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Abstract. It was recently shown in Gaidashev and Yampolsky [Golden mean Siegel disk
universality and renormalization. Preprint, 2016, arXiv:1604.00717] that appropriately
defined renormalizations of a sufficiently dissipative golden-mean semi-Siegel Hénon map
converge super-exponentially fast to a one-dimensional renormalization fixed point. In
this paper, we show that the asymptotic two-dimensional form of these renormalizations is
universal and is parameterized by the average Jacobian. This is similar to the limit behavior
of period-doubling renormalizations in the Hénon family considered in de Carvalho et al
[Renormalization in the Hénon family, I: universality but non-rigidity. J. Stat. Phys. 121
(5/6) (2006), 611-669]. As an application of our result, we prove that the boundary of the
golden-mean Siegel disk of a dissipative Hénon map is non-smoothly rigid.
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1. Introduction
The archetypical class of examples in holomorphic dynamics is given by the quadratic
family

fe@)=z>+c¢ forceC.
Despite its apparent simplicity, the dynamics of this family is incredibly rich, and exhibits
many of the key features that are observed in the general case. In the dynamics of several
complex variables, the role of the quadratic family is assumed by its two-dimensional

extension
Hep(x,y) = x+c— by, x) forceCandb e C\ {0},

which is called the (complex quadratic) Hénon family.

Since s
1 y +c—x
o= (0 ),
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FIGURE 1. A Hénon map H, . Note that vertical lines are scaled uniformly by —b and then are mapped to
horizontal lines.

a Hénon map H, j is a polynomial automorphism of C2. Moreover, it is easy to see that
H, ;, has constant Jacobian: i.e.,
Jac H.p =b.

Note that for » = 0, the map H, ; degenerates to the embedding of f. given by

(x, ¥) = (fe(x), x).

Hence, the parameter b determines how far H., is from being a degenerate one-
dimensional system. In this paper, we will always assume that H, j, is a dissipative map
(ie. |b] < 1).

A Hénon map H. j is determined uniquely by the multipliers x and v at a fixed point p.
In particular,

and

2
c=(1+uv)<%+g>—<%+§> .

When convenient, we will write H, , instead of H, j; to denote a Hénon map.
Suppose that one of the multipliers, say, i, is irrationally indifferent, so that

pw=e"™% forsome 6 € (0, 1)\ Q.

Then
[b] = |v].

In this case, the Hénon map H, , is said to be semi-Siegel if there exist neighborhoods N
of (0, 0) and AV of p, and a biholomorphic change of coordinates

¢: (N, (0,0)— N, p)

such that
Hy,,op=¢olL,
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FIGURE 2. The Siegel cylinder C and the Siegel disk D of H, ).

where L(x, y) := (ux, vy). A classic theorem of Siegel states, in particular, that H,, , is
semi-Siegel whenever 6 is Diophantine. That is, for some constants C and d,

dn+1 < C‘Irgzl7

where p,/q, are the continued fraction convergents of 6 (see §2). In this case, the
linearizing map ¢ can be biholomorphically extended to

¢:(DxC,(0,0)—(C,p)

so that its image C := ¢ (D x C) is maximal (see [MNTU]). We call C the Siegel cylinder
of Hy . In the interior of C, the dynamics of H,, , is conjugate to rotation by ¢ in one
direction and compression by v in the other direction. Clearly, the orbit of every point in
C converges to the analytic disk D := ¢ (D x {0}) at height 0. We call D the Siegel disk of
Hy .

The geometry of Siegel disks in one dimension is a challenging and important topic that
has been studied by numerous authors, including Herman [He], McMullen [Mc], Petersen
[P], Inou and Shishikura [ISh], Yampolsky [Ya], and others. In the two-dimensional
Hénon family, the corresponding problems have been wide open until a very recent work
of Gaidashev, Radu, and Yampolsky [GaRYa], who proved the following theorem.

THEOREM 1.1. (Gaidashev, Radu and Yampolsky) Let 6, = (\/g — 1)/2 be the inverse
2mi0« - Then there exists € > 0 such that if |v| < €, then the
boundary of the Siegel disk D of H,, , is a homeomorphic image of the circle. In fact, the

golden-mean, and let . = e

linearizing map

¢:D x {0} - D

extends continuously and injectively (but not smoothly) to the boundary.
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In the author’s joint paper with Yampolsky [YaY], we have obtained the first geometric
result about Siegel disks in the Hénon family.

THEOREM 1.2. (Yampolsky) Let iy and € > 0 be as in Theorem 1.1. Then for |v| < € the
boundary of the Siegel disk D of H,,, , is not Cl-smooth.

The proofs of Theorem 1.1 and 1.2 are based on the renormalization theory developed
by Gaidashev and Yampolsky in [GaYa]. Generally speaking, a renormalization of a
dynamical system is defined as a rescaled first return map on an appropriately chosen
subset of the phase space. In their paper, Gaidashev and Yampolsky considered the semi-
Siegel Hénon maps within the context of a Banach space B, of dynamical systems called
almost commuting pairs. They then formulated renormalization as an operator Rgy from
B> to itself. They were able to show that this operator is analytic, and that it has a
hyperbolic fixed point X, € B;. In [GaRYa], they went on to prove that the stable manifold
of X, does indeed contain the almost commuting pairs that correspond to sufficiently
dissipative semi-Siegel Hénon maps of the golden-mean type.

It is important to note that the fixed point X, for Rgy is a degenerate one-dimensional
system. Hence, when the renormalization sequence of an almost commuting pair X
converges to X, it loses its dependence on the second variable along the way. In fact,
Gaidashev and Yampolsky showed that this must happen at a super-exponential rate.

In this paper, we describe the behavior of almost commuting pairs as they approach the
space of degenerate one-dimensional systems under renormalization. For this purpose, we
adopt a new renormalization operator R that we obtain by modifying the construction of
Rgy. The main difference between these two operators is that while Rgy is based on a
diagonal embedding of the pairs of one-dimensional maps,

wo- (1)

the operator R is based on a Hénon-like embedding (see (6)). Although the former
embedding has the benefit of being more symmetric, the latter embedding allows us
to track two-dimensional deviations from its image more precisely and more explicitly.
However, it should be noted that R and Rgy are still related closely enough that a number
of proofs given in [GaRYa] can be directly transferred to our setting, mutatis mutandis (in
particular, see Theorems 5.7 and 5.8).

The central result of this paper is that in the limit of renormalization, the almost
commuting pairs take on a universal two-dimensional shape as they flatten into degenerate
one-dimensional systems. This statement is formulated explicitly in Theorem 7.3. The
proof relies on an analysis of the average Jacobian of almost commuting pairs on their
invariant renormalization arcs. A similar approach was taken by de Carvalho, Lyubich,
and Martens in [dCLM] to study the limits of period-doubling renormalization in the
Hénon family.

The universality phenomenon described in Theorem 7.3 has deep consequences on the
geometry of the golden-mean Siegel disk of dissipative Hénon maps. In [dCLM], de
Carvalho, Lyubich, and Martens used universality to show, in particular, that the invariant
Cantor set for period-doubling renormalization is non-smoothly rigid. In this paper, we
are able to obtain the following analogous result.
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NON-RIGIDITY THEOREM. Let . and € >0 be as in Theorem 1.1. If |vi|, |[n2] <€
and |vi| # |va|, then the two semi-Siegel Hénon maps H,, ., and Hy, ,, cannot be C'
conjugate on the boundary of their respective Siegel disks.

Non-rigidity is the first known property of Siegel disks of Hénon maps that is unique
to higher dimensions. In the one-dimensional case, McMullen showed that two quadratic-
like maps with a Siegel disk of the same bounded type rotation number are C!* conjugate
on their Siegel boundary (see [Mc]).

2. Motivation

Let 6 e R/Z be an irrational rotation number. Then 6 is represented by an infinite
continued fraction: i.e.,

0 =lag, a1, ...1=

ap +
ap +

1
ay+--

The nth partial convergent of 0 is the rational number

14
_nz[ao’alv ~~7an]~
n
The denominator gy, is called the nth closest return moment. The sequence {g,},° , satisfies
the inductive relation
qg=1 q=a and @gu+1=anqn +qu-1 forn>1. (1)

We say that 6 is of bounded type if a, are uniformly bounded. The simplest example of
a bounded type rotation number is the inverse golden-mean

V5-1
=

For the remainder of this section, we assume that 6 is of bounded type.

Oy =

[1,1,...].

2.1. One-dimensional renormalization. ~ Consider the quadratic polynomial

fo@=2"+co

that has a fixed Siegel disc Dy C C with rotation number 6. If 6 is equal to the inverse
golden-mean 6y, then we denote f, as simply f;.

We are interested in understanding the small-scale behavior of the dynamics of f, near
its Siegel boundary dDy. The following theorem is due to Douady, Ghys, Herman, and
Shishikura (see [He2]).

THEOREM 2.1. The quadratic polynomial f., has its critical point O on its Siegel
boundary 0Dy, and the restriction fy|yp, : 0Do — 0Dy is quasi-symmetrically conjugate
to the rigid rotation of the unit circle 91D by angle 6.
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FIGURE 3. The combinatorics of the closest return moments {qn}go=0 for 6 = [ag, ay, . . .] illustrated on the
circle.

Consider the orbit of the critical point 0 under f, given by
O(0) := {0, f¢,(0), fL%(O), ...} C9Dy.

Define the nth critical arc A, C 3Dy as the closed arc containing the critical point 0 whose
end points are fL%z" (0) and féff”“ (0). The critical arc A, can be expressed as the union of
two closed subarcs E», and E»;,1, where E; has its end points at 0 and ff(f (0). Observe
that:

(i) Ezn N Epqr ={0};

(i) E2n D Eont2;

(i) fX(Ex)N Ap =@ for 0 < k < g1 and fP(Eay) C Ay and

(V) fX(Exns1) N Ay =@ for0 <k < qoy and f2" (Ezpy1) C Ezn C Ay

The subarc E; is called the ith closest return arc.
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FIGURE 4. The Siegel disk Dy of the golden-mean Siegel quadratic polynomial f,. The critical point O is on
9Dy, and the restriction fx|yp, : 9Dy — 9Dy is quasi-symmetrically conjugate to the rigid rotation of the unit

circle 9 by the angle 6y = (v/5 — 1)/2.

The critical arcs A, form a nested neighborhood of 0 in 3Dy, and by Theorem 2.1, we

see that
o0
() An = (0}, @)
n=0

Define the nth pre-renormalization pR"(fe,) : An— A, of Jfeo as the first return map on
A, = Ep,; U Epyqq under iterates of fe,. It is not hard to see that

[l (x) if x € Egy,
fcozn x) if x € Eopyq.

Hence, we can consider pR"( f,,) as a pair of maps

&n = (ins &) 1= PR" (fe) = (f&g" N sy S 1E2ir) 3)
acting on A,. Letting n = 0, we obtain a pair representation of f,,
Ery = 0= PRO(fey) = (f21Ey» feol -

Intuitively, pR" ( f,) captures the dynamics of f, on the Siegel boundary 9Dy that occurs
at the scale of A,,.

Note that we can obtain the (n + 1)th pre-renormalization §n+ 1 by taking the first return
map on A,,+ | € A, under iterates of the nth pre-renormalization {,, ie.,

§n+l = p’R/({n)-

For the inverse golden-mean 6,, this corresponds to taking the iterate of Tn given by

PR"(fe)(x) = {

Ent1 = PRGn) = PR((fin- €2)) = (A © &n © il Exgyiry» in © Enl Exguyryin)-
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R

¢ f q2n

f"on-{—l

f‘1’2n+1 (0)

FIGURE 5. The first return map 2,, = pR"(f¢y) on An = Epy, U Epyyy under iterates of f¢,. The Siegel
boundary 9Dy is represented as a round circle.

A 3
f‘f12n+1 (U)

FIGURE 6. The (n + 1)th pre-renormalization En—o—l as the first return map on An+l € Ay, under iterates of the
nth pre-renormalization Z‘n for the inverse golden-mean rotation number 6. Refer to Figure 5 for an illustration
of ¢, acting on A.

These observations suggest that the sequence of pre-renormalizations of f, can be realized
as the orbit of 2() = & feo under the action of some pre-renormalization operator pR defined
on a space of pairs of maps.

By (2), we see that pR" (Efvo) degenerates as n — oo to a pair of maps acting on a
single point (namely, 0). To obtain a more meaningful asymptotic behavior, we need to
magnify the dynamics of pR" (& feo) and bring it to some fixed scale. The simplest way to
do this is to conjugate

pRn (Efco) = En = (f/n» én)
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by a linear map that sends the critical value én (0) to 1. The resulting rescaled dynamical
system
Rn(é‘f%) ==, &) with&,(0) =1

is called the nth renormalization of f.,. If we denote the rescaling operator on pairs by A,
we can define the renormalization operator as

R:=AopR.

Note that ¢, acts on an arc A, that is a linear rescaling of the critical arc A,. Since A,
contains 0 and 1, it does not degenerate to a single point as n — oo.

Similarly to pR, the renormalization operator R acts on the space of certain pairs of
maps. If ¢ = (5, &) belongs to this space, then it should satisfy the following properties.
(i) The maps n and £ each have a unique simple critical point at 0.

(i) The scale of ¢ is normalized, so that the critical value £(0) is at 1.
(iii) The maps n and £ extend to holomorphic maps on some neighborhoods Z and W of
0in C.
(iv) Where n and & are both defined, these maps should commute: i.e.,
nog&=E&o.
Observe that commutativity clearly holds for ¢ = &, = R"(f,,) since, in this case,
n =n, and § = &, represent different iterates of the same map f,.

In [MN], Manton and Nauenberg observed numerically that the Siegel boundary dDg
for the golden-mean Siegel quadratic polynomial f, exhibits a self-similar universal
scaling property near the critical point 0. More precisely, they observed that:

(1)  the scaling constants
- diam(A,)
" diam(A,_1)
converge to some universal constant A,; and
(i) the rescaled critical arcs A, converge to some universal arc A,.

To explain this phenomenon, Widom [Wi] introduced the renormalization scheme
that defines the operator R. Based on numerical evidence, he made the following two
conjectures.

(i) The renormalization sequence ¢, = R"(fx) of the golden-mean Siegel quadratic
polynomial f, converges to some universal limit .

(i) Insome suitable function space, this limit ¢, is a hyperbolic fixed point for R, and the
differential D, 'R is repelling in one-direction and attracting in all other directions.

The first partial result of Widom’s conjecture was obtained by Stirnemann [Stir], who
gave a computer-assisted proof of the existence of a fixed point ¢, for R in the golden-
mean case. In [Mc], McMullen proved (without computer assistance) the existence
and uniqueness of ¢, and showed that the convergence of ¢, = R"(fi) to ¢x occurs
geometrically fast. The hyperbolicity part of Widom’s conjecture was left open for a
long time, until it was finally resolved by Gaidashev and Yampolsky in their recent work
[GaYa2]. A detailed statement of their result is given in Theorem 3.7.

It should be noted that in [MP], MacKay and Persival expanded Widom’s conjecture
to include other rotation numbers, and they postulated the existence of a hyperbolic
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FIGURE 7. Self-similar universal scaling property of the Siegel boundary 9D for fi near the critical point 0.

Under magnification by scaling constants A, that converge to some universal constant )\;1 ~ 1.82, the rescaled
critical arcs A, converge to some universal arc Ay.

horseshoe for R that is analogous to Lanford’s horseshoe for critical circle maps (see
[Lanl], [Lan2]). For results in this direction, see [Mc] and [DuLSe] (for bounded type
rotation numbers) and [ISh] and [Ya] (for high type rotation numbers).

2.2. Two-dimensional renormalization. The main goal of this paper is to extend the
theory of Siegel renormalization to a higher dimensional setting. To this end, consider a
quadratic Hénon map

He, p(x, y) = (x> + ¢y — by, x)

that has a semi-Siegel fixed point p, with multipliers 1 = ¢>™? and v € D\ {0}. Such
Hénon maps are parameterized by their Jacobian: i.e.,

b=v/u=lJac He, p.

As b— 0, the semi-Siegel Hénon map H,, , degenerates to the two-dimensional
embedding of the Siegel quadratic polynomial f, given by

(x, ) = (feo (%), x).
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Hence, for |b| <« 1, the dynamics of H,, ; can be considered as a small perturbation of the
dynamics of f,.

Let Dy, be the two-dimensional Siegel disk of H, . A priori, we do not have an analog
of Theorem 2.1 that characterizes the dynamics of H,, , on dD;,. However, we can still
define the nth pre-renormalization pR"(H., ;) of H,, by taking the same iterates as in
3): i.e.,

PR (Hey p) = 50 = (Ay, By) := (H o, HI,Ir,). )

In (4), the sets 2, and T',, are chosen to be some suitable domains in C? which intersect
0D, By letting n = 0, we obtain a pair representation of H,, , given by
S, , =50 = pPRO(He, ) = (H™ |2y, HepbIry)-

Analogously to the one-dimensional case, the sequence of pre-renormalizations of
H.,, » can be realized as the orbit of 3 H,, , under the action of some pre-renormalization
operator pR defined on a space of pairs of two-dimensional maps. To transform pR into a
proper renormalization operator R, we need to compose pR with some suitable rescaling
operator A. However, this turns out to be a more intricate problem in two-dimensions than
in the one-dimensional case. To ensure tractable asymptotic behavior under iterations of
R, it is not only important to fix the scale of the dynamical systems, but we must also bring
them back to Hénon-like form after each renormalization. To achieve this, we incorporate
a non-linear change of coordinates to the definition of A. Further details are provided
in §3.

Suppose that the renormalizations of H,, ; are given by

Rn(Echyb) = z:n = (Ans Bn)s

where A, and B, are defined on some fixed neighborhoods €2 and I" of (0, 0) in C2. Recall
that A, and B, represent rescalings of the g2,41 and gy, iterates of H,, ;, respectively. If
H,, 1, s sufficiently dissipative, so that |b| < € for some € < 1, then by the chain rule, the
Jacobians of A, and B,, are on the order of €92n+! and €927, respectively. Hence, if the
renormalization sequence {Z,,};’;O converges to some limit X, = (A, Bx), then

Jac A, = nlgrgo O(e?+1y =0 and Jac B, = nli)ngo O(e?) =0.

Thus, we see that the limit X, of the renormalizations of H, , must be a degenerate one-
dimensional system.

3. Renormalization of almost commuting pairs
In this section, we formalize the ideas discussed in §2. While previously, we considered
any rotation number 6 of bounded type, we will henceforth restrict our work to the case of
the inverse golden-mean

V5-1

Oy = 5

[1,1,...].

3.1. One-dimensional renormalization. For a domain Z C C, we denote by A(Z) the
Banach space of bounded analytic functions f : Z — C, equipped with the norm

IfIl = sup [f(x)].

xeZ
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FIGURE 8. A critical pair { = (1, §) € C(Z, W).

Denote by A(Z, W) the Banach space of bounded pairs of analytic functions ¢ = (5, &)
from domains Z C C and W C C, respectively, to C, equipped with the norm

Izl =3l + IEID.

Henceforth, we assume that the domains Z and W are topological disks containing 0.
Define the rescaling map A as

A() = (s;1 onosg, s;l ofosy) fort=(n &) e A(Z W),

where
se(x):=A;x and A :=£&(0).

We say that ¢ = (1, &) € A(Z, W) is normalized if £(0) = 1. Note that the space of all
normalized pairs is equal to A(A(Z, W)).

Definition 3.1. A normalized pair ¢ = (1, §) € A(A(Z, W)) is said to be a critical pair
if n and & each have a simple unique critical point at 0. The space of critical pairs in
A(A(Z, W)) is denoted by C(Z, W).
Definition 3.2. We say that ¢ = (n, §) € A(Z, W) is a commuting pair if

no&=~&on.

It turns out that requiring strict commutativity is too restrictive in the category of
analytic functions. Hence, we work with the following less restrictive condition.

Definition 3.3. We say that £ = (n, §) € C(Z, W) is an almost commuting pair (cf. [Bur,
Stir]) if

d'[n, §] Lo =00 g0 fori=0,2.
dx!

—(0) :=
I )
The space of almost commuting pairs in C(Z, W) is denoted by B(Z, W).
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£on?(1) 1

:"-.:"ufl]] p;?(l]f‘" 0 ) Eor 1

n(0)

n(0) 7N

FIGURE 9. The one-dimensional renormalization R(¢) := A(pR(¢)) == A((no & on, noé)).

Note that if ¢ = (5, &) is a critical pair, then the first-order commuting relation is
automatically satisfied: i.e.,

d[n, &]
dx

It is easy to see that the following statement holds.

(0) =n'(DE"(0) = £'(n(0))n'(0) = 0.

PROPOSITION 3.4. The spaces A(A(Z, W)), C(Z, W) and B(Z, W) have the structure
of an immersed Banach submanifold of A(Z, W) of codimension one, three and five,
respectively.

Definition 3.5. Let ¢ = (n, &) € B(Z, W). The pre-renormalization of ¢ is defined as
PR(C) :==(mo&on, noé).
The renormalization of ¢ is defined as
R(&) = A(pR()).

We say that ¢ is renormalizable if there exists Z’ C Z and W C W such that0 € Z' N W'
and R(¢) € B(Z', W'). The space of all renormalizable pairs in B(Z, W) is denoted by
D(Z, W).
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PROPOSITION 3.6. The space D(Z, W) is an open subset of B(Z, W).

Proof. Let ¢ € D(Z, W), so that R(¢) € B(Z', W) for some Z' C Z and W' C W with
0eZ' NW’. For any € > 0, it is easy to see that there exists § > 0 such that, for any
¢ = (i, €) contained in a §-neighborhood of ¢ in B(Z, W), we have R(&)eC((1—e)Z,
(1 — e)W"). To check almost commutativity, let

(i1, 1) == (o o, 70 &).
Observe that 5 )
[71, &1]1(x) =11 o [7, £]1(x),

2. i51]( )= i1, £ - d

(x)
and

d2[171 sl] 2[77 é]

[7, ] ).
dx

() = 77 (17, §1(x)) - ( X) + 17y (77, £1(x)) -

The result follows. O

The following theorem is shown in [GaYa2].

THEOREM 3.7. (One-dimensional renormalization hyperbolicity) There exists a

commuting pair { = Ny, &) € D(Z, W) such that the following statements hold.

(i)  There exist a neighborhood N of ¢, in D(Z, W) and topological disks Z' 3 Z and
W' S W such that R : N' — B(Z', W') is a well-defined analytic operator.

(ii)  The pair &y is the unique fixed point of R in N. In particular,

A s 0 B0 (X)) = () and A7 i 0 Ex(hax) = Ex(x),
where
Ay =14 0 &,(0)

is a universal scaling factor.

(iii) The differential D, R is a compact linear operator. Moreover, D¢, R has a single,
simple eigenvalue with modulus greater than one. The rest of its spectrum lies inside
the open unit disk D (and hence is compactly contained in D by the spectral theory
of compact operators).

Let
fu(@) =2+ cx

be the quadratic polynomial with a Siegel fixed point of multiplier i, = ¢**%, where
= (/5 — 1)/2 is the inverse golden-mean rotation number. For ¢ sufficiently close to
cx, we can identify the quadratic polynomial f, as a pair in D(Z, W) as

¢roi= APz, felw),s (5)

where
Zo=5;(2)=f(0)-Z and W.:=s57(W)=f.(0)-W.

The following theorem is shown in [GaRYa].
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W= (¢)

C* Cf *

FIGURE 10. The stable manifold W* (¢) of the fixed point ¢4 for the one-dimensional renormalization operator
R. The family of quadratic polynomials ¢, intersect W* (¢y) transversely at the golden-mean Siegel quadratic
polynomial ¢, .

THEOREM 3.8. The one-parameter family {1, }. intersects the stable manifold W* (¢y) C
D(Z, W) of the fixed point ¢y for the one-dimensional renormalization operator R.
Moreover, this intersection is transversal, and occurs at {y,.

3.2. Two-dimensional renormalization. For a domain Q C C2, we denote by A ()
the Banach space of bounded analytic functions F : & — C2, equipped with the norm

[Fll= sup [[F(x,yll.
(x,y)e

Define

|Fllx:= sup [|oxF(x, y)[| and |[[F|ly:= sup [|dyF(x, y)l.
(x,y)eQ (x,y)eQ

Denote by A»(€2, I') the Banach space of bounded pairs of analytic functions X =
(A, B) from domains @ ¢ C? and I" C C?, respectively, to C2, equipped with the norm

ISl = 3AIAl+ 1BID.
Define
1=l :=5lAlc + IBllx) and [Z[y = 3(1All, + IBl,).
Henceforth, we assume that

Q=ZxU and T'=WxV,

where Z, U, W and V are topological disks in C containing 0.
Define the projection map my as

fitx, y)

m F(x):= fi(x,0) for F(x,y):= [fz(x )

] € A»(Q) or A»(I')
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and
m Y= (@mA, mB) forX=(A, B)e A (2, ).

Define the rescaling map A as
A(E):=(s5' o Aosy, s5' o Bosy) for T =(A, B) e A(2, ),
where
se(x,y):=@Axx,Axy) and Ay :=mB(0).

We say that ¥ = (A, B) € A(R2, I) is normalized if 71 B(0) = 1. Note that the space of
all normalized pairs is equal to A (A (2, T)).
For € > 0, define A,(R2, T, €) to be the set of all pairs X such that

IZly < minfe, e[| X4}

Clearly, A>($2, T, €) is an open subset of 4,(€2, I'). Define A,(2, T, 0) to be the set of
all pairs ¥ = (A, B) such that
1=y =0.

Note that, in this case,

a(x)

AGx. y) = [h(x) b(x)}

] and B(x,y):|:x

for some a, h € A(Z) and b € A(W).
The following definitions are analogs of Definitions 3.1-3.3.

Definition 3.9. For € > 0, a normalized pair ¥ = (A, B) in A(A2(R2, T, €)) is said to be
an e-critical pair if w1 A and 71 B each have a simple unique critical point contained in the
e-neighborhood of 0 (the e-neighborhood is interpreted to be {0} if € = 0). The space of
e-critical pairs in A(A2(R2, T, €)) is denoted by C2(R2, T, €).

Definition 3.10. We say that ¥ = (A, B) € A»(2, I') is a commuting pair if
AoB=BoA.

Definition 3.11. For € >0, we say that ¥ = (A, B) €(Cr(R2, T, €) is an e-almost

commuting pair if

d'm1(AoB—BoA)
dx!

dim[A, B :
_ 0| <e fori=0,?2.

Lol —
1.

The space of e-almost commuting pairs in C2 (€2, T, €) is denoted by B, (2, T, €). Define
By(2, T, 0) C Cr(2, T, 0) by replacing ‘< €’ in the above inequality with ‘=0’.

It is easy to see that the following statement holds.

PROPOSITION 3.12. The space A(A(2, T')) has the structure of an immersed Banach
submanifold of Ay(2, T') of codimension one. For € > 0, the spaces A(A2(R2, T, €)),
Co(2, T, €) and By(R2, T, €) are open subsets of A(A2(2, T)).
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Let D(Z, W) C B(Z, W) be the set of one-dimensional renormalizable pairs. We
define an embedding ¢ of D(Z, W) into the space of two-dimensional-almost commuting
pairs as follows. Let £ = (n, §) € D(Z, W), so that R(¢) € B(Z', W') for some Z' C Z
and W C W with 0 € Z' N W'. Define

L&) == A((Ag, By)),

where
Ac(x,y) = [’7 ofo ”(x)} and B (x,y):= ['7 ° E(x)} . (6)
n(x) X
Observe that
71 ou(¢) =R(). (7

Hence, ((¢) € Bo(Z' x C, W' x C, 0).

Let X = (A, B) € By(R2, T, €). We define the renormalization R(Z) of T as follows.
To avoid introducing too much new notation in our discussion, we will use C > 0 to
represent any constant which only depends on || 2| (and, in particular, does not depend
on €).

First, define the pre-renormalization of X as

pR(X) = (A}, By) := (BOAZ, BoA). )
Next, we denote
ay(x) = a(x, y),

and consider the non-linear changes of coordinates

—1
Hx,y) = [“y y(’“)} . ©)

Note that this is completely analogous to the non-linear changes of coordinates used in the
definition of period-doubling renormalization in [dCLM]. Define

PR(Z)=(As, By):=(H 'oAjoH, H ' o Bj o H)

and . .
R(Z) = A(pR).
Let
(=8 :=mZ.

It is not hard to check that we have the estimates
IR(D)|ly < Ce* and  [[R(Z) — 1(0)] < Ce. (10)

Thus, we see that under R, the y-dependence of pairs shrinks super-exponentially, and
when restricted to pairs with no y-dependence, the action of R is equivalent to the action
of the one-dimensional renormalization operator R (see (7)).

To complete the definition of the two-dimensional renormalization operator R, we need
the following two lemmas. It should be noted that similar results are proved in [GaYa2].
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n(0) coni() 1 n(0)

n(0) gon?(1) 1
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L) )7 O X coRQ) L

FIGURE 11. The two-dimensional pre-renormalization pR(E) = (H*1 oBoAZo H H 'oBoAo H).

LEMMA 3.13. There exists an analytic projection operator lui; such that, for any e-
almost commuting pair ¥ = (A, B), the following statements hold.
(1) We have ||T1j(2) — || < Ce.
(i) IflIZlly <6 K¢, then iy (X) is a Cd-critical pair.
(iii) Let cpq be the unique simple critical point for w1 (B o A). If ¥ is a commuting pair,
then
Merit(2) = A((T,,' 0 Ao Tha, Ty, © B o Tpa)),

where
Tha(x, y) :i=(x + Cpa> ¥)-

Proof. By the argument principle, we see that 7;(Bo A)=m1BomA+ O(¢) has a
simple unique critical point ¢, in the Ce-neighborhood of 0. Set

Tha(x, y) :=(x + Cpa, ¥), (11)

and let
%1 = (A1, B1) = (T;,' 0 Ao Tpa, Ty,' 0 B o Tpy).

Again by the argument principle, we see that m1(Aj o Bj) =m1Aom B+ O(¢€) has a
simple unique critical point ¢,y in the Ce-neighborhood of 0. Set

Tup(x,y) :i=(x +cap, ¥),

and let
¥ = (A2, By) := (T} 0 Ay, By o Tup).
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Define
Merie () := A(X2).

Clearly,
[Merie(X) — Z|l < Ce.
Suppose that || Z||, < § < €. Observe that
0= (71(B 0 A)) (cba) = (1(B2 0 A2))'(0) = || B2 | (11 42)"(0) + O(8)
and
0= (m1(A1 0 B1)) (cap) = (11 (A2 © B2)) (0) = [| A2 | (711 B2) (0) + O (8).

It follows that I (X) is a C§-critical pair.
Lastly, assume that ¥ = (A, B) is a commuting pair. Then A; and B; would also
commute. In this case, we would have

(1(Ay 0 By))'(0) = (71 (B1 0 A1))'(0) = (711 (B 0 A)) (cpa) = 0.
Hence, ¢, =0 and Xy = X;. O

LEMMA 3.14. There exists an analytic projection operator Iy such that, for any e-almost

commuting pair ¥ = (A, B), the following statements hold.

(1)  We have |T1,c(2) — X < Ce.

(1) If X is a §-critical pair for some 0 < § K €, then Iy (X) is a Cd-almost commuting
pair.

(iii) If T is a commuting pair, then [1,.(X) = X.

Proof. Write

A(x, y) = [Zg i;} and B(x, y) = [b(x); y)} .

Let
b(x,y) +cx? + dx3:|

B =

1(x, y) [ B

where ¢ and d are constants to be determined later. Define
Mo (2) := (A, By).

Observe that
m1B1(0) =7 B0) =1.

We compute
71[A, B11(0) = 71 [A, B](0) — ca(0, 0)* — da(0, 0)°, (12)
dmi[A, Bi] dm[A, B] 5 ,
———(0) = ————(0) — (2ca(0, 0) + 3da(0, 0)*) (71 A)' (0) (13)
dx dx
and
2 2
d ”‘[Az’ Bil 0) = d’m [Az’ B] (0) — (2¢c + 6da(0, 0)) (1 A) (0)>
dx dx
— (2ca(0, 0) + 3da(0, 0)%) (71 A)"(0). (14)
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Choose the constants ¢ and d so that

ca(0, 0)> + da(0, 0)> =0

and
d*m[A, B
%(O) — (2¢a(0, 0) + 3da(0, 0)%) (1 A) (0) = 0.
X
Then we have 5
d“m[A, B]
el ] < €| L5 (0)'.

In particular, |c|, |d| < Ce, and if X is a commuting pair, then c = d = 0 and [1,.(¥) = X.
Lastly, if ¥ is a §-critical pair, then it follows from (12), (13) and (14) that [T,.(X) is a
C§-almost commuting pair. O

Definition 3.15. For € >0, let ¥ = (A, B) € By(2, I, €). The renormalization of X is
defined as
R(X) := Mg o Merie 0 R(X).

We say that ¥ is renormalizable if there exists Q' C  and I'" C T such that (0, 0) €
Q' NI and R(T) € Bo(, T, §) for some § > 0. The space of all renormalizable pairs
in By(2, T, €) is denoted by D (L2, T, €).

PROPOSITION 3.16. The space D>(K2, T, €) is an open subset of B2(L2, T, €).

Proof. Let T € D2(R2, T, €), so that R(X) € By (2, T, §) for some constant § > 0 and
some Q' C Q and I'" C T with (0, 0) € Q' NI. For any e > 0, it is easy to see that there
exists d > 0 such that, for any 3 contained in a d-neighborhood of ¥ in By(2, T, €), we
have R(E) € Bo((1 — &), (1 — &), (1 + e)d). O

We now generalize Theorem 3.7 to the two-dimensional setting.

THEOREM 3.17. (Two-dimensional renormalization hyperbolicity) Consider the one-
dimensional renormalization fixed point ¢, € D(Z, W). Let 1({y) =: (As, By) be the
embedding of ¢, into Dy(2, T, 0). For € > 0 sufficiently small, the following statements
hold.

(i)  There exists a neighborhood N of 1(¢,) in D2(2, T, €), topological bidisks ' > Q
and T" T and a constant C < 1/¢ such that R :N — By(Q', IV, Ce?) is a well-
defined analytic operator.

(i) For X € N, we have

IR(Z) — Lo (2)] < Ce.

Consequently,
It o R(X) — Rom(2)] < Ce.

(iii) The pair 1(&y) is the unique fixed point of R in N.

(iv) The differential D, R is a compact linear operator whose spectrum coincides with
that of D¢, R. More precisely, let N' C D(Z, W) be a sufficiently small neighborhood
of L«. Then, in the spectral decomposition of D, )R, the complement to the tangent
space of L(N) corresponds to the zero eigenvalue.
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Proof. Statement (ii) follows immediately from (10) and Lemmas 3.13 and 3.14.
Write

Ax(x, y) = [APJ:X*X)] and  B.(x,y) :=[

It is easy to see that ¢(¢,) is a commuting pair that is fixed under R. Moreover, R(¢(¢4))
is defined as the restriction of some iterate of ¢(¢,) on topological bidisks 1. € 2 and
A« @ T'. Hence, R(1(¢4)) extends to some larger topological bidisks ' > Q and ' 5
I'. By continuity, we can assume that the same is true for nearby pairs ¥ in a small
neighborhood N of ¢(¢,).

The fact that the image of pairs in N under R is Ce?-almost commuting is given by
(10) and Lemmas 3.13 and 3.14. If £ € N is a fixed point for R, then it follows that
[ Zolly = 0. Since R restricted to pairs with no y-dependence is equivalent to R, it follows
that o = ¢(¢,) by the uniqueness of the fixed point ¢, for R in N.

Finally, let E be the quotient of the tangent space of N by the tangent space of ¢(N).
Let M : E — E be the operator induced by D,,)R. Then |M"| = 0(62"), and hence the
spectrum of M is equal to {0}. O

&« (x)
N .

Let H,,, ., be the Hénon map with a semi-Siegel fixed point p of multipliers pt, = i

and v, where 6, = (v/5 — 1) /2 is the inverse golden-mean rotation number and |v| < €.
For u sufficiently close to 114, we can identify the Hénon map H,, , as a pairin D, (2, I', €)
as

2, = AH; o, Huolr,,). (15)
where
Q= sHH_u(Q) =mH,,0)-2 and T, := sHW(F) =mH,,(0) - T.
The following corollary is a consequence of Theorems 3.8 and 3.17.

COROLLARY 3.18. The two parameter family {Xn, ,},.v intersects the stable manifold
WS (1(¢4)) C Da(R2, T, €) of the fixed point (&) for R.

4. The combinatorics of golden-mean rotation

In this section, we study the combinatorics of the two-dimensional renormalization defined
in §3. To simplify our analysis, we model the dynamics of almost commuting pairs by rigid
interval exchange maps of the inverse golden-mean rotation type.

4.1. Pre-renormalization operator for golden-mean rotation. ~Consider s € (0, 6,] and
t € (0, 1] such that s/t = 6, = (/5 — 1)/2. Let
I=[1l—t—s,1—¢t] and J=[1—1¢,1].

Note that we have
[I|=s<t=]|J]|.

Define themaps S: J - IUJand T : I — J as

Sx):=x—s and T(x):=x+t.
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FIGURE 12. The stable manifold W*(1(¢x)) of the fixed point ¢(¢4) for the two-dimensional renormalization
operator R.  Every pair in W¥(¢(¢4)) converges super-exponentially fast to the space of degenerate one-
dimensional pairs. Every degenerate one-dimensional pair in W* (¢(¢)) converges exponentially fast to ¢(¢4),
at a rate given by Theorem 3.7. By Theorem 5.8, the family of Hénon maps {¥p,, , }u,v intersects WS (&x)
at the golden-mean semi-Siegel Hénon maps {X HM*.V},,A Note that X Hy, 0= t(¢f,), where ¢y is the pair
representation of the golden-mean Siegel quadratic polynomial fi. Compare with Figure 10.

S

T

FIGURE 13. A rigid rotation pair R = (S|y, T|;), where I =[1 —t —s,1 —¢t]and J =[1 — 1, 1].

The action of the pair of maps R = (S|, T'|;) on the interval I U J represents the rigid
rotation of the circle by the angle 6.
We define the pre-renormalization pR(R) of R as follows. Let

/

s'i=2s—te(,s) and t:=t—s5¢€(0,1).

Then define
PR(R) = (T o S?|;, T o Sp),
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T

FIGURE 14. The pre-renormalization pR(R) = (T o S|/, T o S|;s), where I’ =[1 —' —s', 1 — '] and
J=[1-=1 1]

where I’ =[1 —t' —s', 1 —¢']and J' =[1 — ¢, 1]. Similarly to before, we have s'/1 =
6, and

['|=s" <t =|J.
Hence, the action of pR(R) on the interval I’ U J’ represents the rigid rotation of the

circle by the angle 6,

4.2. Dynamical partitions.  Set
s0: =04, to:=1, Iy:=[—04,0] and Jy:=][O0, 1].

Define
So(x) :=x —0,, To(x):=x+1, (16)

and consider the pair Ry = (Solj,, Tols,) acting on the interval [—6,, 1].
For n € N, denote the nth pre-renormalization of Ry by

R, = (Sn|Jn7 Tn|[n) = pRn(Ro),

where
Li=[1—-t,—s,, 1—1t] and J,=[1—1,, 1], (17)
and
S,(x):=x—s, and T,(x):=x+1,.
Then
Sn
— = 0b,. (18)
In
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Notation 4.1. For n € N, consider an n-tuple
5: (anflv LR 010)

constructed inductively fromi =n — 1 to i = 0 as follows.

(i) Choose a,—1 € {0, 1, 2}.

(i) If aj41 =2, then choose «; € {0, 1}.

(iii) If aj41 was chosen from {0, 1}, and ;1 = 1, then choose «; € {0, 1}.

(iv) Otherwise, choose «; € {0, 1, 2}.

Denote the set of all n-tuples constructed as above by 7,,. For n = 0, we define [Jy := {(0)}.
We also denote by 7, the set of all n-tuples

Y =Bn-1,---, Bo)

constructed identically as for 7,, except that step (i) is replaced by
(i’ Choose B,_1 € {0, 1}.

LEMMA 4.2. Let
o= (n-1,...,0) €Ty and ¥y =(Bu-1,...,P0) €L,.
Denote
RG :=501po0--- oS 15, and RY:=SP|o0-- 08|, .
Then ROE and Rg are well defined on J,, and I,,, respectively.
LEMMA 4.3. Let
o™ :=02,1,1,...,)eT, and yy¥™:=1,1,...,1)€el,.

Then —max ~ymax
Ry =pR"(R)) = (Too Ry" |s,. Too RY™ 11,)
LEMMA 4.4. Define
Pn = {R(L)U(Jn) | @ e Jn}

and B
w i ={Ry (L) |V € L,}.

Then P, U Q,, forms a cover of [—6y, 1] such that its members are disjoint except at the
endpoints. The collection P, U Q,, is called the nth dynamical partition of [—6,, 1].

LEMMA 4.5. For n >0, let U € P,. Listing in order from left to right, the element U

consists of one element in Py, 41, one element in Q, 4 and another element in P, 1.
Similarly, let V € Q,,. Listing in order from left to right, the element V consists of one

element in P, 1| and one element in Q1.

LEMMA 4.6. Let {gn};,2, C N be the Fibonacci sequence defined by the inductive relation

go=1, q=1 and qui1=qy+qgun—1 forn=>1.
Then qan1 = | Tl and g2, = |1y ).
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S1 51 51

FIGURE 15. The elements of the 1st and 2nd dynamic partitions P} U Q1 and Py U Q5.

Define

0, = U V.
VeQ,
By Lemmas 4.4 and 4.6, the set Q,, is a union of gy, intervals of length s,,. The following
result shows that these intervals are well distributed over [—6y, 1] in the sense that the
average of any sufficiently well-behaved function on [—6,, 1] is approximately equal to its
average on Q,. Moreover, the error is of the same order of magnitude as s,,.

PROPOSITION 4.7. Let f :[—6y, 1] = C be a piecewise-smooth function with finitely
many discontinuities, whose derivative is bounded by M. Then

1 1 1
dx = dx + O(Msy).
Donsn an fx)dx 6 fx)dx (Msy)

Proof. Denote

1+ 6,
my ‘= > 1,
q2nSn
and let u, : O, — [—0s, 1] be the unique surjective map satisfying the following two

properties.
(1)  The restriction of u, to any element V € Q,, is an affine map of the form

uply (x) =myx + by

for some by € R.
(i) Forany x, y € Q,,if x <y, then u, (x) < u,(y).
Then

1
/ fu, () dx:mn/ f(x)dx.
— On
Write

1
my, f(x)dx:/ fx)dx + E,
On —0s
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-0,

FIGURE 16. The integrals f_lg* f(x)dx (top), an f(x)dx (top, in grey) and f_lg* Fluy () dx =
my an f(x) dx (bottom).

1

where . .
E, :=/ flut(x)) dx—/ f(x) dx.
—04 —04

Observe that

1
\Ey| < / G () — FGOldx

—0.
1
§M/ luy ' (x) — x|dx. (19)
—0,

To estimate (19), we need to find a bound on the displacement of points under u,,.

Consider the kth dynamic partition Py U Qf for 0 <k <n — 1. The map u, acts by
eliminating the elements that belong to P, and stretching the elements that belong to Q,,
by a factor of m,,. Denote the change in size under u,, of each element in Py and Qy by t,’f
and a,lf, respectively, where

r,]f = |u, (Uy)| — |Ug| for any Uy € Py,

and
a,]f = |luy(Vi)| — |Vk| forany Vi € Q.

See Figure 17.
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__________________________________________________________ Vi 07
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r T31 uz( Vll )

FIGURE 17. The images of the elements U Ly 12, U 13 € Pp and Vll, V12 € Q1 under the piece-wise affine map
u3. Under u3, the elements of P3 are discarded, and the elements of Q3 are stretched by a factor of m3. As a
result, the elements in P shrink by 7:31 , while the elements in Q; expand by (731.

By Lemma 4.5, we have
14

It follows that

|r,7_1|<tn and |

Likewise, for0 <k <n — 1,

k

T

o k] k+1
. =0, +2t,

= (m, — Ds, —2t, <0 and o,?_l =0my, — s, —t, > 0.

and

(20)
ol <1,
of =gkt 4 (1)

Note that the pairs {t¥*!, 0%} and {z%, o*} each have opposite signs. Hence, (21)
implies that the pairs {tX, 71} and {0}, o¥*1} each have the same sign, and

k k+1
oy | < lo, ™1

Thus, by (20),

and

k k+1
[Tyl <17,

o,f>0 and r,’f<0 foralO0 <k <n-—1.

Let £ € Q, be a point of maximum displacement under u,: i.e.,

1 A A
max 1 lu, " (x) — x| =X —up(x)|.

—0y<x<
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FIGURE 18. Tllustration of (22) (top) and (23) (bottom).
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To obtain the desired estimate on (19), we will find a bound on the displacement of x

under u,,.

The interval [—6,, 0] is occupied by the element Iy in Qp, and the interval [0, 1] is
occupied by the element Jy in Py. By Lemma 4.5, listing from left to right, the first
dynamic partition P; U Q; consists of Ull e P1, Vl1 € 9y, U12 e P, V12 € 9 and U13 €
P1. Note that, for x| € Ul1 N Q,, we have x| 4+ sg € U12 N Q, and x| + 2sg € U13 N Qy,

and

un (X1 4 1s0) = un(x1) + 160 forl=0,1,2.

Likewise, for y; € Vl1 N Q,, we have y; + sg € V12 N Q,, and

wn (31 + 50) = un(y1) + 0,
See Figures 18 and 19. Since o,? > 0, we have the following two possibilities:
(i) uy(x) —x <0, and x is contained in Ul1 U Vll; or

(i) un() — % >0, and % is contained in V2 U U;.

(22)

(23)

Assume case (i). Listing from left to right, the element U 11 consists of U21 ePr, Ve Oy
and U22 € P,. For xp € (U21 U V)N Q,,wehave x, + 1] € Vl1 N Q,, and

Since t,, T

(X2 + 11) = un(x2) + 7.

Moreover, for y; € U22 N Q,,wehave y, + 1 € Vl1 N Q,, and

n(y2 + 1) = un(y2) + 2.
1 .2

n’ - n

lun (%) — % =06 1, — 00 <21, =260 1s,.

The desired estimate follows. See Figure 20.
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(25)

< 0, it follows that if u,(x) — X <0, then x € Vll. Using a similar argument
and proceeding inductively, we see that X is contained in V,_| = [s,—1, 0] € Q,—1. In
fact, ¥ must be equal to the left endpoint s,, of the unique element of Q, contained in
V,.—1. Thus
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FIGURE 19. Illustration of (24) (top and middle) and (25) (bottom).

Now, assume case (ii). Arguing similarly to above and proceeding inductively, we see
that x is contained in J,—; = [1 — #,—1, 1] € P,—1. In fact, X must be equal to the right
endpoint 1 — #, of the unique element /,, of Q,, contained in J,,_;. Thus

Jun(®) = [ =1 = (1 = t)] =ty = 6, 'sy.
The desired estimate follows. See Figure 20. O

5. The renormalization arc

By Theorem 3.7, the one-dimensional renormalization operator R has a hyperbolic fixed
point &y = (14, &x). Consider the embedding ¢(¢,) of ¢, into the space of two-dimensional-
almost commuting pairs given in (6). By Theorem 3.17, ((¢,) is a hyperbolic fixed point
for the two-dimensional renormalization operator R. Moreover, () has a codimension
one stable manifold W* (¢:(¢4)).

Let ¥ = (A, B) be a commuting pair contained in W*(¢(¢,)). Set

X, = (A,, By) =R"(2),
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Vn_ 1 Jn— 1
| = } = f-_l/\l‘-T_lhr-.le-\ } = i } = ‘_A‘l_“ = |
_lg i L | L | L ] Ib I[} L} L | L | | L} I L | L | Ll r ¢ 1|
Uz
—IQ t } t d’;A } t t t t } t t ,\é’
. us(Z) u3(Z)

FIGURE 20. Maximal displacements under u3. The point which moves maximally to the left is in V,,_ and the
point which moves maximally to the right isin J,, 1.

where

A =[O 0] ana e =[PV,

Let
M(x) :=a,(x,0), &x):=by(x,0) and & := @, &).

Then, by Theorem 3.17,

1=t — @)l < O(™). (26)
Denote
(@n)y(x) :=au(x, y),
and let
Ho1(x, ) = [(“”)yy 1()‘)}

be the non-linear changes of coordinates given in (9). If

. -1 2 . R
Bni ':Hn+IOB" oApoHyy1 and  By41:=m1 Bpy,

then by (10), the map B,41 has a unique critical point ¢, near 0. Define
Tn+l ('x5 y) = (x + Cn+17 )’)7

and let
Snt1(6, ¥) 1= A1 X, Apg1y),  |Ang1l < 1

be the scaling map so that if
Dyt1(x, ¥) := Hpy1 0 Tyg1 0 Spt1(x, y), (27)
then we have
A1 =@, 0B oA o®uyy and By =@, 0ByoA, 0Pyl
Note that, by the choice of 741,
(1Bn11)'(0) = &,,,(0) =0. (28)

The following corollary is a direct consequence of Theorems 3.7 and 3.17.
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COROLLARY 5.1. As n — oo, we have the following convergences (each of which occurs
at a geometric rate):

B =, &n) = T = (M4, &4

(11) Ay = Ay, where Ay is the universal scaling constant given in Theorem 3.7; and
(iii) P, — D, where
-1
X AsX
Dux, y) = |:¢*( )i| — |:77* (A ):| .
Axy Asxy
For 0 < k < [, define the kth microscope map of depth | by
CD;{ = Q1 0 DPpqp0- - 0Py, 29)

Let
Qli=al(Q) and T} :=adlD). (30)

Observe that {Qi U F,l(}j'ik is a nested sequence of open sets. Moreover, for k <m < [, we
have
oM@ )=0 and @y (T.)=TL

PROPOSITION 5.2. Let Ay be the universal scaling factor given in Corollary 5.1. Then,
forall0 <k <],
diam(Q} UTEH) = 0L 7).

Consequently, there exists a point kx, € Z C C, called the kth cap, such that

o0
ﬂ QL UTL = (i, 0).
I=k+1

It is not difficult to see that

@, ((kn, 0)) = (kn—1,0) and P ((k1, 0)) = (g, 0). €29

Notation 5.3. We denote by
pZ, = (pA,, pB,) forneN

the sequence of pairs of iterates of ¥ = (A, B) defined as:
1) let pXo:=X;and
(i) forn >0, let
PZpt1:=(pByo PAi7 pBnopAy).

Observe that if
En = (Am Bn) = Rn(z)

is the nth renormalization of X, then
Ap=(@) "o pA,0®} and B, =(®}) o pB,o dh. (32)

The following statements are analogs of Lemmas 4.2 and 4.3.
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FIGURE 21. The renormalization microscope map <l>% obtained by composing the non-linear changes of
coordinates ®; and ®,. We have Qé: ®1(R), Fé =), Q2= @%(Q), r2—= q%(r) and (kg, 0) =
@1 (k1. 0) = F((k2. 0)).

LEMMA 5.4. Consider the sets [J, and I, of ordered n-tuples constructed in Notation 4.1.
For
o= (p-1,...,00) €Ty and Y =(Bp-1,...,Bo) €Ly,

denote

X?:=pAy’o--- o pA and TV := pAgo 0.+ 0 pAf”:].
Then S° and 3V are well defined on Qf} and T}, respectively.
LEMMA 5.5. Let

S =2, 1,1, D edy and P =1, 1,..., 1) e,

Then ' '
PE, = (pAn, pBy) =(Byo 7, Byo XVn ).
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FIGURE 22. The renormalization arc yy, of X. The open cover X U Y7 is shown.

Definition 5.6. Forn € N, let

X,:= | 2%} and v,:= ] =V (@p).
weTy 76111

The set
o0
ys:=[)XaUY,

n=1

is called the renormalization arc of X.

The following theorem justifies the use of the term ‘arc’ in Definition 5.6. It is the
counterpart to [GaRYa, Proposition 4.2].

THEOREM 5.7. (Continuity of the Siegel boundary) Let Ry = (Soly,, Tols,) be the pair
representing the rigid rotation of the circle by 0., as given by (16). Then there exists a
homeomorphism h : [—0,, 1] — yx that conjugates the action of X and the action of R.

Proof. The proof is identical, mutatis mutandis, to the proof of Proposition 4.2 in
[GaRYal]. For the reader’s convenience, we will outline the main ideas.

The renormalization arc ys, of the kth renormalization of ¥ maps into ys under
the microscope map le(‘). For k sufficiently high, ¥ is in a small neighborhood of the
renormalization fixed point ¢(¢,). For all such pairs, the maps Zka o <I>ﬁ+" for w € J, and
% }(/ o d>]]:+" fory € 7, have derivatives bounded above by Cp" for some uniform constants
C>1 and p <1. It readily follows that the theorem holds for ys,, and hence also
for yy. ad

Henceforth, we consider the renormalization arc of X as a continuous curve ysy = yx (t)
parameterized by the homeomorphism % : [—0,, 1] — ys given in Theorem 5.7.
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The following theorem is the counterpart to [GaRYa, Proposition 4.6]. The proof is
identical, mutatis mutandis, and hence it will be omitted.

THEOREM 5.8. The pair Xy, , representing the semi-Siegel Hénon map H,, . given in
(15) is contained in the stable manifold W*(1(¢y)) C D2(2, T, €) of the fixed point 1(Ly)
for R. Moreover, a linear rescaling of the renormalization arc s(yx Hu*,v) is contained in
the boundary of the Siegel disc D of Hy,, . In fact,

0D =s(yzy,, ) Y Hu voslysy,, )

6. Limit of the microscope maps

Consider the microscope maps @2 :QUTI — Q given in (29). By Proposition 5.2, CIDf{
converges to the constant map (x, y) — («x, 0) as / goes to oco. In this section, we show
that, in the x-coordinate, CI>§{ behaves asymptotically like the (I — k)th iterate of the map
¢ (x) == n;l(k*x) given in Corollary 5.1.

PROPOSITION 6.1. The map ¢ : Z — Z has an attracting fixed point at 1 with multiplier
22
Proof. Recall that
A 1= 15 0 E,(0) = ni(1).
Immediately, we see that the map
$u(x) = 11! ()

fixes the point 1. Moreover, since ¢.(Z) € Z, this fixed point must be attracting.
Since &, has a critical point at 0, we may write

£.(x) = 1+ cax® + O(Ix )
for some ¢y € C. Thus,
M () = Ay + M + O(Ix])) and  £,0x) = 1+ A + O(Ix]).
Since ¢y = (1«, &) is a renormalization fixed point,

ME(X) = s 0 Ex(hnX) = A 4+ 0L (D22 + O(Ix?).

Therefore
() =2;",
and we conclude that
PL) = =32 =
A R

Let t,.(x) := x + 1 be the translation by 1, and define

v

—1
@« =1, Oyt

Since ¢, has an attracting fixed point at 0 of rvnultiplier Aﬁ, the sequence A 2”(;3: converges
to the linearizing map u, : t*_l(Z) — C for ¢, at 0 as n — oo.
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Let

A

On =11 Dy

For 0 <k < [, define
b = brr10Prp2 0 0.

It is not difficult to see that
o =m @k,

It follows from (31) that
bnlin) =K1 and (k1) = .

Denote
dy =@ (k) and  di = (PL) (k1) = dyr1dks2 - . . dy.

PROPOSITION 6.2. Asn — 0o, we have the following convergences (each of which occurs
at a geometric rate):

D n—
(i) «, — 1;and
(iii) dy, — A2,
Let t,,(x) := x + «, be the translation by «,, and define
b = t,,__ll o ¢y 01y
Observe that 0 is an attracting fixed point for dv),, of multiplier d,,. For 0 < k < [, define
¢V>,]f :=Id and qvb,l( :=¢V>k+1 ocﬁkﬂo.-- O(/S, =tk_1 qu,l( of.
PROPOSITION 6.3. For k > 0, we have the convergence
(dll()_l(l;,l( —u, asl— oo,

where u.. is the linearizing map for ¢V>* at 0.
Proof. For k <m <, define

el (x) =22l x

By Proposition 6.2(iii),
120 dy, =14 0o

for some uniform constant p; < 1. It follows that

(€)™ 0 P 0 (€,) = + O,
By Proposition 6.2(iv), we may write

dyy' (@) 0 G 0 (€),) = 1,5 + Em,

where
IEmll = O(p5'

https://doi.org/10.1017/etds.2018.83 Published online by Cambridge University Press


https://doi.org/10.1017/etds.2018.83

Renormalization in the golden-mean semi-Siegel Hénon family 1143

for some uniform constant py < 1. Since
dy' 1, (0) = 1= 2,29 (0),
we have
E;, (0)=0.

It follows from Cauchy-estimates that

| Em () = O (04" |xI%)

for all x such that |x| is sufficiently small.
Let

p = max{|AZ], p2}.
Observe that
@) o (G oely) o i

=)' o (el o (eh) T o oeh) o LT

=)'y o (el 0Py +dnEm) o g

=)' oel,_ o+ 0@ T G 0 dmEm o 47D

= ()~ o gy 0 T+ 0" o K pp™ p2 M)

=)' oe_ o T+ 0.
By induction,

dp) g =22PG T+ 0 - k)ph.
The result follows. O
For 0 <k < [, define
?»5( = A1 Ak42 AL

COROLLARY 6.4. For k > 0, we have the convergence
@y Jac L (x, y) =5 ul(x) for (x.y) €QUT.

Proof. Write

Pulr, y) = [‘b"f" ”} ,
ny
so that ¢, (x, 0) = én (x). By (26) and the definition of H,, and ®,,
Inlly = O(I2nle). (33)
Moreover, by Corollary 5.1,
13xull = O(122]). (34)

For k <m <, let qﬁfn (x, y) be the first coordinate of @fn (x, ¥). Then the following
inductive relation holds: i.e.,

Bl (X, ) = Gt (Pl (X, ¥, AL 9). (35)
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Hence, .
2)71

! I !
omlly =1Anle”  +ldntllidnilly-

By induction,

gL 1y = OUAL 1™ + Idmrinl €2 4 4 [dly  ale®)
=0(p™™"e™)
for some uniform constant o such that |[A.| < p < 1. This means that
by (¥, ¥) = b (¥) + O (p' "), (36)

Differentiating (35) with respect to x, we obtain

0l (X, ¥) = BxPm1 (Bl (2, »), AL 19) - 0l ().
Note that
[ l dd;m l 1 m
ax¢m(¢m(x7 Y)» )"my):Eod)m(x’ y)+0(|)‘-m_1|€ )

d(i ~ _ m m
= d—x”’ o ¢l (x) + 02y + oAl _ 1e*)

dm
dx
where in the first equality we used (33) and in the second equality we used (34) and (36).

By induction,

o ¢l (x) + 0(p! e,

! d‘fsllc I—k 2k
Oy (x, y) = Tx (xX)(T+ 0(p" " e )).
Thus, by Proposition 6.3,
_ I
(@) e (x, y) —> ), (x).

The result follows. O

7. Universality

Let ¥ = (A, B) be commuting pair contained in the stable manifold W*(:(¢,)) of the
two-dimensional renormalization fixed point ¢(¢,). Moreover, assume that there exists a
constant § such that the following estimates hold: i.e.,

0 #max ||Jac A(z)|| <8 and min |[Jac B(z)|| > 8. 37
€Y% €Yy

Note that these assumptions hold for the pair ¥, , representing the semi-Siegel Hénon
map H,,, , given in (15).
By (37), we may choose a branch of the logarithm so that the complex-valued function

log Jac A(h(2)), O0<t<l,

T = {log Jac B(h(1)),  —6, <t <0,

where h : [—6,, 1] = yx is the parameterization of the renormalization arc yy given in
Theorem 5.7 is well defined. We define the average Jacobian of X to be the complex

number .
1
b=by :=e T(t)dt). 38
b Xp<1+9*/_9*() ) (38)
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Consider the iterate pX, of ¥ given in Notation 5.3. Proposition 5.2, Lemmas 5.4
and 5.5 and standard distortion estimates imply the following lemma.

LEMMA 7.1. There exists a uniform constant p < 1 such that

Jac pBy(z1)

—140("
Jac pBy(22) ")

forany z1, 72 € F6’.
PROPOSITION 7.2. Let p < 1 be as in Lemma 7.1. Then
Ju(2) :=TJac pB,(z) =e"b" (1 + O(p")) forzeTy,
where qon, = |Z,| is given in Lemma 4.6, and r,, € C has a uniform upper bound.

Proof. By Proposition 4.7,

1 /1 1
logb = T(t) dt = f () dt + O(sy).
g 1+ 0, —0s q2nSn n !
Now, there exists a point x in the interval [, :=[1 —t, — s, 1| — t,,] (see (17)) such that
for
w:=h(x)elyNys,
we have
/ T(t)dt = / log Jac p B, (z) dz = s, log Jac p B, (w).
n h(ln)
Hence,

q2n log b =log Jac p B, (w) + O(qansy).

Observe that
Gonsn < 1+ 6,.

The result now follows from Lemma 7.1. O

Set
X, = (A, By) :=R"(2),

where
an(x,y)

ey =[r0 )

] and B,(x,y)= [b"();’ y)i| .

Let

M (x) :==ay(x,0), & (x):=0by(x,0) and & = @, &n).
By Theorem 3.17, we know that the renormalization sequence X,;; approaches the
sequence of embeddings ¢(¢,) super-exponentially fast. The following result, which

is central to this paper, states that, during this process, the renormalization sequence
uniformizes to a certain two-dimensional universal form.

https://doi.org/10.1017/etds.2018.83 Published online by Cambridge University Press


https://doi.org/10.1017/etds.2018.83

Brn bq2n /8(:6)1;
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THEOREM 7.3. (Universality) For some p < 1,

En(x) + b B(x) y (14 O(p”))}
x 9

Bn (-x5 )’) = [
where b is the average Jacobian, {q;}7°, C N is the Fibonacci sequence, {ri}°, C C
is a uniformly bounded sequence that depends on the pair X, and B(x) is a universal
function that is uniformly bounded away from 0 and oo and which has a uniformly bounded
derivative and distortion.

Proof. Recall that

By(x, y) = (®}) " o pB, o Di(x, y).
See (32). Hence,
Jac &g (x, y)

J B I :J I NN )
ac By (x, y) = Ju(x y)JaC O (Bulx. 7))

(39)

where J,, is the Jacobian of p B, given in Proposition 7.2. By Corollary 6.4,

Jac @ (x, y) N U, (x)
Jac G(By(x, y))  ui(8«(x))
Note that the convergence is geometric and that B has the properties claimed in the

theorem.
Now write

=:B(x) asn— oo.

Ba(x, y) = |:€n(x) +xEn(xa )’)i| ’

where E,, is undetermined. Since
Oy E,(x, y) =Jac B, (x, y),

plugging in (39) and integrating both sides, we obtain the desired formula. O
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COROLLARY 7.4. For some p < 1,
an(x, y) =1y(x) + b a(x) y (1 + O(p")),

where ay is the first coordinate of Ay, b is the average Jacobian, {q;}°, C N is the
Fibonacci sequence, {r;}72, C C is a uniformly bounded sequence that depends on the
pair %, and a(x) is a universal function that is uniformly bounded away from 0 and oo
and which has a uniformly bounded derivative and distortion.
Proof. Recall that
A1 =@, 0B oA o®,yy and By =@} 0Byo A, 0Pyl
Since ¥ = (A, B) is a commuting pair,
An+l =

—1 -1
il o0ApoB,0A, 0P, =CI>nJrl oA, oPytp1 0Byt

Let .
Hyy1(x, y) = [(“”);’ (x)} ,

and
Spr1(x, ¥) = Apg1x, App1y) and  Tppq(x, y) = (X + a1, ¥),

where c;1 is the critical point of 7} (Hnj:1 o B, oA, oH,;1) (see (27)). Then

Dpy1:=Hpy10Tot1 0 Spt1-

Let
Byt = Tys1 0 Spt1 0 Byg1.
Then
Antt = (Tyg1 05p41) " 0 Hyl 0 (Ay 0 Hyp1) 0 By
Note that

x X

Moreover, by Theorem 7.3,

B EI’H-l(xv )’)
B, ,Y) = )
n+l(x y) [ An+1x
where
bug1(x, ¥) = A1 Ens1 (X) + Cugt + Ang1€ ™20 B(x) y (14 0(p" ).
Thus,
Ao (e, 9) = [anmx, y)} _ | 21 n a1 (8, ), i 0 Bugi (v, 9) = A en
8 ' hnt1(x, y) )L;_il_lhn o Byy1(x, y)
By (20),

~ ~ ~ n—1
lan (Bns1(x, 0), iy © Buyi(x, y)Ily = O [pP0r+D]).
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Hence,
ng1 (X, Y) = Npg1 (¥) + B2 ! (By 4y (x, 0))
x B0y (1+ 0" ™) + 0¥ [ptun))
= a1 (x) + €L g (x) y (1 + 0(p" ),
where
a(x) = lim 1}, (bt (x, 0) B(x)
n—>oo
= Hm 7, G101 () + o) B)
= ﬂ;()»*é*(X))ﬂ(x)
is universal and has the properties claimed in the corollary. O

Consider the kth cap ki given in Proposition 5.2. Denote
Dy :=D,.00®, and D} := D, 0 Pl

By (31),
D} = Diy1 - Dpya -+ Dy.

|1 sppPe=D | fuy, 0
el )

where b is the average Jacobian of X defined in (38). Then there exists a constant p < 1
such that the following estimates hold for alln > 1:

(i) up =121+ 0(p"M);

(i)  An=2A:(1+ O(p")); and

(iii) |sp| =< 1.

Consequently, for 0 <k <1,

COROLLARY 7.5. Write

1 dpe Tul 0
I _ k k
oi=[o "% 4]

where:

. 21—k
() ub =g gy up =220 4 0kt
(i) A =gt kg M= AR+ 0(pFY); and

(i) [ = 1.
Proof. By Corollary 5.1 and Proposition 6.2, we have
Un On
D, = ,
" [0 AJ
where u, converges to )»i geometrically fast in n. It remains to find the desired estimate
for o,,.

Recall that
D, (x, y) = Hy(ApX + cny Any)
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and

H_l , — an—l(-x1 y)}7
w (X,Y) [ y

where a,_1(x, y) is the first coordinate of A,_(x, y). By Corollary 7.4,
an—1(x, ¥) = N1 (x) + 716200 a(x) y (14 0(p"1)).
Hence,
dyan—1(x, y) =" 1b%00 a(x)(1+ O(p" ™).
By straightforward computation,
On = —ltnhnDydn—1 (k1. 0).

The result follows. O

8. Non-rigidity

As an application of the universality theorem obtained in §7, we show that two commuting
pairs cannot be C'-conjugate on their respective renormalization arcs if their average
Jacobians differ in absolute value. Together with Theorem 5.8, this implies the non-rigidity
theorem stated in §1. Our proof is similar to the one given in [dCLM] that shows non-
rigidity of the invariant Cantor set for period-doubling renormalization.

THEOREM 8.1. (Non-rigidity) Let ¥ = (A, B) and = (A, f?) be commuting pairs
contained in the stable manifold W*((¢y)) C Dy(2, T, €) of the two-dimensional
renormalization fixed point 1(¢,). Furthermore, assume that ¥ and % both satisfy (37)
for some 8, 5 > 0, so that their respective average Jacobians b and b are well defined. Let
f1vs = vs be a homeomorphism which conjugates the action of ¥ and Y. Then the
Holder exponent of f is at most %(1 +1In |b|/ In b|) (and, in particular, cannot be C').

Proof. For brevity, we will only define the notation for . The corresponding objects for
% will be marked with the tilde.
Assume that |b| # |b|. Then we can choose k sufficiently large so that

|1;|1121< & ||,
Next, choose n > 0 so that
AL < b9k < A & |b92, (40)

For the proof, we work in three different scales: in the scale of ¥ = (A, B), of X} =
(Ak, Bx) and of Xpyp, = (Ag+n, Br+n) (see Figure 24). First, in the scale of ¥ ,, let

Cktn = Biyn((Kitn, 0)).
Then, in the scale of X, let
o= ), g = Br(e™) and wy = Bi((k, 0)).
Finally, in the scale of X, let
Z’f” = d>](§(z£+") and Wy := ®f (wy).

Consider the distance between the following pairs of points:
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¥ zk 23-'+“-"1

Ck+n

(H'L‘.+n 3 U)

FIGURE 24. The distances A1, A and A3.

(1) & and (i, 0);
2) zk+” and wy; and
(3)  Z{™ and Wy
Let A;‘, Aiy and A; with i =1, 2, 3 denote the horizontal, vertical and Euclidean distance
between these pairs of points, respectively.
By Corollary 7.5,
A= A",

and for some uniform constant C > 0,
AT > 2C (b7 [hy|” = [Mi?") > CIB|PK |1, |",
where, in the last inequality, we used (40). Thus, we see that
A} > C|b|% A",
Again by Corollary 7.5, we arrive at
A3 > A} > Clb|%% | n, "
Now, consider the corresponding distances for . Again,
A = a"
However, by (40) we see that
A} = O(BI™ sl + 24Py = O (1™,
By Theorem 7.3 and (40), we obtain
A5 = O(A] + D17 A]) = O (1M™™= Ay,
Lastly, Corollary 7.5 implies that
A = Ay = O (15,

Hence,
Az = O (A >y,
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Observe that any Holder exponent o for a conjugacy f : yz — y5 between X and by
must satisfy
A3 < C'(A3)”

for some uniform constant C’ > 1. By our estimates above, this means that
- 5 or -
15192 |B19% |y ¥ < D192 | A |"TF < C'(IAu ") < C(I0i 7215192 |b1924)

The theorem follows. O
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