
Econometric Theory, 0, 2025, 1–33.
doi:10.1017/S0266466624000355

FROM MODEL SELECTION TO
MODEL AVERAGING: A

COMPARISON FOR NESTED
LINEAR MODELS

WENCHAO XU

Shanghai University of International Business and Economics

XINYU ZHANG

Academy of Mathematics and Systems Science,

Chinese Academy of Sciences

Model selection (MS) and model averaging (MA) are two popular approaches
when many candidate models exist. Theoretically, the estimation risk of an oracle
MA is not larger than that of an oracle MS because the former is more flexible, but
a foundational issue is this: Does MA offer a substantial improvement over MS?
Recently, seminal work by Peng and Yang (2022) has answered this question under
nested models with linear orthonormal series expansion. In the current paper, we
further respond to this question under linear nested regression models. A more
general nested framework, heteroscedastic and autocorrelated random errors, and
sparse coefficients are allowed in the current paper, giving a scenario that is more
common in practice. A remarkable implication is that MS can be significantly
improved by MA under certain conditions. In addition, we further compare MA
techniques with different weight sets. Simulation studies illustrate the theoretical
findings in a variety of settings.

1. INTRODUCTION

In the past two decades, model selection (MS) has received growing attention
in statistics and econometrics. When a list of candidate models is considered,
MS attempts to select a single best model. A large number of MS criteria have
been proposed in the literature, including the Akaike information criterion (AIC;
Akaike, 1973), Mallows’ Cp (Mallows, 1973), Bayesian information criterion
(BIC; Schwarz, 1978), and cross-validation (CV; Allen, 1974; Stone, 1974). Model
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averaging (MA) is an alternative to MS and operates by taking a weighted average
of the estimators or predictions from candidate models; Thus, MA is a smoothed
extension of MS and can potentially reduce risk relative to MS (Magnus et al.,
2010; Yuan and Yang, 2005).

Asymptotic efficiency (or asymptotic optimality) is a key theoretical goal
pursued in both MS and MA research. It states that the risk (or loss) of MS (or
MA) is equivalent to that of the infeasible oracle candidate model (or averaged
estimator/prediction). For MS methods, AIC is asymptotically efficient, but BIC
is not in a nonparametric framework (Shao, 1997; Shibata, 1983). Li (1987)
established the asymptotic efficiency of Cp and leave-one-out CV (LOO-CV) for
the homoscedastic nonparametric regression. Andrews (1991) extended the results
of Li (1987) to the case of heteroscedastic errors. See Ding et al. (2018) for a recent
review of the properties of MS methods.

For the asymptotic optimality of MA, Hansen (2007) established the asymptotic
optimality for Mallows model averaging (MMA) when the candidate models are
nested and the weights are restricted to a discrete set. Wan et al. (2010) and
Zhang (2021) extended the result of Hansen (2007) to a non-nested model setting
with continuous weights. Hansen and Racine (2012) established the asymptotic
optimality of Jackknife model averaging (JMA) for heteroscedastic errors with
the weights contained in a discrete set. Zhang et al. (2013) broadened Hansen and
Racine (2012)’s scope of analysis to dependent data and a continuous weight set.
Liu and Okui (2013) proposed a heteroscedasticity-robust MA with asymptotic
optimality. Ando and Li (2014, 2017) removed the conventional MA restriction
that the sum of weights equals one and established the asymptotic optimality of
JMA for high-dimensional linear models and generalized linear models. Zhao
et al. (2016) broadened Ando and Li (2014)’s scope of analysis to dependent data.
Zhang and Wang (2019), Fang et al. (2019), and Feng et al. (2022) established
the asymptotic optimality of MA in nonparametric, missing data, and nonlinear
models, respectively.

However, most literature focuses on optimal properties (e.g., asymptotic effi-
ciency) of MS or MA in their own terms. Although many successful empirical
advancements in MA have been demonstrated (see, e.g., Moral-Benito, 2015;
Magnus and Luca, 2016; Lehrer and Xie, 2017; Steel, 2020), theoretical inves-
tigations comparing MS and MA are still lacking. Recently, Peng and Yang
(2022) made a seminal contribution to filling this gap. They studied the foun-
dational matter of comparing the oracle/optimal MS with MA procedures in a
nested model setting with series expansion and have some remarkable findings.
However, a limit of Peng and Yang (2022) is that their study was built with
three restrictions: orthonormal design, homoscedastic and independent random
errors, and non-sparse coefficients, which could make the study not applica-
ble in real-world scenarios. The goal of the current paper is to broaden the
scope of analysis of Peng and Yang (2022) to a general model setting and to
answer additional important questions. Specifically, our main contributions are as
follows.
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(i) Without the three aforementioned restrictions, we answer the questions: Does
MA offer a significant improvement over MS? If so, when? Moreover, we
partition the predictor variables into groups, and the group size is allowed to
be larger than 1, which leads to a more general nested model framework than
that in Peng and Yang (2022). We define a sequence of indices (say θn,m,m =
1, . . . ,dn) for grouped variables and find that the decaying order of this
sequence determines when MA is substantially better than MS. Specifically,
when the number of candidate models is large enough and θn,m decays slowly
in m, the benefit of MA over MS is real. However, when either the number
of candidate models is too small or it is large enough and θn,m decays fast in
m, MA has no real advantage over MS. As a result, the analysis of Peng and
Yang (2022) becomes a special case of ours. In finite simulation studies, we
compare the performance of MMA or JMA with several MS methods, includ-
ing AIC, BIC, and LOO-CV. The simulation results support our theoretical
findings.

(ii) In the MA literature, MA weights can be selected from three different weight
sets, namely the unit simplex (Liu, 2015; Wan et al., 2010; Zhang et al.,
2013), the unit hypercube (Ando and Li, 2014, 2017), and the discrete weight
set (Hansen, 2007; Hansen and Racine, 2012). In our work, we broaden the
scope to compare MAs with weights belonging to these three weight sets.
Two main findings emerge. First, relaxing the weight set of unit simplex to
unit hypercube does not reduce the risk of MA asymptotically. Second, when
the number of candidate models is large enough and θn,m decays slowly in
m, discretizing the unit simplex can enlarge the risk of MA by a substantial
multiple.

Extending the work of Peng and Yang (2022) presents several theoretical chal-
lenges. First, our study relies on deriving explicit expressions for the optimal risks
of MS and MA, which become challenging when addressing non-orthonormal pre-
dictors and heteroscedastic and autocorrelated error terms. Second, Peng and Yang
(2022)’s work requires a large enough number of candidate models, whereas our
work includes scenarios where it is small. This introduces additional complexities
for our analysis. Last, the expression of optimal MA risk with the discrete weight
set is much more complicated, making the comparison of MAs with different
weight sets challenging.

The rest of the paper is organized as follows. Section 2 provides the model
setting and four important questions to be answered. Section 3 presents the main
results from the comparison of MS and MA. Section 4 considers the comparison
of MAs with three different weight sets. Section 5 provides two examples to
verify the theoretical results, and Section 6 presents the results of finite sample
simulations. Section 7 concludes the paper. The proofs of our theoretical results
are contained in the Appendix and the Supplementary Material. The Supple-
mentary Material also contains some additional theoretical results and simulation
studies.
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2. MODEL SETTING AND QUESTIONS

Consider the model

yi = μi + εi =
pn∑

j=1

βjxij + εi, i = 1, . . . ,n, (1)

where ε1, . . . ,εn are random errors, xj = (x1j, . . . ,xnj)
�, j = 1, . . . ,pn are predictor

variables, and pn(pn < n) is the number of the predictors. In matrix notation, (1)
can be written as y = μ+ε, where y = (y1, . . . ,yn)

�, μ = (μ1, . . . ,μn)
�, and ε =

(ε1, . . . ,εn)
�. Furthermore, we assume that E(ε|X) = 0 so that μ = E(y|X), where

X = {x1, . . . ,xpn}. Note that the condition E(ε|X) = 0 rules out dynamic models in
which lagged dependent variables work as regressors. We denote Var(ε|X) = �,
where � is a positive definite matrix with the (i,j)th element being E(εiεj|X). We
permit � to be dependent on X and nondiagonal, thus allowing the errors to be
both conditionally heteroscedastic and autocorrelated. In the current paper, we use
bold forms to denote vectors or matrices.

Following Hansen (2007, 2014), Feng and Liu (2020), and Zhang et al. (2020),
we consider nested models, where the mth model uses the first νm predictor
variables, such that 0 = ν0 < ν1 < ν2 < · · · < νqn−1 < νqn = pn, and qn is a positive
integer. This nested framework essentially requires that the predictor variables
are partitioned into qn groups and the grouped predictors are ordered, where
the mth group of predictors is {xi,νm−1+1, . . . ,xi,νm}, and its size is νm − νm−1 for
m = 1, . . . ,qn.

We consider the first Mn (2 ≤ Mn ≤ qn) nested candidate models for MS and
MA. Let Xm be the n× νm design matrix of the mth candidate model. We assume
Xm is of full rank for any m ∈ {1, . . . ,Mn}. Then, under the mth model, the estimator
of μ is

μ̂m = Xm(X�
mXm)−1X�

my ≡ Pmy,

where Pm = Xm(X�
mXm)−1X�

m is the hat matrix. An MS method selects an index
(say m�) from the index set Hn = {1, . . . ,Mn} and estimates μ by μ̂m� using the
selected model. Let w = (w1, . . . ,wMn)

� be a weight vector belonging to the unit
simplex of RMn :

Wn =
{

w ∈ [0,1]Mn :
Mn∑

m=1

wm = 1

}
.

Then, the MA estimator of μ with weight vector w is

μ̂(w) =
Mn∑

m=1

wmμ̂m =
Mn∑

m=1

wmPmy ≡ P(w)y,

where P(w) = ∑Mn
m=1 wmPm. The measurement of estimation accuracy is the

squared prediction risk, which is defined as RMS
n (m) = E{LMS

n (m)|X} and
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RMA
n (w) = E{LMA

n (w)|X} for MS and MA, respectively. In these,

LMS
n (m) = ‖μ̂m −μ‖2 and LMA

n (w) = ‖μ̂(w)−μ‖2

are the squared prediction loss for MS and MA, respectively, and ‖ · ‖2 is the
squared Euclidean norm.

Let m∗
n be the oracle optimal model index that minimizes RMS

n (m) in Hn, and
let w∗

n be the oracle optimal weight vector that minimizes RMA
n (w) in Wn. Since

m∗
n and w∗

n are unknown, we cannot apply them in practice. However, using the
asymptotically optimal MS and MA procedures mentioned in Section 1, we can
select a model index m̂n and weights ŵn in the sense that

RMS
n (m̂n)

RMS
n (m∗

n)
→p 1 and

RMA
n (ŵn)

RMA
n (w∗

n)
→p 1, (2)

where →p denotes convergence in probability. All limiting processes are studied
with respect to n → ∞. Note that in (2), m̂n and ŵn are directly plugged into
the expressions for RMS

n (m) and RMA
n (w). Yang (1999) and Zhang et al. (2020)

introduced a new type of asymptotic optimality for MS and MA as follows:

E{LMS
n (m̂n)}

RMS
n (m∗

n)
→a.s. 1 and

E{LMA
n (ŵn)}

RMA
n (w∗

n)
→a.s. 1, (3)

where →a.s. denotes convergence almost surely (a.s.). Compared to (2), (3) takes
into account the randomness of m̂n and ŵn.

Since MS is a special case of MA with weights concentrating on a single model,
it is obvious that RMS

n (m∗
n) ≥ RMA

n (w∗
n). The first task of this paper is essentially to

explore the improvability of the oracle regression model m∗
n by the oracle MA. Let

�n = RMS
n (m∗

n) − RMA
n (w∗

n) denote the potential risk reduction of the oracle MA
compared to the oracle MS. We first consider the following two key questions:

Q1. Can RMA
n (w∗

n) bring in a smaller order than RMS
n (m∗

n)? That is, can
RMA

n (w∗
n)/RMS

n (m∗
n) = o(1) happen a.s.?

Q2. Is �n a substantial reduction relative to RMS
n (m∗

n) or actually negligible? If
both can happen, when is MA substantially better than MS?

Remark 1. The vectors x1, . . . ,xpn are said to be orthonormal if

1

n

n∑
i=1

x2
ij = 1 and

n∑
i=1

xijxik = 0, 1 ≤ j �= k ≤ pn. (4)

Note that (4) is satisfied for a nonparametric regression with orthonormal series
expansion. Peng and Yang (2022) have answered Questions Q1 and Q2 under the
assumption that the predictors are orthonormal (i.e., (4) holds), and the error εi’s
are homoscedastic and independent, which can be restrictive for some applications.
In the current paper, we answer the same questions in a more general model setting
without the above assumptions. Moreover, Peng and Yang (2022) used the typical
nested framework νm = m, which is also relaxed in the current paper.
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In addition to the weight set Wn, two other weight sets are popular in the MA
literature: the unit hypercube

Qn = {w ∈ [0,1]Mn : 0 ≤ wm ≤ 1
}
,

and the discrete weight set

Wn(N) =
{

w : wm ∈
{

0,
1

N
,

2

N
, . . . ,1

}
,

M∑
m=1

wm = 1

}
,

for a fixed positive integer N. The weight set Qn removes the restriction that
weights add up to 1 in Wn. Ando and Li (2014) used this weight set to study the
optimal MA for the first time in a high-dimensional linear regression setting. More
recently, this weight set was further applied to various regression models, including
high-dimensional generalized linear model (Ando and Li, 2017), high-dimensional
quantile regression (Wang et al., 2023), and high-dimensional survival analysis
(He et al., 2020; Yan et al., 2021). In the MA literature, the discrete set Wn(N) is
often only considered to establish some asymptotic theories of MA for technical
convenience; see, e.g., Hansen (2007), Hansen and Racine (2012), and Fang and
Liu (2020). In practice, different weight sets can produce different results, hence
the comparison of MA techniques with different weight sets is very important. In
the literature, they are compared by numerical examples; see, for example, Ando
and Li (2014) and Wang et al. (2023). The next task of the current paper is on the
theoretical comparison of MA with the weights belonging to different weight sets.

Let w̃∗
n and w∗

n,N be the oracle optimal weights that minimize RMA
n (w) in Qn and

Wn(N), respectively. Since Wn(N) ⊂Wn ⊂Qn, we know RMA
n (w̃∗

n) ≤ RMA
n (w∗

n) ≤
RMA

n (w∗
n,N). This result implies that the weight relaxation could bring a smaller

optimal risk of MA, and the restriction of the weight set Wn to Wn(N) could lead
to a larger optimal risk of MA. However, it is unclear whether the risk reduction of
optimal MA by relaxing the weight set Wn to Qn is substantial and whether the risk
increment of optimal MA by restricting the weight set Wn to Wn(N) is substantial.
Since Wn is widely used, we use RMA

n (w∗
n) as a benchmark for the comparisons.

Therefore, we consider the other two key issues as follows:

Q3. Is RMA
n (w∗

n)−RMA
n (w̃∗

n) a substantial reduction relative to RMA
n (w∗

n) or actually
negligible? If both can happen, when is w̃∗

n substantially better than w∗
n?

Q4. Is the risk increment RMA
n (w∗

n,N)− RMA
n (w∗

n) substantial relative to RMA
n (w∗

n)

or actually negligible? If both can happen, when w∗
n is substantially better than

w∗
n,N?

The answers to Questions Q1 and Q2 broaden the scope of Peng and Yang
(2022)’s work on the advantages of MA over MS. The answers to Questions Q3
and Q4 provide a previously unavailable insight on the relative strengths of MA
with these three weight sets.

Throughout this paper, we use the following symbols. For two positive
sequences an and bn, an  bn means bn = O(an), and an � bn means both
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an  bn and bn  an. Also, an ∼ bn means that an/bn → 1. For two stochastic
sequences an and bn, an �p bn means that there exist 0 < c ≤ c̄ < ∞ such that
c{1 + op(1)} ≤ |an/bn| ≤ c̄{1 + op(1)} for all sufficiently large n; an ∼p bn means
that an/bn →p 1. Let �a� be the greatest integer less than or equal to a. Let
λmin(M) and λmax(M) be the minimum and maximum eigenvalues of a matrix
M, respectively.

3. COMPARISONS OF MS AND MA PROCEDURES

In this section, we aim to answer Questions Q1 and Q2. In Section 3.1, we
introduce some important notation and assumptions. Then, in Section 3.2, we
theoretically investigate the comparison of the oracle optimal model m∗

n and the
oracle MA. In Section 3.3, we extend the obtained results to compare two specific
asymptotically optimal MS and MA procedures.

We first introduce some notation. Let Xc
m be the n× (pn −νm) design matrix that

consists of the predictors excluded from the mth model. Let βm = (β1, . . . ,βνm)�
and βc

m = (βνm+1, . . . ,βpn)
�. Then, μ = Xmβm + Xc

mβc
m. For convenience, we

further assume Xm is of full rank for any m ∈ {Mn +1, . . . ,qn}.

3.1. Grouped Variable Importance

In this subsection, we introduce notation used to measure the importance of each
group of predictors, whose decaying order determines when MA is substantially
better than MS. For the mth model (m = 1, . . . ,qn), define

θn,m = βc�
m−1Xc�

m−1(In −Pm−1)Xc
m−1β

c
m−1 −βc�

m Xc�
m (In −Pm)Xc

mβc
m

ntr{(Pm −Pm−1)�} , (5)

where P0 = 0. Two remarks are worth noticing. First, θn,m is obtained during the
derivation of the oracle optimal model index m∗

n and weights w∗
n; see Equations

(A.4) and (A.6) in the Appendix for details. Second, the numerator in (5) has
a simpler expression μ�(Pm − Pm−1)μ, as mentioned in Remark 2 below, and
the complex form is presented here for ease of explanation. The two terms in
the numerator of (5) measure the importance of the remaining predictors after
excluding from predictors from models m − 1 and m, respectively. Consequently,
θn,m can be regarded as the importance of the mth group of variables in some
sense. Therefore, we refer to θn,m as the grouped variable importance (GVI). In
the following remark, we provide another explanation for θn,m.

Remark 2 (Another explanation for θn,m). By some simple calculations, we can
get a simpler form for θn,m as follows

θn,m = n−1μ�(Pm −Pm−1)μ

tr{(Pm −Pm−1)�} . (6)
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In the first formula of the Appendix, we demonstrate that the risk of μ̂m is given
by

RMS
n (m) = E

{‖μ̂m −μ‖2|X}
= tr

[{E(μ̂m|X)−μ}{E(μ̂m|X)−μ}�]+ tr
{
Var(μ̂m|X)

}
= μ�(In −Pm)μ+ tr(Pm�).

Here, μ�(In −Pm)μ is the trace of the squared bias term of μ̂m, and tr(Pm�) is the
trace of the conditional variance term of μ̂m; these two traces are nonincreasing and
increasing in m, respectively, because of the nested framework of candidate mod-
els. Therefore, by (6), the numerator and denominator of θn,m are the decrement of
the squared bias scaled by n and the increment of the variance of risks, respectively,
when adding the mth group of predictors to the (m−1)th model. When � = σ 2In

and the size of groups is fixed (say ν∗), the increment of the variance of risks is
fixed to be ν∗σ 2.

Next, we impose additional assumptions for the model (1) to obtain simple
forms of GVI as follows.
Case 1 (Homoscedastic and uncorrelated errors). If the error terms are
homoscedastic and uncorrelated with variance σ 2 > 0, it is easy to see that
tr{(Pm −Pm−1)�} = σ 2(νm −νm−1). Then, θn,m reduces to

θn,m = μ�(Pm −Pm−1)μ

nσ 2(νm −νm−1)
.

Case 2 (Orthonormal design). If the orthonormal design assumption (4) is
satisfied, it is easy to show that βc�

m Xc�
m (In − Pm)Xc

mβc
m = n‖βc

m‖2. Then, θn,m

reduces to

θn,m =
∑νm

j=νm−1+1 β2
j

tr{(Pm −Pm−1)�} .

Furthermore, we consider � = σ 2(ρ|k−l|)k,l=1,...,n for some |ρ| < 1 and σ 2 > 0, i.e.,
the error terms follow a first-order autoregressive (AR) process with the autocorre-
lation coefficient ρ. From Trench (1999), 1−|ρ|

1+|ρ|σ
2 ≤ λmin(�) ≤ λmax(�) ≤ 1+|ρ|

1−|ρ|σ
2.

Then, 1−|ρ|
1+|ρ|σ

2(νm −νm−1) ≤ tr{(Pm −Pm−1)�} ≤ 1+|ρ|
1−|ρ|σ

2(νm −νm−1). As a result,
θn,m satisfies

1−|ρ|
1+|ρ|

∑νm
j=νm−1+1 β2

j

σ 2(νm −νm−1)
≤ θn,m ≤ 1+|ρ|

1−|ρ|

∑νm
j=νm−1+1 β2

j

σ 2(νm −νm−1)
. (7)

When ρ = 0, it further reduces to the following Case 3.
Case 3 (Orthonormal design and homoscedastic and uncorrelated errors).

If the orthonormal design assumption (4) is satisfied and the error terms are
homoscedastic and uncorrelated with variance σ 2 > 0, then θn,m has a simple form

θn,m =
∑νm

j=νm−1+1 β2
j

σ 2(νm −νm−1)
.
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Case 4 (Model setting of Peng and Yang (2022)). In the model setting of Peng and
Yang (2022) (i.e., under the assumptions of orthonormal design (4), homoscedastic
and uncorrelated errors with variance σ 2 > 0, and the typical nested framework
νm = m), θn,m reduces to

θn,m = β2
m/σ 2,

where βm is the coefficient of xim.
From these cases (especially Cases 2–4), the numerator of θn,m is determined by

the coefficients of the variables in the mth group. This further implies that θn,m can
serve as a measure of the grouped variable importance.

We now introduce two assumptions for the model (1), which are commonly used
in the MA literature.

Assumption 1. ‖μ‖2/n = O(1) a.s.

Assumption 2. There are constants 0 < c1 ≤ c2 < ∞ such that c1 ≤ λmin(�) ≤
λmax(�) ≤ c2 a.s.

Assumption 1 requires the average of μ2
i to be bounded. Assumption 2 excludes

the degeneracy and divergence of the error terms. As shown in Case 2, when � =
σ 2(ρ|k−l|)k,l=1,...,n, we can set c1 = 1−|ρ|

1+|ρ|σ
2 and c2 = 1+|ρ|

1−|ρ|σ
2. Similar assumptions

can be found in previous works such as Wan et al. (2010), Zhang et al. (2013), and
Liu et al. (2016). It is worth noting that Assumption 1 has limitations. For instance,
assuming λmin(n−1X�

qn
Xqn) ≥ c0 a.s. for some constant c0 > 0, we have ‖μ‖2/n ≥

c0
∑pn

j=1 β2
j a.s. Consequently, when

∑pn
j=1 β2

j → ∞, we have ‖μ‖2/n → ∞ a.s.,
indicating that Assumption 1 does not hold in this case.

Given the property PmPl = Pmin(m,l) in the nested model setting, it can be
easily verified that Pm − Pm−1 is a symmetric idempotent matrix. Therefore, the
numerator of (6) satisfies 0 ≤ n−1μ�(Pm −Pm−1)μ ≤ ‖μ‖2/n, indicating that the
numerator of (5) is nonnegative. Additionally, using Assumption 2, we have

c1 ≤ c1(νm −νm−1) ≤ tr{(Pm −Pm−1)�} ≤ c2(νm −νm−1) a.s.

Combining the above results, (6), and Assumption 1, we can conclude that∑qn
m=1 θn,m ≤ ‖μ‖2/(nc1) < ∞ a.s. and

0 ≤ θn,m < ∞ for any m = 1, . . . ,qn a.s.

Let K0 be a sufficiently large constant. We further impose an assumption on θn,m

as follows.

Assumption 3. For each n ≥ K0, {θn,m : m = 1, . . . ,qn} is a nonincreasing
sequence a.s.

Assumption 3 is an extension of Assumption 1 in Peng and Yang (2022). The
nonincreasing ordering of {θn,m}qn

m=1 allows us to conveniently characterize the
unknown optimal model index m∗

n and weights w∗
n, w̃∗

n, and w∗
n,N , and it essentially

requires the predictors to be groupwise ordered from the most important to the least
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important, i.e, the ordering of grouped variables is “correct”. However, unlike Peng
and Yang (2022), where the sequence {θn,m : m = 1, . . . ,qn} must be positive, the
current paper allows for some components in the sequence to be zeros, i.e., we
allow some totally unimportant variables. For the aforementioned Cases 3 and 4,
this means we allow some kind of sparsity of coefficients, which is an important
property, especially for high-dimensional problems. For Case 2, from (7), we know
that when the error terms follow a first-order AR process, Assumption 3 can be
satisfied with certain constraints on βj, νm, and ρ. Under Assumption 3, let dn =
max{m ∈ {1, . . . ,qn} : θn,m > 0} be the number of important groups of predictors.
If dn < qn, the mth group of predictors is not important for m = dn +1, . . . ,qn.

Next, we make the following assumptions.

Assumption 4. There exists a constant V ≥ 1 independent of both m and n,
satisfying max1≤m≤dn(νm −νm−1) ≤ V uniformly for n ≥ K0.

Assumption 5. There exists a nonstochastic positive sequence θ̄m,m = 1, . . . ,dn

such that for each n ≥ K0, min1≤m≤dn(θn,m − θ̄m) ≥ 0 a.s.

Assumption 6. For each n ≥ K0, RMS
n (m) first decreases and then increases as

m varies from 1 to dn a.s.

Assumption 4 means that when the predictors are partitioned into groups as
described in Section 2, the sizes of all important groups do not grow to infinity
as n increases. Hansen (2014) and Zhang et al. (2016a) also made assumptions
on group sizes when comparing the risks of estimators using the full model and
the MMA. Assumption 5 basically eliminates the case that θn,m goes to zero as
n increases for any fixed m, excluding the local-to-zero asymptotic framework
with fixed dimensions considered by Hjort and Claeskens (2003) and Liu (2015).
We allow for the possibility that θ̄m tends to zero as m → ∞. Note that in the
model setting of Peng and Yang (2022), Assumptions 4 and 5 are obviously
satisfied.

Assumption 6 requires that dn be reasonably large. For example, when
dn ≡ d0 is fixed and Assumptions 2 and 5 hold, by Equation (A.1) in the
Appendix,

RMS
n (m)−RMS

n (m−1) = ntr{(Pm −Pm−1)�}
(

1

n
− θn,m

)

≤ ntr{(Pm −Pm−1)�}
(

1

n
− θ̄m

)
< 0 a.s.

for m = 2, . . . ,d0 and each sufficiently large n. This result implies that RMS
n (m) is

decreasing on {1, . . . ,d0} for each sufficiently large n a.s., and thus Assumption
6 is not satisfied. Under Assumptions 3 and 5, Assumption 6 is satisfied when
θn,dn < 1/n a.s. for each sufficiently large n, as derived below. Given Assumptions
3 and 5, and the condition θn,dn < 1/n a.s., there exist an event E with Pr(E) = 1
and an m′

n ∈ {2, . . . ,dn − 1} such that on E , θn,m′
n
> 1/n ≥ θn,m′

n+1. Consequently,
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Figure 1. Two typical situations of the squared prediction risk RMS
n (m) and the relationship between

Mn and m∗∗
n under Assumption 6. In left panel: Mn < m∗∗

n . In right panel: Mn ≥ m∗∗
n .

on E , for m = 2, . . . ,m′
n,

RMS
n (m)−RMS

n (m−1) ≤ ntr{(Pm −Pm−1)�}
(

1

n
− θn,m′

n

)
< 0;

and for m = m′
n +1, . . . ,dn,

RMS
n (m)−RMS

n (m−1) ≥ ntr{(Pm −Pm−1)�}
(

1

n
− θn,m′

n+1

)
≥ 0;

and RMS
n (dn) − RMS

n (dn − 1) > 0. These results together imply that RMS
n (m) is

decreasing in m ∈ {1, . . . ,m′
n} and increasing in m ∈ {m′

n, . . . ,dn} a.s. Assumption 6
also implies that, for any sufficiently large n, RMS

n (m) first decreases and then
increases as m increases from 1 to qn a.s.; refer to Figure 1. In the derivation of
(A.2) in Peng and Yang (2022), they also used this assumption.

Let m∗∗
n = argminm∈{1,...,qn} RMS

n (m) be the global optimal model index. We
assume that m∗∗

n is unique. Note that m∗∗
n may not equal m∗

n because the number of
candidate models Mn may be too small to include the m∗∗

n th model. In fact, under
Assumption 6,

m∗
n = min{Mn,m

∗∗
n } =

{
Mn, if Mn < m∗∗

n ,

m∗∗
n , if Mn ≥ m∗∗

n .

See Figure 1 that shows two typical situations for m∗
n. Peng and Yang (2022)

compared MS and MA under the assumption that Mn is large enough to include
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m∗∗
n , i.e., Mn ≥ m∗∗

n . However, that paper did not compare MS and MA when
Mn < m∗∗

n . In this paper, we also relax this assumption and investigate the impact
of Mn on the comparison of MS and MA.

In Sections 3.2 and 3.3, we shall show that the number of candidate models Mn

and the decaying order of {θn,m}dn
m=1 determine when MA is substantially better

than MS.

3.2. A Comparison of Oracle Optimal MS and MA

In this subsection, we address Questions Q1 and Q2, specifically comparing the
risks of the optimal MS and MA estimators. We begin with the following theorem
on the order relationship of RMS

n (m∗
n) and RMA

n (w∗
n), which provides an answer to

Question Q1.

Theorem 1 (Answer to Question Q1). Suppose that Assumptions 1–3 and 6
hold. Then, for any sufficiently large n,

RMA
n (w∗

n) ≥ 1

2
RMS

n (m∗
n) a.s. (8)

Moreover, the risks using m∗
n and w∗

n have the same order a.s., i.e.,

RMS
n (m∗

n) � RMA
n (w∗

n) a.s. (9)

Theorem 1 places no restriction on the number of candidate models Mn,
whereas Peng and Yang (2022) imposed the condition Mn ≥ m∗∗

n . Inequality (8)
implies �n ≤ RMS

n (m∗
n)/2 for sufficiently large n, suggesting that the potential risk

reduction of MA compared to MS does not exceed half of optimal risk of MS.
Equation (9) indicates that while MA has a smaller optimal risk than MS, it actually
cannot reduce the increasing rate (or improve the decreasing rate) of risk by the
optimal MS. Thus, even if the oracle model based on MS can be improved by MA,
the potential advantage of MA in risk reduction is limited in terms of the increasing
or decreasing rate.

We now turn our attention to Question Q2. We first present the following
theorem on some elementary properties of the global optimal model index
m∗∗

n , RMS
n (m∗

n), and RMA
n (w∗

n). These properties are important for the subsequent
analysis.

Theorem 2. Suppose that Assumptions 1–6 are satisfied. Then,

(i) m∗∗
n → ∞ a.s.

(ii) RMS
n (m∗

n) → ∞ and RMA
n (w∗

n) → ∞ a.s.

Theorem 2(i) suggests that, under certain mild assumptions, the index of the
global optimal model diverges to infinity almost surely as n → ∞. For practical
applications, this result tells us that a diverging dimension should be utilized to
achieve promising MS performance. Theorem 2(ii) reveals that the smallest risks
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of MS and MA grow to infinity almost surely as the sample size n increases. In
the proof of this theorem provided in the Supplementary Material, we demonstrate
that RMS

n (m∗
n) and RMA

n (w∗
n) diverge at a rate no slower than m∗∗

n . It is worth noting
Theorem 2(ii) does not require the restriction Mn ≥ m∗∗

n , which was imposed by
Peng and Yang (2022).

To investigate the impact of the number of candidate models Mn on the
comparison of MS and MA, we consider the following two conditions for Mn.

Condition M1 (Mn Too Small). limn→∞ Mn/m∗∗
n = 0 a.s.

Condition M2 (Mn Large Enough). There exists a constant c > 0 such that
Mn/m∗∗

n ≥ c holds a.s. for sufficiently large n.

By Theorem 2(i), under Assumptions 1–6, Condition M1 is satisfied when Mn

is either fixed or diverges to infinity at a rate slower than m∗∗
n . In practice, we do

not know m∗∗
n , so Condition M1 may happen. Condition M2 is met either when

Mn ≥ m∗∗
n a.s. (as considered by Peng and Yang (2022)) or when Mn < m∗∗

n a.s.,
but Mn has the same order as m∗∗

n almost surely. Next, we explore the degree
of improvement �n/RMS

n (m∗
n) by the following theorems under Conditions M1

and M2.

Theorem 3 (Answer to Question Q2 under Condition M1). Suppose that
Assumptions 1–6 hold. Under Condition M1,

�n = o
{
RMS

n (m∗
n)
}

a.s.

Theorem 3 suggests that when the number of candidate models Mn is fixed or
diverges to infinity at a slower rate than m∗∗

n , MA has no essential advantage over
MS. This again indicates that in practical applications, a large enough number
of candidate models should be utilized. It is important to note that the result in
Theorem 3 holds for both the slowly and fast decaying {θn,m}dn

m=1, as defined in
Conditions A1–A2 below.

Furthermore, when Condition M2 holds, we explore the degree of improvement
�n/RMS

n (m∗
n) by the following theorem under sensible conditions on θn,m, which

provides an answer to Question Q2 under Condition M2. The answer depends on
the decaying order of {θn,m}dn

m=1.

Condition A1 (Slowly Decaying {θn,m}dn
m=1). There exist constants k > 1, 0 <

δ ≤ η < 1 with kη < 1, and K > 0 such that for every integer sequence {ln}
satisfying limn→∞ ln = ∞,

δ ≤ θn,�kln�/θn,ln ≤ η for any n ≥ K a.s.

Condition A2 (Fast Decaying {θn,m}dn
m=1). For every constant k > 1 and every

integer sequence {ln} satisfying limn→∞ ln = ∞,

lim
n→∞θn,�kln�/θn,ln = 0 a.s.
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In the model setting of Peng and Yang (2022), since θn,m = β2
m/σ 2, Conditions

A1 and A2 are equivalent to the conditions 1 and 2 of Peng and Yang (2022),
respectively.

Theorem 4 (Answer to question Q2 under condition M2). Suppose that
Assumptions 1–6 and Condition M2 holds. Under Condition A1, we have

�n � RMS
n (m∗

n) a.s.

Under Condition A2, we have

�n = o
{
RMS

n (m∗
n)
}

a.s.

From Theorems 1 and 4, under Condition A1, we have

1

2
≤ liminf

n→∞
RMA

n (w∗
n)

RMS
n (m∗

n)
≤ limsup

n→∞
RMA

n (w∗
n)

RMS
n (m∗

n)
≤ 1− c∗ a.s.

for some c∗ ∈ (0,1/2]; and under Condition A2, RMA
n (w∗

n) ∼ RMS
n (m∗

n) a.s. There-
fore, when the number of candidate models Mn is large enough, there is a phase
transition in the advantage of MA over MS. When θn,m decays slowly in m, the
oracle MA can reduce the optimal risk of MS by a substantial fraction; however,
when θn,m decays fast in m, MA has no real advantage over MS.

To gain a better understanding of Conditions A1 and A2, we consider the
following more simple conditions (i.e., Assumption 7 and Conditions B1 and B2),
which imply Conditions A1 and A2 by Lemma 1 below.

Assumption 7. There exists a nonstochastic positive sequence θ∗
m,m = 1, . . . ,dn

such that

max
1≤m≤dn

∣∣∣∣θn,m

θ∗
m

−1

∣∣∣∣→a.s. 0.

Condition B1 (Slowly Decaying θ∗
m). There exist constants k > 1 and 0 < δ∗ ≤

η∗ < 1 with kη∗ < 1 such that δ∗ ≤ θ∗
�km�/θ∗

m ≤ η∗ when m is large enough.
Condition B2 (Fast Decaying θ∗

m). For every constant k > 1, limm→∞ θ∗
�km�/

θ∗
m = 0.

Lemma 1. Suppose that Assumption 7 holds. Then, Conditions B1 and B2 imply
Conditions A1 and A2, respectively.

Assumption 7 implies that limn→∞ θn,m = θ∗
m for any fixed m a.s. Thus, Assump-

tion 7 can lead to Assumption 5 by taking θ̄m = θ∗
m/2. Condition B1 is satisfied

for θ∗
m ∼ m−2α or slightly more generally for θ∗

m ∼ m−2α(logm)β with constants
α > 1/2 and β ∈R. Condition B2 is satisfied for the exponential-decay case; that is,
θ∗

m ∼ exp(−cm) for some c > 0. These two types of decaying rates are commonly
seen in the literature. For example, in the research of infinite-order AR models,
Ing and Wei (2005), Ing (2007), and Liao et al. (2021) considered the exponential-
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decay and algebraic-decay cases for the AR coefficients, which are described in
our context as follows:

(i) Exponential-decay case: C1m−τ1 e−cm ≤ θ∗
m ≤ C2mτ1e−cm, where C1, C2, τ1,

and c are constants with C2 ≥ C1 > 0, τ1 ≥ 0, and c > 0.
(ii) Algebraic-decay case: (C3 −C4m−τ2)m−ᾱ ≤ θ∗

m ≤ (C3 +C4m−τ2)m−ᾱ , where
C3, C4, τ2, and ᾱ > 1 are positive constants.

It can be easily verified that the exponential-decay case (i) and algebraic-decay
case (ii) satisfy Conditions B2 and B1, respectively.

3.3. A Comparison of Two Specific MS and MA Procedures

Up to now, the theoretical results of Theorems 1, 3 and 4 mainly focus on the
comparison of oracle optimal MS and MA, not directly on the comparison of two
specific MS and MA procedures. Fortunately, by using (2) and (3), we can do the
latter comparison by connecting the feasible risks (when using a selected model
index or weights from some methods) and infeasible risks (when using the oracle
model index or weights). In the literature, the proof of the asymptotic efficiency (or
optimality) of MS and MA requires the smallest risks of MS and MA (i.e., RMS

n (m∗
n)

and RMA
n (w∗

n) in our notation) to grow to infinity as the sample size increases. Both
growth results have been verified in Theorem 2(ii) under Assumptions 1–6.

Let m̂n and ŵn be the selected model index and chosen weights based on
asymptotically optimal MS and MA methods, respectively. Then, we have the
following two consequences.

Corollary 1. Suppose that Assumptions 1–6 hold, and m̂n and ŵn are
asymptotically optimal in the sense of (2), i.e., RMS

n (m̂n)/RMS
n (m∗

n) →p 1 and
RMA

n (ŵn)/RMA
n (w∗

n) →p 1. Then,

(i) the risks using m̂n and ŵn have the same order, i.e., RMS
n (m̂n) �p RMA

n (ŵn);
(ii) under Conditions M2 and A1, MA using ŵn essentially improves over MS

using m̂n, i.e., RMS
n (m̂n)−RMA

n (ŵn) �p RMS
n (m̂n);

(iii) under either Condition M1 or Conditions M2 and A2, m̂n and ŵn are
asymptotically equivalent in risk, i.e., RMS

n (m̂n) ∼p RMA
n (ŵn).

Corollary 2. Suppose that Assumptions 1–6 hold, and m̂n and ŵn are asymp-
totically optimal in the sense of (3), i.e., E{LMS

n (m̂n)}/RMS
n (m∗

n) →a.s. 1 and
E{LMA

n (ŵn)}/RMA
n (w∗

n) →a.s. 1. Then, the results of Corollary 1 hold a.s. when
RMS

n (m̂n), RMA
n (ŵn), �p, and ∼p are replaced by E{LMS

n (m̂n)}, E{LMA
n (ŵn)}, �,

and ∼, respectively.

Since the proofs of Corollaries 1 and 2 are similar, we provide only the proof
of Corollary 1, which appears in Section S.1.5 of the Supplementary Material.
Alhorn et al. (2019); (2021) also contributed to the discussion of the superiority
of MA over MS, but they used fixed weights in their theoretical studies and other
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weights with explicit forms in their numerical studies; these weights supply no
support to prove asymptotic optimality.

4. COMPARISONS OF MAS WITH DIFFERENT WEIGHT SETS

This section compares the optimal risks of MAs when the weights belong to three
weight sets:Wn,Qn, andWn(N). These comparisons provide answers to Questions
Q3 and Q4.

4.1. A Comparison of MAs with Weight Sets Wn and Qn

In this subsection, our focus is on comparing the risks of MA estimators when
the weights come from Wn and Qn. We first present the following theorem, which
answers Question Q3.

Theorem 5 (Answer to Question Q3). Suppose that Assumptions 1–6 hold.
Then,

RMA
n (w∗

n)−RMA
n (w̃∗

n) = o
{
RMA

n (w∗
n)
}

a.s., (10)

i.e., w∗
n and w̃∗

n are asymptotically equivalent in risk.

Equation (10) indicates that while the weight relaxation could lead to a smaller
optimal risk of MA, it does not provide any substantial benefit asymptotically. Note
that Theorem 5 does not require any assumptions about the number of candidate
models Mn or the decaying order of {θn,m}dn

m=1.
Furthermore, we compare two specific asymptotically optimal MS and MA

procedures, where MA weights are chosen from the weight set Qn. Let ŵQ
n denote

the chosen weights based on a specific MA method that satisfies the asymptotic
optimality (2) or (3), without imposing the total weight constraint

∑Mn
m=1 wm = 1.

For example, the asymptotic optimality (2) of JMA without the total weight
constraint has been established by Ando and Li (2014) and Zhao et al. (2016)
for independent data and dependent data, respectively. Using Theorem 5, we can
easily derive the following corollary, which compares MA without the total weight
constraint with MS.

Corollary 3. Suppose that Assumptions 1–6 hold.

(i) Assume that m̂n and ŵQ
n satisfy RMS

n (m̂n)/RMS
n (m∗

n) →p 1 and RMA
n (ŵQ

n )/

RMA
n (w∗

n) →p 1. Then the results of Corollary 1 hold when ŵn is replaced by
ŵQ

n .
(ii) Assume that m̂n and ŵQ

n satisfy E{LMS
n (m̂n)}/RMS

n (m∗
n)→a.s. 1 and E{LMA

n (ŵQ
n )}

/RMA
n (w∗

n) →a.s. 1. Then the results of Corollary 2 hold when ŵn is replaced
by ŵQ

n .
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4.2. A Comparison of MAs with Weight Sets Wn and Wn(N)

In this subsection, we focus on the comparison of the optimal risks of MA
estimators with weights belonging to the weight sets Wn and Wn(N), respectively.
We present the following theorem on an upper bound of RMA

n (w∗
n,N) − RMA

n (w∗
n)

and an answer to Question Q4.

Theorem 6 (Answer to Question Q4). Suppose that Assumptions 1–6 hold.
Then, for any sufficiently large n,

RMA
n (w∗

n,N)−RMA
n (w∗

n) ≤ 1

2N
RMS

n (m∗
n) a.s. (11)

Furthermore, under Conditions M2 and A1, we have

RMA
n (w∗

n,N)−RMA
n (w∗

n) � RMA
n (w∗

n) a.s.;
and under either Condition M1 or Conditions M2 and A2, we have

RMA
n (w∗

n,N)−RMA
n (w∗

n) = o
{
RMA

n (w∗
n)
}

a.s.,

i.e.,

RMA
n (w∗

n,N) ∼ RMA
n (w∗

n) a.s.

Observing that RMA
n (w∗

n,1) = RMS
n (m∗

n), we can note that Theorems 1 and 3–4 are
special cases of Theorem 6 with N = 1. The upper bound in (11) implies that for a
fixed and sufficiently large sample size, RMA

n (w∗
n,N) can be made arbitrarily close to

RMA
n (w∗

n) when N is large enough. This result is expected since Wn(N) approaches
Wn as closely as desired by making N sufficiently large. From Theorem 6, when
Mn is large enough and θn,m decays slowly in m, restricting the weight set Wn to
Wn(N) can enlarge the optimal risk of MA by a substantial multiple. When either
Mn is too small or Mn is large enough and θn,m decays fast in m, MA restricted to the
discrete weight set has no real disadvantage over MA with Wn. In Section S.3 of
the Supplementary Material, we provide a further comparison of MA techniques
with nested discrete weight sets, including a comparison of MS and MA with a
discrete weight set.

5. TWO EXAMPLES

In this section, we provide two examples to validate the theoretical results in
Theorems 3, 4 and 6. Detailed derivations can be found in Section S.2 of the
Supplementary Material. Given a,b > 0, the incomplete beta function is defined
as B(x;a,b) = ∫ x

0 ta−1(1− t)b−1 dt for 0 ≤ x ≤ 1.
In both examples, we follow the model setting of Peng and Yang (2022):

the model (1) with the orthonormal design assumption (4), homoscedastic and
uncorrelated error terms, and νm = m for m = 1, . . . ,pn. Under this configuration,
θn,m = β2

m/σ 2.
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Example 5.1 (Slowly decaying θn,m). The true coefficients are set to βm = m−α

with α > 1/2. Then, θn,m = m−2α/σ 2 and Condition A1 is satisfied. By some

simple calculations, we can get m∗∗
n ∼ ( n

σ 2 )
1

2α . We consider the following two
situations regarding the number of candidate models Mn.

(i) When limn→∞ Mn/m∗∗
n = 0, we have

1

n
RMA

n (w∗
n,N) ∼ 1

n
RMA

n (w∗
n)

∼
{∑∞

m=M+1 m−2α, if Mn ≡ M is fixed as n → ∞,

M−2α+1
n
2α−1 , if limn→∞ Mn = ∞ but Mn = o(m∗∗

n ).

This verifies that RMA
n (w∗

n,N) ∼ RMA
n (w∗

n) under Condition M1, which accords with
Theorem 3 and the third conclusion of Theorem 6.

(ii) When Mn/m∗∗
n ≥ c for some c > 0, we have

1

n
RMA

n (w∗
n,N) � 1

n
RMA

n (w∗
n) � n− 2α−1

2α .

By a simple calculation, we know that RMA
n (w∗

n,N)−RMA
n (w∗

n) is lower bounded by

�σ 2

22α+1�−2α+2

(
n
σ 2

) 1
2α

, where � = min{c,(2N − 1)−
1

2α }. Moreover, if limn→∞ Mn/

m∗∗
n = κ , κ ∈ (0,∞] and Mn = o(pn), we have

lim
n→∞

RMA
n (w∗

n)

RMA
n (w∗

n,N)
= 1

ψ∗
N + κ−2α+1

2α[
2α −1

4α2

{
π

sin( π
2α

)
−B

(
1

1+κ2α
;1− 1

2α
,

1

2α

)}
+ κ−2α+1

2α

]
,

where ψ∗
N is defined in (S.6) of the Supplementary Material. Furthermore, we can

show that

lim
n→∞

RMA
n (w∗

n)

RMA
n (w∗

n,N)
< 1,

which verifies that RMA
n (w∗

n,N)−RMA
n (w∗

n) � RMA
n (w∗

n), which accords with the first
conclusion of Theorem 4 and the second conclusion of Theorem 6. Figure 2(a)
plots limn→∞ RMA

n (w∗
n)/RMA

n (w∗
n,N) against N ∈ {1, . . . ,10} for κ = 0.5,1,2, and

Figure 2(b) plots limn→∞ RMA
n (w∗

n)/RMA
n (w∗

n,N) against κ ∈ (0,8) for N = 1,2,4,
where α = 0.8, which further verifies that limn→∞ RMA

n (w∗
n)/RMA

n (w∗
n,N) < 1.

Example 5.2 (Fast decaying θn,m). The true coefficients are set to βm =
exp(−cm) with c > 0. Then, θn,m = exp(−2cm)/σ 2 and Condition A2 is satisfied.

The global optimal model should include the first m∗∗
n ∼ 1

2c log
(

n
σ 2

)
terms.

We consider the following three situations regarding the number of candidate
models Mn.
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Figure 2. Numerical illustration for Example 5.1 with α = 0.8. (a): Plots of
limn→∞ RMA

n (w∗
n)/RMA

n (w∗
n,N) against N ∈ {1, . . . ,10} for κ = 0.5,1,2, respectively. (b): Plots

of limn→∞ RMA
n (w∗

n)/RMA
n (w∗

n,N) against κ ∈ (0,8) for N = 1,2,4, respectively.

(i) When limsupn→∞ Mn/m∗∗
n < 1, we have

1

n
RMA

n (w∗
n,N) ∼ 1

n
RMA

n (w∗
n) ∼ exp(−2cMn)

exp(2c)−1
,

which verifies that RMA
n (w∗

n,N) ∼ RMA
n (w∗

n) under Condition M1 and accords with
Theorem 3 and the third conclusion of Theorem 6.

(ii) When Mn < m∗∗
n for any sufficiently large n but limn→∞ Mn/m∗∗

n = 1, we
have

1

n
RMA

n (w∗
n,N) ∼ 1

n
RMA

n (w∗
n) ∼ 1

2c

σ 2

n
log
( n

σ 2

)
+ exp(−2cMn)− exp(−2cpn)

exp(2c)−1
,

which verifies that RMA
n (w∗

n,N) ∼ RMA
n (w∗

n) under Conditions M2 and A2 and
accords with the second conclusion of Theorem 4 and the third conclusion of
Theorem 6.

(iii) When Mn ≥ m∗∗
n for any sufficiently large n, we have

1

n
RMA

n (w∗
n,N) ∼ 1

n
RMA

n (w∗
n) ∼ 1

2c

σ 2

n
log
( n

σ 2

)
,

which also verifies that RMA
n (w∗

n,N) ∼ RMA
n (w∗

n) under Conditions M2 and A2 and
accords with the second conclusion of Theorem 4 and the third conclusion of
Theorem 6.
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6. SIMULATION STUDIES

In this section, we conduct several simulation studies to illustrate the theoretical
results presented in Corollaries 1 and 3, where specific MS and MA methods are
compared. We choose AIC, BIC, and LOO-CV as MS methods and MMA and
JMA as MA methods. Additionally, we conduct simulation studies to compare
the oracle optimal MAs with different weight sets, and to illustrate the theoretical
results in Theorems 5 and 6. Specifically, we use the following three examples:

• Example 1: General nested framework (i.e., νm �= m), homoscedastic and
uncorrelated errors, and (approximately) orthonormal design.

• Example 2: Typical nested framework (i.e., νm = m), heteroscedastic and
autocorrelated errors, and (approximately) orthonormal design.

• Example 3: Typical nested framework (i.e., νm = m), homoscedastic and
uncorrelated errors, and non-orthonormal design.

To evaluate the estimators, we compute the risks of the competing methods by
computing averages across 1000 replications.

Example 1 (General nested framework). We use the same set-up as that of
Peng and Yang (2022) except for the coefficients βm’s. Specifically, suppose the
data come from the model (1), where pn = �5n2/3�, xi1 = 1, the remaining xij are
independent and identically distributed (i.i.d.) from N(0,1), and the random errors
εi are i.i.d. from N(0,σ 2) and are independent of xij’s. The population R2 is denoted
by R2 = Var(μi)/Var(yi), which is controlled to be 0.05, 0.25, 0.5, or 0.75 via the
parameter σ 2. We consider a more general nested model setting than that of Peng
and Yang (2022) by setting

νm =
{

5�m/2�+2, if m is odd

5�m/2�, if m is even
, m = 1, . . . ,qn −1

and νqn = pn. Thus, the size of the mth group of predictors is 2 when m is odd and 3
when m is even, m = 1, . . . ,qn −1. We consider two cases with different coefficient
decaying orders:

• Case 1. βj = m−α1 when xij is in the mth group, and α1 is set to be 1, 1.5, or 2.
• Case 2. βj = exp(−α2m) when xij is in the mth group, and α2 is set to be 1, 1.5,

or 2.

For Case 1, we know that θn,m converges to θ∗
m = m−2α1/σ 2 a.s., and then Condition

B1 is satisfied. For Case 2, θn,m converges to θ∗
m = exp(−2α2m)/σ 2 a.s., and then

Condition B2 is satisfied. The sample size n varies at 50, 500, 1000, 2000, 3000,
and 4000. The number of candidate models is determined by Mn = INT(3n1/3),
where the function INT(a) returns the nearest integer from a. In each simulation
setting of the combination of n, R2, and α1 (or α2), we normalize the risks of the
MS methods by dividing by the risk of MMA.

Figure 3 presents the simulation results for Case 1 with α1 = 1.5 and Case 2
with α2 = 1.5. Due to limited space, the other simulation results are summarized in
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Figure 3. Normalized risk functions for AIC, BIC, LOO-CV, and MMA in Example 1. Row (a): θ∗
m = m−2α1/σ 2 with α1 = 1.5,

corresponding to the case of slowly decaying θ∗
m. Row (b): θ∗

m = exp(−2α2m)/σ 2 with α2 = 1.5, corresponding to the case of fast
decaying θ∗

m.
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Figures S.2 and S.3 of the Supplementary Material. Note that Figure 3(a) refers to
Case 1 (slowly decaying coefficients) and (b) to Case 2 (fast decaying coefficients).
Since both AIC and LOO-CV are asymptotically optimal for Example 1, as
expected, their performances are very close for large sample sizes. In the slowly
decaying θ∗

m case, the performance gap between AIC (or LOO-CV) and MMA does
not vanish when n increases, while in the fast decaying θ∗

m case, it becomes very
small when n is large. These results are consistent with the results of Corollary 1.

Following Peng and Yang (2022), we also include BIC in our simulation,
although often, BIC is not asymptotically optimal. In Case 1, the advantage of
AIC over BIC becomes increasingly larger as n increases from 50 to 4000, while
in Case 2 with fast decaying θ∗

m, BIC is competitive with AIC in some scenarios.
This phenomenon was also observed by Peng and Yang (2022).

Example 2 (Heteroskedastic and autocorrelated errors). The setting of this
example is the same as that of Example 1, except that the typical nested framework
with νm = m and heteroscedastic and autocorrelated errors are considered. We
utilize the same error process of Zhang et al. (2013), one that is both heteroscedas-
tic and autocorrelated. Specifically, the error process is given by εi = εi1 + εi2,
where the εi1’s are independent observations from the N(0,x2

i2) distribution, and
εi2 follows an AR(1) process with an autocorrelation coefficient ρ1 = 0.5, where
εi2 = ρ1εi−1,2 + ei, ε12 ∼ N(0,1), and the ei’s are i.i.d. from N(0,1 −ρ2

1) and are
independent of εi2’s. Then, the conditional covariance matrix of ε given the xij’s
is � = �1 + �2, where �1 = diag{x2

12, . . . ,x
2
n2} and �2 = (ρ

|k−l|
1 )k,l=1,...,n. By a

simple calculation, we have

tr(Pm�1) →a.s.

{
1, if νm = 1

νm +2, if νm ≥ 2
and tr(Pm�2) →a.s.

2ρ1

1−ρ1
+νm.

Therefore, for any fixed m, θn,m →a.s. θ
∗
m = β2

m/ζm, where

ζm =

⎧⎪⎨
⎪⎩

2
1−ρ1

, if m = 1,

4, if m = 2,

2, if m ≥ 3.

We consider two cases with different decaying orders of θ∗
m:

• Case 1 (With θ∗
m satisfying Condition B1). Here, βm = c

√
ζmm−α1 , and α1 is set

to be 1, 1.5, or 2.
• Case 2 (With θ∗

m satisfying Condition B2). Here, βm = c
√

ζm exp(−α2m), and
α2 is set to be 1, 1.5, or 2.

As in Hansen and Racine (2012), the parameter c is selected to control the
approximate population R̃2 = c2/(1 + c2) to vary on 0.05, 0.25, 0.5, and 0.75.
The sample size is varied among n = 500, 1000, 2000, 3000, 4000, and 5000.
To illustrate the results in Corollary 3, we include JMA without the restriction∑Mn

m=1 wm = 1, denoted by JMA2, as a competing method. In each simulation
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setting of combination of n, R̃2, and α1 (or α2), we normalize the risks of the MS
methods and JMA2 by dividing by the risk of JMA.

Figure 4 only shows the simulation results for Case 1 with α1 = 1.5 and Case 2
with α2 = 1.5. Due to limited space, the other simulation results are summarized
in Figures S.4 and S.5 of the Supplementary Material. From Figure 4(a), we see
that in the slowly decaying θ∗

m case, the performance gap between LOO-CV and
JMA does not vanish when the sample size increases. In contrast, in the fast
decaying θ∗

m case (Figure 4(b)), it becomes very small when the sample size is
large. These results are consistent with Corollary 1. Note that from Figure 4(b),
the performances of AIC and JMA are not consistently close since AIC may not
be asymptotically optimal in Example 2 because of heteroscedasticity. Another
observation is that the performances of JMA2 and JMA are very close when n is
sufficiently large, which illustrates the results in Corollary 3. Moreover, we can
observe the same phenomena seen in the Example 1 for the comparison of AIC
and BIC.

Example 3 (Non-orthonormal design). The setting of this example is the same
as that of Example 1 except that the typical nested framework with νm = m
and predictors are non-orthonormal. Specifically, the predictors (xi1, . . . ,xipn)

�,
i = 1, . . . ,n are i.i.d. normal random vectors with zero mean and the covariance
matrix between the kth and lth elements being ρ

|k−l|
2 , with the random errors εi

being i.i.d. from N(0,σ 2) and independent of xij’s. Here, ρ2 is set to be 0.5. It is
easy to prove that for any fixed m,

1

n
μ�Pmμ →a.s. lim

n→∞β�
pn

��
m×pn

�−1
m×m�m×pnβpn

,

where �d1×d2 is a d1 × d2 matrix with (k,l)th element being ρ
|k−l|
2 and βpn

=
(β1, . . . ,βpn)

�. It follows that θn,m = μ�(Pm −Pm−1)μ/(nσ 2) → θ∗
m = ξm/σ 2 a.s.,

where ξ1 = limn→∞(�1×pnβpn
)2 and

ξm = lim
n→∞β�

pn

{
��

m×pn
�−1

m×m�m×pn −��
(m−1)×pn

�−1
(m−1)×(m−1)�(m−1)×pn

}
βpn

for m = 2, . . . ,pn. By calculations, we can obtain simple forms of ξm as follows

ξ1 = lim
n→∞

⎛
⎝ pn∑

j=1

βjρ
j−1
2

⎞
⎠

2

and ξm = lim
n→∞(1−ρ2

2)

⎛
⎝ pn∑

j=m

βjρ
j−m
2

⎞
⎠

2

, m ≥ 2.

(12)

We consider two cases with different decaying orders of θ∗
m:

• Case 1 (With θ∗
m satisfying Condition B1). Here, ξm = m−2α1 and α1 is set to be

1, 1.5, or 2.
• Case 2 (With θ∗

m satisfying Condition B2). Here, ξm = exp(−2α2m) and α2 is set
to be 1, 1.5, or 2.
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Figure 4. Normalized risk functions for AIC, BIC, LOO-CV, JMA2, and JMA in Example 2. Row (a): θ∗
m = c2m−2α1 with α1 = 1.5,

corresponding to the case of slowly decaying θ∗
m. Row (b): θ∗

m = c2 exp(−2α2m) with α2 = 1.5, corresponding to the case of fast
decaying θ∗

m.
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Figure 5. Normalized risk functions for AIC, BIC, LOO-CV, and MMA in Example 3. Row (a): θ∗
m = m−2α1/σ 2 with α1 = 1.5,

corresponding to the case of slowly decaying θ∗
m. Row (b): θ∗

m = exp(−2α2m)/σ 2 with α2 = 1.5, corresponding to the case of fast
decaying θ∗

m.
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Figure 6. Normalized risk functions of the oracle optimal MAs with different weight sets for Examples 1–3, where R2 = 0.5 (or
R̃2 = 0.5). Row (a): Case 1 with α1 = 2, corresponding to the case of slowly decaying GVI. Row (b): Case 2 with α2 = 2, corresponding
to the case of fast decaying GVI.
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We can set different coefficient βj via (12) such that Case 1 and Case 2 hold,
respectively. Without loss of generality, we assume βj ≥ 0 for all j. Then from
(12), we have

β1 =√ξ1 −ρ2

√
ξ2

1−ρ2
2

and βj =
√

ξj −ρ2
√

ξj+1√
1−ρ2

2

, j ≥ 2.

The sample size n varies at 50, 500, 1000, 2000, 3000, and 4000. In each simulation
setting of the combination of n, R2, and α1 (or α2), we normalize the risks of the MS
methods by dividing by the risk of MMA. Figure 5 displays the simulation results
for Case 1 with α1 = 1.5 and Case 2 with α2 = 1.5. Due to limited space, the other
simulation results are summarized in Figures S.6 and S.7 of the Supplementary
Material. From these results, we can see the same observations as in Example 1,
again agreeing with the previous theoretical findings.

Finally, we illustrate the theoretical results presented in Theorems 5 and 6. We
consider the same settings as in Examples 1–3 and fix R2 = 0.5 (or R̃2 = 0.5)
and α1 = 2 (or α2 = 2). For each model setting, we compute the risks of the oracle
optimal MAs with three different weight sets Wn(N), Wn, and Qn, where N = 2,3.
Then, we normalize all risks by dividing by the risk of the oracle optimal MA
with weights belonging to Wn. Figure 6 shows the simulation results for Examples
1–3, where (a) refers to Case 1 (slowly decaying GVI) and (b) to Case 2 (fast
decaying GVI). From Figure 6(a), the performance gap between MAs with weight
sets Wn(N) and Wn does not vanish as n increases, while it becomes very small
as n increases in Figure 6(b). This is consistent with the results in Theorem 6.
Additionally, in both (a) and (b), the performance of MAs with weight sets Wn and
Qn are very close when n is large. This is consistent with the results in Theorem 5.

In the examples above, we utilize the decaying orders of GVI to determine the
performance of MAs and MSs and set Mn to be sufficiently large (i.e., Condition
M2 is satisfied). Additionally, in Section S.5 of the Supplementary Material, we
design Example 4 to illustrate Corollary 1 when Mn is too small (Condition M1 is
satisfied).

7. CONCLUSION

This paper compares MS and MA in a general model setting, allowing the
predictors to be non-orthonormal, the error terms to be heteroscedastic and
autocorrelated, and some predictors to be totally unimportant. We obtain the results
that the number of candidate models Mn and the decaying order of {θn,m}dn

m=1
determine when MA is better than MS. Specifically, when Mn is large enough
and θn,m decays slowly in m, the benefit of MA over MS is real. However, when
either Mn is too small or Mn is large enough and θn,m decays fast in m, the risks of
MA and MS are asymptotically equivalent. Furthermore, the obtained results are
extended to compare MAs with weights belonging to three different weight sets.
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The results of this paper provide practical insights. First, MA has the potential
to outperform MS significantly in risk. The comparison between them depends
on both the number of candidate models and the decaying order of a sequence of
indices related to the model coefficients. Second, to achieve optimal performance
for MS and MA, the number of candidate models is required to diverge to infinity
with the sample size. Last, a large weight set may not improve the performance
of MA. Under certain reasonable conditions, MA with the large weight set Qn has
the same performance as MA with Wn in a large sample sense.

The results of this paper suggest several open questions. First, an interesting
issue is how to order the predictors and prepare nested candidate models such
that the risk gain of MA is optimal. Although various procedures are proposed to
order the predictors in the implementation of MA, such as the forward selection
approach (Claeskens et al., 2006), marginal correlation (Ando and Li, 2014, 2017;
Zhang et al., 2016b), and solution path algorithm of penalized regression (Feng
and Liu, 2020; Zhang et al., 2020), the literature still lacks theoretical study on the
optimal way of ordering the predictors. Second, it would be interesting to develop
a data-driven way to choose the number of the candidate models. Third, it would
be valuable to extend the current work to dynamic models that include lagged
dependent variables as predictor variables.

Finally, we discuss the challenge of comparing MS and MA in the non-nested
model setting. First, the monotonicity of the squared bias and variance terms of
μ̂m, as illustrated in Remark 2, generally does not hold in the non-nested setting.
Second, the property that {Pm − Pm−1}Mn

m=1 are mutually orthonormal projection
matrices, as detailed in Appendix, does not apply in the non-nested setting. These
observations make it difficult to characterize the unknown optimal model index m∗

n
and weights w∗

n. Consequently, deriving explicit expressions for the optimal risks
of MS and MA becomes challenging, introducing complexity to the comparison of
MS and MA. A deeper and more detailed investigation of these issues is warranted.

APPENDIX

A. Proof of Theorem 1

Given that Assumptions 1–3 and 5–6, Conditions M1–M2, and Conditions A1–A2 are
imposed almost surely, there exists an event F with Pr(F) = 1 such that these assumptions
and conditions can be imposed surely on F . In the subsequent proofs, all results will be
derived on F when using these assumptions and conditions, hence they hold almost surely.
The risk of the mth candidate model is

RMS
n (m) = E

{
‖μ̂m −μ‖2|X

}
= tr

[
E
{
(μ̂m −μ)(μ̂m −μ)�|X

}]
= tr

[
{E(μ̂m|X)−μ}{E(μ̂m|X)−μ}�

]
+ tr
{
Var(μ̂m|X)

}
= μ�(In −Pm)μ+ tr(Pm�).
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Observe that

RMS
n (m)−RMS

n (m−1) = tr{(Pm −Pm−1)�}−μ�(Pm −Pm−1)μ

= ntr{(Pm −Pm−1)�}
(

1

n
− θn,m

)
, (A.1)

where θn,m is defined in (6). Under Assumptions 2–3 we have tr{(Pm −Pm−1)�} ≥ c1 and
{θn,m}qn

m=1 is nonincreasing. Combining these results with Assumption 6, it is easy to see

that the global optimal model m∗∗
n that minimizes RMS

n (m) on {1, . . . ,dn} satisfies

θn,m∗∗
n

>
1

n
≥ θn,m∗∗

n +1. (A.2)

Hence, the risk of the optimal model m∗
n is

RMS
n (m∗

n) = μ�(In −Pm∗
n
)μ+ tr(Pm∗

n
�), (A.3)

where when Mn < m∗∗
n , we have m∗

n = Mn and θn,m∗
n

> 1/n; when Mn ≥ m∗∗
n , we have

m∗
n = m∗∗

n and

θn,m∗
n

>
1

n
≥ θn,m∗

n+1. (A.4)

The risk of the MA estimator with weights w is

RMA
n (w) = E

{
‖μ̂(w)−μ‖2|X

}
= E

{
‖P(w)y−μ‖2|X

}
= μ�{P(w)− In}2μ+ tr{P2(w)�}.

Rewrite P(w) =∑Mn
m=1 γm(Pm −Pm−1), where γm =∑Mn

j=m wj and P0 = 0. Since PmPl =
Pmin(m,l) for the nested candidate models, it is easy to verify that {Pm − Pm−1}Mn

m=1 are
mutually orthonormal projection matrices, i.e.,

(Pm1 −Pm1−1)(Pm2 −Pm2−1) =
{

Pm1 −Pm1−1, if m1 = m2,

0, if m1 �= m2.

Using the above fact, Rm(w) is further expanded as

RMA
n (w) =

Mn∑
m=1

(
γ 2

m

[
μ�(Pm −Pm−1)μ+ tr{(Pm −Pm−1)�}

]

−2γmμ�(Pm −Pm−1)μ+μ�(Pm −Pm−1)μ

)
+μ�(In −PMn)μ. (A.5)

Under Assumption 3, it is straightforward to show that the infeasible optimal weights w∗
n =

(w∗
n,1, . . . ,w

∗
n,Mn

)� can be obtained by setting w∗
n,m = γ ∗

n,m −γ ∗
n,m+1 for m = 1, . . . ,Mn −1

and w∗
n,Mn

= γ ∗
n,Mn

, where γ ∗
n,1 = 1 and

γ ∗
n,m = μ�(Pm −Pm−1)μ

μ�(Pm −Pm−1)μ+ tr{(Pm −Pm−1)�} = θn,m

θn,m +1/n
, m = 2, . . . ,Mn. (A.6)
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Hence, the risk of the optimal MA estimator is

RMA
n (w∗

n) = tr(P1�)+
Mn∑

m=2

tr{(Pm −Pm−1)�}μ�(Pm −Pm−1)μ

μ�(Pm −Pm−1)μ+ tr{(Pm −Pm−1)�} +μ�(In −PMn)μ.

(A.7)

Combining (A.3) and (A.7), the potential advantage of MA over MS is

�n = RMS
n (m∗

n)−RMA
n (w∗

n)

=
m∗

n∑
m=2

[
tr{(Pm −Pm−1)�}− tr{(Pm −Pm−1)�}μ�(Pm −Pm−1)μ

μ�(Pm −Pm−1)μ+ tr{(Pm −Pm−1)�}
]

+
Mn∑

m=m∗
n+1

{μ�(Pm −Pm−1)μ}2

μ�(Pm −Pm−1)μ+ tr{(Pm −Pm−1)�}, (A.8)

which implies that, as is expected, the optimal risk of MA is not larger than that of MS, i.e.,
RMA

n (w∗
n) ≤ RMS

n (m∗
n). We consider two scenarios: Mn < m∗∗

n and Mn ≥ m∗∗
n .

When Mn < m∗∗
n , we have m∗

n = Mn. It follows from Assumption 3, θn,m∗
n

> 1/n, and

(A.6) that {γ ∗
n,m}Mn

m=1 is nonincreasing and γ ∗
n,m∗

n
> 1/2. Then, for a sufficiently large n,

RMA
n (w∗

n) ≥
m∗

n∑
m=1

tr{(Pm −Pm−1)�}μ�(Pm −Pm−1)μ

μ�(Pm −Pm−1)μ+ tr{(Pm −Pm−1)�} +μ�(In −Pm∗
n
)μ

=
m∗

n∑
m=1

γ ∗
n,mtr{(Pm −Pm−1)�}+μ�(In −Pm∗

n
)μ

≥ γ ∗
n,m∗

n

m∗
n∑

m=1

tr{(Pm −Pm−1)�}+μ�(In −Pm∗
n
)μ

≥ 1

2
tr(Pm∗

n
�)+μ�(In −Pm∗

n
)μ ≥ 1

2
RMS

n (m∗
n).

When Mn ≥ m∗∗
n , it follows from Assumption 3 and (A.4) that γ ∗

n,m∗
n

> 1/2 ≥ γ ∗
n,m∗

n+1.

Then, for a sufficiently large n,

RMA
n (w∗

n) ≥
Mn∑

m=1

tr{(Pm −Pm−1)�}μ�(Pm −Pm−1)μ

μ�(Pm −Pm−1)μ+ tr{(Pm −Pm−1)�} +μ�(In −PMn)μ

=
m∗

n∑
m=1

γ ∗
n,mtr{(Pm −Pm−1)�}

+
Mn∑

m=m∗
n+1

(1−γ ∗
n,m)μ�(Pm −Pm−1)μ+μ�(In −PMn)μ

≥ γ ∗
n,m∗

n

m∗
n∑

m=1

tr{(Pm −Pm−1)�}
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+ (1−γ ∗
n,m∗

n+1)

Mn∑
m=m∗

n+1

μ�(Pm −Pm−1)μ+μ�(In −PMn)μ

≥ 1

2
tr(Pm∗

n
�)+ 1

2
μ�(PMn −Pm∗

n
)μ+μ�(In −PMn)μ

≥ 1

2
RMS

n (m∗
n).

Therefore, we have RMS
n (m∗

n) ≥ RMA
n (w∗

n) ≥ RMS
n (m∗

n)/2 for any sufficiently large n, which
yields that RMS

n (m∗
n) and RMA

n (w∗
n) have the same order. This completes the proof of

Theorem 1.

Supplementary Material

The supplementary material for this article can be found at https://doi.org/10.1017/
S0266466624000355

REFERENCES

Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In B.
Petroc, & F. Csake (Eds.), Second international symposium on information theory (pp. 268–281).
Akademiai Kiado.

Alhorn, K., Dette, H., & Schorning, K. (2021). Optimal designs for model averaging in non-nested
models. Sankhya A, 83, 745–778.

Alhorn, K., Schorning, K., & Dette, H. (2019). Optimal designs for frequentist model averaging.
Biometrika, 106, 665–682.

Allen, D. M. (1974). The relationship between variable selection and data agumentation and a method
for prediction. Technometrics, 16, 125–127.

Ando, T., & Li, K.-C. (2014). A model-averaging approach for high-dimensional regression. Journal
of the American Statistical Association, 109, 254–265.

Ando, T., & Li, K.-C. (2017). A weight-relaxed model averaging approach for high-dimensional
generalized linear models. The Annals of Statistics, 45, 2654–2679.

Andrews, D. W. (1991). Asymptotic optimality of generalized CL, cross-validation, and generalized
cross-validation in regression with heteroskedastic errors. Journal of Econometrics, 47, 359–377.

Claeskens, G., Croux, C., & Van Kerckhoven, J. (2006). Variable selection for logistic regression using
a prediction-focused information criterion. Biometrics, 62, 972–979.

Ding, J., Tarokh, V., & Yang, Y. (2018). Model selection techniques: An overview. IEEE Signal
Processing Magazine, 35, 16–34.

Fang, F., Lan, W., Tong, J., & Shao, J. (2019). Model averaging for prediction with fragmentary data.
Journal of Business & Economic Statistics, 37, 517–527.

Fang, F., & Liu, M. (2020). Limit of the optimal weight in least squares model averaging with non-
nested models. Economics Letters, 196, 109586.

Feng, Y., & Liu, Q. (2020). Nested model averaging on solution path for high-dimensional linear
regression. Stat, 9, e317.

Feng, Y., Liu, Q., Yao, Q., & Zhao, G. (2022). Model averaging for nonlinear regression models.
Journal of Business & Economic Statistics, 40, 785–798.

Hansen, B. E. (2007). Least squares model averaging. Econometrica, 75, 1175–1189.
Hansen, B. E. (2014). Model averaging, asymptotic risk, and regressor groups. Quantitative Eco-

nomics, 5, 495–530.

https://doi.org/10.1017/S0266466624000355 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466624000355
https://doi.org/10.1017/S0266466624000355


32 WENCHAO XU AND XINYU ZHANG

Hansen, B. E., & Racine, J. S. (2012). Jackknife model averaging. Journal of Econometrics, 167, 38–
46.

He, B., Liu, Y., Wu, Y., Yin, G., & Zhao, X. (2020). Functional martingale residual process for high-
dimensional Cox regression with model averaging. Journal of Machine Learning Research, 21, 1–
37.

Hjort, N. L., & Claeskens, G. (2003). Frequentist model average estimators. Journal of the American
Statistical Association, 98, 879–899.

Ing, C.-K. (2007). Accumulated prediction errors, information criteria and optimal forecasting for
autoregressive time series. The Annals of Statistics, 35, 1238–1277.

Ing, C.-K., & Wei, C.-Z. (2005). Order selection for same-realization predictions in autoregressive
processes. The Annals of Statistics, 33, 2423–2474.

Lehrer, S., & Xie, T. (2017). Box office buzz: Does social media data steal the show from
model uncertainty when forecasting for Hollywood? Review of Economics and Statistics, 99,
749–755.

Li, K.-C. (1987). Asymptotic optimality for Cp,CL, cross-validation and generalized cross-validation:
Discrete index set. The Annals of Statistics, 15, 958–975.

Liao, J., Zou, G., Gao, Y., & Zhang, X. (2021). Model averaging prediction for time series models with
a diverging number of parameters. Journal of Econometrics, 223, 190–221.

Liu, C.-A. (2015). Distribution theory of the least squares averaging estimator. Journal of Economet-
rics, 186, 142–159.

Liu, Q., & Okui, R. (2013). Heteroscedasticity-robust Cp model averaging. The Econometrics Journal,
16, 463–472.

Liu, Q., Okui, R., & Yoshimura, A. (2016). Generalized least squares model averaging. Econometric
Reviews, 35, 1692–1752.

Magnus, J. R., & Luca, G. D. (2016). Weighted-average least squares (WALS): A survey. Journal of
Economic Surveys, 30, 117–148.

Magnus, J. R., Powell, O., & Prüfer, P. (2010). A comparison of two model averaging techniques with
an application to growth empirics. Journal of Econometrics, 154, 139–153.

Mallows, C. (1973). Some comments on Cp. Technometrics, 15, 661–675.
Moral-Benito, E. (2015). Model averaging in economics: An overview. Journal of Economic Surveys,

29, 46–75.
Peng, J., & Yang, Y. (2022). On improvability of model selection by model averaging. Journal of

Econometrics, 229, 246–262.
Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6, 461–464.
Shao, J. (1997). An asymptotic theory for linear model selection. Statistica Sinica, 7, 221–242.
Shibata, R. (1983). Asymptotic mean efficiency of a selection of regression variables. Annals of the

Institute of Statistical Mathematics, 35, 415–423.
Steel, M. (2020). Model averaging and its use in economics. Journal of Economic Literature, 58,

644–719.
Stone, M. (1974). Cross-validation choice and assessment of statistical procedures. Journal of the

Royal Statistical Society: Series B, 36, 111–147.
Trench, W. F. (1999). Asymptotic distribution of the spectra of a class of generalized Kac-Murdock-

Szegö matrices. Linear Algebra and its Applications, 294, 181–192.
Wan, A. T., Zhang, X., & Zou, G. (2010). Least squares model averaging by Mallows criterion. Journal

of Econometrics, 156, 277–283.
Wang, M., Zhang, X., Wan, A. T., You, K., & Zou, G. (2023). Jackknife model averaging for high-

dimensional quantile regression. Biometrics, 79, 178–189.
Yan, X., Wang, H., Wang, W., Xie, J., Ren, Y., & Wang, X. (2021). Optimal model averag-

ing forecasting in high-dimensional survival analysis. International Journal of Forecasting, 37,
1147–1155.

Yang, Y. (1999). Model selection for nonparametric regression. Statistica Sinica, 9, 475–499.
Yuan, Z., & Yang, Y. (2005). Combining linear regression models: When and how? Journal of the

American Statistical Association, 100, 1202–1214.

https://doi.org/10.1017/S0266466624000355 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466624000355


FROM MODEL SELECTION TO MODEL AVERAGING 33

Zhang, X. (2021). A new study on asymptotic optimality of least squares model averaging. Econometric
Theory, 37, 388–407.

Zhang, X., Ullah, A., & Zhao, S. (2016a). On the dominance of Mallows model averaging estimator
over ordinary least squares estimator. Economics Letters, 142, 69–73.

Zhang, X., Wan, A. T., & Zou, G. (2013). Model averaging by jackknife criterion in models with
dependent data. Journal of Econometrics, 174, 82–94.

Zhang, X., & Wang, W. (2019). Optimal model averaging estimation for partially linear models.
Statistica Sinica, 29, 693–718.

Zhang, X., Yu, D., Zou, G., & Liang, H. (2016b). Optimal model averaging estimation for generalized
linear models and generalized linear mixed-effects models. Journal of the American Statistical
Association, 111, 1775–1790.

Zhang, X., Zou, G., Liang, H., & Carroll, R. J. (2020). Parsimonious model averaging with a diverging
number of parameters. Journal of the American Statistical Association, 115, 972–984.

Zhao, S., Zhou, J., & Li, H. (2016). Model averaging with high-dimensional dependent data. Economics
Letters, 148, 68–71.

https://doi.org/10.1017/S0266466624000355 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466624000355

	1 INTRODUCTION
	2 MODEL SETTING AND QUESTIONS
	3 COMPARISONS OF MS AND MA PROCEDURES
	3.1 Grouped Variable Importance
	3.2 A Comparison of Oracle Optimal MS and MA
	3.3 A Comparison of Two Specific MS and MA Procedures

	4 COMPARISONS OF MAS WITH DIFFERENT WEIGHT SETS
	4.1 A Comparison of MAs with Weight Sets Wn and Qn
	4.2 A Comparison of MAs with Weight Sets Wn and Wn(N)

	5 TWO EXAMPLES
	6 SIMULATION STUDIES
	7 CONCLUSION
	A Proof of Theorem 1


