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1. Introduction

1.1. Characterising universal covers of abelian varieties

Let G = Gn
m be a complex algebraic torus, or let G be a complex abelian variety.

Considering G(C) as a complex Lie group, with LG = T0(G(C)) its (abelian) Lie algebra,

the exponential map provides a surjective analytic homomorphism

exp : LG� G(C).

Let O := {η ∈ End(LG) | η(ker exp) ⊆ ker exp} ∼= End(G) be the ring of C-linear

endomorphisms of LG which induce endomorphisms of G(C); these are precisely the

algebraic endomorphisms of G. Consider LG as an O-module.

In this paper, we use model-theoretic techniques and Kummer theory to give a purely

algebraic characterisation of the algebraic consequences of this analytic picture.

At first sight, exp relates LG to G(C) in a rather particular way. For example, if

a ∈ G(C) and exp(α) = a, then exp(α/n) converges topologically to 0 ∈ G(C) – something

which certainly need not hold for an arbitrary O-module homomorphism. We will show

however that if we forget the topology and the analytic structure, leaving only the field

https://doi.org/10.1017/S1474748018000191 Published online by Cambridge University Press

mailto:mbays@sdf.org
mailto:hartb@mcmaster.ca
mailto:apillay@nd.edu
https://doi.org/10.1017/S1474748018000191


768 M. Bays, B. Hart and A. Pillay

structure on C and the O-module structure on LG, and so work up to field automorphisms

of C and up to O-module automorphisms of LG, then exp is distinguished from other

O-module homomorphisms only by its interaction with the torsion subgroup G[∞] of G.

More precisely, it is described by its restriction exp |〈ker(exp)〉Q : 〈ker(exp)〉Q � G[∞] to the

divisible subgroup generated by ker(exp): once this restriction is chosen, there is a unique

way, up to automorphisms, to extend it to LG.

Theorem 1.1. Suppose G and the action of each η ∈ O are defined over a number field

k0 6 C.

Suppose ρ, ρ′ : LG� G(C) are surjective O-module homomorphisms, ker ρ′ = ker ρ,

and ρ′�〈ker ρ′〉Q= ρ�〈ker ρ〉Q .

Then there exists an O-module automorphism σ ∈ AutO(LG/ ker ρ) and a field

automorphism τ ∈ Aut(C/k0) of C fixing k0 such that the following diagram commutes,

where τ : G(C)→ G(C) is the abstract group automorphism induced by τ .

LG

ρ1

��

σ // LG

ρ2

��

G(C) τ // G(C)

We will define an L̂-isomorphism to be such a pair (σ, τ ) of an O-module isomorphism

and a field isomorphism which agree on G. So Theorem 1.1 yields a characterisation of

exp : LG� G(C): it is, up to L̂-isomorphism, the unique surjective O-homomorphism

with its kernel and its restriction to the divisible subgroup generated by that kernel.

We require here that k0 is a number field in order to have Kummer theory available.

We have a corresponding result in the case that G is a split semiabelian variety defined

over a number field, but general semiabelian varieties are problematic due to the failure

of Kummer theory.

We prove Theorem 1.1 by classifying the models of the first-order theory of exp in an

appropriate language L̂. Our proof can be split into three stages:

(i) Kummer theory for abelian varieties explains the behaviour for finite extensions of

k0, and suffices to show uniqueness of the restriction of exp to exp−1(G(Q̄));
(ii) a function-field analogue of this Kummer theory allows us to extend the uniqueness

to G(F) for F an algebraically closed field of cardinality 6 ℵ1;

(iii) we extend to arbitrary cardinals (in particular the continuum, which without

assuming the continuum hypothesis is not covered by (ii)) using arguments

involving independent systems, based on techniques involved in Shelah’s Main Gap

theorem.

In [4], it was found that the geometric Kummer theory of (ii) actually follows from a

general model-theoretic principle, Zilber’s indecomposability theorem, and hence holds

in the generality of rigid (see below) commutative divisible finite Morley rank groups.

This also turns out to be a natural level of generality for (iii), and it is in this context

that we will actually work for most of this paper. We obtain an analogue of Theorem 1.1
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in this generality, Theorem 3.31 – although since there is no analogue of (i) in such

generality we get a correspondingly weaker result.

This does allow us to remove the restrictions in Theorem 1.1 and still get a uniqueness

result: if G is an abelian variety over a field k0 6 C, then the exponential map

exp : LG� G(C) is, up to L̂-isomorphism fixing exp−1(G(kalg
0 )), the unique surjective

End(G)-homomorphism with kernel ker exp which extends exp�exp−1(G(kalg
0 ))

. We obtain an

analogous result for semiabelian varieties as part of § 5.3.

We also obtain similar results for complex tori which are not abelian varieties, and for

semiabelian varieties in positive characteristic, generalising [7].

1.2. Profinite covers and an outline of the paper

For G = G(C) as above, or more generally for G a commutative divisible finite Morley

rank group, we associate a canonical structure Ĝ which we call the ‘profinite universal

cover’ of G, defined as the inverse limit of copies of G with respect to the inverse system

of multiplication-by-n maps, Ĝ := lim
←−
[n] : G� G.

In the case of G a complex semiabelian variety, this is the same construction that

appears in the definition of the étale fundamental group – every finite étale cover of G
is dominated by some [n], so taking the inverse limit with respect to all [n] amounts to

taking the inverse limit with respect to all finite étale covers. So Ĝ can be identified as

the ‘étale universal cover’ of G.

In general, we can see Ĝ as a purely algebraic substitute for an analytic universal

cover of G. We will see below in Remark 2.19 one justification for this: in an appropriate

language L̂, if G is a Lie group, then the Lie exponential map is an elementary submodel

of the profinite universal cover Ĝ.

The results described in the previous subsection result from classifying the models of

the first-order theory of Ĝ.

In § 2 we define the structure we wish to consider on Ĝ, axiomatise its first-order theory

T̂ , prove quantifier elimination, and examine it in terms of stability theory. In § 3, we

give a classification of the models of T̂ . In § 4, we return essentially to the context of

§ 1.1, specialising the abstract model theory of earlier sections to the case of algebraic

groups. Here we also use Kummer theory to strengthen the classification (peeking inside

the prime model); the necessary Kummer theory is presented in Appendix A. Finally, in

§ 5, we present some further natural examples of models of T̂ for various G, to which our

classification theorem applies.

1.3. The literature

We discuss the previous work on which this work builds. For G = Gm the multiplicative

group, Theorem 1.1 was proven in [24] and [7]. It was proven for G an abelian variety in

[9] under the assumption of the continuum hypothesis, i.e., with only the first two of the

three steps described above. A path to the full result was set out in [23], and for G an

elliptic curve the full result was obtained in [1].

These previous proofs of (iii) use algebraic techniques analogous to, but substantially

more complicated and limited than, the model- theoretic techniques of the present work.

In previous work, the problem was considered one of categoricity in infinitary logic, and
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correspondingly the techniques applied were those of Shelah’s theory of excellent classes,

and more specifically Zilber’s adaptation to quasiminimal excellent (QME) classes. It

was key to the developments in this paper to instead consider the problem in terms of

first-order classification theory. Although our results do not fall literally into the context

of Shelah’s classification theory for superstable theories – essentially because we are

interested in models where the kernel of exp is rather unsaturated – and though ideas

from the theory of abstract elementary classes will still play a (largely implicit) role, the

argument which allows us to get (iii) in the generality we do is an adaptation of Shelah’s

‘NOTOP’ argument, which reduces the condition of excellence in the first-order case to

a simpler condition.

In fact, while the current paper was in preparation, it was found that this same idea

applies in the context of QME classes [5]. For the benefit of any readers familiar with

that paper, we mention how it relates to this paper. Our main results do not fit into

the definition of QME, even if we assume the kernel to be countable: we consider finite

Morley rank groups which are not necessarily almost strongly minimal; correspondingly,

the covers are not even almost quasiminimal. In the case discussed above of a semiabelian

variety G, however, the covers structure can be seen as almost quasiminimal – and

moreover it is bi-interpretable with the quasiminimal structure induced on the inverse

image in the cover of a Kummer-generic (in the sense of [4]) curve in G which generates

G as a group. So in this case, (iii) above could be deduced from the main result of [5].

1.4. Notation

We use unmarked tuple notation throughout: if A is a subset of a sort in a structure, we

write x ∈ A if x is a finite tuple each co-ordinate of which is an element of A.

We write a ≡C b to mean that tp(a/C) = tp(b/C), and we sometimes write σ : A
∼=
−→C B

to denote that σ is an isomorphism which is the identity on C ⊆ A∩ B.

If G is an abelian group, we write G[n] for the n-torsion, and we write G[∞] or Tor(G)
for the torsion subgroup

⋃
n G[n].

We introduce further specialised notation in § 2, after making relevant definitions.

2. Profinite universal covers

In this section, we consider the algebra and basic model theory of our ‘profinite universal

covers’ of divisible commutative finite Morley rank groups.

2.1. Ĝ

We begin with some elementary definitions and remarks concerning abstract commutative

groups.

If G is a commutative group and [n] is the multiplication-by-n map, let Ĝ be the inverse

limit lim
←−
[n] : G → G. Let ρn : Ĝ � G be the corresponding projections, so [n]ρnm = ρm .

Let ρ := ρ1. We often write elements of Ĝ in the form γ = (gn)n , so then ρn(γ ) = gn .

If θ : G → H , define θ̂ : Ĝ → Ĥ by θ̂ ((gn)n) = (θ(gn)n).

Definition 2.1. The divisible part Go of an abelian group G is the maximal divisible

subgroup, Go
=

⋂
n>0 nG.
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We will mostly work in contexts in which Go is the ‘connected component’ of G in one

sense or another, hence the notation.

Say a commutative group G is divisible by finite if its divisible part Go has finite index

in G.

We note that ·̂ is an exact functor on divisible-by-finite groups:

Lemma 2.2. Suppose 0→ A→ B → C → 0 is an exact sequence of divisible-by-finite

groups. Then 0→ Â→ B̂ → Ĉ → 0 is exact.

Proof. Denote the given map B → C as θ . The only difficulty is the surjectivity of θ̂ :

B̂ → Ĉ . We may assume A→ B is an inclusion. Factoring θ via B/(Ao), we see that it

suffices to prove the surjectivity of B̂ → Ĉ under the assumption that A is divisible or

finite.

(a) Suppose A is divisible. We first show that given any n > 0, b ∈ B and c′ ∈ C such

that θ(b) = [n]c′, there is b′ ∈ B such that [n]b′ = b and θ(b′) = c′. Say θ(b′′) = c′;
then θ([n]b′′) = [n]c′ = θ(b), so b− [n]b′′ ∈ A. Say a′ ∈ A with [n]a′ = b− [n]b′′.
Then b′ := b′′+ a′ is as required.

Given ĉ, we can therefore inductively define bn! such that [n+ 1]b(n+1)! = bn! and

θ(bn!) = ρn!(̂c). Easily, there is a unique b̂ ∈ B̂ such that ρn!(̂b) = bn!, and it satisfies
θ̂ (̂b) = ĉ.

(b) Suppose A is finite, say [n]A = 0. Then θ factors [n] – indeed, let φ be the map

making the left triangle in the following diagram commute, then note that the right

triangle also commutes. But [̂n] is surjective, hence so is θ̂ .

B
[n]

//

θ
��

B
θ

��

C
[n]

//

φ
??

C

2.2. T̂

Now let G be a connected commutative finite Morley rank group, and suppose moreover

that it is divisible. Then [n] : G� G has finite kernel, and it follows that any definable

subgroup A 6 G is divisible by finite, and its divisible part Ao is its connected component

in the model-theoretic sense, namely the smallest definable subgroup of finite index.
Let T := Th(G); we assume (by appropriate choice of language) that T has quantifier

elimination. We also assume that the language L of T is countable.

Let T̂ be the theory of (Ĝ,G) in the two-sorted language L̂ consisting of the maps ρn
for each n, the full T -structure on G, and, for each acleq(∅)-definable connected subgroup

H of Gn , a predicate Ĥ interpreted as the subgroup Ĥ = {x |
∧

n ρn(x) ∈ H} of Ĝn . We

will see below that T̂ depends only on T .

For quantifier elimination purposes, we actually assume (by expanding T by constants

if necessary) that every acleq(∅)-definable connected subgroup of Gn is ∅-definable.

We say that T is rigid if for G a saturated model of T , every definable connected

subgroup of Gn is defined over acleq(∅). Although the results of this section do not require

rigidity, our language is chosen with it in mind.
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Remark 2.3. As in the proof of Lemma 2.2, any definable finite group cover of G is

dominated by some [n], so is ‘seen’ by Ĝ.

Note that divisibility is crucial for this – for example, the Artin–Schreier map x 7→
x p
− x is a finite definable group cover of the additive group in ACFp which is not handled

by our setup (cf. [4] where this issue is discussed).

Notation 2.4. Suppose (M̃,M) is an L̂-structure.

• If ã ∈ M̃ is a tuple, then we will write an for ρn (̃a), and a for ρ(̃a), and â for (an)n .

Similarly, if Ã ⊆ M̃ , we write Â for
⋃

n ρn( Ã).

• We will usually just write M̃ � T̂ to mean (M̃,M) � T̂ .

• Ĝ and Ĥ will always denote the predicates corresponding to ∅-definable connected

subgroups G and H of a cartesian power of G. Ĉ will denote a coset of some Ĥ .

• Ĝ (̃a) is the definable set {̃x | (̃x, ã) ∈ Ĝ}, a coset of Ĝ(0). Similarly for G(a).

• ker is the definable set ker(ρ).

• ker0, the divisible part of ker, is the
∧

-definable set
∧

n ρn(x) = 0.

• Abusively, ker and ker0 also refer to the corresponding sets in cartesian powers of G.

• If pr : M̃n � M̃m is a co-ordinate projection, we also write pr for the corresponding

co-ordinate projection Mn � Mm , and we also write pr for the restriction of pr to a

subset Ã ⊆ M̃n or A ⊆ Mn , leaving it to the context to disambiguate.

• Ĥ0 := Ĥ ∩ ker0, a Q-subspace of the Q-vector space ker0.

2.3. Axiomatisation and quantifier elimination

We now give a list of first-order axioms for a structure M̃ in the language of T̂ . We show

in Proposition 2.8 that these axioms axiomatise T̂ .

Axioms 2.5.

(A1) M � T

(A2) Let 0+ be the graph of the group operation on G. Then 0̂+ is the graph of a

commutative divisible torsion-free group operation, which we write as ‘+’ and work

with respect to in the following axioms;

(A3) Let 1 be the diagonal subgroup of G, i.e., the graph of equality. Then 1̂ is the

diagonal subgroup of M̃ .

(A4) Each Ĥ is a divisible subgroup.

(A5) [m]ρnm = ρn .

(A6) ρn(Ĥ) = H .

(A7) Ĝ ∩ Ĥ = Ĥ ′o where H ′ := G ∩ H .

(A8) If H ⊆ G and Tor(H) = Tor(G), then Ĥ ∩ ker = Ĝ ∩ ker.

(A9) If a co-ordinate projection pr induces a surjection pr : G � H with kernel K then

the corresponding co-ordinate projection induces a surjection pr : Ĝ � Ĥ with

kernel K̂ o.
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In Ĝ and other models of T̂ which we will be considering in the applications, Ĥ will

be the divisible part of ρ−1(H). In this case, the following lemma substantially simplifies

verification of the axioms.

Lemma 2.6. Suppose V is a divisible torsion-free abelian group, and ρ : V � G is a

surjective homomorphism. For H a connected definable subgroup of Gn, let Ĥ be the

divisible part of ρ−1(H). Suppose that ker has trivial divisible part (i.e., 0̂ = 0). Let

ρn(x) := ρ(x/n). Then with this structure, V satisfies (A1)–(A9) if it satisfies (A6) and

(A9).

Proof. (A1) Immediate.

(A2) 0̂+ = {(x, y, z) | ∀n.x/n+ y/n− z/n ∈ ker}, which, since ker has trivial divisible

part, is the graph of + on V .

(A3) Similar.

(A4) Immediate from the definition of Ĥ .

(A5) Immediate from the definition of ρn .

(A6) Assumed.

(A7) Ĝ ∩ Ĥ is a divisible subgroup of ρ−1(H ′o) (where H ′ = G ∩ H), so is contained in

Ĥ ′o. Similarly for the converse inclusion.

(A8) Suppose H ⊆ G, ζ ∈ Ĝ ∩ ker, and Tor(G) = Tor(H). Then Qζ ⊆ ρ−1(H), so ζ ∈ Ĥ
by definition of Ĥ .

(A9) Assumed.

Lemma 2.7. Ĝ satisfies the axioms (A1)–(A9).

Proof. We appeal to Lemma 2.6. (A6) and the fact that Ĥ is the connected component

of ρ−1(H) are immediate from the definitions. (A9) follows from Lemma 2.2.

Proposition 2.8. (A1)–(A9) axiomatise T̂ , and T̂ has quantifier elimination.

Proof. Let T̂ ′ be the theory axiomatised by (A1)–(A9).

We show that T̂ ′ is complete and admits quantifier elimination. Completeness and

Lemma 2.7 then implies that T̂ ′ = T̂ .

We first note some elementary deductions from the axioms:

(D1) For any H and G, we have by (A9) applied to pr : H ×G � G that Ĥ ×G = Ĥ × Ĝ.

(D2) By (A6) applied to the graph of the group operation, the ρn are homomorphisms.

(D3) In the context of (A9), if K/K o has exponent e, then e · (Ĥ ∩ ker) ⊆ pr(Ĝ ∩ ker).
Indeed, this follows from (A9), (A6), and the snake lemma applied to the following

diagram

0 // K̂ o //

ρ

��

Ĝ //

ρ

��

Ĥ //

ρ

��

0

0 // K // G // H // 0
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Now suppose we have ω-saturated models M̃, Ñ � T̂ ′, finite tuples m̃ ≡q f ñ from each

with equal quantifier-free types, and a point m̃′ ∈ M̃ . To conclude the proof, we must

find ñ′ ∈ Ñ such that (m̃, m̃′) ≡q f (̃n, ñ′).
Let Ĥ be least such that it contains m̃. This exists by ω-stability of T and (A7); cf.

Definition 2.13.

Let Ĝ be least such that it contains (m̃, m̃′), and let pr : (m̃, m̃′) 7→ m̃ be the co-ordinate

projection.

We work in T̂ ′; when we make a statement which is expressible as a sentence in L̂, we

mean that it is a consequence of T̂ ′.
pr(Ĝ) = p̂r(G) by (A9), so Ĥ ⊆ pr(Ĝ), and pr−1(Ĥ) = Ĥ × Ĝ = Ĥ ×G = ̂pr−1(H), so

Ĝ ⊆ pr−1(Ĥ) and so pr(Ĝ) ⊆ Ĥ . So Ĥ = pr(Ĝ), and so pr : Ĝ � Ĥ and pr : G � H .

Claim 2.9. pr : Ĝ0(Ñ )� Ĥ0(Ñ )

Proof. Work in Ñ . Let K be the kernel of pr : G � H , and suppose K/K o has exponent

e, so by (D3), pr : Ĝ ∩ ker� e(Ĥ ∩ ker). So for each k,

pr : k(Ĝ ∩ ker)� ke(Ĥ ∩ ker).

But then by ω-saturation of Ñ ,

pr : Ĝ0 =
⋂

k

k(Ĝ ∩ ker)�
⋂

k

ke(Ĥ ∩ ker) = Ĥ0.

By quantifier elimination in T and ω-saturation, we can find ñ′ ∈ Ñ such that

(m̂, m̂′) ≡q f (̂n, n̂′) (∗)

as infinite tuples; in particular, ρk (̃n, ñ′) ∈ G for all k, and so by ω-saturation we find

ñ′′ ∈ Ĝ(Ñ ) such that ρk (̃n, ñ′) = ρk (̃n′′) for all k, and so ζ̃ := ñ′′− (̃n, ñ′) ∈ ker0(Ñ ). Then

pr ζ̃ ∈ Ĥ0(Ñ ), and so by the Claim there is ζ̃ ′ ∈ Ĝ0(Ñ ) with pr ζ̃ ′ = pr ζ̃ , and then ñ′′+ ζ̃ ′ ∈
Ĝ and pr(̃n′′+ ζ̃ ′) = ñ.

So we can assume (̃n, ñ′) ∈ Ĝ, while still satisfying (*). Now suppose (̃n, ñ′) is contained

in a proper subgroup Ĝ ′ < Ĝ. Then ρk(m̃, m̃′) ∈ G ′ for each k, so by ω-saturation,

(m̃, m̃′) ∈ Ĝ ′+ ζ̃ for some ζ̃ ∈ Ĝ0 \ Ĝ ′0. So Ĝ ′0(M̃) < Ĝ0(M̃), so, by (A8), Tor(G ′) <
Tor(G). Hence by (A6) and (A5), for each k there is ζ̃ ∈ Ĝ \ Ĝ ′ with ρk (̃ζ ) = 0, and

so by saturation Ĝ ′0(Ñ ) < Ĝ0(Ñ ).
Now pr(Ĝ ′) = Ĥ , by the same argument which showed pr(Ĝ) = Ĥ , and so the Claim

applies also to Ĝ. So pr(Ĝ ′0(Ñ )) = Ĥ0(Ñ ) = pr(Ĝ0(Ñ )). Hence we have a strict inclusion

Ĝ ′0(0) < Ĝ0(0) in Ñ for the fibres above 0 ∈ Ĥ . So by translating, we can find ñ′ satisfying

(*) and such that (̃n, ñ′) /∈ Ĝ ′. Now Ĝ0(0) is not covered by any finitely many such

Ĝ ′0(0), since they are proper Q-subspaces. So we can avoid any finitely many such proper

subgroups simultaneously, and so by ω-saturation, we find ñ′ satisfying (*) for which Ĝ
is least such that it contains (̃n, ñ′).

It follows, using (A3) for formulae involving equality on the sort Ĝ, that (m̃, m̃′) ≡q f
(̃n, ñ′) as required.
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Remark 2.10. Assuming that T has finite Morley rank is a much stronger assumption

than we need for this result. Really the result is about the reduct to the abelian structure

of G with predicates for the acleq(∅)-definable subgroups of Gn ; all we require is that

these subgroups have divisible definable connected components, and the descending chain

condition on definable subgroups. For example, G could be real semiabelian variety S(R)
with the semialgebraic structure of its interpretation in the real field.

Remark 2.11. The assumption that each acleq(∅)-definable connected subgroup H is

actually ∅-definable in T is necessary, because H is ∅-definable in T̂ as the image of

Ĥ , while quantifier elimination implies that G has only the structure of T .

Corollary 2.12. Suppose B̃ ⊆ M̃ � T̂ , and suppose X ⊆ M̃n is definable over B̃. There

are Hi , b̃i
∈ B̃, m > 0, and ∅ 6= Yi ⊆ Hi (bi

m), with i ranging through a finite set, and with

each Yi being T -definable over B̂, such that⋃
i

(Ĥi (̃bi )∩ ρ−1
m (Yi )) ⊆ X ⊆

⋃
i

Ĥi (̃bi ).

Proof. This follows from the QE, using (A7) to reduce an intersection of cosets to a

single coset, using (A5) to reduce to a single ρm , and using that (by (A6)) ρm(Ĥ (̃b)) ⊆
H(bm).

Definition 2.13. Let B̃ ⊆ M̃ � T̂ , and ã ∈ M̃ . Then grploc(̃a/B̃), the group locus of ã over

B̃, is the smallest set containing ã of the form Ĥ (̃b) with b̃ ∈ B̃.

Remark 2.14. Such a smallest set exists, by (A7) and ω-stability of T .

Clearly grploc(̃a/B̃) is definable over B̃; however, it is not true that grploc(̃a/B̃) is

necessarily the smallest coset of a Ĝ containing ã which is definable over B̃. For example,

suppose G is a torsion-free group, so ρ is an isomorphism, and consider a coset Ĝ+ ã
with a ∈ dclT (B) \ B.

Remark 2.15. Using (A2), (A7), and (A9), we see that Ĥ (̃b+ b̃′) can be rewritten in the

form Ĝ (̃b, b̃′), and similarly for Ĥ (̃b)+ b̃′. So in particular, grploc(̃a/B̃) = grploc(̃a/〈B̃〉)
where 〈B̃〉 is the subgroup of M̃ generated by B̃.

Lemma 2.16. Let B̃ ⊆ M̃ � T̂ , and ã ∈ M̃. Let Ĉ := grploc(̃a/B̃).
Suppose ker(M̃) ⊆ B̃.

Then p′(̃x) := tp(̂a/B̂)∪ {̃x ∈ Ĉ} � tp(̃a/B̃)

Proof. By the QE, we need only to see that if ã′ � p′ in an elementary extension, then

for all Ĥ and all b̃ ∈ B̃, ã ∈ Ĥ (̃b) iff ã′ ∈ Ĥ (̃b).
Now ã ∈ Ĥ (̃b) iff Ĉ 6 Ĥ (̃b), so the forward direction is clear.

For the converse, suppose ã′ ∈ Ĥ (̃b). Then a′ ∈ H(b), hence a ∈ H(b). So (̃a, b̃) ∈ Ĥ +
ker(M̃), i.e., ã ∈ Ĥ (̃b+ ζ̃ )+ ξ̃ for some ζ̃ , ξ̃ ∈ ker(M̃). But ker(M̃) ⊆ B̃, so by Remark 2.15,

Ĉ 6 Ĥ (̃b+ ζ̃ )+ ξ̃ . So ã′ ∈ Ĥ (̃b)∩ (Ĥ (̃b+ ζ̃ )+ ξ̃ ); but this is an intersection of cosets of

Ĥ(0), so they are equal, and so ã ∈ Ĥ (̃b).
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Remark 2.17. It also follows from the QE that ker0 is indeed the connected component of

the kernel in the model-theoretic sense, and more generally that Ĥ + ker0 is the connected

component of ρ−1(H) = Ĥ + ker.

2.4. Lie exponential maps as models of T̂

Let G be a connected commutative Lie group which is also equipped with a finite Morley

rank group structure for which the model-theoretically connected definable subgroups

of Gn are topologically connected closed Lie subgroups. This is the case for a connected

commutative complex algebraic group G(C) with the Zariski structure, and we will discuss

other examples in § 5.

Consider the Lie algebra LG = T0G with the Lie exponential map exp : LG� G as

an L̂-structure, with ρm(x) := exp(x/m) and Ĥ := L H 6 LGn for H 6 Gn connected

definable.

Proposition 2.18. LG � T̂ .

Proof. We appeal to Lemma 2.6.

(A6) holds since exp is surjective for commutative Lie groups (since the image is a

subgroup which contains a neighbourhood of the identity).

So since L H is divisible and ker exp is discrete, Ĥ = L H is the divisible part of ρ−1(H).
Finally, (A9) follows from exactness of the functor L for commutative Lie groups.

To check this in the setting of (A9), the only difficulty is the surjectivity of LG →
L H , but this follows from the fact that the image is an R-vector subspace of dimension

dim(LG)− dim(L K ) = dim(G)− dim(K ) = dim(H) = dim(L H).

Remark 2.19. Note that x 7→ (exp(x/n))n is an embedding of LG into Ĝ, which, by the

QE, is elementary.

Remark 2.20. Lie theory provides a topological interpretation of the embedding of

Remark 2.19.

The group Ĝ is easily seen to be isomorphic to the group of abstract group

homomorphisms Hom(Q,G), by taking the image in Ĝ of θ ∈ Hom(Q,G) to be (θ(1/n))n .

Then by recalling that x 7→ (t 7→ exp(t x)) is an isomorphism of LG with the group

Homc(R,G) of 1-parameter subgroups, and considering their restrictions to Q, we see

that the image in Hom(Q,G) of LG is precisely the subgroup Homc(Q,G) of continuous

homomorphisms.

By translation, θ ∈ Hom(Q,G) is continuous iff it is continuous at 0, which holds iff

limn→∞ θ(1/n) = 0 ∈ G, which holds iff this limit exists. So we can also identify LG as

the subgroup of convergent elements of Ĝ, when viewed as sequences (an)n .

2.5. Stability theory of T̂

Proposition 2.21. (i) T̂ is superstable.

(ii) If tp(̃a/B̃) forks over Ã ⊆ B̃ then either tp(a/B̂) forks over Â or grploc(̃a/B̃) is not

definable over Ã.

(iii) T̂ has finite U-rank, i.e., U (̃a/B̃) < ω for any ã, B̃.
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Proof. (i) By the QE, tp(̃a/ Ã) is determined by tp(̂a/ Â) and grploc(̃a/ Ã). The former

is determined by tp(a/ Â) and (tp(ak/ Âa))k , and since [k] has finite kernel there

are only finitely many possibilities for each tp(ak/ Âa). grploc(̃a/ Ã) is determined

by a choice of coset over Ã. So by ω-stability of T , if | Ã| = λ > 2|T | then |S( Ã)| 6
(λ2ℵ0)(|T |λ) = λ. So T̂ is superstable.

(ii) Suppose tp(̃a/B̃) forks over Ã; say φ(x, b̃) ∈ tp(̃a/B̃) divides over Ã. Let Ĉ :=
grploc(̃a/B̃). We may assume φ(x, b̃) � x ∈ Ĉ .

Suppose Ĉ is defined over Ã. Then also φ(x, b̃′) � x ∈ Ĉ for any b̃′ ≡ Ã b̃. Now by

Corollary 2.12, φ(x, b̃) is implied by a formula in tp(̃a/B̃) of the form

x ∈ Ĉ ∧ψ(ρn(x))

where ψ(x) is a T -formula over B̂ implying x ∈ ρn(Ĉ). So since φ divides over Ã,

ψ must divide over Â. So tp(an/B̂) forks over Â, and since a is algebraic over an ,

so does tp(a/B̂).

(iii) Finite rankedness of T̂ follows from (ii), finite rankedness of T , and the fact that

Morley rank bounds the length of chains of connected subgroups in T .

We end this section with a proposition giving a stability-theoretic analysis of T̂ ; these

results are not used explicitly in the remainder of the paper, but they inform it.

Proposition 2.22. Let C̃ � T̂ be a monster model.

(i) ker0 is stably embedded, in the sense that every relatively definable set is relatively

definable with parameters from ker0. Consider ker0(̃C) as a structure with the

∅-relatively definable sets as predicates, and let T̂ 0
:= Th(ker0(̃C)). Then T̂ 0 is an

ω-stable 1-based group of finite Morley rank bounded above by the Morley rank of

T .

In particular, ker0 has finite relative Morley rank in the sense of [2].

(ii) im(ρ) is stably embedded with induced structure precisely that of T .

(iii) Every type in T̂ eq is analysable in ker0 and im(ρ).

(iv) ker0 is orthogonal to im(ρ).

(v) A regular type in T̂ eq is non-orthogonal to one of

(a) a strongly minimal type in T eq;

(b) Ĝ0/Ĥ0
where H 6 G have no intermediate connected subgroup.

(vi) T̂ has weak elimination of imaginaries in T eq and the sorts C̃n
/Ĥ .

Proof. (i) By the QE, the only structure on ker0 is the abelian structure given by the

Ĥ0. Stable embeddedness and 1-basedness follow easily. (Stable embeddedness can

alternatively be deduced directly from stability of T̂ 0.)

Since ker0 is torsion-free and Ĥ ∩ Ĝ = Ĥ ′ where H ′ = (H ∩G)o, the definable

subgroups are precisely those of the form Ĥ0. So there is no infinite chain of definable
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subgroups of ker0, so T̂ 0 is of finite Morley rank. The rank is bounded by the longest

length of such a chain, which is bounded by the rank of T .

(ii) This is immediate from the QE.

(iii) Consider a strong type q = stp(̃a/A), with A ⊆ Ceq. If b̃ ∈ C̃ is a realisation of q1 =

stp(̃a/a Ã) independent from ã over A, then since â ⊆ acl(a), we have ã− b̃ ∈ ker0.

So q1 is internal to ker0, and clearly stp(a/A) is internal to im(ρ).

(iv) It is immediate from the QE that every relatively definable subset of (ker0)n ×

im(ρ)m is a Boolean combination of products of subsets of (ker0)n with subsets of

im(ρ)m .

(v) By (i), the types in (b) are minimal, and ker0 is analysed in them. So this follows

from (iii).

(vi) For φ(x, y) an atomic formula, it is easy to see that any φ-type over a model

has canonical parameter in these sorts. So by the QE, any type over a model has

canonical base in these sorts. By stability, the same holds for any type over an

acleq-closed set. Then if α = a/E ∈ C̃eq , then α ∈ Cb(a/ acleq(α)) ⊆ acleq(α).

3. Classification of models of T̂

In this section, we prove the main model-theoretic result of this paper, Theorem 3.31,

which classifies the models of T̂ .

3.1. Outline

The classification proceeds as follows. First, recall the following coarse version of the

classification of models of T . By [16, Theorem 6], T is almost ℵ1-categorical. It follows

[6, 7.1] that if M � T and M0 ≺ M is a copy of the prime model, there is a finite

set of mutually orthogonal strongly minimal sets Di defined over M0 such that M is

constructible and minimal over M0 B, where B is the union of arbitrary acl-bases over M0
for the Di (M) [6, 7.1.2(ii)].

We will show that this picture lifts to T̂ . We will show that an arbitrary model M̃ � T̂
is constructible and minimal over M̃0 B where M̃0 = ρ

−1(M0), and M0 ≺ M and B are

as above. So models of T̂ are determined up to isomorphism by a choice of model of T
and a choice of lift of the prime model M0 ≺ M (which in particular involves a choice of

kernel).

In the case considered in the introduction, where G is an algebraic group over k0, we

need just one strongly minimal set D, which we can take to be an algebraically closed

field with parameters for k0. Then M0 ∼= G(kalg
0 ), and for G(K ) � T , the basis B is a

transcendence base for K over kalg
0 .

3.2. Preliminaries

We work in a monster model C̃ � T̂ and the corresponding monster model C = ρ(C) � T .

However, we mostly want to consider only those elementary embeddings of models of
T̂ which preserve the kernel.
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Notation 3.1. For M̃ ⊆ Ñ models of T̂ , we write M̃ ≺∗ Ñ to mean that M̃ ≺ Ñ and

ker(M̃) = ker(Ñ ). We refer to such elementary embeddings as kernel-preserving.

Remark 3.2. If M̃ ≺ Ñ , then M̃ ≺∗ Ñ iff M̃ = ρ−1(M) ⊆ Ñ , the inverse image of M
evaluated in Ñ .

Lemma 3.3. If Ñ � T̂ and M ≺ N = ρ(Ñ ), then M̃ := ρ−1(M) ≺∗ Ñ .

Proof. In light of Remark 3.2 and the quantifier elimination, it suffices to show that

M̃ � T̂ . For this, we check that the axioms (A1)–(A9) hold. These all follow

straightforwardly from M being an elementary submodel of N and the kernel being

preserved, except for the surjectivity in (A9) which is a little less straightforward.

For that, with notation as in (D3) of Proposition 2.8, note that ρe(Ĥ(M̃)) = H(M) ⊆
pr(ρe(Ĝ(M̃)) = ρe(pr(Ĝ(M̃)), so

Ĥ(M̃) ⊆ pr(Ĝ(M̃))+ ker(ρe|Ĥ(M̃))

= pr(Ĝ(M̃))+ e(Ĥ(M̃)∩ ker)

= pr(Ĝ(M̃)),

using that (D3) holds for Ñ , and the kernel preservation.

We make extensive use of l-isolation, a technique due to Lachlan [13].

Definition 3.4. A type p is l-isolated if for each φ(x, y) there exists ψ(x) ∈ p such that

ψ implies the complete φ-type implied by p, ψ � p|φ .

Recall that A is atomic over B if tp(a/B) is isolated for each tuple a ∈ A, and A is

constructible over B if A has an enumeration (ai )i<λ such that tp(ai/Ba<i ) is isolated

for each i < λ, where Ba<i = B ∪ {a j | i < j}. We define l-atomic and l-constructible by

replacing isolation with l-isolation in these definitions.

Remark 3.5. This definition of l-isolation is easily seen to be equivalent to the

F l
ℵ0

-isolation of [22, Definition IV.2.3].

Clearly any isolated type is l-isolated, so atomicity implies l-atomicity and

constructibility implies l-constructibility.

It is easy to see that, just as for constructibility and atomicity in their usual senses,

l-constructibility implies l-atomicity [22, Theorem IV.3.2], and the converse holds for

countable sets [22, Lemma IV.3.16].

Lemma 3.6. (a) Work in a monster model C′ of a complete stable theory.

(i) l-constructible models exist over arbitrary sets: for A ⊆ C′ eq, there exists M ≺ C′

such that A ⊆ Meq and Meq is l-constructible over A.

(ii) If M ≺ C′, and φ is a formula over M such that φ(M) ⊆ A ⊆ C′ eq and dcleq(A)∩
dcleq(φ(C′)) ⊆ Meq, and if b is l-isolated over A and � φ(b), then b ∈ φ(M).

(b) If M̃ � T̂ and ρ(M̃) =: M ≺ N � T , and Ñ � T̂ is l-atomic over A := M̃ ∪ N , then
Ñ ≺∗ M̃ and ρ(Ñ ) = N , and so Ñ is minimal over A.
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Proof. (a)

(i) [22, IV.2.18(4), IV.3.1(5)]

(ii) If b /∈ φ(M), then by l-isolation, there is a formula ψ ∈ tp(b/A) such that

ψ(x) � φ(x)∧ x /∈ φ(M).

By stable embeddedness of φ, we may take ψ to be defined over dcleq(A)∩
dcleq(φ(C′)) ⊆ Meq. But then ψ is realised in M , which is a contradiction.

(b) This follows from (a)(ii) and the QE. Indeed, if β ∈ dcleq(̃ζ ) with ζ̃ a tuple from

ker(̃C), then since ρn (̃ζ ) ∈ Tor ⊆ M , the QE implies that tp(̃ζ /A) is determined by

tp(̃ζ /M̃). So if β ∈ dcleq(A), then already β ∈ M̃eq. So by (a)(ii), ker(Ñ ) = ker(M̃).
Similarly, if β ∈ dcleq(b) with b a tuple from C, then the QE implies that tp(b/A) is

determined by tp(b/N ). Let N̂ � T̂ be the profinite universal cover, embedded in C̃

over N . Then tp(b/A) is determined by tp(b/N̂ ), again, if β ∈ dcleq(A), then already

β ∈ N̂ eq. So by (a)(ii), we have ρ(Ñ ) = ρ(N̂ ) = N .

The claimed minimality is then clear, since ρ is a homomorphism.

We also use the existence of l-constructible models to obtain independent amalgamation

in the (abstract elementary) class (Mod(T̂ ),≺∗) of models of T̂ with kernel-preserving

embeddings.

Lemma 3.7. Suppose M̃i , i = 0, 1, 2, are elementary submodels of C̃, M̃0 ≺
∗ M̃i , and

M̃1 |^ M̃0
M̃2. Let M̃3 be an l-atomic model over M̃1 ∪ M̃2. Then M̃i ≺

∗ M̃3.

Proof. Suppose ζ̃ ∈ ker(M̃3) \ ker(M̃0). By l-atomicity, say φ(x, ã1, ã2) ∈ tp(̃ζ /M̃1 ∪ M̃2)

with ai ∈ M̃i and

φ(x, ã1, ã2) ` x /∈ ker(M̃0)∧ x ∈ ker.

By Corollary 2.12, we may assume φ(x, ã1, ã2) is of the form x ∈ Ĥ (̃a1, ã2)∧ ρn(x) = ζn ,

where ζn = ρn (̃ζ ) ∈ M0.

By the independence, tp(̃a1/M̃2) is finitely satisfiable in M̃0, so say ã′1 ∈ M̃0 and M̃2 �
∃x ∈ ker .φ(x, ã′1, ã2), witnessed say by ζ̃ ′ ∈ ker(M̃2) = ker(M̃0).

Then tp(̃ζ − ζ̃ ′/M̃1) 3 (x ∈ Ĥ (̃a1− ã′1, 0)∧ ρn(x) = 0), so say ζ̃ ′′ ∈ M̃1 also satisfies

this. Then ζ̃ ′+ ζ̃ ′′ ∈ Ĥ (̃a′1+ ã1− ã′1, ã2+ 0) = Ĥ (̃a1, ã2) and ρn (̃ζ
′
+ ζ̃ ′′) = ζn + 0 = ζn ;

but ζ̃ ′+ ζ̃ ′′ ∈ ker(M̃1) = ker(M̃0), contradicting the choice of φ.

Lemma 3.8. Suppose M̃ � T̂ and A ⊆ M̃eq with ker(M̃) ⊆ A, suppose M is countable, and

suppose M̃ is atomic over A. Then M̃ is constructible over A.

Proof. Take an arbitrary section S ⊆ M̃ of ρ : M̃ → M . Then S is countable and atomic,

and hence constructible, over A, and M̃ = S+ ker is clearly constructible over S ∪ A ⊇
S ∪ ker.

Lemma 3.9. Suppose B̃ ⊆ M̃ � T̂ and ã ∈ M̃, and each tp(am/B̂) is isolated. Then tp(̃a/B̃)
is l-isolated.
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Proof. By the QE, it suffices to see that tpφ (̃a/B̃) is isolated for an atomic formula φ(x, y).
For φ of the form ψ(ρm(x), ρm(y)), this follows from tp(am/B̂) being isolated. For φ of

the form (x, y) ∈ Ĥ , it follows from the fact that for b̃ ∈ B̃, (̃a, b̃) ∈ Ĥ ⇔ grploc(̃a/B̃) ⊆
Ĥ (̃b).

3.3. ω-stability over models

From now on, in order to prove the subsequent lemma, we make the following additional

assumption.

Assumption 3.10. T is rigid – for G a saturated model of T , every connected definable

subgroup H of Gn is defined over acleq(∅) – and hence, by our previous assumptions in

§ 2.2, is actually defined over ∅. So L̂ has a predicate Ĥ corresponding to H .

We now apply the ‘Kummer theory over models’ of [4] to obtain atomicity of ‘finitely

generated’ extensions of models.

Lemma 3.11. Suppose M̃ ≺ C̃ and b ∈ C, and let M(b) be a prime model over Mb. Suppose

M̃(b) is a model such that M̃ ≺∗ M̃(b) ≺ C̃ and ρ(M̃(b)) = M(b). Then M̃(b) is atomic

over M̃b. If M is countable, M̃(b) is constructible over M̃b.

Furthermore, such an M̃(b) exists.

Proof. We first show the atomicity. Let c̃ ∈ M̃(b); we must show that tp(̃c/M̃b) is isolated.

Let Ĥ + d̃ = grploc(̃c/M̃). Since M̃ is a model, we may assume d̃ ∈ M̃ . So by replacing c̃
with c̃− d̃, we may assume d̃ = 0.

Since M̃ contains ker(M̃(b)) and T is rigid, c is free in H over M , i.e., in no proper

coset defined over M . By [4, 6.4], for some n, writing x̂ for the long tuple of variables

(xi )i>0,

tp(cn/M)(xn)∪ {xi ∈ H | i > 0} � tp(̂c/M)(̂x).

Now by ω-stability of T , tp(b/Mc) has finite multiplicity, i.e., finitely many extensions

to acleq(Mc) ⊇ ĉ. Hence tp(̂c/M)∪ tp(c/Mb) has only finitely many extensions to Mb. So

again, for some n,

tp(cn/Mb)(xn)∪ {xi ∈ H | i > 0} � tp(̂c/Mb)(̂x).

So by Lemma 2.16,

tp(cn/Mb)(ρn (̃x))∪ {̃x ∈ Ĥ} � tp(̃c/M̃b)(̃x).

But cn ∈ M(b), so tp(cn/Mb) is isolated, so tp(̃c/M̃b) is isolated.

This proves atomicity. Constructibility assuming countability of M follows by

Lemma 3.8.

It remains to show existence. By Lemma 3.6(a)(i), there exists a model M̃(b) which

is l-constructible over M̃ ∪M(b), and by Lemma 3.6(b) the kernel is preserved and

ρ(M̃(b)) = M(b).

Remark 3.12. Note that M̃(b) will not be constructible over M̃ ∪M(b): indeed, if ã ∈
M̃(b) \ M̃ , then each an is in M(b) \M , so easily tp(̃a/M̃ ∪M(b)) is not isolated.
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Remark 3.13. If we do not assume rigidity, there could be subgroups definable over M(b)
which are not definable over M , which could cause a failure of atomicity.

Remark 3.14. Lemma 3.11 implies that we have ω-stability over models in the (abstract

elementary) class (Mod(T̂ ),≺∗), in the sense that if M̃ � T̂ is countable, then there are

only countably many types over M̃ realised in kernel-preserving extensions of M̃ . Indeed,

by Lemma 3.11 any such type is isolated over M̃b for some b, and by ω-stability of T there

are only countably many possible types tp(b/M̃) �tp(b/M). We will see in Remark 3.32

that the Galois type of b over M̃ is determined by tp(b/M̃), which means that we have

ω-stability over models in the sense of the abstract elementary class.

3.4. Independent systems

Countability of M was crucial to get constructibility in Lemma 3.11. For constructibility

of extensions in higher cardinals, we require constructibility over independent systems of

models. [22, XII] and [11] are the sources for the techniques used here.

In this subsection, we develop what we need of the general theory of independent

systems. We work in a monster model C′ of an arbitrary stable theory T ′.

Definition 3.15. If I is a downward-closed set of sets, an I -system in C′ is a collection

(Ms | s ∈ I ) of elementary submodels C′ such that for s ⊆ t , Ms is an elementary submodel

of Mt . For J ⊆ I , define MJ :=
⋃

s∈J Ms ⊆ C′.

Define <s := P−(s) := P(s) \ {s}, and 6>s := I \ {t | t ⊇ s}.
The system is constructible if Ms is constructible over M<s for all s ∈ I with |s| > 1.

Similarly for atomic, and for l-constructible and l-atomic.

The system is independent (or stable) if Ms |^M<s
M 6>s for all s ∈ I .

I is Noetherian if each s ∈ I is finite.

An enumeration of I is a sequence (si )i∈λ such that I = {si | i ∈ λ} and si ⊆ s j ⇒ i 6 j .
We then write s<i for {s j | j < i}.

We define |n| := {0, . . . , n− 1}.

Note that if (si )i∈λ is an enumeration of an independent I -system, then we have

Msi |^M<si
Ms<i for all i . That the converse holds is given by the following Fact, which is

[22, Lemma XII.2.3(1)].

Fact 3.16. Let (Ms)s be an I -system, let (si )i∈λ be an enumeration, and suppose

Msi |^M<si
Ms<i holds for all i . Then the system is independent.

Definition 3.17. Let M be a (possibly multi-sorted) structure. If A ⊆ B ⊆ M , we say A is

Tarski–Vaught in B, A ⊆T V B, if every formula over A which is realised in B is realised

in A.

Lemma 3.18. Suppose C ⊆T V B ⊆ M.

(i) If a type tp(a/C) is l-isolated, then tp(a/C) � tp(a/B), and Ca ⊆T V Ba.
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(ii) If A ⊆ M is constructible over C then A is constructible over B.

(iii) If A ⊆ M is l-atomic over C, then A |^C B.

Proof. (i) Given φ(x, y), say ψ(x) ∈ tp(a/C) isolates tpφ(a/C). Then for b ∈ B,

φ(x, b) ∈ tpφ(a/B) iff ψ(x) � φ(x, b); indeed, else

� (∃x .ψ(x)∧φ(x, b))∧ (∃x .ψ(x)∧¬φ(x, b));

but then the same holds for some c ∈ C , contradicting the isolation.

So tp(a/C) � tp(a/B). Also Ca ⊆T V Ba, since if � φ(a, b) then � ∀x .ψ(x)→
φ(x, b), hence this holds for some c ∈ C , and hence � φ(a, c).

(ii) This follows from (i) by a transfinite induction.

(iii) The extension of tp(A/C) to B is unique by (i), so must be the non-forking

extension.

Lemma 3.19. Suppose M is a model, and A |^M B. Then M A ⊆T V M AB.

Proof. By the coheir property of non-forking over models in stable theories, tp(B/M A)
is finitely satisfiable in M .

The following is [22, Lemma XII.2.3(2)], to which we refer for the proof.

Fact 3.20 (TV Lemma). If (Ms)s is an independent I -system in a stable theory, if J ⊆ I ,

and if ∀s ∈ I.(s ⊆
⋃

J ⇒ s ∈ J ), then MJ ⊆T V MI .

Lemma 3.21. Let (Ms)s be a constructible Noetherian independent I -system. Suppose that

for each p ∈
⋃

I , Bp is a subset of M{p} for which M{p} is constructible over M∅Bp.

Then MI is constructible over M∅ ∪
⋃

p∈
⋃

I Bp =: A.

Proof. Let (si )i<λ be an enumeration of I . It suffices to show that each Msi is constructible

over AMs<i , as it then follows by induction on i 6 λ that Ms<i is constructible over A.

If si = ∅, the constructibility is immediate. If si = {p}, we have Bp |^M∅
(Ms<i ∪

(A \ Bp)). So by Lemma 3.19, M∅Bp ⊆T V AMs<i . The desired constructibility then follows

from Lemma 3.18(ii).

If |si | > 1, then Msi is constructible over M<si ; but M<si ⊆T V Ms<i∪{{p} | p∈
⋃

I } by the

TV Lemma, so in particular M<si ⊆T V AMs<i . Again, Lemma 3.18(ii) yields the desired

constructibility.

Lemma 3.22. Suppose
⋃

I is finite.

For an l-atomic I -system to be independent, it suffices that for each p ∈
⋃

I ,

M{p} |^
M∅

M 6>{p}.

Proof. Suppose inductively that for any downward-closed proper subset J of I , the

restriction of the I -system to a J -system is independent.

So it suffices to show that for s ∈ I maximal, Ms |^M<s
MI \ {s}.

If |s| = 1, this holds by assumption.
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If |s| > 1, then if t ⊆ s and t ∈ I \ {s} then t ∈ <s, so by the TV Lemma applied to the

restricted independent (I \ {s})-system,

M<s ⊆T V MI \ {s}.

But Ms is l-atomic over M<s , so we conclude the independence by Lemma 3.18(iii).

3.5. Atomicity over independent systems in T̂

Now we return to considering T̂ and T .

Let M � T , and let M0 ≺ M be a copy of the prime model, and let Di and Bi be as in

§ 3.1. Let B :=
⋃

i Bi , and let Pfin(B) be the set of finite subsets of B. Let M∅ = M0, and

for s ∈ Pfin(B) inductively let Ms ≺ M be prime over M<s ∪ s.

Lemma 3.23. (Ms)s∈Pfin(B) is a constructible independent Pfin(B)-system, and⋃
s Ms = M.

Proof.
⋃

s Ms is an elementary submodel of M which contains M0 B, and M is minimal

over M0 B, so
⋃

s Ms = M .

The system is constructible by construction, prime models being constructible in

ω-stable theories. For independence, by finite character of forking and Lemma 3.22 it

suffices to see that M{b} |^M0
Ms when b /∈ s ∈ Pfin(B).

We may assume inductively that the restriction of the system to s is independent. So

by Lemma 3.21, Ms is constructible over M0s.

Now b /∈ Ms since (by orthogonality of the Di ) tp(b/M0s) is not algebraic and hence

not isolated.

So bM0 |^M0
Ms . So by Lemma 3.19, bM0 ⊆T V bMs . Since M{b} is constructible and

hence atomic over bM0, it follows by Lemma 3.18(iii) that M{b} |^bM0
bMs , and in

particular M{b} |^bM0
Ms . So by transitivity, M{b} |^M0

Ms .

Definition 3.24. An I -∼-system is an I -system (M̃s)s in C̃ � T̂ such that

• setting Ms := ρ(M̃s) � T , (Ms)s is an independent atomic I -system in T ;

• M̃s ≺
∗ M̃t when s ⊆ t .

The definition assumes only independence in T , but independence in T̂ follows:

Lemma 3.25. An I -∼-system (M̃s)s is an independent I -system.

Proof. Let (si )i∈λ be an enumeration of I . By Fact 3.16, it suffices to show that given

i ∈ λ, we have M̃si |^ M̃<si
M̃s<i , where we may assume inductively that the restriction of

(M̃s)s to s<i is an independent system.

By Proposition 2.21(ii) and the independence of (Ms)s , it suffices to show that for

ã ∈ M̃si , we have C := grploc(̃a/M̃s<i ) is defined over M̃<si . Say C = Ĥ (̃b′) with b̃′ ∈ M̃s<i .

Now aM<si ⊆T V aMs<i , by the TV Lemma (Fact 3.20) and Lemma 3.18(i) if |si | > 1,

and by Lemma 3.19 if |si | = 1.
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So H(b′) = H(0)+ a = H(b) for some b ∈ M<si . So say b̃ ∈ M̃<si and ρ(̃b) = b; then ã+
ζ ∈ Ĥ (̃b) for some ζ ∈ ker(M̃si ) = ker(M̃∅). So Ĥ (̃b′) = Ĥ (̃b)− ζ , which (by Remark 2.15)

is defined over M̃<si .

Proposition 3.26. Let (M̃s)s be an I -∼-system with I Noetherian. Then the system is

atomic. If also each Ms is countable, then the system is constructible.

Proof. It suffices to show this for I = P(|n|), n > 1, where recall |n � {0, . . . , n− 1}.
Indeed, by Noetherianity, the system below any s ∈ I is of this form. We inductively

assume the result for 1 < n′ < n.

We show that M̃|n| is atomic over M̃<|n|. Constructibility assuming countability then

follows by Lemma 3.8.

Claim 3.27. (M̃s)s extends to a P(|n+ 1|)-∼-system such that M̃|n| is isomorphic over

M̃|n−1| to M̃|n−1|∪{n}, by an isomorphism σ such that moreover σ(M̃s) = M̃(s \ {n−1})∪{n}
for s ⊆ |n|.
Proof. Let t := |n− 1| ∪ {n}.

{3} |4|

t

��

|3|

��

{1}

|2|

{0} {2}

Let M̃t be a realisation of tp(M̃|n|/M̃|n−1|) independent from M̃|n|, and let σ :

M̃|n|
∼=
−→M̃|n−1|

M̃t be an isomorphism witnessing the equality of types. Let M̃ be an

l-atomic model over M̃|n| ∪ M̃t . By Lemma 3.7, ker(M̃) = ker(M∅).
We define an enumeration si of P(|n+ 1|), and recursively define M̃si ≺

∗ M̃ such that

Msi |^
M<si

Ms<i

and Msi is atomic over M<si . By Fact 3.16, this will yield a P(|n+ 1|)-∼-system.

Begin with an enumeration of P(|n|); the corresponding M̃si ≺
∗ M̃ are already given.

Continue with an enumeration of P(t), setting M̃si := σ(M̃(si \ {n})∪{n−1}) ≺
∗ M̃t ≺

∗

M̃. For the independence condition, we have Msi |^M<si
Ms<i∩P(t) since si is part

of an enumeration of P(t), and then by transitivity and Mt |^M|n−1|
M|n| we deduce

Msi |^M<si
Ms<i∩P(t)M|n| and hence Msi |^M<si

Ms<i .

Now for the remaining si : let M ′si
≺M be a constructible model over M<si ⊆M, and

let M̃si be the inverse image in M̃. The TV Lemma (Fact 3.20) gives M<si ⊆T V Ms<i , so

Msi |^M<si
Ms<i by Lemma 3.18(iii).
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Define

1̃ := M̃|n| 1̃′ := M̃|n+1|

di 1̃ := M̃|n| \ {i−1} di 1̃
′
:= M̃|n+1| \ {i−1}

d 1̃ :=
⋃

16i6n

di 1̃ d 1̃′ :=
⋃

16i6n

di 1̃
′

3̃ :=
⋃

16i<n

di 1̃ 3̃′ :=
⋃

16i<n

di 1̃
′

d di 1̃ :=
⋃

j∈|n| \ {i−1}

M̃|n| \ {i−1, j}

We also define the corresponding sets in T , e.g., 3 := ρ(3̃) =
⋃

i<n−1 M|n| \ {i}.
In this notation, the isomorphism of the previous claim is

σ : 1̃
∼=
−→dn 1̃

dn 1̃
′.

Note that it induces an isomorphism

σ : 1
∼=
−→dn 1 dn 1

′.

A diagram for n = 3:

M̃{3} 1̃′ = M̃|4|

dn 1̃
′

""

1̃ = M̃|3|

��

M̃{1}

dn 1̃

M̃{0} M̃{2}

the dashed lines indicate 3̃, and the faces above them form 3̃′.

Let ã ∈ 1̃ be a tuple; we want to show that tp(̃a/ d 1̃) is isolated.

Claim 3.28. There exists b0 ∈ dn 1 such that, setting A := acleq(d dn 1b0),

tp(̂a/A3) � tp(̂a/ d1).

Proof. Let b0 ∈ dn 1 such that tp(a/ d1) �tp(a/b03). First note that every extension

of tp(am/b03) to d1 is a non-forking extension. Indeed, that holds for m = 1 by the

uniqueness of the extension, and hence for any m by interalgebraicity of am with a. So

it suffices to see that tp(am/A3) has a unique non-forking extension to d1. So suppose
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c1, c2 realise two such extensions. Then dn 1 |^ A3 ci . Now tp(dn 1/A) is stationary, and

since the system is independent we have dn 1 |^d dn 1
3 and hence dn 1 |^ A A3, also

tp(dn 1/A3) is stationary. So c1 ≡dn 1A3 c2, so in particular c1 ≡d1 c2,

Claim 3.29.

tp(̂a/σ (̂a)3′b0) � tp(̂a/A3)

Proof. Say � φ(an, b, e) where b ∈ A and e ∈ 3.

Say θ is an algebraic formula isolating tp(b/ d dn 1b0).

Let

ψ(x) := ∀y ∈ θ.(φ(x, y, e)⇔ φ(σan, y, σe)),

which is a formula over σ(an)3
′b0 since σe ∈ σ3 ⊆ 3′.

Then ψ(x) � φ(x, b, e), since � φ(σan, b, σe), since b ∈ dn 1 and σ : 1
∼=
−→dn 1 dn 1

′,

and similarly ψ(x) ∈ tp(an/σ(an)3
′b0). So tp(̂a/σ (̂a)3′b0) � φ(an, b, e).

Now d 1̃ ⊆T V d 1̃′ by the TV lemma, and tp(̃a/ d 1̃) is l-isolated by Lemma 3.9, so by

Lemma 3.18(i), tp(̃a/ d 1̃) � tp(̃a/ d 1̃′).
Let b̃0 ∈ ρ

−1(b0) ⊆ dn 1̃, and let b̃0 ⊆ b̃′0 ∈ dn 1̃ be such that grploc(̃a/ d 1̃) is defined

over b̃′03̃. Then by Lemma 2.16 and the above Claims, we have:

tp(̃a/ d 1̃) �� tp(̃a/σ (̃a)3̃′b̃′0).

So it suffices to see that the latter type is isolated.

If n > 2, we have that tp(̃aσ (̃a)̃b′0/3̃
′) is isolated by the inductive hypothesis applied

to the P(|n− 1|)-∼-system (M̃ ′s)s defined by M̃ ′s := M̃s∪{n−1,n}, since 3̃′ = M̃ ′<|n−1| and

M̃ ′
|n−1| = M̃|n+1| = 1̃

′.

Finally, if n = 2, we claim that it follows from Lemma 3.11 that tp(̃aσ (̃a)̃b′0/3̃
′b′0)

is isolated. Indeed, 3̃′ = M̃{1,2}, and so it suffices to show that tp(a, σ (a)/M{1,2}b′0) is

isolated, since then for an appropriate embedding of the prime model M{1,2}(b′0) into 1′,

we have a, σ (a) ∈ M{1,2}(b′0).
We conclude by proving this isolation of tp(a, σ (a)/M{1,2}b′0). By the definitions of b0

and b′0, we have that tp(a/b′0 M{1}) implies tp(a/M{0}M{1}) and so is isolated, and hence

by M{0,1} |^M{1}
M{1,2}, also tp(a/b′0 M{1,2}) is isolated. Applying σ , also tp(σ (a)/b′0 M{2}) is

isolated, and, applying the TV Lemma and Lemma 3.18(i),

tp(σ (a)/b′0 M{2}) � tp(σ (a)/M{0}M{2})

� tp(σ (a)/M{0,1}M{1,2})

� tp(σ (a)/ab′0 M{1,2}),

and so tp(a, σ (a)/M{1,2}b′0) is isolated, as required.

3.6. Classification

Lemma 3.30 (Constructible Models). Let M � T , let M0 ≺ M be a copy of the prime

model, and let B be as in § 3.1.

Let M̃0 � T̂ with ρ(M̃0) = M0.

Then there exists M̃ �∗ M̃0 constructible over B M̃0, with ρ(M̃) = M.
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Proof. Let I := Pfin(B).
Let (Ms)s∈I be a constructible independent I -system as given by Lemma 3.23.

Let (by Lemma 3.6(a)(i)) M̃ be an l-constructible model over M M̃0, and let M̃s =

ρ−1(Ms) ⊆ M̃ . By Lemma 3.6(b), M̃∅ = M̃0 and ρ(M̃) = M , and by Lemma 3.3, (M̃s)s is

an I -∼-system.

By Proposition 3.26, (M̃s) is a constructible independent system. By Lemma 3.11, each

M̃{p} for p ∈ B is constructible over M̃∅ p, and so by Lemma 3.21, M̃ = M̃I is constructible

over M̃∅B = M̃0 B.

Theorem 3.31 (Classification). A model M̃ � T̂ is determined up to isomorphism among

models of T̂ by

(i) the isomorphism type of the lift M̃0 = ρ
−1(M0) of a copy M0 ≺ M of the prime

model, and

(ii) the isomorphism type of M over M0.

More explicitly: if M̃1, M̃2 � T̂ , if M̃1
0
∼= M̃2

0 where M̃ i
0 is the lift ρ−1(M i

0) of a copy

M i
0 ≺ M i of the prime model, and if the induced isomorphism M1

0
∼= M2

0 extends to

an isomorphism M1 ∼= M2, then M̃1 ∼= M̃2, in fact by an isomorphism extending the

isomorphism M̃1
0
∼= M̃2

0 (but not necessarily agreeing with the isomorphism M1 ∼= M2).

M̃0
� � //

����

M̃

����

M0
� � // M

Proof. Given M̃ � T̂ and M0 ≺ M := ρ(M̃), let B be as in § 3.1.

Then M̃ is constructible and minimal over B M̃0, by Lemma 3.30 and the minimality

of M over B M0.

So let M i , M̃1
0
∼= M̃2

0 , and M1 ∼= M2 be as in the statement. Let B1 be as in § 3.1,

and let B2 be the image in M2. Then by the quantifier elimination, B1 M̃1
0 ≡ B2 M̃2

0 , and

by constructibility of M̃1 over B1 M̃1
0 , this extends to an elementary embedding M̃1

≺ M̃2;

but then by minimality of M̃2 over B2 M̃2
0 , the embedding is an isomorphism.

Remark 3.32. We can also conclude that if M is strongly ℵ1-homogeneous (e.g., if we

take M to be saturated and uncountable), then M̃ is strongly ℵ0-homogeneous over

M̃0. Indeed, if ã ≡M̃0
ã′, then by homogeneity we have B ′ such that Bâ ≡M0 B ′â′, so

B M̃0ã ≡ B ′M̃0ã′; but M̃ is also constructible and minimal over B M̃0ã and over B ′M̃0ã′,
so this extends to an automorphism.

Similarly, we obtain strong ℵ0-homogeneity over an arbitrary countable *-submodel

M̃1 ≺
∗ M̃ , replacing B with acl-bases over M1.

Moreover, by Proposition 3.26, we similarly obtain strong ℵ0-homogeneity over
M̃<|n| for a P(|n|)-∼-system in M̃ . Note that in the context of [5], and even in the

specific example of pseudo-exponentiation, the corresponding results require a saturation

hypothesis on M̃s .
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4. Exponential maps of semiabelian varieties

In this section, we apply our classification result Theorem 3.31, along with some

arithmetic Kummer theory, to prove Theorem 1.1 and draw some related conclusions.

We actually work in slightly greater generality than Theorem 1.1, by allowing split

semiabelian varieties. So throughout this section, we will suppose that G(C) is the product

A×Gn
m of a (possibly trivial) complex abelian variety and a (possibly trivial) algebraic

torus.

Let O := End(G) be the ring of algebraic endomorphisms of G. Suppose G and its

endomorphisms are defined over k0 6 C.

We first explain how we attach to the algebraic group G a theory T satisfying the

assumptions of the previous sections.

G can be viewed as a definable group in ACF0, and as such inherits the structure of a

finite Morley rank group. Explicitly, we consider G(K ), for K an algebraically closed

extension of k0, as a structure in the language L consisting of a predicate for each

k0-Zariski-closed subset of each Cartesian power Gn(K ). This structure is bi-interpretable

with the field (K ;+, ·, (c)c∈k0) with parameters for k0, and is a finite Morley rank group

of rank dim(G). We let T be the theory of G(C) in the language consisting of a predicate

for each k0-Zariski-closed subset of Gn(C). This is a commutative divisible group of finite

Morley rank, admits quantifier elimination, and, by Lemma 4.1, every connected definable

subgroup of Gn is over k0, so is defined over ∅ in T .

4.1. O-module homomorphisms as models of T̂

By Proposition 2.18, the Lie exponential map exp : LG� G(C) has the structure of a

model of T̂ , which we denote by LG. As a step towards proving Theorem 1.1, we prove

in this subsection an abstract algebraic version of this.

Let O := End(G) be the ring of algebraic (equivalently, definable) endomorphisms. The

derivative at the identity Lη of η ∈ O is a C-linear endomorphism of LG, and we consider

LG as an O module with this action.

Lemma 4.1. (i) Any connected algebraic subgroup H 6 Gn is the connected component

of the kernel of an endomorphism η ∈ End(Gn) ∼= Matn,n(O), and

(ii) L H 6 LGn is then the kernel of Lη ∈ EndC(LGn).

Proof. (i) By Poincaré’s complete reducibility theorem, there exists an algebraic

subgroup H ′ such that the summation map Σ : H × H ′→ Gn is an isogeny. So say

θ : Gn
→ H × H ′ is an isogeny such that θΣ = [m], and let π2 : H × H ′→ H ′

be the projection. Then π2θΣ(h, h′) = mh′, so ker(π2θ)
o
= Σ(H × H ′[m])o = (H +

H ′[m])o = H .

(ii) Lη takes values in the discrete group ker(exp)n on L H , so by connectedness and

continuity Lη is zero on L H . Conversely, exp(ker(Lη)) is a divisible subgroup of

ker(η), and hence is contained in ker(η)o = H . So ker(Lη) is a subgroup of exp−1(H)
containing L H ; but ker(Lη) is a C-subspace so is connected, so ker(Lη) = L H .
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Remark 4.2. Lemma 4.1 (i) can fail for G a semiabelian variety.

Proposition 4.3. If K is an algebraically closed field extension of k0, any surjective

O-module homomorphism ρ : V � G(K ) from a divisible torsion-free O-module V with

finitely generated kernel is a model of T̂ , where Ĥ is interpreted as the kernel of the action

of η on V n if H is the connected component of the kernel of η ∈ End(Gn) ∼= Matn,n(O),
and ρn(x) := ρ(x/n).

Proof. We appeal to Lemma 2.6. We will see in the course of the proof that Ĥ is indeed

the divisible part of ρ−1(H), as assumed in that lemma, hence in particular that Ĥ is

well defined.

We use the following elementary principle, which we will call (*): if A, B, F are

subgroups of a torsion-free abelian group, A and B are divisible, and F is finitely

generated, and if A 6 B+ F , then A 6 B.

Suppose H = ker(η)o 6 Gn , and Ĥ = ker(η). We show that ρk(Ĥ) = H for all k. By

working in Gn , we may assume n = 1. Let 3 := ker ρ 6 V , and let 30 6 V be the divisible

hull of 3.

Claim 4.4. η(30) = im η∩30.

Proof. First, note that η(Tor(G)) = Tor(im η). Indeed, if nη(g) = 0, then ng ∈ ker η, so

mng ∈ (ker η)o for some m; then by divisibility of (ker η)o, say h ∈ (ker η)o with mnh =
mng. Then η(g− h) = η(g) and g− h ∈ Tor(G).

Hence im η∩30 6 η(30)+3, so by (*) already im η∩30 6 η(30). The converse is

immediate.

Now since 3 is finitely generated, η(3) is a finite index subgroup of im η∩3. By

the snake lemma (see diagram), it follows that ρ(Ĥ) is of finite index in ker(η). So by

divisibility of Ĥ , we have ρ(Ĥ) = ker(η)o = H , and then ρk(Ĥ) = ρ(Ĥ) = H for all k. So

(A6) holds.

3 //

��

3∩ im η //

��

· · ·

Ĥ //

��

V //

ρ

��

im η //

��

0

0 // ker η //

��

G //

��

im η

· · · // Finite // 0

Hence ρ−1(H) = Ĥ +3, so by (*), Ĥ is the divisible part of ρ−1(H).
Finally, we verify (A9). Let pr : G � H be as in that axiom. By (A6),

ρ(pr(Ĝ)) = pr(ρ(Ĝ)) = pr(G) = H = ρ(Ĥ),

so pr(Ĝ)+3 = Ĥ +3, so by (*), pr(Ĝ) = Ĥ .
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4.2. Kummer theory

Suppose now that k0 is a number field.

Using this assumption, we may appeal to Kummer theory to reduce consideration of

the prime model to consideration of the kernel. This is essentially the same argument as

in [10, Lemma 4].

Recall T = Th(G(C)) in the language with a predicate for each subvariety defined over

k0 of a cartesian power of G.

Lemma 4.5. Suppose M̃0 � T̂ with M0 = ρ(M̃0) = G(Q̄), the prime model of T. Then M̃0
is constructible over ker(M̃0).

Proof. Write ker for ker(M̃0).

We use notation and results from Appendix A.

By Lemma 3.8, it suffices to show atomicity. Let c̃ ∈ M̃0.

Let H + ζ be the minimal torsion coset (see § A.4) containing c. Then c̃ ∈ Ĥ + ζ̃ for

some ζ̃ ∈ Q ker. By translating, we may assume ζ̃ = 0, so then c̃ ∈ Ĥ and H is the minimal

torsion coset containing c.

By Proposition A.9, the image of the Kummer pairing is open,

Z∞ := 〈Gal(k0(c,G[∞])), c〉 6op T H
∞ ,

so nT H
∞ 6 Z∞ for some n, so

tpT (cn/G[∞])∪
⋃

i

{ci ∈ H} ∪
⋃
k,m

{[m]ckm = ck} � tpT (̂c/G[∞]).

So since k̂er = G[∞], it follows by Lemma 2.16 that

tpT (cn/G[∞])∪ {̃c ∈ grploc(̃c/ ker)} � tp(̃c/ ker).

But tpT (cn/G[∞]) is isolated since cn ∈ G(Q̄), so tp(̃c/ ker) is isolated as required.

4.3. Categoricity and characterisation

We continue to assume that k0 is a number field.

Combining Lemma 4.5 with Theorem 3.31, and using uncountable categoricity of T to

simplify the latter, we conclude:

Theorem 4.6. A model M̃ of T̂ is determined up to isomorphism over ker(M̃) by

(i) the isomorphism type of ker(M̃), equipped with all structure induced from T̂

(ii) the transcendence degree of KM , where M ∼= G(KM ).

Proof. Suppose M̃1, M̃2 � T̂ , and ker(M̃1) ∼= ker(M̃2) and trd(KM1) = trd(KM2). Let M̃ i
0

be the inverse image of M i
0 := G(Q̄) ≺ M i . Then by Lemma 4.5 and the minimality of

G(Q̄) over ∅, the isomorphism ker(M̃1) ∼= ker(M̃2) extends to an isomorphism M̃1
0
∼= M̃2

0 .

The induced isomorphism M1
0
∼= M2

0 extends to an isomorphism M1 ∼= M2; indeed, it

induces a field automorphism of Q̄ over k0, which by the equality of transcendence degrees

extends to an isomorphism KM1 ∼= KM2 , inducing an isomorphism M1 ∼= M2.

We conclude by Theorem 3.31.
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Corollary 4.7. The model LG � T̂ is the unique L̂-structure M̃ satisfying:

(I) T̂

(II) |M̃ | = 2ℵ0

(III) kerM̃ ∼= kerLG, a partial L̂-isomorphism.

Moreover, for any such M̃, the isomorphism of (III) extends to an isomorphism of M̃
with LG.

Theorem 4.8 (Theorem 1.1). Suppose ρ, ρ′ : LG� G(C) are surjective O-module

homomorphisms, ker ρ′ = ker ρ, and ρ′�〈ker ρ′〉Q= ρ�〈ker ρ〉Q .

Then there exist an O-module automorphism σ ∈ AutO(LG/ ker ρ) and a field

automorphism τ ∈ Aut(C/k0) of C fixing k0 such that τρ′ = ρσ .

Proof. Let M̃ and M̃ ′ be the corresponding L̂ structures. By Proposition 4.3, they

are models of T̂ . By the QE and the assumption on the kernels, the structure

induced on ker ρ by the two structures is the same, and the transcendence degrees

are both 2ℵ0 . So by Theorem 4.6, M̃ ′ ∼= M̃ as L̂-structures, by an isomorphism

fixing ker ρ. Since the graphs of addition and of the action of each η ∈ O are

interpretations of appropriate Ĥ , this isomorphism induces an O-module automorphism

σ of LG, and by the choice of language for T it induces a field automorphism τ

over k0.

Understanding the structure of ker involves an understanding of the action of Galois

on the torsion, which in general is known to be a hard problem. But let us highlight

a strengthening of Theorem 4.6 in the case of the characteristic 0 multiplicative

group:

Theorem 4.9. Let G = Gm(C). Then a model M̃ of T̂ is determined up to isomorphism

by the transcendence degree of the algebraically closed field K such that M ∼= Gm(K ), and

the isomorphism type of ker ρ as an abstract group.

Proof. This is immediate from Theorem 4.6 once we see that the isomorphism type of

ker as an L̂-structure is determined by its isomorphism type as an abstract group. But

this follows easily from the quantifier elimination and the fact from cyclotomic theory

that any group automorphism of the roots of unity is a Galois automorphism.

Remark 4.10. In the case of an elliptic curve G = E there are only finitely many

isomorphism types for a kernel with underlying group 〈Z2
;+〉 ([10], [1, Theorem 4.3.2]).

See also [9, IV.6.3, IV.7.4] for some discussion of the higher dimensional situation.

Question 4.11. The assumption that k0 is a number field was used in Lemma 4.5. It

is natural to ask whether this is essential. Does an appropriate version of Kummer

theory go through for Abelian varieties over function fields? We are not aware of this

question being fully addressed in the literature, but [3, Theorem 5.4] goes some way

towards it.

https://doi.org/10.1017/S1474748018000191 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748018000191


Universal covers of commutative finite Morley rank groups 793

5. Further examples

In this section, we make some brief remarks on some other natural examples of

Theorem 3.31.

5.1. Positive characteristic

We cannot in general expect to improve on Theorem 3.31 in positive characteristic: if G
is the multiplicative group of a characteristic p > 0 algebraically closed field, then the

prime model is G(Falg
p ), which is also the torsion group of G. In this case, we recover the

main Theorem 2.2, of [7].

5.2. Manin kernels

In the theory DCF of differentially closed fields of characteristic 0, the Kolchin closures

of the torsion of semiabelian varieties, also known as Manin kernels, are commutative

divisible groups of finite Morley rank. A connected definable subgroup of such a Manin

kernel is the Manin kernel of its Zariski closure, so Manin kernels of semiabelian varieties

are rigid. Our classification theorem therefore applies to this case. By considering a local

analytic trivialisation, a natural analytic model of T̂ for G a (non-isoconstant) Manin

kernel can be given; this will be addressed in future work.

5.3. Meromorphic Groups

Let G be a connected meromorphic group in the sense of [18], i.e., a connected definable

group in the structure A of compact complex spaces definable over ∅ (equivalently, over

C). By [18, Fact 2.10], G can be uniquely identified with a complex Lie group.

Considering G with its induced structure, it is a finite Morley rank group. Suppose G
is commutative and rigid. By the classification in [18] and the fact that any commutative

complex linear algebraic group is a product of copies of Gm and Ga , there is a definable

exact sequence of Lie groups

0→ Gn
m → G→ H → 0

where H is a complex torus. It is also shown in [18] that G is definable in a Kähler space;

the latter may be considered in a countable language by [17], so we may consider the

language of G to be the induced countable language. Let T = Th(G).
In particular, in the case that G is a complex semiabelian variety, we may take the

language to be that induced from the field, as in § 4 above.

Now let LG be the analytic universal cover of the Lie group G, considered as an

L̂-structure as in § 2.4.

By Proposition 2.18, LG � T̂ . So by Theorem 3.31, LG is the unique kernel-preserving

extension of its restriction to the prime model G0 of G, which is a countable structure.

Question 5.1. Could the Kummer theory of Lemma 4.5 apply here? Concretely: is

ρ−1(G0) atomic over ker?
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Appendix A. Kummer theory for A×Gn
m

In this appendix, we show that the results on Kummer theory for abelian varieties over

number fields apply also to semiabelian varieties of the form A×Gn
m for A an abelian

variety over a number field. This should perhaps be considered a known result, but we

could find no complete proof in the literature.

Our approach owes much to Daniel Bertrand. In the case that G = A, the Kummer

theoretical result we require is precisely [3, Theorem 5.2]; the purpose of this appendix

is to show that this result holds also for A×Gn
m , with a mostly parallel proof. As in that

article, the method we apply is essentially that of Ribet’s paper [19].

We should note that for general semiabelian varieties over number fields, Kummer

theory is known to fail due to the existence of deficient points – see [12].

A.1. Finiteness theorems for abelian varieties

Let A be an abelian variety over a number field k0, let T A
l := lim

←−n
A[ln
] for l prime be

the Tate modules, and let T A
∞ := lim

←−n
A[n] = 5l T A

l .

The following result on Galois cohomology is a consequence of Serre’s uniform version

of Bogomolov’s result on homotheties. Here and below, H i refers to continuous group

cohomology.

Fact A.1. H1(Gal(k0(A[∞])/k0), A[n]) has uniformly bounded finite exponent, i.e., there

exists c > 0 such that for all n > 0, we have c · H1(Gal(k0(A[∞])/k0), A[n]) = 0.

Proof. Let G∞ := Gal(k0(A[∞])/k0).

Note that H1(G∞, A[n]) admits a prime power decomposition as
∏

i H1(G∞, A[lki
i ])

where n =
∏

i lki
i .

By [21, Théorème 2’, ‘Résumé des cours de 1985–1986’, proved in ‘Lettre á Ken Ribet du

7/3/1986’ in the same volume], there exists M > 0 such that every Mth power homothety

is in the image of G∞, i.e., any element of Ẑ∗ = 5lZ∗l which is an Mth power in that

group is the action on T A
∞ of some element of G∞.

In particular, there is σ ∈ G∞ which acts on T A
l as multiplication by 2M for l 6= 2, and

acts on T A
2 as the identity. Then σ is central in G∞, so by Sah’s Lemma, H1(G∞, T A

∞)

and each H1(G∞, A[n]) are annihilated by σ − 1. Then if l is an odd prime which does

not divide 2M
− 1, so 2M

− 1 ∈ Z∗l , we have H1(G∞, A[lk
]) = 0 for all k.
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Let 2 = l0, l1, . . . , ls be the remaining primes, and let p /∈ {l0, . . . , ls} be another prime.

Then by the same argument, pM
− 1 annihilates each H1(G∞, A[lk

i ]).

So pM
− 1 annihilates each H1(G∞, A[n]).

The second ingredient is the following result of Faltings, sometimes referred to, after

Lang, as Finiteness I [14, IV.2]. Here, a k0-isogeny is an isogeny defined over k0; similarly

for k0-isomorphism.

Fact A.2 (Faltings). The algebraic groups which are k0-isogenous to A fall into finitely

many k0-isomorphism classes.

A.2. Generalisations to A×Gn
m

Let G = A×Gn
m with A an abelian variety over a number field k0. We check that the

results of the previous section imply the corresponding results for G.

Lemma A.3. H1(Gal(k0(G[∞])/k0), A[n]) has uniformly bounded finite exponent, i.e.,

there exists c > 0 such that for all n > 0, we have c · H1(Gal(k0(G[∞])/k0), A[n]) = 0.

Proof. By Hilbert 90, H1(Gal(k0(G[∞])/k0), µm) = 0. Meanwhile, k0(G[∞]) = k0(A[∞])
since the multiplicative roots of unity are rational over k0(A[∞]), via a Weil pairing.

So

H1(Gal(k0(G[∞])/k0),G[n]) ∼= H1(Gal(k0(G[∞])/k0), A[n])

= H1(Gal(k0(A[∞])/k0), A[n]),

and we conclude by Fact A.1.

Lemma A.4. The algebraic groups which are k0-isogenous to G fall into finitely many

k0-isomorphism classes.

Proof. Let T := Gn
m .

Recall (see e.g., [20, 10]) that a semiabelian variety which falls into an exact sequence

0→ T → S→ A→ 0 corresponds to a point in the nth power of the dual abelian variety

of A,

Ext(A, T ) ∼= Ext(A,Gm)
n ∼= (A∨)n .

Let G′ be k0-isogenous to G, so G′ ∼= G/Z for Z 6 G a finite subgroup defined over k0.

Since G/(Z ∩ T ) is k0-isomorphic to G, we may assume Z ∩ T = 0.

Let π1 : G→ A and π2 : G→ T be the projections of the product. Let A′ := A/π1(Z)
be the quotient abelian variety. So G′ is an extension of A′ by T , and so G′ corresponds

to an element [G′] of Ext(A′, T ) ∼= (A′∨)n .

Claim A.5. [G′] is a torsion element of Ext(A′, T ).

Proof. Let k be the exponent of the finite group π2(Z) 6 T . Then the k-fold Baer

sum [k]G′ of G′ in Ext(A′, T ) is split. Indeed, [k]G′ is the k-fold fibre product of G′
over A′, quotiented by the subgroup Σ := {Σiαi = 0 | αi ∈ T } 6 T k 6 A′k . Then the
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trivialisation x 7→ (x, 0) of G = A× T induces a trivialisation of [k]G′, x +π1(Z) 7→
((x, 0)+ Z , . . . , (x, 0)+ Z)+Σ ; this is well defined as ((x, 0)+ Z)− ((x +π1ζ, 0)+ Z) =
(0, π2ζ )+ Z , and (π2ζ, . . . , π2ζ ) ∈ Σ since kπ2ζ = 0.

Now since G′ is defined over k0, so is A′ and so is the torsion point [G′] of (A′∨)n . By

Fact A.2, there are only finitely many such A′ up to k0-isomorphism, and by Mordell–Weil

each has only finitely many k0-rational torsion points. Hence, there are only finitely many

possibilities for G′ up to k0-isomorphism.

A.3. Group structure of G(k0(G[∞]))
Definition A.6. If 0′ is a subgroup of an abelian group 0, let pureHull0(0

′) := {γ ∈

0 | ∃n > 0. nγ ∈ 0′} 6 0.

An abelian group 0 is locally free modulo torsion if for any finitely generated subgroup

0′ 6 0, there exists m such that m · pureHull0(0
′) 6 0′+Tor(0).

Now let k0 be a number field, let A be an abelian variety over k0, and let G = A×Gn
m

be the product with an algebraic torus. Let k∞ := k0(G[∞]).

Lemma A.7. G(k∞) is locally free modulo torsion.

Remark A.8. By countability of G(k∞) and a theorem of Pontryagin [8, 19.1], an

equivalent statement is that the quotient group G(k∞)/G[∞] is free abelian. For G
an abelian variety over a number field, this is proven by Larsen in [15]. This lemma

generalises that result, using similar techniques.

Proof. Let 0 6 G(k∞) be a finitely generated subgroup. Replacing k0 by the number field

k0(0) if necessary, we assume 0 6 G(k0).

First, we see that G(k0) = A(k0)×Gn
m(k0) is free modulo torsion. We use Dirichlet’s

unit theorem to examine the group structure of Gm(k0) = k∗0 . Here, we are following [24,

Lemma 2.1].

Let Ok0 be the ring of integers of k0. By Dirichlet’s unit theorem, O∗k0
is finitely

generated. Recall that Ok0 is a Dedekind domain and the fractional ideals, Id(Ok0), form

a free abelian group with generators the prime ideals. We have an exact sequence

1 // O∗k0
// k∗0

θ // Id(Ok0) ,

where θ(x) := xOk0 . The image of θ is a subgroup of a free abelian group, so is free

abelian.

Meanwhile, A(k0) is finitely generated by the Mordell–Weil theorem. So G(k0) is an

extension of a free abelian group by a finitely generated group, so the quotient by the

torsion is an extension of free abelian by free abelian, so is free abelian. Hence G(k0) is

locally free modulo torsion.

So say m is such that m · pureHullG(k0)
(0) 6 0+G[∞].

Meanwhile, by Lemma A.3, say c · H1(Gal(k∞/k0),G[n]) = 0 for all n.

We conclude by showing mc · pureHullG(k∞)(0) 6 0+G[∞].
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Indeed, suppose γ ∈ pureHullG(k∞)(0), say γ ∈ G(k∞) and nγ ∈ 0 6 G(k0). Then

θ(σ ) := σγ − γ yields an element of H1(Gal(k∞/k0),G[n]). So cθ is a coboundary, so

there is ζ ∈ G[n] such that c(σγ − γ ) = σζ − ζ for all σ ∈ Gal(k∞/k0), so cγ − ζ ∈ G(k0).

So cγ − ζ ∈ pureHullG(k0)
(0), so mcγ ∈ 0+G[∞].

A.4. Openness

Let G = A×Gn
m as above. Let O := End(G) ∼= End(A)×End(Gn

m). By taking a finite field

extension if necessary, we assume that each η ∈ O is defined over the number field k0.

We define the Kummer pairings for G as follows: if k > k0, and γ ∈ G(k) and σ ∈ Gal(k),
let 〈σ, γ 〉n := σα−α ∈ G[n] for any α ∈ G(k̄) with nα = γ , and let 〈σ, γ 〉 := (〈σ, γ 〉n)n ∈

TG
∞.

A torsion coset in G is the translate H + ζ of a connected algebraic subgroup H 6 G
by a torsion point ζ ∈ G[∞].

By considering the torsion group, one sees that T H
∞ for such an H is isomorphic to a

finite power of Ẑ, and so a subgroup Z of T H
∞ is open in the profinite topology, Z 6op T H

∞ ,

if and only if it is of finite index.

Proposition A.9. Let γ ∈ G(k∞). Suppose H + ζ is the minimal torsion coset containing

γ . Then Z∞ := 〈Gal(k∞), γ 〉 6op T H
∞ 6 TG

∞.

Remark A.10. In the case that G is an abelian variety, this is exactly [3, Theorem 5.2].

Proof. Since 〈Gal(k∞), ζ 〉 = 0, by shifting by ζ we may assume γ ∈ H .

Replacing k0 with k0(γ ) if necessary, we may assume γ ∈ G(k0).

By Lemma 4.1 and the assumption that the endomorphisms are over k0, we have that

H is defined over k0. So since H is divisible, Z∞ 6 T H
∞ . It remains to see that the index

is finite.

Now G(k∞) is an O-submodule of G(Q̄) by the assumption that the endomorphisms

are over k0 6 k∞, and Oγ is a finitely generated subgroup since O is finitely generated.

So by Lemma A.7, say m > 0 is such that m · pureHullG(k∞)(Oγ ) 6 Oγ +G[∞].
For n > 0, let Zn := 〈Gal(k∞), γ 〉n 6 G[n]. Note that Zn is defined over k0; indeed, if

σ ∈ Gal(k∞) and τ ∈ Gal(k0), then σ τ
−1
∈ Gal(k∞) and

〈σ τ
−1
, γ 〉n = τστ

−1α−α = τ(σ (τ−1α)− τ−1α) = τ 〈σ, γ 〉n

(where nα = γ , and hence nτ−1α = γ ). So (Zn)
τ
= Zn .

So by Lemma A.4, the isogenous groups Bn :=
G/Zn fall into finitely many

k0-isomorphism classes. Therefore we may find N such that for any n, there exists a

k0-isogeny θn : Bn → G of degree deg θn := |ker θn| dividing N .

We conclude the proof of the Proposition by showing that for any n, the index [H [n] :
Zn] divides N · |G[m]|.

Indeed, let η ∈ O be the composition η(x) := θn(
x/Zn ) of θn with the quotient map.

Suppose nβ = γ . Then nηβ = ηγ . But ηβ is Gal(k∞)-invariant; indeed, Zn 6 ker(η) and

https://doi.org/10.1017/S1474748018000191 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748018000191


798 M. Bays, B. Hart and A. Pillay

η is defined over k0 6 k∞, so

σηβ = ησβ = η(β +〈σ, γ 〉n) = ηβ.

So ηβ ∈ pureHullG(k∞)(Oγ ), so mηβ ∈ Oγ +G[∞]. So mηγ ∈ nOγ +G[∞], so k(mη−
nη′)γ = 0 for some k > 0 and some η′ ∈ O. So by the choice of H , we have mη = nη′ on

H .

Hence mη(H [n]) = 0, i.e., θn(
H [n]/Zn ) 6 G[m], and hence

[H [n] : Zn] | |ker θn| · |G[m]|
| N · |G[m]| .
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