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Abstract

Study of even harmonic generation resulting from propagation of whistler pulse in homoge-
neous high-density quantum plasma immersed in an externally applied magnetic field, using
the recently developed quantum hydrodynamic model is presented. The effects of quantum
Bohm potential, quantum statistical pressure, and electron spin have been taken into account.
The field amplitude of even harmonic of the whistler with respect to fundamental wave and
the conversion efficiency for phase-mismatch has been analyzed. The conversion efficiency of
harmonic radiation depends on the plasma electron density, magnetic field strength as well as
the intensity of whistler pulse. The efficiency increases significantly with an increase in plasma
density, magnetic field and whistler wave intensity. Higher conversion efficiency is observed in
degenerate plasma for lower values of the static magnetic field as compared with classical
plasma.

Introduction

In recent years, there has been a rapid increase in the study of whistler waves. Having been
discovered more than a century ago (Preece, 1894), these waves are still a subject of intense
interest. Whistler (also known as helicon in solid-state plasma) is one of the most important
electromagnetic waves in plasma, being circularly polarized guided along external magnetic
field in the dense plasma. Whistler waves are observed in outer Earth’s radiation belt,
Earth’s magnetopause (Stenberg et al., 2007), beam-plasma systems (Volokitin et al., 1995;
Starodubstev et al., 1999) immersed in external magnetic field and in several laboratory exper-
iments (Stenzel, 1975, 1976; Compernolle et al., 2014, 2015). These waves are excited essen-
tially in plasma by collective electron oscillations in the presence of an external or
self-consistent large-scale magnetic field. The nonlinear dynamics of whistler wave in magne-
tized plasma has been investigated (Baker & Hall, 1974; Sharma and Tripathi, 1993; Martino
et al., 2005; Streltsov et al., 2006; Karavaev et al., 2010; Gupta et al., 2015).

The study of electromagnetic wave–plasma interaction is an active area of research in the
context of harmonic generation. Over the last few years, the generation of harmonics of elec-
tromagnetic radiation in plasma has been a subject of extensive study (Krenz and kino, 1965;
Tamaki, 1999; Banerjee, 2002; Mihailescu et al., 2014; Tang et al., 2017) because of wide range
of applications. Harmonics provide valuable diagnostics for plasma parameters such as local
electron density, electrical conductivity, and can also be used to detect the presence of large
electric and magnetic fields and plasma waves. Plasma is an attractive medium for harmonic
generation which can convert the fundamental frequency of whistler into linear and nonlinear
harmonics. Nonlinear even harmonic especially second harmonic generation (SHG) has its
unique place as it converts the fundamental frequency of whistler into twice that is, ω2 =
2ω0. In the case of second harmonic, the main mechanism is the presence of density gradient
produced by electron plasma wave excited by propagation of whistler pulse. Even harmonic
generation in plasma has been studied both experimentally and theoretically by many authors
(Malka et al., 1997; Agarwal et al., 2001; Kant and Sharma, 2004; Kaur et al., 2009; Aggarwal
et al., 2015; Iwai et al., 2015).

In high-density plasma, where the de-Broglie wavelength of particles is of the order of or
greater than the interparticle distance, the study of quantum effects becomes important. When
the temperature of such plasma is less than the Fermi temperature degeneracy of particles
comes into the picture. During the last decade, the focus is on investigating new aspects of
quantum plasma due to its important applications in nanoscale and nanoelectronic devices
(Abrahams et al., 2001; Magnus and Schoemaker, 2002), in superdense astrophysical objects
(Lai, 2001; Opher et al., 2001; Chabrieret et al., 2002) (such as white dwarfs, neutron stars,
magnetostars and supernova), quantum plasma echoes (Manfredi and Fexi, 1996), quantum
X-ray free electron laser (Piovella et al., 2008), intense laser-solid density plasma experiments
(Malkin et al., 2007; Hartemann et al., 2008). Most of the theoretical investigations on whistler
waves have been focused on classical plasma, however, the nonlinear dynamics, collisional
damping of the whistler mode (Watanabe et al., 1967), dispersion of linear wave (Ren et al.,
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2007), generation of Wakefield by whistler pulse (Mishra et al.,
2010b), circularly polarized modes (Mishra et al., 2010a), whistler
mode turbulence (Trukhanova, 2013) have been studied for quan-
tum plasma. To the best of our knowledge, till now no attempt
has been made to investigate excitation of SHG due to whistler
propagation in strongly magnetized dense quantum plasma.
Our objective in this paper is to present a theoretical study of
the propagation of whistler pulse through quantum magneto-
plasma embedded in an external magnetic field. When an exter-
nal magnetic field is applied to quantum plasma, electron
dynamics is modified and leads to nonlinear current modification.
The density perturbation produced by magnetic field coupled
with electron quiver motion leads to generation of harmonic
radiation.

In the present paper, the interaction dynamics of whistler with
plasma has been built in the mildly relativistic regime, using the
recently developed quantum hydrodynamic (QHD) (Ren et al.,
2007; Mishra et al., 2010c; Ghosh et al., 2012; Hass and
Eliasson, 2015) model which is generalization of classical fluid
model for plasma with inclusion of quantum correction terms.
It has been observed in the perturbative analysis that the relativ-
istic effects become important in higher orders of perturbation
only (Ghorbanalilu, 2012). The momentum equation has been
modified to incorporate the effects of spin magnetic moment
(Mishra et al., 2010a, b, c) and the relativistic variation of mass
(Ghosh et al., 2012). The advantages of the QHD model over
kinetic ones are its numerical efficiency, the direct use of macro-
scopic variables of interest such as momentum and energy and
the easy way the boundary conditions are implemented. This
allows considering the nonlinear phenomena relatively easier
and so the QHD approach is preferred for describing such phe-
nomena in quantum plasma (Shukla and Ali, 2006; Shukla and
Eliasson, 2010; Vladimirov and Tyshetskiy, 2011). The effects of
Fermi statistical pressure, the quantum Bohm potential and elec-
tron spin have been incorporated. The systematic organization of
this paper is as follows: The section ‘Whistler wave propagation’ is
organized by using perturbation technique in mildly relativistic
regime to setup the oscillatory electron velocities, perturbed den-
sity and nonlinear current density for the propagation of whistler
in high-density plasma. In mildly relativistic regime, the relativis-
tic effect comes into play in third and higher order velocity com-
ponents and higher order. In the section ‘Second harmonic
conversion efficiency’ the nonlinear wave equation is solved and
conversion efficiency of second radiation generation is estimated.
The section ‘Summary and discussion’ is devoted to summary and
discussion.

Whistler wave propagation

Consider a whistler beam propagating parallel to an externally
applied static magnetic field in the uniform quantum plasma.
The magnetic field is assumed to be along the z-axis(B0 = bêz).
The electric and magnetic fields of the right circularly polarized
whistler pulse are

�E = E(z, t)(x̂ − iŷ)ei(k1z−v1t) + c.c., (1)

�B = c(�k1 × �E)
v1

, (2)

where E(z, t) is the slowly varying amplitude of fundamental
whistler pulse inside plasma, c is speed of light in vacuum and
k1 is propagating wave vector at whistler wave frequency ω1. As
the pulse propagates through magnetized plasma the current den-
sity at 2ω1 arises and acts as a source for second harmonic.

The QHD equations governing the motion of an electron in
the presence of whistler field and static external magnetic fields
are given by

∂

∂t
+ �v.∇

( )
(g�v ) = − e

m
[�E+ (�n× �B)]

− ∇P
mn

+ h− 2

2m2g2
�∇ 1��

n
√ �∇2 ��

n
√( )

− 2mB

mgh− S
�

.(�∇�B),

(3)

∂

∂t
+ �v.∇

( )
�S = 2mB

h− (�B× �S ), (4)

and the continuity equation

∂n
∂t

+∇(n�v ) = 0, (5)

where, n is electron density, m is the electron rest mass, h− is the
Planck’s constant, �v is the velocity of electron, �S is the spin mag-
netic moment with its absolute value |S0| = (h− /2), γ is the relativ-
istic factor and mB = ((eh− )/(2m)) is the Bohr magneton. The
second term on the left-hand side of Eq. (3) is the convective
derivative of velocity field. On the other hand, the first term on
the right-hand side of Eq. (3) is the Lorentz force, the second
term denotes electron Fermi pressure (P = mv2Fn

5/3/5n2/30 ),
where vF = h− (3p2n0)1/3/m is the Fermi velocity, the third term
is the Bohm force due to quantum correction in density fluctua-
tions. The last term is the force due to the spin magnetic moment
of plasma electrons. The classical equations may be recovered in
the limit �J . The wave equation for source current h− = 0 is

�∇2 − 1
c2

∂2

∂t2

( )
�E = 4p

c2
∂�J
∂t
. (6)

Assuming that the ions form a neutralizing background in
dense plasma, the perturbative expansion of the set of QHD equa-
tions [Eqs (3)–(5)] governing interaction dynamics for first order
of electromagnetic whistler field gives

∂�n (1)

∂t
=− e�E

(1)

m
− e(�v (1) × �B

(1))
mc

− �n 2
F

n0
�∇n(1) + h− 2

4m2

1
n0

�∇(�∇2
n(1))

( )

− 2mBS0
mh− (�∇�B

(1)),

(7)

∂�S
(1)

∂t
= 2mB

h− (�B(1) × S(0)), (8)
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∂n(1)

∂t
+ n0.∇�v(1) = 0. (9)

From Eq. (7) the first order perturbed equations for transverse
quiver velocity components are obtained as

∂v(1)x

∂t
=− e

m
E(1)x − vcv

(1)
y − v2F

n0
�∇n(1)x

+ h− 2

4m2n0
�∇3
n(1)x − 2mBS0

mh−
�∇B(1)

x ,

(10)

∂n(1)y

∂t
=− e

m
E (1)
y − vcv

(1)
x

− v2F
n0

�∇n(1)y + h− 2

4m2n0
�∇3
n(1)y − 2mBS0

mh−
�∇B(1)

y .

(11)

In order to study the propagation of whistler pulse Eqs (10)
and (11) are to be solved simultaneously. The plasma electrons
interact with the whistler pulse to acquire the transverse quiver
velocity,

n(1)x
v(1)y

( )
= vx1

vy1

( )
E(z, t)ei(k1z−v1t) + c.c., (12)

where

vx1 = 1
(v2

c − v2
1)

ie(v1 − vc)
m

+ k1Q(ivcny1 − v1nx1)
n0

+ 2imBk1S0(vc − v1)
mh−

[ ]
,

vy1 = −e
mv1

+ ivcvx1
v1

+ k1ny1Q

n0v1
+ 2mBk1S0

mh− v1

[ ]
,

Q = n2F +
h− 2k21
4m2

[ ]
,

and ωc = ((eb)/m) is the cyclotron frequency of plasma electrons.
The first order perturbed electron density is obtained by sub-

stituting the quiver velocities in the perturbed first order continu-
ity equation,

n(1)x
n(1)y

( )
= nx1

ny1

( )
E(z, t)ei(k1z−v1t) + c.c., (13)

where

nx1 = n0k
v1{k21Q+ (v2

c − v2
1)}

ie(v1 − vc)
m

+ ik1Qvcny1
n0

+ 2imBS0k1(vc − v1)
mh−

[ ]
,

and

ny1= n0k1(v2
c−v2

1)
{(v2

1−k21)(v2
c−v2

1)+k21Qv2
c}

−e
m

+ evc

m(vc+v1)−
ik1Qv1vcnx1
n0(v2

c−v2
1)

− 2vcmBS0k1
mh− (vc+v1)+

2mBS0k1
mh−

[ ]
.

Spin is an important property of quantum degenerate plasma.
It plays a crucial role in exposing the plasma to the external mag-
netic field, the effect of which can be ascertained in the perturbed
spin magnetic moment for plasma electron through the spin
angular momentum

S(1)x
S(1)y

S(1)z

⎛
⎜⎝

⎞
⎟⎠ =

Sx1
Sy1
Sz1

⎛
⎝

⎞
⎠E(z, t)ei(k1z−v1t) + c.c., (14)

where

Sx1 =
2imBS0

2bmB

h− − v1

{ }

h− 4b2m2
B

h− 2 − v2
1

{ } ,

Sy1 = −2mB(bSx1 − iS0)
ih− v1

and Sz1 = −2mBS0(1− i)
h− v1

.

By following similar steps for nth harmonic, the quiver
velocity, perturbed density and spin magnetic moment compo-
nent can be obtained by substituting ω1→ nω1, E(z, t)→ En(z,
t), (k1z− ω1t)→ (knz− nω1t), in Eqs (12–14). Hence, the
linear part of induced current density for nth harmonic,
J (1)(nv1) = J (1)c (nv1) + J (1)s (nv1) can be written as,

J(1)(nv1) = [J (1)c (nv1) + J (1)s (nv1)]En(z, t)ei(knz−nv1t) + c.c. (15)

where, �Js = −((2mB)/h− )∇(n.S), is the current density due to spin
magnetic moment and �Jc = −e(n.v) is the conventional current.
Substitution of Eq. (15) in the wave Eq. (6) for nth harmonic
yields the dispersion equation

c2k2n = n2v2
1 + v2

p
imnv1{J (1)c (nv1) + J (1)s (nv1)}

n0e2
. (16)

Now, we proceed to obtain the second order perturbed velocity
and particle density which are obtained using the same procedure
as adopted for the first order fields,

n(2)x
n(2)y

n(2)z

⎛
⎜⎝

⎞
⎟⎠ =

nx2
ny2
nz2

⎛
⎝

⎞
⎠E2(z, t)e2i(k1z−v1t) + c.c. (17)

n(2)x
n(2)y

n(2)z

⎛
⎜⎝

⎞
⎟⎠ =

nx2
ny2
nz2

⎛
⎝

⎞
⎠E2(z, t)e2i(k1z−v1t) + c.c. (18)
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where

vx2 =
2imBk1(vcSy1 − 2v1Sx1)

mh− (v2
c − 4v2

1)
[ ]

,

vy2 = ivcvx2
2v1

+ mBk1Sy1
mh− v1

[ ]
, vz2 =

−ie(vx1 − ivy1)
2mv1c

[ ]

nx2 = k1n0nx2
v1

+ k1nx1vx1
v1

[ ]
,

ny2 =
k1n0vy2
v1

+ k1ny1vy1
v1

[ ]
and nz2 = k1n0vz2

v1
+ k1nz1vz1

v1

[ ]
.

Thus, the second order velocity components of plasma elec-
trons oscillate with frequency twice that of fundamental whistler
frequency. This effect arises from the coupling of propagating
magnetic field of whistler pulse with the external magnetic field.
The second order spin magnetic moment is obtained as

S(2)x
S(2)y

S(2)z

⎛
⎜⎝

⎞
⎟⎠ =

Sx2
Sy2
Sz2

⎛
⎝

⎞
⎠E2(z, t)e2i(k1z−v1t) + c.c. (19)

where

Sx2 = [((2bmB)/h− ){((2imB/)h− ) + ik1sy1vy1}

− 2iv1{((2mBSz1)/h− ) − ik1vx1Sx1}]

{((4m2
Bb

2)/h− 2) − 4v2
1},

Sy2 = ibmBSx2
h− v1

+ mBSz1
h− v1

+ k1Sy1vy1
2v1

[ ]
and Sz2 =

imB(iSy1 − Sx1)
h− v1

.

The first order quiver velocity beats with the first order density
to produce second harmonic nonlinear current density which
leads to even second harmonic radiation generation at (2ω1,
2k1) as,

�J (2)
NL = (JS2 + Jc2)E2(z, t)e2i(k1z−v1t) + c.c.

where

JS2 =− 4ik0mB

h−
[n0Sx2 + S0nx2 + nx1Sx1 + n0Sy2 + S0ny2
+ ny1Sy1 + n0Sz2 + S0nz2 + Sz1nz1]

and

Jc2 = −e.[n0vx2 + nx1vx1 + n0vy2 + ny1vy1 + n0vz2 + nz1nz1].

There also exists a self-consistent even second harmonic field
�E (2) = E2(z, t)ei(k2z−2v1t) + c.c due to which the linear current

density is given by

�J (2)
L = ie2n0E2(z, t)

2mv1

( )
ei(k2z−2v1t) + c.c. (20)

Second harmonic conversion efficiency

The normalized amplitude for phase mismatched second har-
monic is obtained by substituting linear and nonlinear current
densities in the wave equation [Eq. (6)] governing the second har-
monic field �E(2), which on simplification yields

E2(z, t)
E(z, t) = 8pia0mc(Js2 + Jc2)(v1/vp)2

{((2imv1[Jc(2v1) + Js(2v1)])/(en0)) + e}
eiDkZ, (21)

where, Δk = (k2− 2k1) represents the phase difference between the
generated even second harmonic and the fundamental frequency.
We get the second harmonic conversion efficiency as

h2 =
64p2m2c2a20(Js2 + Jc2)2

e2(((vp)/(v1)))4{((2imv1)/(n0e2))[Jc(2v1) + Js(2v1)]+ 1}2
,

(22)

where

Js(2v1) = − 2ik1mB

h− [n0Sx1 + S0nx1 + n0Sy1 + S0ny1 + n0Sz1

+ S0nz1](2v1)

Jc(2v1) = −en0[vx1 + vy1 + vz1](2v1) and a0 = eE0
mcv

.

The conversion efficiency is proportional to the plasma elec-
tron density, strength of the magnetic field and the intensity of
whistler pulse.

Figure 1, shows the variation of conversion efficiency (h2%)
with normalized plasma electron density for different values of
magnetic field strength. The figure shows that for a constant mag-
netic field, harmonic radiation grows with increase in the plasma
density until saturation. The saturation value of plasma density
depends on the applied magnetic field and is more for the weaker
magnetic field.

Figure 2, shows the variation of second harmonic conversion
efficiency (h2%) with the magnetic field strength at the varying
value of normalized plasma density. The dark line is for ωp/
ω1 = 0.3 and the dashed line is for ωp/ω1 = 0.5. It is observed
that the efficiency increases with the magnetic field and
approaches to saturation. The saturation strength increases for
the lower density of plasma.

Figure 3, shows the variation of second harmonic conversion
efficiency as a function of the intensity of the whistler pulse for
different values of normalized plasma density. The dark line is
for ωp/ω1 = 0.3, while the dashed line is for ωp/ω1 = 0.5. The effi-
ciency increases for lower values of intensity, however conversion
efficiency saturates at large value of the intensity of whistler pulse.

Figure 4 shows the variation of harmonic conversion efficiency
as a function of whistler pulse intensity for various values of
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magnetic field strength (ωc/ω1 = 0.4 for dark line and ωc/ω1 = 0.6
for dashed line). The figure depicts that the conversion efficiency
of even second harmonic radiation generation increases with
increase in whistler intensity and magnetic field. The increase
in the conversion efficiency of second harmonic with the intensity
of fundamental whistler pulse is due to the generation of strong
nonlinear current. The efficiency tends to saturate for high
value of a0.

In order to compare the conversion efficiency of second har-
monic with the classical case, Figure 5 has been plotted for
parameters ωc/ω1 = 0.3, a0 = 0.271 and n = 1030m−3. The upper
solid line shows the variation of conversion efficiency in presence
of quantum effects and the dashed line is in the absence of quan-
tum effects (in the limit h− = 0). It is evident from the figure that
the conversion efficiency of second harmonic is more by about
11% due to the presence of quantum effects in magentoplasma

because quantum diffraction effects play a crucial role by modify-
ing the efficiency of second harmonic of whistler pulse.

Summary and discussion

A study of SHG resulting from propagation of whistler wave in
homogenous high-density magnetized quantum plasma is pre-
sented. The static magnetic field applied for magnetization is in
the longitudinal direction. The interaction mechanism has been
built using the recently developed QHD model. The effects of
Fermi statistical pressure, the quantum Bohm potential, and the
spin of electron have been taken into account. The quiver and sec-
ond order velocities along with electron densities and the spin
angular momenta have been obtained through the perturbative

Fig. 1. Variation of conversion efficiency as a function of ωp/ω1 for a0 = 0.271, n =
1030m−3 and different value of ωc/ω1.

Fig. 2. Variation of conversion efficiency as a function of ωc/ω1 for a0 = 0.271, n = 10
30

m−3 and different value of ωp/ω1.

Fig. 3. Variation of conversion efficiency against normalized fundamental whistler
intensity a0 for various values of ωp/ω1.

Fig. 4. Variation of conversion efficiency of second harmonic with normalized funda-
mental whistler intensity a0 for various values of ωc/ω1.
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expansion of QHD equations. The nonlinear current density is
the sum of conventional current and the current due to spin mag-
netic moment. The linear current results from the self-consistent
field. The efficiency of SHG has been obtained for the phase mis-
matched case. It has been found that the SHG grows with the
plasma density and the magnetic field up to the respective satura-
tion values. The harmonic generation stops beyond saturation.
The saturation of plasma density occurs earlier for increasing
magnetic field. This is due to the polarization field effect in
strongly magnetized dense plasma. The efficiency of SHG also
increases with intensity of whistler pulse. The noteworthy obser-
vation is occurrence of enhanced SHG for high-density degener-
ate plasma at lower values of external magnetic field strength. The
present study of second harmonic of whistler will be useful in
acceleration of whistler pulse in astrophysical environments, fab-
rication of microelectronic devices, for high-quality plasma pro-
cessing and to derive dc current in toroidal fusion devices.
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