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Abstract. It was recently shown in Gaidashev and Yampolsky [Golden mean Siegel disk
universality and renormalization. Preprint, 2016, arXiv:1604.00717] that appropriately
defined renormalizations of a sufficiently dissipative golden-mean semi-Siegel Hénon map
converge super-exponentially fast to a one-dimensional renormalization fixed point. In
this paper, we show that the asymptotic two-dimensional form of these renormalizations is
universal and is parameterized by the average Jacobian. This is similar to the limit behavior
of period-doubling renormalizations in the Hénon family considered in de Carvalho et al
[Renormalization in the Hénon family, I: universality but non-rigidity. J. Stat. Phys. 121
(5/6) (2006), 611–669]. As an application of our result, we prove that the boundary of the
golden-mean Siegel disk of a dissipative Hénon map is non-smoothly rigid.
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1. Introduction
The archetypical class of examples in holomorphic dynamics is given by the quadratic
family

fc(z)= z2
+ c for c ∈ C.

Despite its apparent simplicity, the dynamics of this family is incredibly rich, and exhibits
many of the key features that are observed in the general case. In the dynamics of several
complex variables, the role of the quadratic family is assumed by its two-dimensional
extension

Hc,b(x, y)= (x2
+ c − by, x) for c ∈ C and b ∈ C \ {0},

which is called the (complex quadratic) Hénon family.
Since

H−1
c,b (x, y)=

(
y,

y2
+ c − x

b

)
,
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Renormalization in the golden-mean semi-Siegel Hénon family 1109

FIGURE 1. A Hénon map Hc,b . Note that vertical lines are scaled uniformly by −b and then are mapped to
horizontal lines.

a Hénon map Hc,b is a polynomial automorphism of C2. Moreover, it is easy to see that
Hc,b has constant Jacobian: i.e.,

Jac Hc,b ≡ b.

Note that for b = 0, the map Hc,b degenerates to the embedding of fc given by

(x, y) 7→ ( fc(x), x).

Hence, the parameter b determines how far Hc,b is from being a degenerate one-
dimensional system. In this paper, we will always assume that Hc,b is a dissipative map
(i.e. |b|< 1).

A Hénon map Hc,b is determined uniquely by the multipliers µ and ν at a fixed point p.
In particular,

b = µν,

and

c = (1+ µν)
(
µ

2
+
ν

2

)
−

(
µ

2
+
ν

2

)2

.

When convenient, we will write Hµ,ν instead of Hc,b to denote a Hénon map.
Suppose that one of the multipliers, say, µ, is irrationally indifferent, so that

µ= e2π iθ for some θ ∈ (0, 1) \Q.

Then
|b| = |ν|.

In this case, the Hénon map Hµ,ν is said to be semi-Siegel if there exist neighborhoods N
of (0, 0) and N of p, and a biholomorphic change of coordinates

φ : (N , (0, 0))→ (N , p)

such that
Hµ,ν ◦ φ = φ ◦ L ,
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FIGURE 2. The Siegel cylinder C and the Siegel disk D of Hµ,ν .

where L(x, y) := (µx, νy). A classic theorem of Siegel states, in particular, that Hµ,ν is
semi-Siegel whenever θ is Diophantine. That is, for some constants C and d,

qn+1 < Cqd
n ,

where pn/qn are the continued fraction convergents of θ (see §2). In this case, the
linearizing map φ can be biholomorphically extended to

φ : (D× C, (0, 0))→ (C, p)

so that its image C := φ(D× C) is maximal (see [MNTU]). We call C the Siegel cylinder
of Hµ,ν . In the interior of C, the dynamics of Hµ,ν is conjugate to rotation by θ in one
direction and compression by ν in the other direction. Clearly, the orbit of every point in
C converges to the analytic disk D := φ(D× {0}) at height 0. We call D the Siegel disk of
Hµ,ν .

The geometry of Siegel disks in one dimension is a challenging and important topic that
has been studied by numerous authors, including Herman [He], McMullen [Mc], Petersen
[P], Inou and Shishikura [ISh], Yampolsky [Ya], and others. In the two-dimensional
Hénon family, the corresponding problems have been wide open until a very recent work
of Gaidashev, Radu, and Yampolsky [GaRYa], who proved the following theorem.

THEOREM 1.1. (Gaidashev, Radu and Yampolsky) Let θ∗ = (
√

5− 1)/2 be the inverse
golden-mean, and let µ∗ = e2π iθ∗ . Then there exists ε > 0 such that if |ν|< ε, then the
boundary of the Siegel disk D of Hµ∗,ν is a homeomorphic image of the circle. In fact, the
linearizing map

φ : D× {0} →D

extends continuously and injectively (but not smoothly) to the boundary.
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Renormalization in the golden-mean semi-Siegel Hénon family 1111

In the author’s joint paper with Yampolsky [YaY], we have obtained the first geometric
result about Siegel disks in the Hénon family.

THEOREM 1.2. (Yampolsky) Let µ∗ and ε > 0 be as in Theorem 1.1. Then for |ν|< ε the
boundary of the Siegel disk D of Hµ∗,ν is not C1-smooth.

The proofs of Theorem 1.1 and 1.2 are based on the renormalization theory developed
by Gaidashev and Yampolsky in [GaYa]. Generally speaking, a renormalization of a
dynamical system is defined as a rescaled first return map on an appropriately chosen
subset of the phase space. In their paper, Gaidashev and Yampolsky considered the semi-
Siegel Hénon maps within the context of a Banach space B2 of dynamical systems called
almost commuting pairs. They then formulated renormalization as an operator RGY from
B2 to itself. They were able to show that this operator is analytic, and that it has a
hyperbolic fixed point6∗ ∈ B2. In [GaRYa], they went on to prove that the stable manifold
of 6∗ does indeed contain the almost commuting pairs that correspond to sufficiently
dissipative semi-Siegel Hénon maps of the golden-mean type.

It is important to note that the fixed point 6∗ for RGY is a degenerate one-dimensional
system. Hence, when the renormalization sequence of an almost commuting pair 6
converges to 6∗, it loses its dependence on the second variable along the way. In fact,
Gaidashev and Yampolsky showed that this must happen at a super-exponential rate.

In this paper, we describe the behavior of almost commuting pairs as they approach the
space of degenerate one-dimensional systems under renormalization. For this purpose, we
adopt a new renormalization operator R that we obtain by modifying the construction of
RGY. The main difference between these two operators is that while RGY is based on a
diagonal embedding of the pairs of one-dimensional maps,

(η, ξ) 7→

([
η

η

]
,

[
ξ

ξ

])
,

the operator R is based on a Hénon-like embedding (see (6)). Although the former
embedding has the benefit of being more symmetric, the latter embedding allows us
to track two-dimensional deviations from its image more precisely and more explicitly.
However, it should be noted that R and RGY are still related closely enough that a number
of proofs given in [GaRYa] can be directly transferred to our setting, mutatis mutandis (in
particular, see Theorems 5.7 and 5.8).

The central result of this paper is that in the limit of renormalization, the almost
commuting pairs take on a universal two-dimensional shape as they flatten into degenerate
one-dimensional systems. This statement is formulated explicitly in Theorem 7.3. The
proof relies on an analysis of the average Jacobian of almost commuting pairs on their
invariant renormalization arcs. A similar approach was taken by de Carvalho, Lyubich,
and Martens in [dCLM] to study the limits of period-doubling renormalization in the
Hénon family.

The universality phenomenon described in Theorem 7.3 has deep consequences on the
geometry of the golden-mean Siegel disk of dissipative Hénon maps. In [dCLM], de
Carvalho, Lyubich, and Martens used universality to show, in particular, that the invariant
Cantor set for period-doubling renormalization is non-smoothly rigid. In this paper, we
are able to obtain the following analogous result.
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NON-RIGIDITY THEOREM. Let µ∗ and ε > 0 be as in Theorem 1.1. If |ν1|, |ν2|< ε

and |ν1| 6= |ν2|, then the two semi-Siegel Hénon maps Hµ∗,ν1 and Hµ∗,ν2 cannot be C1

conjugate on the boundary of their respective Siegel disks.

Non-rigidity is the first known property of Siegel disks of Hénon maps that is unique
to higher dimensions. In the one-dimensional case, McMullen showed that two quadratic-
like maps with a Siegel disk of the same bounded type rotation number are C1+α conjugate
on their Siegel boundary (see [Mc]).

2. Motivation
Let θ ∈ R/Z be an irrational rotation number. Then θ is represented by an infinite
continued fraction: i.e.,

θ = [a0, a1, . . . ] =
1

a0 +
1

a1 +
1

a2 + · · ·

.

The nth partial convergent of θ is the rational number

pn

qn
= [a0, a1, . . . , an].

The denominator qn is called the nth closest return moment. The sequence {qn}
∞

n=0 satisfies
the inductive relation

q0 = 1, q1 = a0 and qn+1 = anqn + qn−1 for n ≥ 1. (1)

We say that θ is of bounded type if an are uniformly bounded. The simplest example of
a bounded type rotation number is the inverse golden-mean

θ∗ =

√
5− 1
2
= [1, 1, . . .].

For the remainder of this section, we assume that θ is of bounded type.

2.1. One-dimensional renormalization. Consider the quadratic polynomial

fc0(z)= z2
+ c0

that has a fixed Siegel disc D0 ⊂ C with rotation number θ . If θ is equal to the inverse
golden-mean θ∗, then we denote fc0 as simply f∗.

We are interested in understanding the small-scale behavior of the dynamics of fc0 near
its Siegel boundary ∂D0. The following theorem is due to Douady, Ghys, Herman, and
Shishikura (see [He2]).

THEOREM 2.1. The quadratic polynomial fc0 has its critical point 0 on its Siegel
boundary ∂D0, and the restriction fc0 |∂D0 : ∂D0→ ∂D0 is quasi-symmetrically conjugate
to the rigid rotation of the unit circle ∂D by angle θ .
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FIGURE 3. The combinatorics of the closest return moments {qn}
∞
n=0 for θ = [a0, a1, . . .] illustrated on the

circle.

Consider the orbit of the critical point 0 under fc0 given by

O(0) := {0, fc0(0), f 2
c0
(0), . . .} ⊂ ∂D0.

Define the nth critical arc 1̂n ⊂ ∂D0 as the closed arc containing the critical point 0 whose
end points are f q2n

c0 (0) and f q2n+1
c0 (0). The critical arc 1̂n can be expressed as the union of

two closed subarcs E2n and E2n+1, where Ei has its end points at 0 and f qi
c0 (0). Observe

that:
(i) E2n ∩ E2n+1 = {0};
(ii) E2n ⊃ E2n+2;
(iii) f k

c0
(E2n) ∩ 1̂n =∅ for 0< k < q2n+1 and f q2n+1

c0 (E2n)⊂ 1̂n ; and
(iv) f k

c0
(E2n+1) ∩ 1̂n =∅ for 0< k < q2n and f q2n

c0 (E2n+1)⊂ E2n ⊂ 1̂n .
The subarc Ei is called the i th closest return arc.
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FIGURE 4. The Siegel disk D0 of the golden-mean Siegel quadratic polynomial f∗. The critical point 0 is on
∂D0, and the restriction f∗|∂D0 : ∂D0→ ∂D0 is quasi-symmetrically conjugate to the rigid rotation of the unit

circle ∂D by the angle θ∗ = (
√

5− 1)/2.

The critical arcs 1̂n form a nested neighborhood of 0 in ∂D0, and by Theorem 2.1, we
see that

∞⋂
n=0

1̂n = {0}. (2)

Define the nth pre-renormalization pRn( fc0) : 1̂n→ 1̂n of fc0 as the first return map on
1̂n = E2n ∪ E2n+1 under iterates of fc0 . It is not hard to see that

pRn( fc0)(x)=
{

f q2n+1
c0 (x) if x ∈ E2n,

f q2n
c0 (x) if x ∈ E2n+1.

Hence, we can consider pRn( fc0) as a pair of maps

ζ̂n = (η̂n, ξ̂n) := pRn( fc0)= ( f q2n+1
c0 |E2n , f q2n

c0 |E2n+1) (3)

acting on 1̂n . Letting n = 0, we obtain a pair representation of fc0 ,

ζ̂ fc0
:= ζ̂0 = pR0( fc0)= ( f a0

c0
|E0 , fc0 |E1).

Intuitively, pRn( fc0) captures the dynamics of fc0 on the Siegel boundary ∂D0 that occurs
at the scale of 1̂n .

Note that we can obtain the (n + 1)th pre-renormalization ζ̂n+1 by taking the first return
map on 1̂n+1 b 1̂n under iterates of the nth pre-renormalization ζ̂n : i.e.,

ζ̂n+1 = pR(ζ̂n).

For the inverse golden-mean θ∗, this corresponds to taking the iterate of ζ̂n given by

ζ̂n+1 = pR(ζ̂n)= pR((η̂n, ξ̂n))= (η̂n ◦ ξ̂n ◦ η̂n|E2(n+1) , η̂n ◦ ξ̂n|E2(n+1)+1).
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FIGURE 5. The first return map ζ̂n := pRn( fc0 ) on 1̂n = E2n ∪ E2n+1 under iterates of fc0 . The Siegel
boundary ∂D0 is represented as a round circle.

FIGURE 6. The (n + 1)th pre-renormalization ζ̂n+1 as the first return map on 1̂n+1 b 1̂n under iterates of the
nth pre-renormalization ζ̂n for the inverse golden-mean rotation number θ∗. Refer to Figure 5 for an illustration

of ζ̂n acting on 1̂n .

These observations suggest that the sequence of pre-renormalizations of fc0 can be realized
as the orbit of ζ̂0 = ζ̂ fc0

under the action of some pre-renormalization operator pR defined
on a space of pairs of maps.

By (2), we see that pRn(ζ̂ fc0
) degenerates as n→∞ to a pair of maps acting on a

single point (namely, 0). To obtain a more meaningful asymptotic behavior, we need to
magnify the dynamics of pRn(ζ̂ fc0

) and bring it to some fixed scale. The simplest way to
do this is to conjugate

pRn(ζ̂ fc0
)= ζ̂n = (η̂n, ξ̂n)
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by a linear map that sends the critical value ξ̂n(0) to 1. The resulting rescaled dynamical
system

Rn(ζ fc0
)= ζn = (ηn, ξn) with ξn(0)= 1

is called the nth renormalization of fc0 . If we denote the rescaling operator on pairs by 3,
we can define the renormalization operator as

R :=3 ◦ pR.

Note that ζn acts on an arc 1n that is a linear rescaling of the critical arc 1̂n . Since 1n

contains 0 and 1, it does not degenerate to a single point as n→∞.
Similarly to pR, the renormalization operator R acts on the space of certain pairs of

maps. If ζ = (η, ξ) belongs to this space, then it should satisfy the following properties.
(i) The maps η and ξ each have a unique simple critical point at 0.
(ii) The scale of ζ is normalized, so that the critical value ξ(0) is at 1.
(iii) The maps η and ξ extend to holomorphic maps on some neighborhoods Z and W of

0 in C.
(iv) Where η and ξ are both defined, these maps should commute: i.e.,

η ◦ ξ = ξ ◦ η.

Observe that commutativity clearly holds for ζ = ζn =Rn( fc0) since, in this case,
η = ηn and ξ = ξn represent different iterates of the same map fc0 .

In [MN], Manton and Nauenberg observed numerically that the Siegel boundary ∂D0

for the golden-mean Siegel quadratic polynomial f∗ exhibits a self-similar universal
scaling property near the critical point 0. More precisely, they observed that:
(i) the scaling constants

λn :=
diam(1̂n)

diam(1̂n−1)

converge to some universal constant λ∗; and
(ii) the rescaled critical arcs 1n converge to some universal arc 1∗.

To explain this phenomenon, Widom [Wi] introduced the renormalization scheme
that defines the operator R. Based on numerical evidence, he made the following two
conjectures.
(i) The renormalization sequence ζn =Rn( f∗) of the golden-mean Siegel quadratic

polynomial f∗ converges to some universal limit ζ∗.
(ii) In some suitable function space, this limit ζ∗ is a hyperbolic fixed point for R, and the

differential Dζ∗R is repelling in one-direction and attracting in all other directions.
The first partial result of Widom’s conjecture was obtained by Stirnemann [Stir], who

gave a computer-assisted proof of the existence of a fixed point ζ∗ for R in the golden-
mean case. In [Mc], McMullen proved (without computer assistance) the existence
and uniqueness of ζ∗, and showed that the convergence of ζn =Rn( f∗) to ζ∗ occurs
geometrically fast. The hyperbolicity part of Widom’s conjecture was left open for a
long time, until it was finally resolved by Gaidashev and Yampolsky in their recent work
[GaYa2]. A detailed statement of their result is given in Theorem 3.7.

It should be noted that in [MP], MacKay and Persival expanded Widom’s conjecture
to include other rotation numbers, and they postulated the existence of a hyperbolic
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FIGURE 7. Self-similar universal scaling property of the Siegel boundary ∂D0 for f∗ near the critical point 0.
Under magnification by scaling constants λ−1

n that converge to some universal constant λ−1
∗ ≈ 1.82, the rescaled

critical arcs 1n converge to some universal arc 1∗.

horseshoe for R that is analogous to Lanford’s horseshoe for critical circle maps (see
[Lan1], [Lan2]). For results in this direction, see [Mc] and [DuLSe] (for bounded type
rotation numbers) and [ISh] and [Ya] (for high type rotation numbers).

2.2. Two-dimensional renormalization. The main goal of this paper is to extend the
theory of Siegel renormalization to a higher dimensional setting. To this end, consider a
quadratic Hénon map

Hcb,b(x, y)= (x2
+ cb − by, x)

that has a semi-Siegel fixed point pb with multipliers µ= e2π iθ and ν ∈ D \ {0}. Such
Hénon maps are parameterized by their Jacobian: i.e.,

b = ν/µ≡ Jac Hcb,b.

As b→ 0, the semi-Siegel Hénon map Hcb,b degenerates to the two-dimensional
embedding of the Siegel quadratic polynomial fc0 given by

(x, y) 7→ ( fc0(x), x).
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Hence, for |b| � 1, the dynamics of Hcb,b can be considered as a small perturbation of the
dynamics of fc0 .

Let Db be the two-dimensional Siegel disk of Hcb,b. A priori, we do not have an analog
of Theorem 2.1 that characterizes the dynamics of Hcb,b on ∂Db. However, we can still
define the nth pre-renormalization pRn(Hcb,b) of Hcb,b by taking the same iterates as in
(3): i.e.,

pRn(Hcb,b)= 6̂n = ( Ân, B̂n) := (H
q2n+1
cb,b |�n , Hq2n

cb,b|0n ). (4)

In (4), the sets �n and 0n are chosen to be some suitable domains in C2 which intersect
∂Db. By letting n = 0, we obtain a pair representation of Hcb,b given by

6̂Hcb ,b
:= 6̂0 = pR0(Hcb,b)= (H

a0
cb,b|�0 , Hcb,b|00).

Analogously to the one-dimensional case, the sequence of pre-renormalizations of
Hcb,b can be realized as the orbit of 6̂Hcb ,b

under the action of some pre-renormalization
operator pR defined on a space of pairs of two-dimensional maps. To transform pR into a
proper renormalization operator R, we need to compose pR with some suitable rescaling
operator 3. However, this turns out to be a more intricate problem in two-dimensions than
in the one-dimensional case. To ensure tractable asymptotic behavior under iterations of
R, it is not only important to fix the scale of the dynamical systems, but we must also bring
them back to Hénon-like form after each renormalization. To achieve this, we incorporate
a non-linear change of coordinates to the definition of 3. Further details are provided
in §3.

Suppose that the renormalizations of Hcb,b are given by

Rn(6Hcb ,b
)=6n = (An, Bn),

where An and Bn are defined on some fixed neighborhoods� and 0 of (0, 0) in C2. Recall
that An and Bn represent rescalings of the q2n+1 and q2n iterates of Hcb,b, respectively. If
Hcb,b is sufficiently dissipative, so that |b|< ε for some ε < 1, then by the chain rule, the
Jacobians of An and Bn are on the order of εq2n+1 and εq2n , respectively. Hence, if the
renormalization sequence {6n}

∞

n=0 converges to some limit 6∗ = (A∗, B∗), then

Jac A∗ = lim
n→∞

O(εq2n+1)= 0 and Jac B∗ = lim
n→∞

O(εq2n )= 0.

Thus, we see that the limit 6∗ of the renormalizations of Hcb,b must be a degenerate one-
dimensional system.

3. Renormalization of almost commuting pairs
In this section, we formalize the ideas discussed in §2. While previously, we considered
any rotation number θ of bounded type, we will henceforth restrict our work to the case of
the inverse golden-mean

θ∗ =

√
5− 1
2
= [1, 1, . . .].

3.1. One-dimensional renormalization. For a domain Z ⊂ C, we denote by A(Z) the
Banach space of bounded analytic functions f : Z→ C, equipped with the norm

‖ f ‖ = sup
x∈Z
| f (x)|.
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FIGURE 8. A critical pair ζ = (η, ξ) ∈ C(Z , W ).

Denote by A(Z , W ) the Banach space of bounded pairs of analytic functions ζ = (η, ξ)
from domains Z ⊂ C and W ⊂ C, respectively, to C, equipped with the norm

‖ζ‖ = 1
2 (‖η‖ + ‖ξ‖).

Henceforth, we assume that the domains Z and W are topological disks containing 0.
Define the rescaling map 3 as

3(ζ) := (s−1
ζ ◦ η ◦ sζ , s−1

ζ ◦ ξ ◦ sζ ) for ζ = (η, ξ) ∈A(Z , W ),

where
sζ (x) := λζ x and λζ := ξ(0).

We say that ζ = (η, ξ) ∈A(Z , W ) is normalized if ξ(0)= 1. Note that the space of all
normalized pairs is equal to 3(A(Z , W )).

Definition 3.1. A normalized pair ζ = (η, ξ) ∈3(A(Z , W )) is said to be a critical pair
if η and ξ each have a simple unique critical point at 0. The space of critical pairs in
3(A(Z , W )) is denoted by C(Z , W ).

Definition 3.2. We say that ζ = (η, ξ) ∈A(Z , W ) is a commuting pair if

η ◦ ξ = ξ ◦ η.

It turns out that requiring strict commutativity is too restrictive in the category of
analytic functions. Hence, we work with the following less restrictive condition.

Definition 3.3. We say that ζ = (η, ξ) ∈ C(Z , W ) is an almost commuting pair (cf. [Bur,
Stir]) if

d i
[η, ξ ]

dx i (0) :=
d i (η ◦ ξ − ξ ◦ η)

dx i (0)= 0 for i = 0, 2.

The space of almost commuting pairs in C(Z , W ) is denoted by B(Z , W ).
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FIGURE 9. The one-dimensional renormalization R(ζ ) :=3(pR(ζ )) :=3((η ◦ ξ ◦ η, η ◦ ξ)).

Note that if ζ = (η, ξ) is a critical pair, then the first-order commuting relation is
automatically satisfied: i.e.,

d[η, ξ ]
dx

(0)= η′(1)ξ ′(0)− ξ ′(η(0))η′(0)= 0.

It is easy to see that the following statement holds.

PROPOSITION 3.4. The spaces 3(A(Z , W )), C(Z , W ) and B(Z , W ) have the structure
of an immersed Banach submanifold of A(Z , W ) of codimension one, three and five,
respectively.

Definition 3.5. Let ζ = (η, ξ) ∈ B(Z , W ). The pre-renormalization of ζ is defined as

pR(ζ ) := (η ◦ ξ ◦ η, η ◦ ξ).

The renormalization of ζ is defined as

R(ζ ) :=3(pR(ζ )).

We say that ζ is renormalizable if there exists Z ′ ⊂ Z and W ′ ⊂W such that 0 ∈ Z ′ ∩W ′

and R(ζ ) ∈ B(Z ′, W ′). The space of all renormalizable pairs in B(Z , W ) is denoted by
D(Z , W ).
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PROPOSITION 3.6. The space D(Z , W ) is an open subset of B(Z , W ).

Proof. Let ζ ∈D(Z , W ), so that R(ζ ) ∈ B(Z ′, W ′) for some Z ′ ⊂ Z and W ′ ⊂W with
0 ∈ Z ′ ∩W ′. For any ε > 0, it is easy to see that there exists δ > 0 such that, for any
ζ̃ = (η̃, ξ̃ ) contained in a δ-neighborhood of ζ in B(Z , W ), we have R(ζ̃ ) ∈ C((1− ε)Z ′,
(1− ε)W ′). To check almost commutativity, let

(η̃1, ξ̃1) := (η̃ ◦ ξ̃ ◦ η̃, η̃ ◦ ξ̃ ).

Observe that
[η̃1, ξ̃1](x)= η̃1 ◦ [η̃, ξ̃ ](x),

d[η̃1, ξ̃1]

dx
(x)= η̃′1([η̃, ξ̃ ](x)) ·

d[η̃, ξ̃ ]
dx

(x)

and

d2
[η̃1, ξ̃1]

dx2 (x)= η̃′′1([η̃, ξ̃ ](x)) ·
(

d[η̃, ξ̃ ]
dx

(x)
)2

+ η̃′1([η̃, ξ̃ ](x)) ·
d2
[η̃, ξ̃ ]

dx2 (x).

The result follows. �

The following theorem is shown in [GaYa2].

THEOREM 3.7. (One-dimensional renormalization hyperbolicity) There exists a
commuting pair ζ∗ = (η∗, ξ∗) ∈D(Z , W ) such that the following statements hold.
(i) There exist a neighborhood N of ζ∗ in D(Z , W ) and topological disks Z ′ c Z and

W ′ cW such that R :N → B(Z ′, W ′) is a well-defined analytic operator.
(ii) The pair ζ∗ is the unique fixed point of R in N . In particular,

λ−1
∗ η∗ ◦ ξ∗ ◦ η∗(λ∗x)= η∗(x) and λ−1

∗ η∗ ◦ ξ∗(λ∗x)= ξ∗(x),

where
λ∗ := η∗ ◦ ξ∗(0)

is a universal scaling factor.
(iii) The differential Dζ∗R is a compact linear operator. Moreover, Dζ∗R has a single,

simple eigenvalue with modulus greater than one. The rest of its spectrum lies inside
the open unit disk D (and hence is compactly contained in D by the spectral theory
of compact operators).

Let
f∗(z)= z2

+ c∗

be the quadratic polynomial with a Siegel fixed point of multiplier µ∗ = e2π iθ∗ , where
θ∗ = (

√
5− 1)/2 is the inverse golden-mean rotation number. For c sufficiently close to

c∗, we can identify the quadratic polynomial fc as a pair in D(Z , W ) as

ζ fc :=3( f 2
c |Zc , fc|Wc ), (5)

where
Zc := s fc (Z)= fc(0) · Z and Wc := s fc (W )= fc(0) ·W.

The following theorem is shown in [GaRYa].
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FIGURE 10. The stable manifold W s (ζ∗) of the fixed point ζ∗ for the one-dimensional renormalization operator
R. The family of quadratic polynomials ζ fc intersect W s (ζ∗) transversely at the golden-mean Siegel quadratic

polynomial ζ f∗ .

THEOREM 3.8. The one-parameter family {ζ fc }c intersects the stable manifold W s(ζ∗)⊂

D(Z , W ) of the fixed point ζ∗ for the one-dimensional renormalization operator R.
Moreover, this intersection is transversal, and occurs at ζ f∗ .

3.2. Two-dimensional renormalization. For a domain �⊂ C2, we denote by A2(�)

the Banach space of bounded analytic functions F :�→ C2, equipped with the norm

‖F‖ = sup
(x,y)∈�

‖F(x, y)‖.

Define

‖F‖x := sup
(x,y)∈�

‖∂x F(x, y)‖ and ‖F‖y := sup
(x,y)∈�

‖∂y F(x, y)‖.

Denote by A2(�, 0) the Banach space of bounded pairs of analytic functions 6 =
(A, B) from domains �⊂ C2 and 0 ⊂ C2, respectively, to C2, equipped with the norm

‖6‖ = 1
2 (‖A‖ + ‖B‖).

Define
‖6‖x :=

1
2 (‖A‖x + ‖B‖x ) and ‖6‖y :=

1
2 (‖A‖y + ‖B‖y).

Henceforth, we assume that

�= Z ×U and 0 =W × V,

where Z , U , W and V are topological disks in C containing 0.
Define the projection map π1 as

π1 F(x) := f1(x, 0) for F(x, y) :=
[

f1(x, y)
f2(x, y)

]
∈A2(�) or A2(0)
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and
π16 := (π1 A, π1 B) for 6 = (A, B) ∈A2(�, 0).

Define the rescaling map 3 as

3(6) := (s−1
6 ◦ A ◦ s6, s−1

6 ◦ B ◦ s6) for 6 = (A, B) ∈A2(�, 0),

where
s6(x, y) := (λ6x, λ6 y) and λ6 := π1 B(0).

We say that 6 = (A, B) ∈A2(�, 0) is normalized if π1 B(0)= 1. Note that the space of
all normalized pairs is equal to 3(A2(�, 0)).

For ε > 0, define A2(�, 0, ε) to be the set of all pairs 6 such that

‖6‖y <min{ε, ε‖6‖x }.

Clearly, A2(�, 0, ε) is an open subset of A2(�, 0). Define A2(�, 0, 0) to be the set of
all pairs 6 = (A, B) such that

‖6‖y = 0.

Note that, in this case,

A(x, y)=
[

a(x)
h(x)

]
and B(x, y)=

[
b(x)

x

]
for some a, h ∈A(Z) and b ∈A(W ).

The following definitions are analogs of Definitions 3.1–3.3.

Definition 3.9. For ε ≥ 0, a normalized pair 6 = (A, B) in 3(A2(�, 0, ε)) is said to be
an ε-critical pair if π1 A and π1 B each have a simple unique critical point contained in the
ε-neighborhood of 0 (the ε-neighborhood is interpreted to be {0} if ε = 0). The space of
ε-critical pairs in 3(A2(�, 0, ε)) is denoted by C2(�, 0, ε).

Definition 3.10. We say that 6 = (A, B) ∈A2(�, 0) is a commuting pair if

A ◦ B = B ◦ A.

Definition 3.11. For ε > 0, we say that 6 = (A, B) ∈ C2(�, 0, ε) is an ε-almost
commuting pair if∣∣∣∣d iπ1[A, B]

dx i (0)
∣∣∣∣ := ∣∣∣∣d iπ1(A ◦ B − B ◦ A)

dx i (0)
∣∣∣∣< ε for i = 0, 2.

The space of ε-almost commuting pairs in C2(�, 0, ε) is denoted by B2(�, 0, ε). Define
B2(�, 0, 0)⊂ C2(�, 0, 0) by replacing ‘< ε’ in the above inequality with ‘= 0’.

It is easy to see that the following statement holds.

PROPOSITION 3.12. The space 3(A2(�, 0)) has the structure of an immersed Banach
submanifold of A2(�, 0) of codimension one. For ε > 0, the spaces 3(A2(�, 0, ε)),
C2(�, 0, ε) and B2(�, 0, ε) are open subsets of 3(A2(�, 0)).
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Let D(Z , W )⊂ B(Z , W ) be the set of one-dimensional renormalizable pairs. We
define an embedding ι of D(Z , W ) into the space of two-dimensional-almost commuting
pairs as follows. Let ζ = (η, ξ) ∈D(Z , W ), so that R(ζ ) ∈ B(Z ′, W ′) for some Z ′ ⊂ Z
and W ′ ⊂W with 0 ∈ Z ′ ∩W ′. Define

ι(ζ ) :=3((Aζ , Bζ )),

where

Aζ (x, y) :=
[
η ◦ ξ ◦ η(x)

η(x)

]
and Bζ (x, y) :=

[
η ◦ ξ(x)

x

]
. (6)

Observe that
π1 ◦ ι(ζ )=R(ζ ). (7)

Hence, ι(ζ ) ∈ B2(Z ′ × C, W ′ × C, 0).
Let 6 = (A, B) ∈ B2(�, 0, ε). We define the renormalization R(6) of 6 as follows.

To avoid introducing too much new notation in our discussion, we will use C > 0 to
represent any constant which only depends on ‖6‖ (and, in particular, does not depend
on ε).

First, define the pre-renormalization of 6 as

pR(6)= (A1, B1) := (B ◦ A2, B ◦ A). (8)

Next, we denote
ay(x) := a(x, y),

and consider the non-linear changes of coordinates

H(x, y) :=
[

a−1
y (x)

y

]
. (9)

Note that this is completely analogous to the non-linear changes of coordinates used in the
definition of period-doubling renormalization in [dCLM]. Define

pR̃(6)= (A2, B2) := (H−1
◦ A1 ◦ H, H−1

◦ B1 ◦ H)

and
R̃(6)=3(pR̃).

Let
ζ = (η, ξ) := π16.

It is not hard to check that we have the estimates

‖R̃(6)‖y < Cε2 and ‖R̃(6)− ι(ζ )‖< Cε. (10)

Thus, we see that under R̃, the y-dependence of pairs shrinks super-exponentially, and
when restricted to pairs with no y-dependence, the action of R̃ is equivalent to the action
of the one-dimensional renormalization operator R (see (7)).

To complete the definition of the two-dimensional renormalization operator R, we need
the following two lemmas. It should be noted that similar results are proved in [GaYa2].
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FIGURE 11. The two-dimensional pre-renormalization pR̃(6) := (H−1
◦ B ◦ A2

◦ H, H−1
◦ B ◦ A ◦ H).

LEMMA 3.13. There exists an analytic projection operator 5crit such that, for any ε-
almost commuting pair 6 = (A, B), the following statements hold.
(i) We have ‖5crit(6)−6‖< Cε.
(ii) If ‖6‖y < δ� ε, then 5crit(6) is a Cδ-critical pair.
(iii) Let cba be the unique simple critical point for π1(B ◦ A). If 6 is a commuting pair,

then
5crit(6)=3((T−1

ba ◦ A ◦ Tba, T−1
ba ◦ B ◦ Tba)),

where
Tba(x, y) := (x + cba, y).

Proof. By the argument principle, we see that π1(B ◦ A)= π1 B ◦ π1 A + O(ε) has a
simple unique critical point cba in the Cε-neighborhood of 0. Set

Tba(x, y) := (x + cba, y), (11)

and let
61 = (A1, B1) := (T−1

ba ◦ A ◦ Tba, T−1
ba ◦ B ◦ Tba).

Again by the argument principle, we see that π1(A1 ◦ B1)= π1 A ◦ π1 B + O(ε) has a
simple unique critical point cab in the Cε-neighborhood of 0. Set

Tab(x, y) := (x + cab, y),

and let
62 = (A2, B2) := (T−1

ab ◦ A1, B1 ◦ Tab).
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Define
5crit(6) :=3(62).

Clearly,
‖5crit(6)−6‖< Cε.

Suppose that ‖6‖y < δ� ε. Observe that

0= (π1(B ◦ A))′(cba)= (π1(B2 ◦ A2))
′(0)= ‖B2‖(π1 A2)

′(0)+ O(δ)

and

0= (π1(A1 ◦ B1))
′(cab)= (π1(A2 ◦ B2))

′(0)= ‖A2‖(π1 B2)
′(0)+ O(δ).

It follows that 5crit(6) is a Cδ-critical pair.
Lastly, assume that 6 = (A, B) is a commuting pair. Then A1 and B1 would also

commute. In this case, we would have

(π1(A1 ◦ B1))
′(0)= (π1(B1 ◦ A1))

′(0)= (π1(B ◦ A))′(cba)= 0.

Hence, cab = 0 and 62 =61. �

LEMMA 3.14. There exists an analytic projection operator5ac such that, for any ε-almost
commuting pair 6 = (A, B), the following statements hold.
(i) We have ‖5ac(6)−6‖< Cε.
(ii) If 6 is a δ-critical pair for some 0≤ δ� ε, then 5ac(6) is a Cδ-almost commuting

pair.
(iii) If 6 is a commuting pair, then 5ac(6)=6.

Proof. Write

A(x, y)=
[

a(x, y)
h(x, y)

]
and B(x, y)=

[
b(x, y)

x

]
.

Let

B1(x, y)=
[

b(x, y)+ cx2
+ dx3

x

]
,

where c and d are constants to be determined later. Define

5ac(6) := (A, B1).

Observe that
π1 B1(0)= π1 B(0)= 1.

We compute

π1[A, B1](0)= π1[A, B](0)− ca(0, 0)2 − da(0, 0)3, (12)

dπ1[A, B1]

dx
(0)=

dπ1[A, B]
dx

(0)− (2ca(0, 0)+ 3da(0, 0)2)(π1 A)′(0) (13)

and

d2π1[A, B1]

dx2 (0)=
d2π1[A, B]

dx2 (0)− (2c + 6da(0, 0))(π1 A)′(0)2

− (2ca(0, 0)+ 3da(0, 0)2)(π1 A)′′(0). (14)
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Choose the constants c and d so that

ca(0, 0)2 + da(0, 0)3 = 0

and
d2π1[A, B]

dx2 (0)− (2ca(0, 0)+ 3da(0, 0)2)(π1 A)′′(0)= 0.

Then we have

|c|, |d|< C
∣∣∣∣d2π1[A, B]

dx2 (0)
∣∣∣∣.

In particular, |c|, |d|< Cε, and if6 is a commuting pair, then c = d = 0 and5ac(6)=6.
Lastly, if 6 is a δ-critical pair, then it follows from (12), (13) and (14) that 5ac(6) is a

Cδ-almost commuting pair. �

Definition 3.15. For ε ≥ 0, let 6 = (A, B) ∈ B2(�, 0, ε). The renormalization of 6 is
defined as

R(6) :=5ac ◦5crit ◦ R̃(6).

We say that 6 is renormalizable if there exists �′ ⊂� and 0′ ⊂ 0 such that (0, 0) ∈
�′ ∩ 0′ and R(6) ∈ B2(�

′, 0′, δ) for some δ > 0. The space of all renormalizable pairs
in B2(�, 0, ε) is denoted by D2(�, 0, ε).

PROPOSITION 3.16. The space D2(�, 0, ε) is an open subset of B2(�, 0, ε).

Proof. Let 6 ∈D2(�, 0, ε), so that R(6) ∈ B2(�
′, 0′, δ) for some constant δ > 0 and

some �′ ⊂� and 0′ ⊂ 0 with (0, 0) ∈�′ ∩ 0′. For any e > 0, it is easy to see that there
exists d > 0 such that, for any 6̃ contained in a d-neighborhood of 6 in B2(�, 0, ε), we
have R(6̃) ∈ B2((1− e)�′, (1− e)0′, (1+ e)d). �

We now generalize Theorem 3.7 to the two-dimensional setting.

THEOREM 3.17. (Two-dimensional renormalization hyperbolicity) Consider the one-
dimensional renormalization fixed point ζ∗ ∈D(Z , W ). Let ι(ζ∗)=: (A∗, B∗) be the
embedding of ζ∗ into D2(�, 0, 0). For ε > 0 sufficiently small, the following statements
hold.
(i) There exists a neighborhood N of ι(ζ∗) in D2(�, 0, ε), topological bidisks �′ c�

and 0′ c 0 and a constant C � 1/ε such that R : N→ B2(�
′, 0′, Cε2) is a well-

defined analytic operator.
(ii) For 6 ∈ N, we have

‖R(6)− ι ◦ π1(6)‖< Cε.

Consequently,
‖π1 ◦ R(6)−R ◦ π1(6)‖< Cε.

(iii) The pair ι(ζ∗) is the unique fixed point of R in N.
(iv) The differential Dι(ζ∗)R is a compact linear operator whose spectrum coincides with

that of Dζ∗R. More precisely, let N ⊂D(Z , W ) be a sufficiently small neighborhood
of ζ∗. Then, in the spectral decomposition of Dι(ζ∗)R, the complement to the tangent
space of ι(N ) corresponds to the zero eigenvalue.
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Proof. Statement (ii) follows immediately from (10) and Lemmas 3.13 and 3.14.
Write

A∗(x, y) :=
[

η∗(x)
λ−1
∗ η∗(λ∗x)

]
and B∗(x, y) :=

[
ξ∗(x)

x

]
.

It is easy to see that ι(ζ∗) is a commuting pair that is fixed under R. Moreover, R(ι(ζ∗))
is defined as the restriction of some iterate of ι(ζ∗) on topological bidisks λ∗�b� and
λ∗0 b 0. Hence, R(ι(ζ∗)) extends to some larger topological bidisks �′ c� and 0′ c
0. By continuity, we can assume that the same is true for nearby pairs 6 in a small
neighborhood N of ι(ζ∗).

The fact that the image of pairs in N under R is Cε2-almost commuting is given by
(10) and Lemmas 3.13 and 3.14. If 60 ∈ N is a fixed point for R, then it follows that
‖60‖y = 0. Since R restricted to pairs with no y-dependence is equivalent to R, it follows
that 60 = ι(ζ∗) by the uniqueness of the fixed point ζ∗ for R in N .

Finally, let E be the quotient of the tangent space of N by the tangent space of ι(N ).
Let M : E→ E be the operator induced by Dι(ζ∗)R. Then ‖Mn

‖ = O(ε2n
), and hence the

spectrum of M is equal to {0}. �

Let Hµ∗,ν be the Hénon map with a semi-Siegel fixed point p of multipliers µ∗ = e2π iθ∗

and ν, where θ∗ = (
√

5− 1)/2 is the inverse golden-mean rotation number and |ν|< ε.
Forµ sufficiently close toµ∗, we can identify the Hénon map Hµ,ν as a pair in D2(�, 0, ε)

as
6Hµ,ν :=3(H

2
µ,ν |�µ,ν , Hµ,ν |0µ,ν ), (15)

where

�µ,ν := sHµ,ν (�)= π1 Hµ,ν(0) ·� and 0µ,ν := sHµ,ν (0)= π1 Hµ,ν(0) · 0.

The following corollary is a consequence of Theorems 3.8 and 3.17.

COROLLARY 3.18. The two parameter family {6Hµ,ν }µ,ν intersects the stable manifold
W s(ι(ζ∗))⊂D2(�, 0, ε) of the fixed point ι(ζ∗) for R.

4. The combinatorics of golden-mean rotation
In this section, we study the combinatorics of the two-dimensional renormalization defined
in §3. To simplify our analysis, we model the dynamics of almost commuting pairs by rigid
interval exchange maps of the inverse golden-mean rotation type.

4.1. Pre-renormalization operator for golden-mean rotation. Consider s ∈ (0, θ∗] and
t ∈ (0, 1] such that s/t = θ∗ = (

√
5− 1)/2. Let

I = [1− t − s, 1− t] and J = [1− t, 1].

Note that we have
|I | = s < t = |J |.

Define the maps S : J → I ∪ J and T : I → J as

S(x) := x − s and T (x) := x + t.
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FIGURE 12. The stable manifold W s (ι(ζ∗)) of the fixed point ι(ζ∗) for the two-dimensional renormalization
operator R. Every pair in W s (ι(ζ∗)) converges super-exponentially fast to the space of degenerate one-
dimensional pairs. Every degenerate one-dimensional pair in W s (ι(ζ∗)) converges exponentially fast to ι(ζ∗),
at a rate given by Theorem 3.7. By Theorem 5.8, the family of Hénon maps {6Hµ,ν }µ,ν intersects W s (ζ∗)
at the golden-mean semi-Siegel Hénon maps {6Hµ∗,ν }ν . Note that 6Hµ∗,0

= ι(ζ f∗ ), where ζ f∗ is the pair
representation of the golden-mean Siegel quadratic polynomial f∗. Compare with Figure 10.

FIGURE 13. A rigid rotation pair R = (S|J , T |I ), where I = [1− t − s, 1− t] and J = [1− t, 1].

The action of the pair of maps R = (S|J , T |I ) on the interval I ∪ J represents the rigid
rotation of the circle by the angle θ∗.

We define the pre-renormalization pR(R) of R as follows. Let

s′ := 2s − t ∈ (0, s) and t ′ := t − s ∈ (0, t).

Then define
pR(R)= (T ◦ S2

|J ′ , T ◦ S|I ′),
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FIGURE 14. The pre-renormalization pR(R)= (T ◦ S2
|J ′ , T ◦ S|I ′ ), where I ′ = [1− t ′ − s′, 1− t ′] and

J ′ = [1− t ′, 1].

where I ′ = [1− t ′ − s′, 1− t ′] and J ′ = [1− t ′, 1]. Similarly to before, we have s′/t ′ =
θ∗ and

|I ′| = s′ < t ′ = |J ′|.

Hence, the action of pR(R) on the interval I ′ ∪ J ′ represents the rigid rotation of the
circle by the angle θ∗

4.2. Dynamical partitions. Set

s0 := θ∗, t0 := 1, I0 := [−θ∗, 0] and J0 := [0, 1].

Define
S0(x) := x − θ∗, T0(x) := x + 1, (16)

and consider the pair R0 = (S0|J0 , T0|I0) acting on the interval [−θ∗, 1].
For n ∈ N, denote the nth pre-renormalization of R0 by

Rn = (Sn|Jn , Tn|In ) := pRn(R0),

where
In = [1− tn − sn, 1− tn] and Jn = [1− tn, 1], (17)

and
Sn(x) := x − sn and Tn(x) := x + tn .

Then
sn

tn
= θ∗. (18)
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Notation 4.1. For n ∈ N, consider an n-tuple

ω = (αn−1, . . . , α0)

constructed inductively from i = n − 1 to i = 0 as follows.
(i) Choose αn−1 ∈ {0, 1, 2}.
(ii) If αi+1 = 2, then choose αi ∈ {0, 1}.
(iii) If αi+1 was chosen from {0, 1}, and αi+1 = 1, then choose αi ∈ {0, 1}.
(iv) Otherwise, choose αi ∈ {0, 1, 2}.
Denote the set of all n-tuples constructed as above by Jn . For n = 0, we define J0 := {(0)}.

We also denote by In the set of all n-tuples

γ = (βn−1, . . . , β0)

constructed identically as for Jn , except that step (i) is replaced by
(i′) Choose βn−1 ∈ {0, 1}.

LEMMA 4.2. Let

ω = (αn−1, . . . , α0) ∈ Jn and γ = (βn−1, . . . , β0) ∈ In .

Denote

Rω0 := Sα0
0 |J0 ◦ · · · ◦ Sαn−1

n−1 |Jn−1 and Rγ0 := Sβ0
0 |J0 ◦ · · · ◦ Sβn−1

n−1 |Jn−1 .

Then Rω0 and Rγ0 are well defined on Jn and In , respectively.

LEMMA 4.3. Let

ωmax
n := (2, 1, 1, . . . , 1) ∈ Jn and γmax

n := (1, 1, . . . , 1) ∈ In .

Then
Rn = pRn(R0)= (T0 ◦ Rω

max
n

0 |Jn , T0 ◦ Rγ
max
n

0 |In ).

LEMMA 4.4. Define
Pn := {Rω0 (Jn) | ω ∈ Jn}

and
Qn := {R

γ

0 (In) | γ ∈ In}.

Then Pn ∪Qn forms a cover of [−θ∗, 1] such that its members are disjoint except at the
endpoints. The collection Pn ∪Qn is called the nth dynamical partition of [−θ∗, 1].

LEMMA 4.5. For n ≥ 0, let U ∈ Pn . Listing in order from left to right, the element U
consists of one element in Pn+1, one element in Qn+1 and another element in Pn+1.

Similarly, let V ∈Qn . Listing in order from left to right, the element V consists of one
element in Pn+1 and one element in Qn+1.

LEMMA 4.6. Let {qn}
∞

n=0 ⊂ N be the Fibonacci sequence defined by the inductive relation

q0 = 1, q1 = 1 and qn+1 = qn + qn−1 for n ≥ 1.

Then q2n+1 = |Jn| and q2n = |In|.
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FIGURE 15. The elements of the 1st and 2nd dynamic partitions P1 ∪Q1 and P2 ∪Q2.

Define
Qn :=

⋃
V∈Qn

V .

By Lemmas 4.4 and 4.6, the set Qn is a union of q2n intervals of length sn . The following
result shows that these intervals are well distributed over [−θ∗, 1] in the sense that the
average of any sufficiently well-behaved function on [−θ∗, 1] is approximately equal to its
average on Qn . Moreover, the error is of the same order of magnitude as sn .

PROPOSITION 4.7. Let f : [−θ∗, 1] → C be a piecewise-smooth function with finitely
many discontinuities, whose derivative is bounded by M. Then

1
q2nsn

∫
Qn

f (x) dx =
1

1+ θ∗

∫ 1

−θ∗

f (x) dx + O(Msn).

Proof. Denote

mn :=
1+ θ∗
q2nsn

> 1,

and let un : Qn→ [−θ∗, 1] be the unique surjective map satisfying the following two
properties.
(i) The restriction of un to any element V ∈Qn is an affine map of the form

un|V (x)= mn x + bV

for some bV ∈ R.
(ii) For any x, y ∈ Qn , if x < y, then un(x)≤ un(y).
Then ∫ 1

−θ∗

f (u−1
n (x)) dx = mn

∫
Qn

f (x) dx .

Write

mn

∫
Qn

f (x) dx =
∫ 1

−θ∗

f (x) dx + En,
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FIGURE 16. The integrals
∫ 1
−θ∗

f (x) dx (top),
∫

Qn
f (x) dx (top, in grey) and

∫ 1
−θ∗

f (u−1
n (x)) dx =

mn
∫

Qn
f (x) dx (bottom).

where

En :=

∫ 1

−θ∗

f (u−1
n (x)) dx −

∫ 1

−θ∗

f (x) dx .

Observe that

|En| ≤

∫ 1

−θ∗

| f (u−1
n (x))− f (x)|dx

≤ M
∫ 1

−θ∗

|u−1
n (x)− x |dx . (19)

To estimate (19), we need to find a bound on the displacement of points under un .
Consider the kth dynamic partition Pk ∪Qk for 0≤ k ≤ n − 1. The map un acts by

eliminating the elements that belong to Pn and stretching the elements that belong to Qn

by a factor of mn . Denote the change in size under un of each element in Pk and Qk by τ k
n

and σ k
n , respectively, where

τ k
n := |un(Uk)| − |Uk | for any Uk ∈ Pk,

and
σ k

n := |un(Vk)| − |Vk | for any Vk ∈Qk .

See Figure 17.
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FIGURE 17. The images of the elements U1
1 ,U2

1 ,U3
1 ∈P1 and V 1

1 , V 2
1 ∈Q1 under the piece-wise affine map

u3. Under u3, the elements of P3 are discarded, and the elements of Q3 are stretched by a factor of m3. As a
result, the elements in P1 shrink by τ1

3 , while the elements in Q1 expand by σ 1
3 .

By Lemma 4.5, we have

τ n−1
n := (mn − 1)sn − 2tn < 0 and σ n−1

n := (mn − 1)sn − tn > 0. (20)

It follows that
|τ n−1

n |< tn and |σ n−1
n |< tn .

Likewise, for 0≤ k < n − 1,

τ k
n := σ

k+1
n + 2τ k+1

n and σ k
n := σ

k+1
n + τ k+1

n . (21)

Note that the pairs {τ k+1
n , σ k+1

n } and {τ k
n , σ

k
n } each have opposite signs. Hence, (21)

implies that the pairs {τ k
n , τ

k+1
n } and {σ k

n , σ
k+1
n } each have the same sign, and

|σ k
n |< |σ

k+1
n | and |τ k

n |< |τ
k+1
n |.

Thus, by (20),
σ k

n > 0 and τ k
n < 0 for all 0≤ k ≤ n − 1.

Let x̂ ∈ Qn be a point of maximum displacement under un : i.e.,

max
−θ∗≤x≤1

|u−1
n (x)− x | = |x̂ − un(x̂)|.
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FIGURE 18. Illustration of (22) (top) and (23) (bottom).

To obtain the desired estimate on (19), we will find a bound on the displacement of x̂
under un .

The interval [−θ∗, 0] is occupied by the element I0 in Q0, and the interval [0, 1] is
occupied by the element J0 in P0. By Lemma 4.5, listing from left to right, the first
dynamic partition P1 ∪Q1 consists of U 1

1 ∈ P1, V 1
1 ∈Q1, U 2

1 ∈ P1, V 2
1 ∈Q1 and U 3

1 ∈

P1. Note that, for x1 ∈U 1
1 ∩ Qn , we have x1 + s0 ∈U 2

1 ∩ Qn and x1 + 2s0 ∈U 3
1 ∩ Qn ,

and
un(x1 + ls0)= un(x1)+ lσ 0

n for l = 0, 1, 2. (22)

Likewise, for y1 ∈ V 1
1 ∩ Qn , we have y1 + s0 ∈ V 2

1 ∩ Qn , and

un(y1 + s0)= un(y1)+ σ
0
n . (23)

See Figures 18 and 19. Since σ 0
n > 0, we have the following two possibilities:

(i) un(x̂)− x̂ < 0, and x̂ is contained in U 1
1 ∪ V 1

1 ; or
(ii) un(x̂)− x̂ > 0, and x̂ is contained in V 2

1 ∪U 3
1 .

Assume case (i). Listing from left to right, the element U 1
1 consists of U 1

2 ∈ P2, V2 ∈Q2

and U 2
2 ∈ P2. For x2 ∈ (U 1

2 ∪ V2) ∩ Qn , we have x2 + t1 ∈ V 1
1 ∩ Qn , and

un(x2 + t1)= un(x2)+ τ
1
n . (24)

Moreover, for y2 ∈U 2
2 ∩ Qn , we have y2 + t2 ∈ V 1

1 ∩ Qn , and

un(y2 + t2)= un(y2)+ τ
2
n . (25)

Since τ 1
n , τ

2
n < 0, it follows that if un(x̂)− x̂ < 0, then x̂ ∈ V 1

1 . Using a similar argument
and proceeding inductively, we see that x̂ is contained in Vn−1 = [sn−1, 0] ∈Qn−1. In
fact, x̂ must be equal to the left endpoint sn of the unique element of Qn contained in
Vn−1. Thus

|un(x̂)− x̂ | = |σ n−1
n + tn − σ 0

n |< 2tn = 2θ−1
∗ sn .

The desired estimate follows. See Figure 20.
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FIGURE 19. Illustration of (24) (top and middle) and (25) (bottom).

Now, assume case (ii). Arguing similarly to above and proceeding inductively, we see
that x̂ is contained in Jn−1 = [1− tn−1, 1] ∈ Pn−1. In fact, x̂ must be equal to the right
endpoint 1− tn of the unique element In of Qn contained in Jn−1. Thus

|un(x̂)− x̂ | = |1− (1− tn)| = tn = θ−1
∗ sn .

The desired estimate follows. See Figure 20. �

5. The renormalization arc
By Theorem 3.7, the one-dimensional renormalization operator R has a hyperbolic fixed
point ζ∗ = (η∗, ξ∗). Consider the embedding ι(ζ∗) of ζ∗ into the space of two-dimensional-
almost commuting pairs given in (6). By Theorem 3.17, ι(ζ∗) is a hyperbolic fixed point
for the two-dimensional renormalization operator R. Moreover, ι(ζ∗) has a codimension
one stable manifold W s(ι(ζ∗)).

Let 6 = (A, B) be a commuting pair contained in W s(ι(ζ∗)). Set

6n = (An, Bn) := Rn(6),
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FIGURE 20. Maximal displacements under u3. The point which moves maximally to the left is in Vn−1 and the
point which moves maximally to the right is in Jn−1.

where

An(x, y)=
[

an(x, y)
hn(x, y)

]
and Bn(x, y)=

[
bn(x, y)

x

]
.

Let
ηn(x) := an(x, 0), ξn(x) := bn(x, 0) and ζn := (ηn, ξn).

Then, by Theorem 3.17,
‖6n+1 − ι(ζn)‖< O(ε2n

). (26)

Denote
(an)y(x) := an(x, y),

and let

Hn+1(x, y) :=
[
(an)

−1
y (x)
y

]
be the non-linear changes of coordinates given in (9). If

B̃n+1 := H−1
n+1 ◦ Bn ◦ An ◦ Hn+1 and β̃n+1 := π1 B̃n+1,

then by (10), the map β̃n+1 has a unique critical point cn+1 near 0. Define

Tn+1(x, y) := (x + cn+1, y),

and let
sn+1(x, y) := (λn+1x, λn+1 y), |λn+1|< 1

be the scaling map so that if

8n+1(x, y) := Hn+1 ◦ Tn+1 ◦ sn+1(x, y), (27)

then we have

An+1 =8
−1
n+1 ◦ Bn ◦ A2

n ◦8n+1 and Bn+1 =8
−1
n+1 ◦ Bn ◦ An ◦8n+1.

Note that, by the choice of Tn+1,

(π1 Bn+1)
′(0)= ξ ′n+1(0)= 0. (28)

The following corollary is a direct consequence of Theorems 3.7 and 3.17.
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COROLLARY 5.1. As n→∞, we have the following convergences (each of which occurs
at a geometric rate):
(i) ζn = (ηn, ξn)→ ζ∗ = (η∗, ξ∗);
(ii) λn→ λ∗, where λ∗ is the universal scaling constant given in Theorem 3.7; and
(iii) 8n→8∗, where

8∗(x, y)=
[
φ∗(x)
λ∗y

]
:=

[
η−1
∗ (λ∗x)
λ∗y

]
.

For 0≤ k < l, define the kth microscope map of depth l by

8l
k :=8k+1 ◦8k+2 ◦ · · · ◦8l . (29)

Let
�l

k :=8
l
k(�) and 0l

k :=8
l
k(0). (30)

Observe that {�l
k ∪ 0

l
k}
∞

l=k is a nested sequence of open sets. Moreover, for k < m < l, we
have

8m
k (�

l
m)=�

l
k and 8m

k (0
l
m)= 0

l
k .

PROPOSITION 5.2. Let λ∗ be the universal scaling factor given in Corollary 5.1. Then,
for all 0≤ k < l,

diam(�l
k ∪ 0

l
k)= O(λl−k

∗ ).

Consequently, there exists a point κk ∈ Z ⊂ C, called the kth cap, such that

∞⋂
l=k+1

�l
k ∪ 0

l
k = (κk, 0).

It is not difficult to see that

8n((κn, 0))= (κn−1, 0) and 8l
k((κl , 0))= (κk, 0). (31)

Notation 5.3. We denote by

p6n = (p An, pBn) for n ∈ N

the sequence of pairs of iterates of 6 = (A, B) defined as:
(i) let p60 :=6; and
(ii) for n ≥ 0, let

p6n+1 := (pBn ◦ p A2
n, pBn ◦ p An).

Observe that if
6n = (An, Bn)= Rn(6)

is the nth renormalization of 6, then

An = (8
n
0)
−1
◦ p An ◦8

n
0 and Bn = (8

n
0)
−1
◦ pBn ◦8

n
0 . (32)

The following statements are analogs of Lemmas 4.2 and 4.3.
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FIGURE 21. The renormalization microscope map 82
0 obtained by composing the non-linear changes of

coordinates 81 and 82. We have �1
0 =81(�), 01

0 =81(0), �2
0 =8

2
0(�), 0

2
0 =8

2
0(0) and (κ0, 0)=

81((κ1, 0))=82
0((κ2, 0)).

LEMMA 5.4. Consider the sets Jn and In of ordered n-tuples constructed in Notation 4.1.
For

ω = (αn−1, . . . , α0) ∈ Jn and γ = (βn−1, . . . , β0) ∈ In,

denote

6ω := p Aα0
0 ◦ · · · ◦ p Aαn−1

n−1 and 6γ := p Aβ0
0 ◦ · · · ◦ p Aβn−1

n−1 .

Then 6ω and 6γ are well defined on �n
0 and 0n

0 , respectively.

LEMMA 5.5. Let

ωmax
n := (2, 1, 1, . . . , 1) ∈ Jn and γmax

n := (1, 1, . . . , 1) ∈ In .

Then
p6n = (p An, pBn)= (B0 ◦6

ωmax
n , B0 ◦6

γmax
n ).
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FIGURE 22. The renormalization arc γ6 of 6. The open cover X1 ∪ Y1 is shown.

Definition 5.6. For n ∈ N, let

Xn :=
⋃
ω∈Jn

6ω(�n
0) and Yn :=

⋃
γ∈In

6γ (0n
0 ).

The set

γ6 :=

∞⋂
n=1

Xn ∪ Yn

is called the renormalization arc of 6.

The following theorem justifies the use of the term ‘arc’ in Definition 5.6. It is the
counterpart to [GaRYa, Proposition 4.2].

THEOREM 5.7. (Continuity of the Siegel boundary) Let R0 = (S0|J0 , T0|I0) be the pair
representing the rigid rotation of the circle by θ∗, as given by (16). Then there exists a
homeomorphism h : [−θ∗, 1] → γ6 that conjugates the action of 6 and the action of R0.

Proof. The proof is identical, mutatis mutandis, to the proof of Proposition 4.2 in
[GaRYa]. For the reader’s convenience, we will outline the main ideas.

The renormalization arc γ6k of the kth renormalization of 6 maps into γ6 under
the microscope map 8k

0. For k sufficiently high, 6k is in a small neighborhood of the
renormalization fixed point ι(ζ∗). For all such pairs, the maps 6ωk ◦8

k+n
k for ω ∈ Jn and

6
γ

k ◦8
k+n
k for γ ∈ In have derivatives bounded above by Cρn for some uniform constants

C > 1 and ρ < 1. It readily follows that the theorem holds for γ6k , and hence also
for γ6 . �

Henceforth, we consider the renormalization arc of6 as a continuous curve γ6 = γ6(t)
parameterized by the homeomorphism h : [−θ∗, 1] → γ6 given in Theorem 5.7.
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The following theorem is the counterpart to [GaRYa, Proposition 4.6]. The proof is
identical, mutatis mutandis, and hence it will be omitted.

THEOREM 5.8. The pair 6Hµ∗,ν representing the semi-Siegel Hénon map Hµ∗,ν given in
(15) is contained in the stable manifold W s(ι(ζ∗))⊂D2(�, 0, ε) of the fixed point ι(ζ∗)
for R. Moreover, a linear rescaling of the renormalization arc s(γ6Hµ∗,ν

) is contained in
the boundary of the Siegel disc D of Hµ∗,ν . In fact,

∂D = s(γ6Hµ∗,ν
) ∪ Hµ∗,ν ◦ s(γ6Hµ∗,ν

).

6. Limit of the microscope maps
Consider the microscope maps 8l

k :� ∪ 0→� given in (29). By Proposition 5.2, 8l
k

converges to the constant map (x, y) 7→ (κk, 0) as l goes to∞. In this section, we show
that, in the x-coordinate, 8l

k behaves asymptotically like the (l − k)th iterate of the map
φ∗(x) := η−1

∗ (λ∗x) given in Corollary 5.1.

PROPOSITION 6.1. The map φ∗ : Z→ Z has an attracting fixed point at 1 with multiplier
λ2
∗.

Proof. Recall that
λ∗ := η∗ ◦ ξ∗(0)= η∗(1).

Immediately, we see that the map

φ∗(x) := η−1
∗ (λ∗x)

fixes the point 1. Moreover, since φ∗(Z)b Z , this fixed point must be attracting.
Since ξ∗ has a critical point at 0, we may write

ξ∗(x)= 1+ c∗x2
+ O(|x |3)

for some c∗ ∈ C. Thus,

λ∗ξ∗(x)= λ∗ + λ∗c∗x2
+ O(|x |3) and ξ∗(λ∗x)= 1+ λ2

∗c∗x
2
+ O(|x |3).

Since ζ∗ = (η∗, ξ∗) is a renormalization fixed point,

λ∗ξ(x)= η∗ ◦ ξ∗(λ∗x)= λ∗ + η′∗(1)λ
2
∗c∗x

2
+ O(|x |3).

Therefore
η′∗(1)= λ

−1
∗ ,

and we conclude that
φ′∗(1)=

λ∗

η′∗(1)
= λ2
∗. �

Let t∗(x) := x + 1 be the translation by 1, and define

φ̌∗ := t−1
∗ ◦ φ∗ ◦ t∗.

Since φ̌∗ has an attracting fixed point at 0 of multiplier λ2
∗, the sequence λ−2n

∗ φ̌n
∗ converges

to the linearizing map u∗ : t−1
∗ (Z)→ C for φ̌∗ at 0 as n→∞.
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Let
φ̂n := π18n .

For 0≤ k < l, define
φ̂l

k := φ̂k+1 ◦ φ̂k+2 ◦ · · · ◦ φ̂l .

It is not difficult to see that
φ̂l

k = π18
l
k .

It follows from (31) that

φ̂n(κn)= κn−1 and φ̂l
k(κl)= κk .

Denote
dn := φ̂

′
n(κn) and dl

k := (φ̂
l
k)
′(κl)= dk+1dk+2 . . . dl .

PROPOSITION 6.2. As n→∞, we have the following convergences (each of which occurs
at a geometric rate):
(i) φ̂n→ φ∗;
(ii) κn→ 1; and
(iii) dn→ λ2

∗.

Let tn(x) := x + κn be the translation by κn , and define

φ̌n := t−1
n−1 ◦ φ̂n ◦ tn .

Observe that 0 is an attracting fixed point for φ̌n of multiplier dn . For 0≤ k < l, define

φ̌k
k := Id and φ̌l

k := φ̌k+1 ◦ φ̌k+2 ◦ · · · ◦ φ̌l = t−1
k ◦ φ̂

l
k ◦ tl .

PROPOSITION 6.3. For k ≥ 0, we have the convergence

(dl
k)
−1φ̌l

k→ u∗ as l→∞,

where u∗ is the linearizing map for φ̌∗ at 0.

Proof. For k < m ≤ l, define

el
m(x) := λ

−2(l−m)
∗ dl

m x .

By Proposition 6.2(iii),
λ−2(l−m)
∗ dl

m = 1+ O(ρm+1
1 )

for some uniform constant ρ1 < 1. It follows that

(el
m)
−1
◦ φ̌m ◦ (el

m)= φ̌m + O(ρm+1
1 ).

By Proposition 6.2(iv), we may write

d−1
m (el

m)
−1
◦ φ̌m ◦ (el

m)= λ
−2
∗ φ̌∗ + Em,

where
‖Em‖ = O(ρm

2 )
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for some uniform constant ρ2 < 1. Since

d−1
m φ̌′m(0)= 1= λ−2

∗ φ̌
′
∗(0),

we have
E ′m(0)= 0.

It follows from Cauchy-estimates that

‖Em(x)‖ = O(ρm
2 |x |

2)

for all x such that |x | is sufficiently small.
Let

ρ =max{|λ2
∗|, ρ2}.

Observe that

(dl
k)
−1φ̌m−1

k ◦ (φ̌m ◦ el
m) ◦ φ̌

l−m
∗

= (dl
k)
−1φ̌m−1

k ◦ (el
m ◦ (e

l
m)
−1
◦ φ̌m ◦ el

m) ◦ φ̌
l−m
∗

= (dl
k)
−1φ̌m−1

k ◦ (el
m−1 ◦ φ̌∗ + dm Em) ◦ φ̌

l−m
∗

= (dl
k)
−1φ̌m−1

k ◦ el
m−1 ◦ φ̌

l−m+1
∗ + O(‖(dl

k)
−1φ̌m−1

k ◦ dm Em ◦ φ̌
l−m
∗ ‖)

= (dl
k)
−1φ̌m−1

k ◦ el
m−1 ◦ φ̌

l−m+1
∗ + O(ρk−lρm−1−kρρmρ2(l−m))

= (dl
k)
−1φ̌m−1

k ◦ el
m−1 ◦ φ̌

l−m+1
∗ + O(ρl).

By induction,
(dl

k)
−1φ̌l

k = λ
−2(l−k)
∗ φ̌l−k

∗ + O((l − k)ρl).

The result follows. �

For 0≤ k < l, define
λl

k := λk+1λk+2 · · · λl .

COROLLARY 6.4. For k ≥ 0, we have the convergence

(dl
kλ

l
k)
−1 Jac8l

k(x, y)
l→∞
−−−→ u′∗(x) for (x, y) ∈� ∪ 0.

Proof. Write

8n(x, y)=
[
φn(x, y)
λn y

]
,

so that φn(x, 0)= φ̂n(x). By (26) and the definition of Hn and 8n ,

‖φn‖y = O(|λn|ε
2n
). (33)

Moreover, by Corollary 5.1,
‖∂xφn‖ = O(|λ2

∗|). (34)

For k ≤ m < l, let φl
m(x, y) be the first coordinate of 8l

m(x, y). Then the following
inductive relation holds: i.e.,

φl
m(x, y)= φm+1(φ

l
m+1(x, y), λl

m+1 y). (35)
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Hence,
‖φl

m‖y = |λ
l
m |ε

2m+1
+ |dm+1|‖φ

l
m+1‖y .

By induction,

‖φl
m‖y = O(|λl

m |ε
2m+1
+ |dm+1λ

l
m+1|ε

2m+2
+ · · · + |dl−1

m λl |ε
2l
)

= O(ρl−mε2m
)

for some uniform constant ρ such that |λ∗|< ρ < 1. This means that

φl
m(x, y)= φ̂m(x)+ O(ρl−mε2m

). (36)

Differentiating (35) with respect to x , we obtain

∂xφ
l
m(x, y)= ∂xφm+1(φ

l
m+1(x, y), λl

m+1 y) · ∂xφ
l
m+1(x, y).

Note that

∂xφm(φ
l
m(x, y), λl

m y)=
dφ̂m

dx
◦ φl

m(x, y)+ O(|λl
m−1|ε

2m
)

=
dφ̂m

dx
◦ φ̂l

m(x)+ O(ρl−m+2ε2m
)+ O(|λl

m−1|ε
2m
)

=
dφ̂m

dx
◦ φ̂l

m(x)+ O(ρl−me2m
),

where in the first equality we used (33) and in the second equality we used (34) and (36).
By induction,

∂xφ
l
k(x, y)=

dφ̂l
k

dx
(x)(1+ O(ρl−ke2k

)).

Thus, by Proposition 6.3,

(dl
k)
−1∂xφ

l
k(x, y)

l→∞
−−−→ u′∗(x).

The result follows. �

7. Universality
Let 6 = (A, B) be commuting pair contained in the stable manifold W s(ι(ζ∗)) of the
two-dimensional renormalization fixed point ι(ζ∗). Moreover, assume that there exists a
constant δ such that the following estimates hold: i.e.,

0 6=max
z∈γ6
‖Jac A(z)‖< δ and min

z∈γ6
‖Jac B(z)‖> δ. (37)

Note that these assumptions hold for the pair 6µ∗,ν representing the semi-Siegel Hénon
map Hµ∗,ν given in (15).

By (37), we may choose a branch of the logarithm so that the complex-valued function

τ(t) :=
{

log Jac A(h(t)), 0< t ≤ 1,
log Jac B(h(t)), −θ∗ ≤ t ≤ 0,

where h : [−θ∗, 1] → γ6 is the parameterization of the renormalization arc γ6 given in
Theorem 5.7 is well defined. We define the average Jacobian of 6 to be the complex
number

b = b6 := exp
(

1
1+ θ∗

∫ 1

−θ∗

τ(t) dt
)
. (38)
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Consider the iterate p6n of 6 given in Notation 5.3. Proposition 5.2, Lemmas 5.4
and 5.5 and standard distortion estimates imply the following lemma.

LEMMA 7.1. There exists a uniform constant ρ < 1 such that

Jac pBn(z1)

Jac pBn(z2)
= 1+ O(ρn)

for any z1, z2 ∈ 0
n
0 .

PROPOSITION 7.2. Let ρ < 1 be as in Lemma 7.1. Then

Jn(z) := Jac pBn(z)= ern bq2n (1+ O(ρn)) for z ∈ 0n
0 ,

where q2n = |In| is given in Lemma 4.6, and rn ∈ C has a uniform upper bound.

Proof. By Proposition 4.7,

log b =
1

1+ θ∗

∫ 1

−θ∗

τ(t) dt =
1

q2nsn

∫
Qn

τ(t) dt + O(sn).

Now, there exists a point x in the interval In := [1− tn − sn, 1− tn] (see (17)) such that
for

w := h(x) ∈ 0n
0 ∩ γ6,

we have ∫
Qn

τ(t) dt =
∫

h(In)

log Jac pBn(z) dz = sn log Jac pBn(w).

Hence,
q2n log b = log Jac pBn(w)+ O(q2nsn).

Observe that
q2nsn < 1+ θ∗.

The result now follows from Lemma 7.1. �

Set
6n = (An, Bn) := Rn(6),

where

An(x, y)=
[

an(x, y)
hn(x, y)

]
and Bn(x, y)=

[
bn(x, y)

x

]
.

Let
ηn(x) := an(x, 0), ξn(x) := bn(x, 0) and ζn := (ηn, ξn).

By Theorem 3.17, we know that the renormalization sequence 6n+1 approaches the
sequence of embeddings ι(ζn) super-exponentially fast. The following result, which
is central to this paper, states that, during this process, the renormalization sequence
uniformizes to a certain two-dimensional universal form.
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FIGURE 23. The universal two-dimensional form of the nth renormalization 6n = (An , Bn) of the commuting
pair 6 = (A, B). Unlike in Figure 1, the vertical lines are not scaled by the same constant. However, the scaling

factor ern bq2nβ(x) is bounded away from 0 and∞ and has bounded distortion.

THEOREM 7.3. (Universality) For some ρ < 1,

Bn(x, y)=
[
ξn(x)+ ern bq2n β(x) y (1+ O(ρn))

x

]
,

where b is the average Jacobian, {qi }
∞

i=0 ⊂ N is the Fibonacci sequence, {ri }
∞

i=0 ⊂ C
is a uniformly bounded sequence that depends on the pair 6, and β(x) is a universal
function that is uniformly bounded away from 0 and∞ and which has a uniformly bounded
derivative and distortion.

Proof. Recall that
Bn(x, y)= (8n

0)
−1
◦ pBn ◦8

n
0(x, y).

See (32). Hence,

Jac Bn(x, y)= Jn(x, y)
Jac8n

0(x, y)
Jac8n

0(Bn(x, y))
, (39)

where Jn is the Jacobian of pBn given in Proposition 7.2. By Corollary 6.4,

Jac8n
0(x, y)

Jac8n
0(Bn(x, y))

→
u′∗(x)

u′∗(ξ∗(x))
=: β(x) as n→∞.

Note that the convergence is geometric and that β has the properties claimed in the
theorem.

Now write

Bn(x, y)=
[
ξn(x)+ En(x, y)

x

]
,

where En is undetermined. Since

∂y En(x, y)= Jac Bn(x, y),

plugging in (39) and integrating both sides, we obtain the desired formula. �
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COROLLARY 7.4. For some ρ < 1,

an(x, y)= ηn(x)+ ern bq2n α(x) y (1+ O(ρn)),

where an is the first coordinate of An , b is the average Jacobian, {qi }
∞

i=0 ⊂ N is the
Fibonacci sequence, {ri }

∞

i=0 ⊂ C is a uniformly bounded sequence that depends on the
pair 6, and α(x) is a universal function that is uniformly bounded away from 0 and ∞
and which has a uniformly bounded derivative and distortion.

Proof. Recall that

An+1 =8
−1
n+1 ◦ Bn ◦ A2

n ◦8n+1 and Bn+1 =8
−1
n+1 ◦ Bn ◦ An ◦8n+1.

Since 6 = (A, B) is a commuting pair,

An+1 =8
−1
n+1 ◦ An ◦ Bn ◦ An ◦8n+1 =8

−1
n+1 ◦ An ◦8n+1 ◦ Bn+1.

Let

Hn+1(x, y)=
[
(an)

−1
y (x)
y

]
,

and
sn+1(x, y) := (λn+1x, λn+1 y) and Tn+1(x, y)= (x + cn+1, y),

where cn+1 is the critical point of π1(H−1
n+1 ◦ Bn ◦ An ◦ Hn+1) (see (27)). Then

8n+1 := Hn+1 ◦ Tn+1 ◦ sn+1.

Let
B̃n+1 := Tn+1 ◦ sn+1 ◦ Bn+1.

Then
An+1 = (Tn+1 ◦ sn+1)

−1
◦ H−1

n+1 ◦ (An ◦ Hn+1) ◦ B̃n+1.

Note that

An ◦ Hn+1(x, y)=
[

x
h̃n(x, y)

]
:=

[
x

hn((an)
−1
y (x), y)

]
.

Moreover, by Theorem 7.3,

B̃n+1(x, y)=
[

b̃n+1(x, y)
λn+1x

]
,

where

b̃n+1(x, y) := λn+1ξn+1(x)+ cn+1 + λn+1ern+1bq2(n+1) β(x) y (1+ O(ρn+1)).

Thus,

An+1(x, y)=
[

an+1(x, y)
hn+1(x, y)

]
=

[
λ−1

n+1an(b̃n+1(x, y), h̃n ◦ B̃n+1(x, y))− λ−1
n+1cn+1

λ−1
n+1h̃n ◦ B̃n+1(x, y)

]
.

By (26),

‖an(b̃n+1(x, 0), h̃n ◦ B̃n+1(x, y))‖y = O(ε2n−1
|bq2(n+1) |).
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Hence,

an+1(x, y)= ηn+1(x)+ ern+1bq2(n+1) η′n(b̃n+1(x, 0))

× β(x) y (1+ O(ρn+1))+ O(ε2n−1
|bq2(n+1) |)

= ηn+1(x)+ ern+1bq2(n+1) α(x) y (1+ O(ρn+1)),

where

α(x) := lim
n→∞

η′n(b̃n+1(x, 0)) β(x)

= lim
n→∞

η′n(λn+1ξn+1(x)+ cn+1) β(x)

= η′∗(λ∗ξ∗(x))β(x)

is universal and has the properties claimed in the corollary. �

Consider the kth cap κk given in Proposition 5.2. Denote

Dn := D(κn ,0)8n and Dl
k := D(κl ,0)8

l
k .

By (31),
Dl

k = Dk+1 · Dk+2 · · · · · Dl .

COROLLARY 7.5. Write

Dn =

[
1 snbq2(n−1)

0 1

] [
un 0
0 λn

]
,

where b is the average Jacobian of 6 defined in (38). Then there exists a constant ρ < 1
such that the following estimates hold for all n ≥ 1:
(i) un = λ

2
∗(1+ O(ρn));

(ii) λn = λ∗(1+ O(ρn)); and
(iii) |sn| � 1.
Consequently, for 0≤ k < l,

Dl
k =

[
1 t l

kbq2k

0 1

] [
ul

k 0
0 λl

k

]
,

where:
(i) ul

k := uk+1 · uk+2 · · · · · ul = λ
2(l−k)
∗ (1+ O(ρk+1));

(ii) λl
k := λk+1 · λk+2 · · · · · λl = λ

l−k
∗ (1+ O(ρk+1)); and

(iii) |t l
k | � 1.

Proof. By Corollary 5.1 and Proposition 6.2, we have

Dn =

[
un σn

0 λn

]
,

where un converges to λ2
∗ geometrically fast in n. It remains to find the desired estimate

for σn .
Recall that

8n(x, y) := Hn(λn x + cn, λn y)
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and

H−1
n (x, y)=

[
an−1(x, y)

y

]
,

where an−1(x, y) is the first coordinate of An−1(x, y). By Corollary 7.4,

an−1(x, y)= ηn−1(x)+ ern−1 bq2(n−1) α(x) y (1+ O(ρn−1)).

Hence,
∂yan−1(x, y)= ern−1bq2(n−1) α(x)(1+ O(ρn−1)).

By straightforward computation,

σn =−unλn∂yan−1(κn−1, 0).

The result follows. �

8. Non-rigidity
As an application of the universality theorem obtained in §7, we show that two commuting
pairs cannot be C1-conjugate on their respective renormalization arcs if their average
Jacobians differ in absolute value. Together with Theorem 5.8, this implies the non-rigidity
theorem stated in §1. Our proof is similar to the one given in [dCLM] that shows non-
rigidity of the invariant Cantor set for period-doubling renormalization.

THEOREM 8.1. (Non-rigidity) Let 6 = (A, B) and 6̃ = ( Ã, B̃) be commuting pairs
contained in the stable manifold W s(ι(ζ∗))⊂D2(�, 0, ε) of the two-dimensional
renormalization fixed point ι(ζ∗). Furthermore, assume that 6 and 6̃ both satisfy (37)
for some δ, δ̃ > 0, so that their respective average Jacobians b and b̃ are well defined. Let
f : γ6→ γ6̃ be a homeomorphism which conjugates the action of 6 and 6̃. Then the
Hölder exponent of f is at most 1

2 (1+ ln |b|/ ln |b̃|) (and, in particular, cannot be C1).

Proof. For brevity, we will only define the notation for 6. The corresponding objects for
6̃ will be marked with the tilde.

Assume that |b| 6= |b̃|. Then we can choose k sufficiently large so that

|b̃|q2k � |b|q2k .

Next, choose n ≥ 0 so that

λn+1
∗ < |b̃|q2k < λn

∗� |b|
q2k . (40)

For the proof, we work in three different scales: in the scale of 6 = (A, B), of 6k =

(Ak, Bk) and of 6k+n = (Ak+n, Bk+n) (see Figure 24). First, in the scale of 6k+n , let

ck+n := Bk+n((κk+n, 0)).

Then, in the scale of 6k , let

ck+n
k :=8k+n

k (ck+n), zk+n
k := Bk(ck+n

k ) and wk := Bk((κk, 0)).

Finally, in the scale of 6, let

Z k+n
k :=8k

0(z
k+n
k ) and Wk :=8

k
0(wk).

Consider the distance between the following pairs of points:
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FIGURE 24. The distances 11, 12 and 13.

(1) ck+n
k and (κk, 0);

(2) zk+n
k and wk ; and

(3) Z k+n
k and Wk .

Let 1x
i , 1y

i and 1i with i = 1, 2, 3 denote the horizontal, vertical and Euclidean distance
between these pairs of points, respectively.

By Corollary 7.5,
1

y
1 � |λ∗|

n,

and for some uniform constant C > 0,

1x
1 > 2C(|b|q2k |λ∗|

n
− |λ∗|

2n) > C |b|q2k |λ∗|
n,

where, in the last inequality, we used (40). Thus, we see that

1
y
2 > C |b|q2k |λ∗|

n .

Again by Corollary 7.5, we arrive at

13 ≥1
y
3 > C |b|q2k |λ∗|

n+k .

Now, consider the corresponding distances for 6̃. Again,

1̃
y
1 � |λ∗|

n .

However, by (40) we see that

1̃x
1 = O(|b̃|q2k |λ∗|

n
+ |λ∗|

2n)= O(|λ∗|2n).

By Theorem 7.3 and (40), we obtain

1̃x
2 = O(1̃x

1 + |b̃|
q2k 1̃

y
1)= O(|λ∗|2n)= 1̃

y
2 .

Lastly, Corollary 7.5 implies that

1̃x
3 = 1̃

y
3 = O(|λ∗|2n+k).

Hence,
1̃3 = O(|λ∗|2n+k).
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Observe that any Hölder exponent α for a conjugacy f : γ6→ γ6̃ between 6 and 6̃
must satisfy

13 ≤ C ′(1̃3)
α

for some uniform constant C ′ > 1. By our estimates above, this means that

|b|q2k |b̃|q2k |λ∗|
k < |b|q2k |λ∗|

n+k
≤ C ′(|λ∗|2n+k)α < C ′(|λ∗|k−2

|b̃|q2k |b̃|q2k )α.

The theorem follows. �
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