 = 20◦, K = 1/2π
and ε = 0.01. Fourteen initial conditions have been evolved, eight of which are the original
initial conditions for ε = 0, while another six have been chosen for further detail; each regular
trajectory is composed of 2000 points. (b, c) A Poincaré section of particle motion in the
perturbed flow; 2φ0 = 20◦ and K =1/2π; each regular trajectory is composed of 2000 points.
(b) Eight initial conditions have been evolved with ε = 0.1. The right-hand eddy is the focus
of the view; the left-hand eddy has not changed qualitatively. (The points have been enlarged
for clarity.) (c) Seven initial conditions have been evolved with ε =0.5, three of which are the
original initial conditions of the left-hand eddy for ε =0, while another four have been chosen
for further detail. The left-hand eddy is the focus of the view; the right-hand eddy has been
destroyed.

the eddies circulate at different rates – this can be seen in figure 1. The speed of the
five particles for the right-hand eddy is represented by the highest five curves, while
the lowest line represents the displacement of the three particles for the left-hand
eddy (coinciding here for this scale). The periods illustrate that the particles of the
left-hand eddy circulate, relatively speaking, slower than those on the right-hand
eddy. Moreover, when considering each eddy separately, the closer a streamline is to
the centre of the eddy, the shorter time it takes for a particle to complete a circuit of
the closed curve relating to this streamline.

We now examine what happens when ε �= 0. Figure 2 shows a Poincaré section of
some particle trajectories when ε = 0.001. The central part of the right-hand eddy
behaves exactly as the KAM and the Poincaré–Birkhoff theorems suggest; several
closed curves remain intact and chains of islands can be seen. However, trajectories
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Figure 4. (a, b) A Poincaré section of particle motion when 2φ0 = 60◦ and K = 1/2π; each
regular trajectory is composed of 2000 points. (a) Four initial conditions have been evolved
with ε = 0. (b) Fourteen initial conditions have been evolved with ε = 0.1, four of which are
the original initial conditions for ε =0, while another ten have been chosen for further detail.
(c) An enlarged view of the bottom left-hand region of (b).

in the outer part of the eddy are chaotic. By contrast, the Poincaré section for the
left-hand eddy appears to be unaffected by the perturbation.

Figure 3(a, b) shows the effects of increasing ε to 0.01 and 0.1 respectively. The right-
hand eddy behaves as expected: the KAM tori break up, so that the chaotic region
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increases in size. The left-hand eddy remains apparently unaffected. Indeed even if
ε is increased to 0.5, as in figure 3(c), many particles in the left-hand eddy seem to
be moving around closed curves. In fact, the outer orbits have disintegrated, but the
intermediate ones are merely deformed into ‘cashew’ shapes. The innermost ones lie
on closed curves in the upper or lower central regions of the cashew (the figure shows
one such curve in the lower region).

For a resting corner angle of 2φ0 = 60◦, the relative intensity for consecutive eddies
will now be much larger. The smaller of a pair of neighbouring eddies is around
685 times weaker than its larger neighbour. Figure 4(a) shows unperturbed (ε = 0)
particle paths for one eddy, while figure 4(b, c) shows some trajectories for ε = 0.1.
The trajectories behave similarly to those in the right-hand eddy in figure 2.

To help with identifying why there is a difference in behaviour between neighbouring
eddies, let us return to the example with resting corner angle of 20◦. With each eddy,
the period depends continuously on the streamfunction. So it is not the case that
none of the orbits in the weaker (left) eddy are resonant with the perturbation.
The other possibility is that the resonances are very high order. Consider ε = 0.001;
here the circulation is weaker (compared with ε = 0), indicating that this is the case.
(Quasi-steady Stokes flows exhibiting lack of breakup of invariant curves also occur
in Kaper & Wiggins 1993, for instance.) When ε �� 1, the KAM theorem is no longer
applicable. However, it is possible to account for other observed behaviour, as follows.

The left-hand eddy is not chaotic, because within it the Moffatt corner flow is a
perturbation to the back-and-forth motion produced by the squeeze flow. A fluid
particle moves into and out of the corner during any cycle, finishing very close to
where it started. The difference in position is due to the very weak rotation produced
by the Moffatt eddy. Increasing the strength of the squeeze flow does not change the
Poincaré section significantly, unless the squeeze flow is so great that particles are
pushed into regions where they can experience strong Moffatt eddies. This explains
why the left-hand eddy appears unchanged unless ε is large.

From these results we can infer that there is an optimal region for chaotic transport
in a corner. By ‘chaotic transport’ we mean that the local Lyapunov exponent is posi-
tive. For large or strong Moffatt eddies (in the sense of the relative scale and intensity
factors calculated by Moffatt), the wall motion provides only a weak perturbation,
so the island chains are thin. For small or weak Moffatt eddies, the rotation is a
perturbation to the motion produced by the squeeze flow. In either of these cases,
most trajectories are regular. Chaotic transport is maximized in the region where the
squeeze flow is a moderate perturbation to the Moffatt flow.

To support the hypothesis that there is a region where chaotic transport is maxi-
mized, consider the next furthest eddy from the corner. Figure 5(a) shows such an
eddy; the step size is 0.0001. This is necessarily smaller than for the previous figures
so that the very fast moving particles of the largest eddy can be adequately tracked,
especially near its right-hand separatrix. In figure 5(b), perturbing the walls shows
the disintegration of its left-hand neighbour (compare with figure 3). The particle
trajectories of the largest eddy that lie sufficiently far from the walls appear robust
to the perturbation. This is expected because at this distance from the corner the
squeeze flow is a very weak perturbation to the strong rotation of the Moffatt eddy.
Figure 5(c) shows that some particles in the largest eddy lie on KAM tori in thin
islands, as predicted by KAM theory. The thinness of these islands is due to the
weakness of the squeeze flow perturbation.

The model examined in this study only focuses on the effect of wall motion on
recirculating particles (to leading order for both the Moffatt flow and the squeeze
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Figure 5. A Poincaré section of particle motion when 2φ0 = 20◦ and K = 1/2π; each regular
trajectory is composed of 500 points. Ten initial conditions have been evolved. (The points
have been enlarged for clarity.) (a) Fixed walls (ε = 0). (b) Moving walls with ε = 0.1. (c) A
closer look at (b).

flow). Even so, it has shown that just with very simple boundary conditions, the cyclic
expansion and contraction causes passive particles to exhibit chaotic motion in very
low-Reynolds-number flow.

It is reasonable to ask whether our two-dimensional model gives any insight into
real alveolar flows, which are three-dimensional. Provided that an alveolar cavity is
sufficiently deep, recirculation has been shown to occur; Tsuda et al. (2002). Our
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results suggest that in places where the squeeze flow driven by the wall motion is
of the same order of magnitude as recirculation in the centre, some particles move
chaotically. It is unclear whether or not such motion occurs at the edges of the alveoli.

The moving-corner model may be extended to incorporate diffusion and particle
inertia. Furthermore, the far-field motion can be adjusted so that K is time-dependent
and incorporates periodic motion (as well as a time lag). These investigations will be
presented elsewhere.

5. Conclusions
We have shown that, qualitatively speaking, particle transport in a moving-walled

corner occurs in two distinct ways. In eddies near to the corner the wall motion
dominates, and the Moffatt eddies provide a weak perturbation. However, this weak
perturbation drives an average particle motion similar to the motion produced by
the steady eddy. Away from the corner the far-field motion dominates, encouraging
islands of KAM tori inside each other (as in figure 3a) and chaotic trajectories to
form within a limited region, thereby enhancing mixing of particles. To the best of
our knowledge, this is the first clear theoretical indication that in small airways, where
the Reynolds number is very low, there is a mechanism for producing chaos.

F. E. L.-P. and P. E.H. are supported by the NIH under grant number BRP
HL070542. This is a collaborative project led by Akira Tsuda of the Harvard School
of Public Health.
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