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abstract

For estimates of critical illness (CI) insurance premiums in the presence of a known mutation
leading to a genetic disorder, the key quantity is the penetrance, that is the probability qðxÞ that
the disease has developed by age x. This function is often estimated in the genetics literature,
though typically with large confidence intervals. In this paper we suggest that the main features
of real penetrance functions can be represented reasonably well by simple one-parameter families
of functions, which can be scaled to fit the age range and lifetime penetrance. This gives a
simple, direct, pragmatic way to obtain quick estimates of CI premium rates from published
penetrance estimates, and also some indicative bounds for such premium rates, which are useful
since confidence intervals usually cannot be estimated. To aid this process, as a short-cut to the
solution of Thiele’s equations in a multiple-state model, we give extensive tables in another
report (Macdonald & Yang, 2003).
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". Introduction

1.1 Genetics and Actuarial Modelling
Advances in human genetics, and especially the advent of DNA-based

genetic tests, have raised many questions about insurance, relating to possible
discrimination if insurers are allowed access to genetic information, or to
possible adverse selection if they are not. In the United Kingdom in particular,
government’s approach to these questions has led to close scrutiny of the
scientific basis of underwriting ö so-called ‘evidence-based underwriting’ ö
which has in turn led to a need for actuarial models. Daykin et al. (2003) or
Macdonald (2003) give recent reviews, which we will not reprise here.

Most actuarial research has concentrated on the single-gene disorders.
These are the conditions in which a mutation in a single gene leads to onset
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of a specific disorder with high probability. If onset (and death) tends to be
delayed until adult ages, mutation carriers raise families like anyone else, the
mutation may be inherited, and the disease is seen to ‘run in families’.

Genetic tests for single-gene disorders divide the population into two or
more subgroups, namely mutation carriers and non-carriers (there may be
more than two because of genetic heterogeneity). The multiple-state
framework is ideally suited to modelling the discrete sub-populations defined
by a single-gene disorder, see Macdonald (2003) or Gutie¤ rrez & Macdonald
(2003) for examples. Each genetic disorder is characterised by:
(a) the transition intensities in the models representing onset and

progression of the disease; and
(b) the frequency with which mutations are present in the population.

This is the domain of genetic epidemiology. Note that mutation frequencies
matter only when studying the potential cost of adverse selection, because they
define the size of the relevant group. We will not consider them further here.

1.2 Genetic Epidemiology: the Penetrance Function
Geneticists call the cumulative incidence of a genetic disorder the

penetrance. ‘Penetrance by age x’, which we denote qðxÞ, is the probability that
the disease has appeared by age x in a known mutation carrier, assuming that
all other decrements (such as death) are absent. It is similar to the so-called
single-decrement life table associated with one of the decrements in a multiple-
decrement table. Let mx denote the associated rate of onset defined by:

qðxÞ ¼ 1ÿ exp ÿ

Z x

0
mtdt

� �
: ð1Þ

Because of equation (1), it does not matter whether we work with studies
that estimate penetrance or that estimate rates of onset, as long as they are
reported at enough ages.

Unfortunately, studies providing estimates of age-related rates of onset of
disease or of death are not yet plentiful in the genetic epidemiology literature.
Figure 1 gives an example of penetrance estimates obtained from the
genetics literature (there are more examples in Section 3). Ford et al. (1998)
estimated the penetrance of mutations in the BRCA1 gene, the event being
onset of breast cancer. Point estimates of qðxÞ were given at ages 30, 40, 50,
60 and 70, with 95% confidence intervals. Figure 1 also shows a function
fitted to these values by Macdonald, Waters & Wekwete (2003a). It is
important to emphasise that the underlying data from which these point
estimates were obtained were not published, only the estimates themselves.
(a) Macdonald, Waters & Wekwete (2003b) applied this fitted penetrance

function (among others) to multiple-state models of critical illness
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insurance. Once these models are programmed, re-running them to
study a different genetic disorder is often simply a case of plugging in the
appropriate penetrance function.

(b) The confidence intervals are very wide, even although the study was
based on a worldwide collection of affected families (this often happens
with rare genetic disorders). Clearly, such stochastic uncertainty carries
through to any financial quantities that appear in actuarial problems.
This is an important question that has not yet been studied.

(c) To quantify this uncertainty, we would usually specify a model in
which a continuous random variable T represented age at onset of breast
cancer. The published data alone (which are shown in toto in Figure 1)
are not sufficient to parameterise this model using any standard methods
from survival analysis (although the full underlying data might be).

The preceding observations motivate this paper. From (a), we see that it
would be useful quickly to map out the effect of any single-gene disorder on
insurance premiums and adverse selection. Then, as genetic epidemiology
yields more and better penetrance estimates in future, their importance for
insurance can be seen immediately, almost like looking up a table. One aim
of this paper is to provide just such an ‘atlas’, in respect of critical illness
insurance.

Figure 1. Observed values ð�Þ and 95% confidence intervals of breast
cancer penetrance associated with BRCA1 mutations, based on Ford et al.

(1998); also shown is the fitted function from Macdonald, Waters &
Wekwete (2003a)
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From (b) and (c), we see that it is also desirable to have some measure of
the uncertainty in actuarial quantities arising from the uncertainty of the
penetrance estimates, even when only these estimates themselves may be
available, and the full underlying data are not.

1.3 An ‘Atlas’ of Single-Gene Genetic Disorders and Critical Illness Insurance
The main features of penetrance, of importance for actuarial models, are:

(a) the maximum reached by qðxÞ (generally less than 1), denoted Q;
(b) the minimum age at which symptoms (or death) can occur (that is, at

which qðxÞ > 0), denoted xm;
(c) the age at which the maximum of qðxÞ is attained, denoted xM; and
(d) the shape of the function qðxÞ, which determines the severity of the

disorder.

This is a reasonably small number of factors. Table 1 shows xm, xM and Q
in respect of several single-gene disorders. Actuaries are possibly more
interested than are clinicians in the penetrance over the whole age range,
since the need to consider insurance contracts for any reasonable
combination of age and term means that no one segment of the penetrance
curve is more important than any other segment.

We proceed by defining a simple parametric family of model penetrance
curves, to give a representative range of ‘shapes’, which can then be scaled to
cover the ranges of xm, xM and Q that are found in practice. The resulting
‘grid’ of model penetrance curves can then be used in an actuarial model to
obtain and to tabulate premium rates. Given estimates and confidence
intervals of any new penetrance curve, from the epidemiological literature, it
is then a simple matter to read off approximate values or ranges of critical
illness premium rates. Given estimates of mutation frequencies also, we could
do the same for the costs of adverse selection, but here we look only at
premium rates.

Table 1. Boundaries of fitted penetrance functions for several single-gene
disorders

Min Max Final Fitted
Study Disorder age age penetrance functional

xm xM Q ð%Þ form

Guttierez et al. (2003) APKD (Churchill) 20 73 47.2% mx ¼ Beta
Guttierez et al. (2003) APKD (USRDS) 20 80 51.1% mx ¼ Beta
Macdonald et al. (2003a) BC (BRCA1) 20 80 71.2% mx ¼ Gamma
Macdonald et al. (2003a) BC (BRCA2) 30 80 95.5% mx ¼ Gamma
Macdonald et al. (2003a) OC (BRCA1) 30 80 43.8% mx ¼ Gamma
Macdonald et al. (2003a) OC (BRCA2) 40 80 41.8% mx ¼ Gamma
Smith (1998) HD 0 80 100% qðxÞ ¼ Normal
Gui et al. (2002) EOAD (Presenilin-1) 20 80 100% mx ¼ polynomial
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1.4 Plan of this Paper
In Section 2 we discuss suitable one-parameter families of model

penetrance functions. In Section 3 we show that a Beta distribution (or
occasionally a sine function) with a proportional hazards (PH) distortion
provides a reasonable representation of the penetrance of several important
disorders. In fact, by superimposing the modelled penetrance functions,
including confidence intervals where these are available, on our one-
parameter families of functions, we get a clear impression of the great degree
of uncertainty that attaches to published penetrance estimates.

In Section 4 we describe briefly a model for critical illness (CI) insurance
in which onset of a genetic disorder may be a reason for a claim. This is used
to compute tables of representative extra premiums for each family of
model penetrance functions. These tables are too extensive to include, and
except for a few examples we omit them from this paper, but we have
deposited them in the libraries of the Faculty of Actuaries and Institute of
Actuaries, as Occasional Actuarial Research Document No. 42 (Macdonald
& Yang, 2003). In Section 5 we give some examples of premium rates and
ranges of premium rates. Our conclusions are in Section 6.

Æ. Model Families of Penetrance Curves

Experience suggests that at least some penetrance curves may be close to
symmetrical. Huntington’s disease is perhaps the most studied of all genetic
disorders, and the Normal distribution has been suggested as a good model for
its penetrance by several authors (Bell, 1934; Wendt & Drohm, 1972; Roos et
al., 1991; Wilkie, 2000). Thus we propose to take some simple symmetric
functions as starting points, and obtain simple parametric families from them
by applying suitable ‘distortions’. Examples of such symmetric functions are:
(a) a sine function on ½ÿp; p�, suitably scaled;
(b) a Normal distribution function (see above); this does not have a finite

range, but as long as it is scaled so that ½xm; xM� is about ÿ3 to þ3
standard deviations this is immaterial; and

(c) a Beta distribution function bðp1; p2Þ; this does have a finite range, and
can produce different shapes of penetrance curves by suitable choice of
the parameters p1 and p2.

Figure 2 shows the following sine function, Normal distribution function
and Beta(5,5) distribution function, scaled to represent a disorder with onset
after age 20, fully penetrant by age 60 (xm ¼ 20; xM ¼ 60;Q ¼ 1):

qsinðxÞ ¼
1
2

sin
2xÿ xm ÿ xM

2ðxM ÿ xmÞ
:p

� �
þ 1

� �
ð2Þ
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qnormalðxÞ ¼

Z x

xm

1

s
ffiffiffiffiffiffi
2p
p exp ÿ

1
2

3ð2tÿ xm ÿ xMÞ

xM ÿ xm

� �2
 !

dt ð3Þ

qbetaðxÞ ¼

Z x

0

Gð10Þ
Gð5ÞGð5Þ

tÿ xm

xM ÿ xm

� �4

1ÿ
tÿ xm

xM ÿ xm

� �4

dt: ð4Þ

We can see that all of these have the right general properties. Other
functions would have too, these are just plausible candidates, and the usual
question of fitting an adequate model to the data arises.
(a) Genetic epidemiologists often fit simple parametric or semi-parametric

models of incidence rates, such as piecewise linear, piecewise exponential
or Weibull, usually by likelihood methods. Given the data, so could
actuaries.

(b) Geneticists often publish non-parametric estimates of penetrance
(equivalently, survival free of disease), usually Kaplan-Meier survival
functions. Note the distinction between this empirical reporting and the
modelling described in (a).

(c) The problem, which has been a feature of almost all actuarial models
of genetics and insurance, is that such models need fitted estimates as in
(a), but all that is available are empirical reports as in (b), or (as in

Figure 2. An example of a sine function, Normal distribution function and
Beta distribution function, scaled to represent a disorder with onset after

age 20, that is 100% penetrant by age 60 ðxm ¼ 20; xM ¼ 60;Q ¼ 1Þ

880 HighlyPenetrantGeneticDisorders:

https://doi.org/10.1017/S1357321700004396 Published online by Cambridge University Press

https://doi.org/10.1017/S1357321700004396


Figure 1) very sparse point estimates. Data are practically never
available. This means that the only option that the actuary has is to find
a model penetrance function that is a reasonable approximation to
whatever evidence is to hand.

In the absence of the data, there is no question of formal procedures such
as model selection or finding a best-fitting function. It is not unlike the old
problem of graduating very sparse mortality data, but without the data.
What we must do is as follows:
(a) We need to choose one or more plausible families of model penetrance

functions. The motivation for this is entirely empirical, based on
comparisons with actual penetrance functions that are, necessarily, fairly
informal. This is the subject of Section 3.

(b) Empirical evidence suggests that some disorders have ages at onset
distributed rather more evenly over the relevant age range, and this leads
to relatively ‘flat’ penetrance functions. Others seem to have onset ages
more concentrated in the middle of the age range, but with less frequent
cases at lower and higher ages; this leads to a relatively ‘steep’
penetrance function. In Section 3 we find that different families are
needed to represent both of these patterns.

(c) Although many penetrance functions estimated from genetic data seem
to be nearly symmetrical, not all are; some disorders have onset skewed
towards higher or lower ages within quite a long range of ages (possibly
an indication of heterogeneity of the underlying mutations, but this is
usually hard to verify). To meet this, we extend our basic symmetrical
functions, each to a one-parameter model family of penetrance
functions, by applying a distortion that shifts the onset of the disorder
towards earlier or later ages.

In this paper we consider a proportional hazards transformation: if
qðxÞ is the basic symmetrical penetrance curve, and mx the corresponding
hazard (rate of onset), then any positive constant k defines a new
penetrance function qkðxÞ by:

qkðxÞ ¼ 1ÿ ð1ÿ qðxÞÞ
k
¼ 1ÿ exp ÿ

Z x

0
mtdt

� �k

¼ 1ÿ exp ÿ

Z x

0
kmtdt

� �
:

ð5Þ

It is convenient to parameterise the distortion in terms of the
penetrance itself. For example, a one-parameter family may be uniquely
specified in terms of the penetrance at any interior age, the middle age
ðxm þ xMÞ=2 being an obvious choice (the baseline function, by
symmetry, will always have penetrance Q=2 at this age). A two-
parameter family could be specified in terms of the penetrances at ages
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ðxm þ xMÞ=3 and 2ðxm þ xMÞ=3, and so on. For the proportional hazards
family above, penetrance of ð1þ rÞQ=2 at age ðxm þ xMÞ=2 (for
ÿ1 < r < 1) is obtained by choosing:

k ¼ 1þ
logð1ÿ rÞ

logð0:5Þ
: ð6Þ

Figure 3 gives an example, in which xm ¼ 20, xM ¼ 60, Q ¼ 1, the basic
symmetric function is Beta(5,5) (suitable scaled), distorted by
proportional hazards to give penetrance of 10%, 20%, . . . ; 80%, 90% at
the middle age, 40 years.

After a great deal of experimentation, which we do not describe here,
we found that the Beta and sine functions, as basic penetrance curves,
and the proportional hazards distortions gave results as good as any
other one-parameter family, and from now on our discussion centres on
them. Section 3 will make it clear that attempts to find any best-fitting
model are quite inappropriate here, given the absence of data and (when
given) the very wide confidence intervals of the penetrance estimates
(see Figure 1).

For critical illness (CI) insurance, the financially important part of the age
range is about 20^65. With this in mind, we choose the age intervals shown in

Figure 3. A Beta(5,5) distribution as a hypothetical penetrance curve, and
a proportional hazards family based upon it (penetrances from 10% to 90%

at age 40 (the middle age) shown)
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Table 2, and five lifetime penetrance levels: 20%; 40%; 60%; 80% and 100%.
We will show, in Section 3, that these include penetrance curves acceptably
close to at least some examples drawn from real genetic disorders.

â. Comparison of Real and Hypothetical Penetrance Curves

3.1 Studies of Penetrance
In this section we compare some penetrance curves taken or estimated

from the epidemiological literature (see Table 1) with our one-parameter
families of penetrance curves. This serves two purposes:
(a) It should give a clear idea of how an ‘atlas’ such as this can be used in

practice; given a penetrance function in respect of some disorder, it can
quickly be compared with one or more of the families of hypothetical
penetrance curves, matching it for age range and lifetime penetrance,
and the nearest fitting members found, perhaps giving a range of
reasonable approximations. Then, by referring to the tables constructed
as in Section 5, and available in full in Macdonald & Yang (2003), the
extra premiums for CI insurance can immediately be read off, or at least
upper and lower limits may be found.

(b) It illustrates what large errors may be present in estimates of
penetrances, because of the typically modest sample sizes (by actuarial
standards). This is especially important in actuarial work, where
questions of insurance premiums for individuals need quite detailed
estimates of risk. This ‘atlas’ may also be used, therefore, to indicate
how much uncertainty there might be in insurance premiums based upon
quite uncertain epidemiological data. If original data are available, we
might be able to improve upon this by modelling it directly, but this is
quite unusual.

Table 2. Model penetrance functions tabulated in Macdonald & Yang
(2003)

Function Age range Function Age range

Beta 0^80
Beta 0^60
Beta 0^40 sine 10^80
Beta 10^80 sine 10^60
Beta 10^60 sine 10^40
Beta 20^80 sine 20^80
Beta 20^60 sine 20^60
Beta 30^80 sine 30^80
Beta 30^60 sine 30^60
Beta 40^80 sine 40^80
Beta 40^60 sine 40^60
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Note that we are considering only estimation error here; that is, we
suppose that the estimates were based on data that are a fair, unbiased
sample of the relevant population, by which we mean those people who
might be applying for insurance. This ignores ascertainment bias, which is a
major feature of genetic epidemiology: the epidemiologist studies families in
which the disorder is present, and in the absence of a prospective,
population-based study design it is very likely that families have been
included precisely because they have an unusually strong family history.

However, it is not clear that ascertainment bias ought always to be
removed, or adjusted for, in addressing insurance questions. If it is the case
that genetic tests are only available in a clinical setting, and that the only
reason for being referred to a genetics clinic by one’s primary carer is the
presence of a family history, then those persons applying for insurance with
knowledge of a genetic test result will be drawn from a population similar to
that which might be sampled in epidemiological studies. In other words, the
penetrance affected by ascertainment ‘bias’ is, in fact, correct for the insured
population. However, if access to genetic information was less restricted,
this argument might fall away.

In the following sections we consider some of the studies in the actuarial
literature. In considering how well the families of Beta (or sine) functions
represent those based on epidemiological studies, we should remember that
ages above 60 are of little importance for CI insurance, and that ages over
about 50 may often be of little relevance in the context of severe single-gene
disorders. Where possible, we comment on the selection of cases into the
original studies, and possible ascertainment biases (see Hodge (2002) for a
discussion of ascertainment bias).

3.2 APKD, based on Churchill et al. (1984)
Churchill et al. (1984) gave a Kaplan-Meier estimate of the distribution

of the time to the first of end-stage renal disease (ESRD, meaning kidney
failure) or death, among persons affected by APKD. Death quickly follows
ESRD unless dialysis and transplant services are available, and ESRD would
give rise to a critical illness insurance claim. Gutie¤ rrez & Macdonald (2003)
used this estimate to model the rate of onset of ESRD. The estimate and their
fitted penetrance curve are shown in Figure 4, along with an appropriate
family of model (Beta) penetrance functions with Q ¼ 0:48. We see that the
symmetric Beta function itself, with no proportional hazards distortion, is an
excellent fit up to age 60.

This study was based on 140 persons from 17 affected kindreds (100
documented with APKD, 32 suspected and eight unknown). Kindreds were
ascertained by a survey of nephrologists in Newfoundland and Labrador, and
as many members as possible were scanned by ultrasound to determine the
presence of APKD. Steps were taken to reduce ascertainment bias, for example
by excluding the index cases through which the kindreds had been identified.
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3.3 APKD, based on USRDS Data
The United States Renal Disease Survey (USRDS, 1999) provided data

on the incidence of ESRD caused by APKD in the U.S.A., from which
Gutie¤ rrez & Macdonald (2003) obtained rates of onset. Figure 5 shows the
corresponding penetrance curve, compared with an appropriate family of
model (Beta) penetrance functions with Q ¼ 0:51. Again, the fit is very good;
the model penetrance function with penetrance 20% of the maximum at the
middle of the age range is a good representation.

Because they are based on population data, these estimates are free of the
ascertainment bias that arises from the selection of small samples, but they
may be affected by the usual biases of incomplete disease registration, wrong
diagnoses and incomplete censuses.

3.4 Breast Cancer, BRCA1 and BRCA2 Mutations
Breast and ovarian cancers (BC and OC) have relatively rare familial

forms that are known to be caused by mutations in the BRCA1 and BRCA2
genes, and these have been intensively studied. Figures 6 and 7 show the
point estimates and their 95% confidence intervals (Ford et al., 1998),
compared with suitable (Beta) families of model penetrance functions. Also
shown are the penetrance functions fitted by Macdonald, Waters & Wekwete
(2003a). In Figure 6 Q ¼ 0:71, and in Figure 7 Q ¼ 0:955.

Figure 4. Observed values and graduated penetrance curve of APKD with
95% confidence interval, based on Churchill et al. (1984) and Gutie¤ rrez &
Macdonald (2003), compared with a proportional hazards (Beta) family
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Figure 5. Penetrance curve of APKD based on USRDS data and
Gutie¤ rrez & Macdonald (2003), compared with a proportional hazards

(Beta) family

Figure 6. Observed values, 95% confidence intervals and fitted penetrance
curve for breast cancer, BRCA1 mutations, based on Macdonald, Waters &

Wekwete (2003a), compared with a proportional hazards (Beta) family
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A most important point is that the model penetrance functions should be
compared with the point estimates and not the previously fitted penetrance
functions (the bold lines). The actuary faced with the original data would
have only the former to go on. In this case, it so happens that the penetrances
have been modelled in a previous actuarial research paper, so it is of some
interest to show them as well, but strictly they are beside the point. This
applies to subsequent figures as well.

Again, these model penetrance functions provide quite good fits up to age
60. For BRCA1 mutations, penetrance seems to be slightly shifted towards
earlier ages, with penetrance reaching about 60% of Q by the middle of the
age range, while for BRCA2 mutations the penetrance function is close to
symmetrical. However, the confidence intervals show how much room there
is for doubt. For example, in Figure 6, five (nearly six) of the model
penetrance functions lie within all the confidence intervals. Moreover, these
are pointwise confidence intervals, and confidence bands (calculated
simultaneously for all five ages) would be even wider.

Ascertainment bias is a large issue. Families from all over the world were
selected for the study, run by the international Breast Cancer Linkage
Consortium (BCLC), precisely on the basis of multiple affected members in
several generations. Much of the literature since Ford et al. (1998) has
focused on the difference among mutation carriers in unselected families and
those in the BCLC families, with inconclusive results so far.

Figure 7. Observed values, 95% confidence intervals and fitted penetrance
curve for breast cancer, BRCA2 mutations, based on Macdonald, Waters &

Wekwete (2003a), compared with a proportional hazards (Beta) family
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3.5 Ovarian Cancer, BRCA1 and BRCA2 Mutations
Mutations in BRCA1 and BRCA2 are also associated with ovarian

cancer. Figures 8 and 9 show point estimates of penetrance (to onset of
ovarian cancer) based on Ford et al. (1998), for BRCA1 and BRCA2
mutations, respectively. Ascertainment bias is a strong possibility, since these
are the same BCLC families referred to in Section 3.4. Also shown are fitted
curves from Macdonald, Waters & Wekwete (2003a). This time the model
penetrance curves are based on sine functions, as these gave a slightly better
representation. No confidence intervals are shown in Figure 8, since Ford et
al. (1998) gave estimates for the penetrance of BRCA1 mutations in respect
of breast and ovarian cancers combined; these are shown in Figure 10, with a
Beta family of model penetrance curves for comparison.

In all of Figures 8 to 10, the fitted curves seem reasonable, and the
families of model penetrance curves do provide close approximations to the
fitted curves, but the confidence intervals do not give very strong support for
these estimates.

3.6 Huntington’s Disease
As mentioned before, several authors have suggested that a Normal

distribution represents well the age at onset distribution of Huntington’s
disease. Since this is one of the clearest single-gene disorders, with practically
100% penetrance, it has been studied for a long time, since well before the
responsible gene was identified, and large studies have been carried out.
Subsequently, however, the mechanism of Huntington’s disease has been
found to be a variable number of repeats of the trinucleotide CAG in the
Huntington gene, and lower ages at onset are associated with larger numbers
of CAG repeats (see Gutie¤ rrez & Macdonald, 2002a, 2002b). What
appeared to be the simplest and clearest example of a single-gene disorder
has, therefore, turned out to be extremely heterogeneous, and earlier
estimates of penetrance ignoring the CAG repeat length have become less
relevant. Moreover, although it may be possible to estimate moments of the
fitted parameters (of a Normal age-at-onset distribution), these do not by
themselves provide confidence intervals for the penetrance curve, which
might be found by some procedure such as bootstrapping.

As an example, Figure 11 shows the Normal penetrance curve suggested
by Wilkie (2000), compared with a Beta family of model penetrance curves.
Of course, we would get a better (in fact, perfect) fit if we used a Normal
family of model penetrance curves, but this does serve to show that the Beta
family can provide a good approximation.

Ascertainment bias is often less of an issue with Huntington’s disease,
because several countries or regions have compiled near-complete registers of
affected families. This is the case for Wilkie (2000), who used onset rates
based on the Leiden register in the Netherlands.
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Figure 8. Observed values and fitted penetrance curve for ovarian cancer,
BRCA1 mutations, based on Macdonald, Waters & Wekwete (2003a),

compared with a proportional hazards (sine) family

Figure 9. Observed values, 95% confidence intervals and fitted penetrance
curve for ovarian cancer, BRCA2 mutations, based on Macdonald, Waters
& Wekwete (2003a), compared with a proportional hazards (sine) family
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Figure 10. Observed values, 95% confidence intervals and fitted
penetrance curve for breast and ovarian cancer combined, BRCA1

mutations, based on Macdonald, Waters & Wekwete (2003a), compared
with a proportional hazards (Beta) family

Figure 11. Penetrance curve of Huntington’s disease, based on Wilkie
(2000), compared with a proportional hazards (Beta) family
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3.7 Early Onset Alzheimer’s Disease, Presenilin-1 Mutations
Gui & Macdonald (2002) estimated the penetrance of Presenilin-1

mutations, one of the known causes of early-onset Alzheimer’s disease.
This is a version of Alzheimer’s disease, normally a disorder of old age,
occurring before age 60. Their estimate was derived from a smoothed
Nelson-Aalen estimate, and therefore took the form of a numerical
estimate of the entire function qðxÞ, with confidence intervals at integer
ages obtained by simulation. For reasons explained in Gui & Macdonald
(2002), the estimate was unreliable after about age 45, and even at earlier
ages was probably subject to ascertainment bias and certainly affected by
missing data.

Figure 12 shows the penetrance curve up to age 50, with confidence
intervals, compared with a Beta family of model penetrance curves. (In this
case, the fitted penetrance curve has a penetrance of just over 90% of Q at the
mid-point of the age range, so we show an additional member with
penetrance of 95% of Q at that age.) We see that, even in this extreme case,
the Beta family provides a good approximation.

3.8 A Comment on the Choice of Model Penetrance Function(s)
Here we have superimposed model penetrance functions on some

empirical penetrance functions or point estimates, and have commented

Figure 12. Graduated penetrance curve with 95% confidence interval of
early-onset Alzheimer’s disease, Presenilin-1 mutations, based on Gui &
Macdonald (2002), compared with a proportional hazards (sine) family
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on goodness of fit, but only informally. We could try to find a ‘best-
fitting’ model curve more formally, but we have not, for the following
reasons.
(a) The quality of the published data is, as we have emphasised throughout,

often very poor, and confidence intervals, when given, very large.
Elaborate fitting procedures would usually by largely spurious. In these
circumstances, it makes more sense to look for a range of reasonable
answers.

(b) Model penetrance functions are only a means to an end, which is
approximate extra premiums, here for CI insurance. Our aim is to
allow the user to obtain these with an economy of effort commensurate
with the quality of the data, via the tables in Macdonald & Yang
(2003).

3.9 Summary
Table 3 summarises the disorders discussed here and the model penetrance

curves that we have used. Our model penetrance curves, based on a
symmetrical onset distribution and a simple one-parameter family of
transformations, may not reproduce any the fitted penetrance curves perfectly,
but do often come close, especially over ages 20^60. Given the great
uncertainly that usually attaches to penetrance estimates, it provides a
satisfactory basis for representing any penetrance estimates that might appear
in the genetics literature.

Table 3. Summary of single-gene disorders and the model penetrance
curves

Penetrance
at midpoint
of age range

Actual Age range Baseline Maximum of closest-
disorder ½xm;xM� function qðxÞ penetrance Q fitting curve

APKD (Churchill) [20,80] Beta 47.2% 50% of Q
APKD (USRDS) [10,80] Beta 51.1% 20% of Q
BC (BRCA1) [20,80] Beta 71.2% 60% of Q
BC (BRCA2) [30,80] Beta 95.5% 50% of Q
OC (BRCA1) [30,80] sine 43.8% 50% of Q
OC (BRCA2) [40,80] sine 41.8% 20% of Q
BC & OC (BRCA1) [15,80] Beta 83.8% 60% of Q
BC & OC (BRCA2) [30,80] Beta 97.4% 50% of Q
BC & OC (BRCA1/2) [15,80] Beta 99.6% 60% of Q
HD [ÿ10,80] Beta 100% 40% of Q
EOAD [20,80] Beta 100% 90% of Q
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ª. A Model of Critical Illness Insurance

Figure 13 shows a simple model suitable for pricing and reserving for
critical illness (CI) insurance contracts. State 2 represents the onset of the
genetic disorder in question, state 3 the occurrence of any other event that
triggers a claim under the contract, and state 4 death before any claim
occurs. This is a continuous-time model parameterised by the transition
intensities mjkðxÞ, which are functions of the age x. These models are now
standard in the actuarial literature, and we refer to Hoem (1988) for details.

Note that onset of the genetic disorder does not always trigger a CI insurance
claim.Where ‘onset’ means kidney failure (as in APKD) or a diagnosis of cancer,
then a valid claim would result, but in respect of neurological disorders such as
Alzheimer’s disease or Huntington’s disease, ‘onset’ often means the earliest
detectable signs of cognitive impairment, and a claimmight only arise some time
later when there is serious disability. This affects Huntington’s disease in
particular, because the disorder can progress quite slowly.

For any given genotype, level net premiums under a CI insurance
contract of any age and term can be calculated in the usual way as:

EPV of unit benefit
EPV of unit annuity

solving Thiele’s equation for the expected present values (EPVs) numerically
by any convenient method. We used a Runge-Kutta algorithm with a step-
size of 0.0005 years, but many standard mathematics packages could also be
used.

Figure 13. A multiple state model for onset of a genetic disorder in critical
illness insurance
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The transition intensities m13ðxÞ and m14ðxÞ, representing ‘non-genetic’
events, are taken from Gutie¤ rrez & Macdonald (2003), and are described
briefly in the Appendix.

ä. Examples: Breast/Ovarian Cancer and Early Onset

Alzheimer’s Disease

5.1 Tables of Extra Premiums
Once parameters have been obtained as in Table 3, by simple graphical

methods, premium rates can of course be obtained by direct solution of
Thiele’s equations. However, this is not (yet) a standard procedure for most
actuaries, so, as a short cut, we have produced representative tables.

Our tables show the percentage extra premiums for mutation carriers,
relative to the standard net premiums for level CI insurance cover. The
mutation penetrance is represented by the families of model penetrance
curves. Tables 4 to 7 show these extra premiums for females, with onset in
the range 10^80 and 20^80 years of age, penetrance based on a Beta family,
and maximum penetrance Q of 80% and 100%. Macdonald & Yang (2003)
contains the full range of tables, for males and females, described in
Section 2, of which these are examples.

5.2 Breast/Ovarian Cancer and BRCA1 Mutations
We consider the onset of either breast or ovarian cancer. Figure 10 and

Table 3 showed that BRCA1 mutations were represented well by one of the
Beta families of model penetrance curves on the age range 15^80, specifically
the curve which reached 60% of the maximum penetrance (83.8%) at age
47.5. Taking Q � 0:8, reference to Tables 4 and 6, shows that the extra
premium for CI cover from (say) age 30 to age 50 is approximately:

ð1;484þ 975Þ=2 � 1;230% ð7Þ

or, taking Q � 0:838 (though such ‘accuracy’ is certainly unwarranted), we
get an extra premium of about:

ð0:81 ð1;484þ 975Þ þ 0:19 ð2;063þ 1;272ÞÞ=2 � 1;312%: ð8Þ

Macdonald, Waters & Wekwete (2003b, Table 6) gave an extra premium of
1,423%, though with a slightly different model of the non-genetic CI claims.

5.3 Early Onset Alzheimer’s Disease and Presenilin-1 Mutations
Figure 12 showed that Presenilin-1 mutations were represented well by a

Beta family of model penetrance curves on the age range 20^80, specifically
the fitted penetrance lay a little above the curve which reached 90% of the
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Table 4. Percentage extra premium for level CI cover for females with
Beta family of model penetrance curves, maximum penetrance 80%, age at

onset in range 10^80 years

Age 20 at entry Age 30 at entry Age 40 at entry
Age 50 at
entryPercentage of

maximum
penetrance Term Term Term Term Term Term Term Term Term Term
at mid-age 10 yrs 20 yrs 30 yrs 40 yrs 10 yrs 20 yrs 30 yrs 10 yrs 20 yrs 10 yrs

10% 168.1% 212.9% 202.3% 177.5% 243.5% 215.8% 186.4% 204.7% 180.0% 170.2%
20% 354.8% 443.5% 409.1% 342.0% 509.8% 441.3% 364.7% 419.5% 354.2% 330.5%
30% 565.2% 695.8% 621.6% 495.8% 804.1% 678.0% 536.3% 644.5% 520.1% 470.6%
40% 806.1% 975.4% 841.5% 641.9% 1133.9% 928.2% 703.2% 878.7% 674.7% 575.9%
50% 1088.5% 1290.9% 1071.6% 784.3% 1510.3% 1195.0% 868.1% 1119.8% 813.4% 627.4%
60% 1430.3% 1655.7% 1316.6% 928.6% 1950.8% 1483.6% 1035.4% 1361.0% 928.8% 605.5%
70% 1865.0% 2094.0% 1585.6% 1083.5% 2486.1% 1802.4% 1211.9% 1586.0% 1007.8% 499.3%
80% 2466.2% 2656.2% 1898.6% 1265.0% 3179.2% 2168.5% 1409.4% 1751.4% 1022.8% 321.8%
90% 3463.7% 3488.7% 2317.9% 1517.4% 4202.5% 2624.8% 1653.9% 1713.7% 899.6% 123.1%

Table 5. Percentage extra premium for level CI cover for females with
Beta family of model penetrance curves, maximum penetrance 100%,

age at onset in range 10^80 years

Age 20 at entry Age 30 at entry Age 40 at entry
Age 50 at
entryPercentage of

maximum
penetrance Term Term Term Term Term Term Term Term Term Term
at mid-age 10 yrs 20 yrs 30 yrs 40 yrs 10 yrs 20 yrs 30 yrs 10 yrs 20 yrs 10 yrs

10% 210.3% 266.9% 254.4% 224.1% 306.2% 273.0% 237.2% 261.4% 232.5% 224.8%
20% 444.4% 557.7% 517.8% 436.2% 645.7% 565.6% 473.7% 549.9% 475.9% 470.4%
30% 708.6% 878.1% 792.5% 639.0% 1027.0% 882.3% 712.5% 872.1% 733.7% 741.9%
40% 1012.0% 1236.1% 1081.4% 836.6% 1462.5% 1229.6% 958.1% 1238.0% 1011.2% 1046.9%
50% 1368.7% 1643.8% 1389.6% 1034.6% 1971.1% 1617.7% 1218.2% 1662.6% 1317.7% 1397.1%
60% 1801.9% 2120.7% 1725.4% 1241.4% 2584.4% 2063.0% 1505.1% 2171.1% 1668.9% 1812.4%
70% 2355.3% 2702.1% 2104.5% 1470.7% 3360.5% 2596.5% 1841.6% 2809.6% 2094.9% 2329.9%
80% 3125.5% 3462.8% 2562.0% 1750.0% 4427.5% 3286.5% 2276.9% 3680.5% 2664.0% 3034.3%
90% 4416.1% 4625.4% 3207.5% 2158.3% 6183.6% 4348.7% 2961.7% 5104.7% 3592.9% 4196.6%

Table 6. Percentage extra premium for level CI cover for females with
Beta family of model penetrance curves, maximum penetrance 80%,

age at onset in range 20^80 years

Age 20 at entry Age 30 at entry Age 40 at entry
Age 50 at
entryPercentage of

maximum
penetrance Term Term Term Term Term Term Term Term Term Term
at mid-age 10 yrs 20 yrs 30 yrs 40 yrs 10 yrs 20 yrs 30 yrs 10 yrs 20 yrs 10 yrs

10% 17.0% 75.2% 110.6% 117.9% 111.4% 134.9% 135.3% 153.7% 149.0% 153.9%
20% 36.1% 157.8% 225.6% 227.4% 234.6% 277.8% 265.6% 319.0% 297.2% 306.6%
30% 57.6% 249.7% 345.9% 329.3% 372.6% 430.3% 391.6% 498.2% 444.4% 454.0%
40% 82.5% 353.4% 472.5% 424.6% 529.7% 594.9% 514.5% 694.1% 590.5% 589.2%
50% 111.8% 472.9% 607.3% 514.8% 712.5% 774.8% 636.0% 910.8% 735.8% 701.5%
60% 147.6% 614.7% 752.9% 602.2% 931.9% 975.4% 759.4% 1154.1% 880.6% 773.8%
70% 193.7% 790.3% 914.3% 690.5% 1207.9% 1206.2% 890.4% 1433.0% 1025.5% 780.4%
80% 258.5% 1025.1% 1101.3% 786.7% 1583.9% 1486.9% 1041.0% 1761.7% 1170.4% 684.2%
90% 368.7% 1394.0% 1343.0% 910.2% 2193.0% 1874.8% 1245.7% 2163.2% 1307.2% 438.4%
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maximum penetrance (100%) at age 50. From Table 7, we see that the extra
premium in that case is 2,590%. Gui & Macdonald (2002b) gave an extra
premium of 2,796%.

5.4 Other Disorders
Tables 8 and 9 compare extra CI premiums for a range of mutations,

ages at entry and policy terms:
(a) using the penetrance estimates from published actuarial models

(Table 8); and
(b) using the tables (Macdonald & Yang, 2003) and the parameters from

Table 3, interpolating where necessary (Table 9).

The agreement is very good. The largest discrepancies are for very young
lives and short terms, where both the epidemiological evidence and the fitting
of the penetrance curve are likely to be based on very few observed cases.

Table 7. Percentage extra premium for level CI cover for females with
Beta family of model penetrance curves, maximum penetrance 100%,

age at onset in range 20^80 years

Age 20 at entry Age 30 at entry Age 40 at entry
Age 50 at
entryPercentage of

maximum
penetrance Term Term Term Term Term Term Term Term Term Term
at mid-age 10 yrs 20 yrs 30 yrs 40 yrs 10 yrs 20 yrs 30 yrs 10 yrs 20 yrs 10 yrs

10% 21.3% 94.1% 138.6% 148.1% 139.5% 169.4% 170.8% 194.2% 190.1% 199.8%
20% 45.1% 197.5% 283.5% 287.3% 294.3% 350.9% 339.0% 408.4% 387.9% 417.8%
30% 72.0% 312.8% 435.8% 418.4% 468.4% 547.1% 505.7% 647.4% 595.8% 658.4%
40% 103.1% 443.1% 597.3% 542.7% 667.5% 761.8% 672.8% 918.6% 817.3% 928.3%
50% 139.8% 593.6% 770.5% 662.0% 900.6% 1000.5% 843.4% 1232.8% 1058.5% 1237.4%
60% 184.6% 772.6% 959.3% 779.5% 1182.1% 1272.2% 1023.1% 1608.3% 1329.6% 1602.7%
70% 242.3% 995.0% 1170.8% 900.2% 1539.3% 1593.2% 1222.2% 2078.3% 1650.7% 2055.8%
80% 323.3% 1293.5% 1419.5% 1034.6% 2031.8% 1997.9% 1463.1% 2716.1% 2067.5% 2668.0%
90% 461.2% 1765.8% 1747.6% 1211.2% 2845.3% 2589.9% 1814.0% 3748.1% 2725.4% 3667.7%
95% 598.3% 2194.1% 1994.6% 1350.9% 3624.4% 3091.9% 2121.0% 4719.8% 3346.8% 4634.4%

Table 8. Extra percentage of level net premium for level CI cover for
females with mutations conferring risk of several genetic disorders, from

previous actuarial studies; see Section 3 for references

Age 20 at entry Age 30 at entry Age 40 at entry
Age 50 at
entry

Term Term Term Term Term Term Term Term Term Term
Disorder 10 yrs 20 yrs 30 yrs 40 yrs 10 yrs 20 yrs 30 yrs 10 yrs 20 yrs 10 yrs

APKD (Ch) 105% 249% 330% 289% 342% 397% 335% 459% 368% 322%
APKD (US) 233% 298% 282% 232% 344% 304% 245% 290% 232% 197%
BRCA1 457% 1126% 1075% 775% 1637% 1392% 982% 1466% 996% 638%
BRCA2 4% 83% 3010% 392% 132% 391% 475% 592% 662% 935%

BRCA1 & 2 461% 1193% 928% 1239% 1756% 1649% 1231% 1996% 1525% 1558%
EOAD 535% 1940% 1858% 1275% 3151% 2796% 1940% 4078% 2922% 3612%
HD 4301% 3416% 2374% 1650% 3232% 2296% 1625% 2019% 1492% 1326%
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5.5 Uncertainty
It is also possible, in some cases, to obtain some information about

the stochastic uncertainty of insurance premiums based on estimates of
penetrance functions for which we have some measure of uncertainty. Taking
BRCA1 and breast/ovarian cancer combined as an example, the confidence
intervals in Figure 10 show that a penetrance at the mid-age point of about
40^70% of the maximum penetrance Q would not be ruled out, and
(continuing the example) Tables 4 and 6 with Q � 0:8 then suggest an extra
premium of 762^1,504% for the 20-year policy for a woman aged 30.

A range of extra premiums suggested by the tables is not a confidence
interval, and where possible it would be preferable to find a confidence
interval. This is usually difficult, however, unless the original data from the
genetical study are available. In the case of Figure 10, a parametric function
was fitted to the five point estimates by least squares, using the confidence
intervals to derive approximate weights. This is purely curve fitting, not
modelling, and we do not obtain a variance matrix for the parameters that
would allow us to find moments of actuarial functions by (for example)
bootstrapping. The question of the uncertainty of premium rates based on
medical studies, genetical or otherwise, has not received much attention and
is worthy of further research.

å. Conclusions

The key quantity for translating epidemiological knowledge about single-
gene disorders into actuarial models is the penetrance function. This can be
represented by suitably scaled distribution functions, and we have found Beta
and sine functions to be very suitable.

In almost all cases, penetrance estimates are based on quite small
samples, and have wide confidence intervals. In the absence of the underlying
data, these are not sufficient to obtain confidence intervals of derived

Table 9. Extra percentage of level net premium for level CI cover for
females from our atlas tables

Age 20 at entry Age 30 at entry Age 40 at entry
Age 50 at
entry

Term Term Term Term Term Term Term Term Term Term
Disorder 10 yrs 20 yrs 30 yrs 40 yrs 10 yrs 20 yrs 30 yrs 10 yrs 20 yrs 10 yrs

APKD (Ch) 66% 277% 350% 291% 413% 436% 345% 481% 362% 289%
APKD (US) 226% 281% 257% 213% 320% 273% 222% 252% 207% 182%
BRCA1 828% 1194% 1093% 811% 1525% 1313% 967% 1378% 1018% 883%
BRCA2 0% 67% 317% 397% 109% 401% 482% 627% 684% 952%

BRCA1 & 2 993% 1447% 1342% 1010% 1883% 1668% 1264% 1890% 1499% 1708%
EOAD 461% 1766% 1748% 1211% 2845% 2590% 1814% 3748% 2725% 3668%
HD 3892% 2970% 2070% 1462% 2632% 1887% 1368% 1626% 1250% 1189%
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quantities such as insurance premiums, an important gap in the actuarial
toolkit. However they do show:
(a) that simple representative functions (like our Beta functions) are often

adequate, and sometimes very good, as models of the penetrance
function; and

(b) that the confidence intervals of the penetrance estimates will often
admit a wide range of these representative penetrance functions, even if
we cannot assign probabilities to them.

A wide spectrum of representative penetrance functions can be defined
in terms of just a few quantities, namely age range ½xm; xM�, maximum
penetrance Q, and ‘shape’. ‘Shape’ is defined by the choice of baseline
function and a distortion that shifts the ages of onset up or down; we
found a one-parameter proportional hazards transform to be suitable,
conveniently parameterised in terms of the penetrance in the middle of the
age range.

Compared with estimated penetrance functions from the actuarial
literature, these simple families, via the associated tables (that are available in
Macdonald & Yang (2003)) gave very acceptable estimates of extra
premiums for CI insurance, in respect of known mutation carriers.
Moreover, the same tables allow us to suggest reasonable bounds for such
extra premiums. These bounds are not confidence intervals, which are usually
unobtainable from published penetrance estimates: the bigger problem of
obtaining the statistical properties of premium rates from the statistical
properties of penetrance estimates remains to be solved, and it deserves
attention in future.

Using these tables, any actuary can superimpose penetrance estimates
from the growing genetics literature, whether in the form of Kaplan-Meier,
actuarial or point estimates, on a plot of Beta or sine functions to obtain
rough values for xm, xM, Q and the mid-age penetrance, and hence read off
approximate CI extra premiums, and get some idea about bounds for CI
extra premiums.
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APPENDIX

THE CRITICAL ILLNESS INSURANCE MODEL

Gutie¤ rrez & Macdonald (2003) obtained the following model for CI
insurance based on medical studies and population data. Full references can
be found in that paper.
(a) Rates of onset were found for:

(1) Cancer (excluding non-malignant skin cancers): For males:

mc
x ¼ expðÿ11:25þ 0:105xÞ ðx < 51Þ

mc
x ¼ 0:2591585ÿ 0:01247354xþ 0:0001916916x2

ÿ 8:952933� 10ÿ7x3 ðx � 60Þ

with linear interpolation between ages 51 and 60, and for females:

mc
x ¼ expðÿ10:78þ 0:123xÿ 0:00033x2Þ ðx < 53Þ

mc
x ¼ ÿ0:01545632þ 0:0003805097x ðx � 53Þ:

(2) Heart attack: for males:

mh
x ¼ expðÿ13:2238þ 0:152568xÞ ðx < 44Þ

mh
x ¼ ðÿ0:01245109þ 0:000315605xÞ ðx > 49Þ

with linear interpolation between ages 44 and 49, and for females:

mh
x ¼ 0:598694

0:1531715:6412 expðÿ0:15317xÞx14:6412

Gð15:6412Þ

� �
:

(3) Stroke: for males:

ms
x ¼ expðÿ16:9524þ 0:294973xÿ 0:001904x2 þ 0:00000159449x3Þ

and for females:

ms
x ¼ expðÿ11:1477þ 0:081076xÞ:

(b) 28-day survival factors for heart attack and stroke victims were taken
from Dinani et al. (2000) (this relates to the common contractual
condition, that payment depends on surviving for 28 days). Let ph

x and ps
x

be the 28-day survival probabilities after the first-ever heart attack or
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stroke, respectively, and qh
x ¼ 1ÿ ph

x, qs
x ¼ 1ÿ ps

x the corresponding
mortality rates. From Dinani et al. (2000), qh

x ¼ 0:21 at ages 20^80 for
females, and qh

x for males is given in Table 10. From the same source,
ps

x ¼ ð0:9ÿ 0:002xÞ=0:9 for both males and females.
(c) Other minor causes of CI insurance claims amount to about 15% of

those arising from cancer, heart attack and stroke. Therefore the
aggregate rate of CI claims is:

mCI
x ¼ 1:15ðmc

x þ ph
x � mh

x þ ps
x � ms

xÞ:

(d) Population mortality rates (English Life Tables No. 15) were adjusted
to exclude deaths which would have followed a CI insurance claim.

Table 10. 28-day mortality rates ðqh
x ¼ 1ÿ ph

xÞ following heart attack;
based on Dinani et al. (2000)

Age qh
x Age qh

x Age qh
x Age qh

x

20^39 0.15 47^52 0.18 58^59 0.21 65^74 0.24
40^42 0.16 53^56 0.19 60^61 0.22 75^79 0.25
43^46 0.17 57 0.20 62^64 0.23 80+ 0.26
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