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Abstract

We study an M/G/1-type queueing model with the following additional feature. The
server works continuously, at fixed speed, even if there are no service requirements. In
the latter case, it is building up inventory, which can be interpreted as negative workload.
At random times, with an intensity ω(x) when the inventory is at level x > 0, the
present inventory is removed, instantaneously reducing the inventory to 0. We study the
steady-state distribution of the (positive and negative) workload levels for the cases ω(x)

is constant and ω(x) = ax. The key tool is the Wiener–Hopf factorization technique.
When ω(x) is constant, no specific assumptions will be made on the service requirement
distribution. However, in the linear case, we need some algebraic hypotheses concerning
the Laplace–Stieltjes transform of the service requirement distribution. Throughout the
paper, we also study a closely related model arising from insurance risk theory.
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1. Introduction

In this paper we study two related stochastic models: a queueing/inventory model and an
insurance risk model. The insurance risk model is a relaxation of the classical Cramér–Lundberg
model. Unlike that model, when the capital of the insurance company becomes negative, the
company continues to operate in the same way. However, during periods of negative surplus, the
company can go bankrupt. It goes bankrupt according to some bankruptcy rate ω(x) when the
negative surplus is equal to x; see Figure 1. This relaxation of the ruin concept was introduced
in [4], and studied in [3] for exponential claim sizes and various bankruptcy rates. One of
our goals in the present paper is to extend some of the results in [3] to general claim size
distributions. In particular, we aim to study the bankruptcy probability when starting at x, for
both positive and negative values of x.

It is well known that the Cramér–Lundberg model is dual to the M/G/1 queueing model
with the same arrival rate and with a service time distribution that is equal to the claim size
distribution in the Cramér–Lundberg model. More precisely, see [6, p. 52]: the probability of
ruin in the Cramér–Lundberg model with initial capital x is equal to the probability that the
steady-state virtual waiting time (or workload) in the M/G/1 queue exceeds x. This has led us
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Figure 1: The capital of an insurance company.
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Figure 2: Work and inventory in a queueing/inventory model.

to think about queueing models that are relaxations of the M/G/1 queue in a similar way as
the Albrecher–Lautscham bankruptcy model is a relaxation of the Cramér–Lundberg model;
see also [5].

In this paper we study the following queueing/inventory model. Customers arrive according
to a Poisson process, and require independent and identically distributed service times. When
there are customers, the server works at unit speed. So far, this is the M/G/1 setting. However,
when there are no customers, the server still keeps on working at the same speed. In that way,
it is building up inventory.

During periods in which there are no customers, inventory is instantaneously removed
according to a Poisson process with rate ω(x) when the amount of inventory is equal to x. That
inventory is, for example, sold. The server just keeps on working; and when a customer arrives
and its service request can be satisfied from the inventory, then that is done instantaneously.
See Figure 2. In [5] this two sided queueing/inventory model has been analyzed for the case of
exponentially distributed service times. Our queueing/inventory model is related to classical
M/G/1 and inventory models (see [5] and the references therein). An important inventory
model is the basestock model, in which a server produces products until the inventory has
reached a certain basestock level, with requests for products arriving according to a Poisson
process. A request that cannot immediately be satisfied joins a backorder queue. However,
that model has a finite basestock level, and, hence, essentially differs from our model. Two
papers which are to some extent related to our paper are [7] and [15]. In these the authors
considered a production/inventory model with a so-called sporadic clearing policy. The system
is continuously filled at fixed rate, and satisfies demands at Poisson epochs. Under the sporadic
clearing policy, clearing of all inventory takes place at a random time (which in [15] is
independent of the content process). The authors obtained explicit results for an expected
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discounted cost functional. The authors in [15] allow the demands to have a general distribution,
whereas these are exponentially distributed in [7]. A model that slightly resembles our two-
sided model is that of the double-ended queue (for example, persons queueing for a taxi, or
taxis queueing for a customer); see [12], [13], and [17].

The main contributions of our paper are

• an exact analysis of theAlbrecher–Lautscham bankruptcy model and the queueing/invent-
ory model, with generally distributed claim sizes, respectively generally distributed
service requirements, for the ω(x) ≡ ω case; and

• a detailed analysis of the queueing/inventory model for the ω(x) = ax case.

The latter case turns out to lead to an inhomogeneous first-order differential equation with
removable singularities, and its analysis gives rise to intricate calculations. A key tool that we
are using in the analysis of the two models is Wiener–Hopf factorization. The results of this
paper might be used for optimization purposes; for example, one might try to choose ω or a (in
the ω(x) = ax case) such that a particular objective function is optimized.

The paper is organized as follows. The queueing/inventory and insurance risk model are
both described in detail in Section 2. Integral equations for the main performance measures
(workload and inventory densities in the queueing/inventory model, bankruptcy probability
when starting at level x in the insurance risk model) are presented in Section 3. In Section 4 these
equations are solved for ω(x) ≡ ω and general service requirement distribution, respectively
general claim size distribution. The queueing/inventory model is treated in Section 5 for
the ω(x) = ax case. That analysis makes use of Laplace transforms and complex analysis.
We assume that the service requirements have a rational Laplace transform. In Section 6
we consider that very same case, under the assumption of exponentially distributed service
requirements, without resorting to Laplace transforms. In Section 7 we sketch how to solve the
first order differential equation that shows up in the case of linear ω(·).

2. Model description

2.1. Queueing/inventory model

We study the following model (see Figure 2). Customers arrive according to a Poisson
process with rate λ. Their service requirements are independent and identically distributed
random variables B1, B2, . . . with common distribution B(·) and Laplace–Stieltjes transform
(LST) β(·). The server works continuously, at a fixed speed which is normalized to 1—even if
there are no service requirements. In the latter case, the server is building up inventory, which
can be interpreted as negative workload. At random times, with an intensity ω(x) when the
inventory is at level x > 0, the present inventory is removed, instantaneously reducing the
inventory to 0 (see the dotted line in Figure 2). Put differently, inventory is removed according
to a Poisson process with a rate that depends on the amount of inventory present.

Denote the required work per time unit by ρ := λEB. We assume that ρ < 1. This ensures
that the steady-state workload distribution exists. Let V+(x), x > 0, denote this steady-state
workload distribution, and v+(x) its density.

During the times in which the inventory level is positive, there is an upward drift 1 − ρ of
that inventory level; but when ω(x) > 0 for sufficiently large x, the inventory level will always
eventually return to 0, and the steady-state inventory distribution will exist. Let V−(x), x > 0,
denote this steady-state distribution, and v−(x) its density.
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2.2. Insurance risk model

The problem that we will deal with here was introduced by Albrecher et al. [4] and inves-
tigated by Albrecher and Lautscham in [3]. We will examine the bankruptcy probability for
a surplus process with jumps. Consider a Cramér–Lundberg setup to describe the insurer’s
surplus Ct at time t as

Ct = x + ct − St ,

where C0 = x is the initial surplus, c is the premium rate, and St is the aggregate claim amount
up to time t modeled as a compound Poisson process with intensity λ and positive jump sizes
Y1, Y2, . . . with cumulative distribution function FY (·). In order to compare the results for the
bankruptcy model with those for the queueing/inventory model, we shall take FY (·) = B(·),
so its LST is β(s). It is assumed here that the insurer may be allowed to continue the business
despite a temporary negative surplus. More precisely, consider a suitable locally bounded
bankruptcy rate function ω(−Cs) depending on the size of the negative surplus Cs < 0. If
no bankruptcy event has occurred yet at time s, then the probability of bankruptcy in the time
interval [s, s + dt) is ω(−Cs) dt . We assume that ω(·) ≥ 0 and ω(x) ≥ ω(y) for |x| ≥ |y| to
reflect that the likelihood of bankruptcy does not decrease as the surplus becomes more negative.
Let τ be the resulting time of bankruptcy, and define the overall probability of bankruptcy as

u(x) = E[1{τ<∞} | C0 = x] = P[τ < ∞ | C0 = x].
The idea is that whenever the surplus level becomes negative, there may still be a chance
to survive, and survival is less likely the lower such a negative surplus is. For x > 0, set
u+(x) := u(x), ũ−(x) := u(−x), and u−(x) := 1 − ũ−(x).

3. Main equations

In this section we present integral equations for the main performance measures (workload
and inventory densities in the queueing/inventory model, bankruptcy probability when starting
at level x in the insurance risk model).

3.1. Queueing model

The level crossing technique [9] yields the following integral equations for the workload
and inventory densities, by equating the rates at which level x is downcrossed and upcrossed
in steady state, i.e.

v+(x) = λ

∫ x

0
P[B > x − y]v+(y) dy + λ

∫ +∞

0
P[B > x + y]v−(y) dy, x > 0, (1)

v−(x) = λ

∫ +∞

x

P[B > y − x]v−(y) dy +
∫ +∞

x

ω(y)v−(y) dy, x > 0. (2)

We introduce the Laplace transforms

φ+(s) :=
∫ +∞

0
e−sxv+(x) dx and φ−(s) :=

∫ +∞

0
e−sxv−(x) dx for Re s ≥ 0.

Multiplying both sides of (1) with e−sx for Re s ≥ 0 and both sides of (2) with esx for Re s ≤ 0,
integrating and adding both equations, after some calculations, we obtain[

1 − λ
1 − β(s)

s

]
[φ+(s) + φ−(−s)] = 1

s

∫ +∞

0
(esy − 1)ω(y)v−(y) dy for Re s = 0. (3)
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3.2. Insurance model

According to [3], one can write

0 = cu′+(x) − λu+(x) + λ

(∫ x

0
u+(x − y) dB(y) +

∫ +∞

x

u−(y − x) dB(y)

)
, x > 0,

(4)

0 = −cũ′−(x) − (λ + ω(−x))ũ−(x) + ω(−x) + λ

∫ +∞

0
ũ−(x + y) dB(y), x > 0.

(5)

Adding and subtracting 1, (5) is equivalent to

0 = −cu′−(x) + λu−(x) + ω(−x)u−(x) − λ

∫ +∞

0
u−(x + y) dB(y), x > 0. (6)

One can dominate the function u+ by the classic ruin function and under the assumptions on
the existence of the second moment of B(·), the classic ruin function is integrable. Hence,
the function u+ is integrable. Similarly, one can argue that the function u− is integrable.
For Re s ≥ 0, introduce the Laplace transforms �+(s) := ∫ +∞

0 e−sxu+(x) dx, �−(s) :=∫ +∞
0 e−sxu−(x) dx, and β(s) := ∫ +∞

0 e−sy dB(y).
Multiply both sides of (4) with e−sx for Re s ≥ 0 and both sides of (6) with esx for Re s ≤ 0;

integrate and add both equations for Re s = 0. After some calculations and using the fact that
the continuity of the function u in 0 implies that u+(0) = 1 − u−(0), we obtain

(λβ(s) + cs − λ)�+(s) + λ

s
(1 − β(s)) − c

= (λβ(s) + cs − λ)�−(−s) −
∫ +∞

0
ω(−x)u−(x)esx dx, Re s = 0. (7)

In the next section we restrict ourselves to the case where the function ω(·) is constant.

4. Analysis for ω(·) constant

4.1. Queueing model

In this section we assume that the function ω(·) introduced in Subsection 2.1 is constant, i.e.
there exist ω > 0 such that for all x ≥ 0, we have ω(x) = ω. Equation (3) can be expressed as

[s − λ(1 − β(s))]φ+(s) = [ω − (s − λ(1 − β(s)))]φ−(−s) − ωφ−(0) for Re s = 0. (8)

We are going to determine both unknown functions φ+(s) and φ−(−s) for Re s ≥ 0 by
formulating and solving a Wiener–Hopf problem (see [10]). A key step in this procedure
is to write (8) such that the left-hand side is analytic on Re s > 0 and the right-hand side is
analytic on Re s < 0. Liouville’s theorem can subsequently be used to identify the left-hand
and right-hand sides.

Set fω,λ : s �→ λβ(s) + s − λ − ω, s ≥ 0, and f0,λ : s �→ λβ(s) + s − λ, s ≥ 0. According
to [11, p. 548], the constant ω being positive, the function fω,λ has only one zero s = δ(ω, λ)

and this zero is simple satisfying Re δ(ω, λ) > 0. In fact, as ω is real in our case, a plot of
ω + λ(1 − β(s)) versus s immediately shows that this zero δ(ω, λ) is real. Also, the function
f0,λ has s = 0 as its only zero and this zero is simple. In particular, the functions gω,λ : s �→
fω,λ(s)/(s − δ(ω, λ)) and g0,λ : s �→ f0,λ(s)/s are analytic on Re s > 0, continuous on
Re s ≥ 0, and take nonzero values on Re s ≥ 0.
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We can write (8) for Re s = 0 as

(s − δ(ω, λ))[s − λ(1 − β(s))]φ+(s)

s − λ(1 − β(s)) − ω
+ ωφ−(0)(s − δ(ω, λ))

s − λ(1 − β(s)) − ω

= −(s − δ(ω, λ))φ−(−s). (9)

We now use the Wiener–Hopf factorization technique. The left-hand side of (9) is analytic
on Re s > 0 and continuous on Re s ≥ 0; the right-hand side is analytic on Re s < 0 and
continuous on Re s ≤ 0. In addition, both sides coincide on Re s = 0. Then, by Liouville’s
theorem (see [18, p. 85]), there exist n ≥ 0 and a polynomial Rn(s) of degree n such that

−(s − δ(ω, λ))φ−(−s) = Rn(s) for Re s ≤ 0, (10)

(s − δ(ω, λ))[s − λ(1 − β(s))]φ+(s)

s − λ(1 − β(s)) − ω
+ ωφ−(0)(s − δ(ω, λ))

s − λ(1 − β(s)) − ω
= Rn(s) for Re s ≥ 0.

(11)

Using (10) and the fact that lims→−∞ φ−(−s) = 0, we have deg(Rn(s)) = 0; say Rn(s) = A,
where A ∈ C. We obtain

φ−(−s) = A

δ(ω, λ) − s
for Re s ≤ 0,

in particular,

φ−(0) = A

δ(ω, λ)
. (12)

On the other hand, (11) yields

φ+(s) = A(s − λ(1 − β(s)) − ω)

(s − λ(1 − β(s)))(s − δ(ω, λ))
− ωφ−(0)

s − λ(1 − β(s))
.

After some calculations and using the notation introduced above and (12), we obtain

φ+(s) = A(gω,λ(s) − ω/δ(ω, λ))

sg0,λ(s)
. (13)

We now calculate the unknown constant A, and through (12) and (13) we determine the
functions φ+ and φ−. Note that gω,λ(0) = −fω,λ(0)/δ(ω, λ) = ω/δ(ω, λ); therefore, we
can write, for Re s ≥ 0,

φ+(s) = A

g0,λ(s)

gω,λ(s) − gω,λ(0)

s
, (14)

the function s �→ (gω,λ(s) − gω,λ(0))/s clearly being analytic for Re s > 0 and continuous for
Re s ≥ 0.

We have

φ+(0) = lim
s→0

φ+(s) = lim
s→0

A

g0,λ(s)

gω,λ(s) − gω,λ(0)

s
.

However,

g0,λ(0) = lim
s→0

f0,λ(s)

s
= lim

s→0
1 + λ

β(s) − 1

s
= 1 − λE(B) = 1 − ρ.
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We also have

lim
s→0

gω,λ(s) − gω,λ(0)

s
= g′

ω,λ(0) = ω − (1 − ρ)δ(ω, λ)

δ2(ω, λ)
.

Then,

φ+(o) = A
ω − (1 − ρ)δ(ω, λ)

(1 − ρ)δ2(ω, λ)
. (15)

Using the relation φ−(0) + φ+(0) = 1, and (12) and (15), we obtain

A

[
1

δ(ω, λ)
+ ω − (1 − ρ)δ(ω, λ)

(1 − ρ)δ2(ω, λ)

]
= 1,

which implies that

A = (1 − ρ)δ2(ω, λ)

ω
. (16)

Finally, we obtain the following expressions for φ−(s) for Re s ≤ 0, and for φ+(s) for Re s ≥ 0:

φ−(s) = (1 − ρ)δ2(ω, λ)

ω

1

δ(ω, λ) − s
, Re s ≤ 0,

φ+(s) = (1 − ρ)δ(ω, λ)

ω

[
(δ(ω, λ) − ω)s − λδ(ω, λ)(1 − β(s))

(s − λ(1 − β(s)))(s − δ(ω, λ))

]
, Re s ≥ 0. (17)

We immediately see that the density v−(x) is exponential, i.e.

v−(x) = (1 − ρ)δ2(ω, λ)

ω
e−δ(ω,λ)x for x > 0. (18)

We can write the expression for φ+(s) in the following form:

φ+(s) =
[
(1 − ρ)λ

(1 − β(s))

s − λ(1 − β(s))

]

×
[
δ(ω, λ)

ω

((δ(ω, λ) − ω)/λ)(s/(1 − β(s))) − δ(ω, λ)

s − δ(ω, λ)

]
.

Remark 1. The previous equation expresses the function φ+(s) as a product of the Laplace
transform of the density of the M/G/1 workload; namely,

(1 − ρ)λ(1 − β(s))

s − λ(1 − β(s))

and a second factor. That fact has led us to the observation that the queue behaves like an
M/G/1 queue with different first service time in a busy period (see Welch [19] or Wolff [20,
pp. 392–394, 401]). Let us explain this in some detail.

When restricting ourselves to the time intervals with a positive workload in the queue, v+(x)

behaves like the workload density in an M/G/1 queue with Poisson(λ) arrival process and with
independent and identically distributed service times B1, B2, . . . with distribution B(·) and LST
β(·), but with the first service time B̂ of each busy period having a different distribution B̂(·)
with LST β̂(·). Indeed, B̂ is distributed like the overshoot above 0 of a service time B, when
starting from some negative value −V− = −x which, by Poisson arrivals see time averages
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(PASTA), has steady-state density v−(x). In fact, it is easy to determine β̂(·), since v−(x) is
exponentially distributed with parameter δ(ω, λ), as seen in (18). For simplicity of notation,
we write δ := δ(ω, λ). Then

β̂(s) =
∫ ∞

0+
e−sx dxP[B − V− < x | B − V− > 0]

=
∫ ∞

0+ e−sx dxP[B − V− < x]
P[B − V− > 0]

=
∫ ∞
x=0+ e−sx

∫ ∞
y=0 δe−δy dxP[B < x + y] dy

1 − β(δ)

= δ

s − δ

β(δ) − β(s)

1 − β(δ)
,

and

1 − β̂(s) = s

s − δ
− δ

s − δ

1 − β(s)

1 − β(δ)
. (19)

From [19] or [20, p. 401] it is seen that the LST of the steady-state workload (and waiting time)
distribution in this queueing model with exceptional first service is given by

E[e−sW ] = π0λ
β(s) − β̂(s)(1 − s/λ)

s − λ(1 − β(s))
,

with π0 the probability of an empty system, and, hence,

E[e−sW | W > 0] = E[e−sW ] − π0

1 − π0
= π0λ

1 − π0

1 − β̂(s)

s − λ(1 − β(s))
. (20)

A balance argument, or the observation that the expressions in (20) should equal 1 for s = 0,
and that the LSTs of the residual ordinary service time (1 − β(s))/sEB and of the residual
special service time (1 − β̂(s))/sEB̂ are equal to 1 for s = 0, readily yields

π0 = 1 − ρ

1 − ρ + λEB̂
.

It readily follows from (19) that here

EB̂ = EB

1 − β(δ)
− 1

δ
.

Now compare (20) and (17). We claim they agree up to a multiplicative constant, which is∫ ∞
0 v+(x) dx. Indeed, one can write the term between square brackets in (17) as (replace δ −ω

by λ(1 − β(δ)), using the fact that 1 − β(δ) = (δ − ω)/λ, which follows from the definition
of δ as the zero of s − λ(1 − β(s)) = ω),

(1 − β(δ))

[
1

s − λ(1 − β(s))

(
s

s − δ
− δ

1 − β(δ)

1 − β(s)

s − δ

)]
. (21)

Now use (19) to see that the factor between square brackets in (21) is equal to the factor
(1 − β̂(s))/(s − λ(1 − β(s))) in (20).
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Figure 3: The workload and inventory process.
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Figure 4: A G/M/1 busy period (‘process 3’).

Remark 2. It may at first sight seem surprising that v−(x) is an exponential density. The fact
that v−(x) is exponential may be explained as follows. Consider the inventory process, so look
at Figure 2 upside down (‘process 1’). Next, consider this figure (now reproduced as Figure 3)
by looking from right to left (‘process 2’). Subsequently, replace the line segments that go
up at an angle of 45 degrees by upward jumps equal to the increase along the line segment;
and replace the jumps downward by line segments that go down at an angle of 45 degrees, by
an amount equal to the jump (‘process 3’; see Figure 4). We now have the representation of
the workload process in a busy period of a G/M/1 queue. Indeed, the jumps upward (service
times) are exp (λ) distributed, and the intervals between jumps have distribution B(·). Note
that, in particular, the waiting times in the G/M/1 queue are identical to the heights after jumps
in process 2. By PASTA, these heights have the same distribution as the steady-state workload
distribution in process 2, and, hence, also in process 1. Finally, use the fact that the waiting
time in the G/M/1 queue is exponentially distributed.

Example 1. (Exponential service requirements in the queueing/inventory model.) We will
retain the same notation as previously. In this case, we have

P[B > x] = e−μx with μ > 0

and, for Re s ≥ 0,

β(s) = μ

μ + s
, E[B] = 1

μ
, ρ = λ

μ
.

The functions fω,λ and f0,λ in this case are given by

fω,λ(s) = s2 + (μ − λ − ω)s − ωμ

μ + s
and f0,λ(s) = s(s + μ − λ)

s + μ
.
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The function fω,λ has two zeros, i.e.

δ(ω, λ) =
√

(μ − λ − ω)2 + 4ωμ − (μ − λ − ω)

2
> 0,

η(ω, λ) = −√
(μ − λ − ω)2 + 4ωμ − (μ − λ − ω)

2
< 0.

The functions gω,λ and g0,λ are then given by

gω,λ(s) = s − η(ω, λ)

s + μ
and g0,λ(s) = s + μ − λ

s + μ
. (22)

Also A is given by (16). The function v−(x) for x > 0 is given by (18), therefore,

v−(x) = μ − λ

2ω

[
(μ − λ − ω)2 − 2ωμ − (μ − λ − ω)

√
(μ − λ − ω)2 + 4ωμ

]

× e−x
((√

(μ−λ−ω)2+4ωμ−(μ−λ−ω)
)
/2

)
.

Using (14) and (22), and after some calculations, we obtain, for Re s ≥ 0,

φ+(s) = (μ − λ)(μ − η(ω, λ))δ2(ω, λ)

μ2ω

1

s + μ − λ
.

Consequently, we can deduce, for x > 0,

v+(x) = (μ − λ)(μ − η(ω, λ))δ2(ω, λ)

μ2ω
e−(μ−λ)x.

Figures 5 and 6 represent, respectively, the steady-state inventory density v− and the steady-
state workload density v+, in the exponential service requirements case for the particular values
μ = 2, λ = 1, and ω = 2.

Figure 5: Steady state inventory density (μ = 2, λ = 1, and ω = 2).
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Figure 6: Steady state workload density (μ = 2, λ = 1, and ω = 2).

4.2. Insurance model

We now turn to the insurance risk model with bankruptcy. Equation (7) can be written as,
for Re s = 0,

(cs − λ(1 − β(s)))�+(s) + λ(1 − β(s)) − cs

s
= (cs − λ(1 − β(s)) − ω)�−(−s). (23)

In particular, when s = 0 in (23), we have λ lims→0((1 − β(s))/s) − c = −ω�−(0), which
implies that

�−(0) = c − λE[Y ]
ω

.

We follow the same procedure as in the queueing/inventory model. We reformulate (23) into a
Wiener–Hopf problem. Set fω,λ,c : s �→ cs − λ(1 − β(s)) − ω, Re s ≥ 0, and f0,λ,c : s �→
cs−λ(1−β(s)), Re s ≥ 0. According to [11, p. 548], the constant ω being positive, the function
fω,λ,c has one zero s = δ(ω, λ, c) and this zero is simple satisfying Re δ(ω, λ, c) > 0. Also,
the function f0,λ,c has s = 0 as its only zero and this zero is simple. In particular, the functions
gω,λ,c : s �→ fω,λ,c(s)/(s − δ(ω, λ, c)) and g0,λ,c : s �→ f0,λ,c(s)/s are analytic for Re s > 0,
continuous for Re s ≥ 0, and take nonzero values on Re s ≥ 0. Dividing by cs−λ(1−β(s))−ω

and multiplying by s − δ(ω, λ, c) in (23), we obtain, for Re s = 0,

cs − λ(1 − β(s))

cs − λ(1 − β(s)) − ω
(s − δ(ω, λ, c))�+(s) + λ(1 − β(s)) − cs

s

s − δ(ω, λ, c)

cs − λ(1 − β(s)) − ω

= �−(−s)(s − δ(ω, λ, c)). (24)

Clearly, the left-hand side of (24) is analytic for Re s > 0 and continuous for Re s ≥ 0; on
the other hand, the right-hand side is analytic for Re s < 0 and continuous for Re s ≤ 0.
In addition, both sides coincide for Re s = 0. By Liouville’s theorem, there exist n ≥ 0 and a
polynomial Rn of degree n such that

cs − λ(1 − β(s))

cs − λ(1 − β(s)) − ω
(s − δ(ω, λ, c))�+(s) + λ(1 − β(s)) − cs

s

s − δ(ω, λ, c)

cs − λ(1 − β(s)) − ω

= Rn(s) for Re s ≥ 0,

�−(−s)(s − δ(ω, λ, c)) = Rn(s) for Re s ≤ 0. (25)
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Since lims→−∞ �−(−s) = 0 and using (25), we can deduce that n must be 0; say, Rn(s) =
Z, Z ∈ C. Consequently, we have

�+(s) = Z
cs − λ(1 − β(s)) − ω

s − δ(ω, λ, c)

1

cs − λ(1 − β(s))
+ 1

s
for Re s ≥ 0, (26)

�−(−s) = Z

s − δ(ω, λ, c)
for Re s ≤ 0. (27)

In particular, (27) implies that

�−(0) = −Z

δ(ω, λ, c)
. (28)

Let us now identify the constant Z.
Set ρ = λE[Y ]/c. Substituting s = 0 into (23) and combining it with (28), we obtain

Z = −cδ(ω, λ, c)

ω
(1 − ρ); (29)

thanks to (27), the latter relation completely determines the function �−(−s) for Re s ≤ 0. In
this case, we can immediately deduce u−(x), which is the survival probability when starting
at a negative surplus −x, and so also the ruin probability ũ−(x) = 1 − u−(x). We have, for
x ≥ 0,

ũ−(x) = 1 − u−(x) = 1 − cδ(ω, λ, c)(1 − ρ)

ω
e−δ(ω,λ,c)x . (30)

Finally, since the constant Z is known, we can identify the function �+(s) for Re s ≥ 0.
Rewriting (26), with this in mind, we have

�+(s) = 1

g0,λ,c(s)

((
Zgω,λ,c(s) − λ

1 − β(s)

s
+ c

)
s−1

)
for Re s ≥ 0. (31)

Set hω,λ,c : s �→ Zgω,λ,c(s)−λ((1 − β(s))/s), for Re s ≥ 0, so hω,λ,c(0) = Zω/δ(ω, λ, c)−
λE[Y ]. Equation (29) implies that hω,λ,c(0) = −c. Then, we have

�+(s) = 1

g0,λ,c(s)

hω,λ,c(s) − hω,λ,c(0)

s
; (32)

the function s �→ (hω,λ,c(s) − hω,λ,c(0))/s being analytic for Re s > 0 and continuous for
Re s ≥ 0 with hω,λ,c(0) = −c.

The Laplace transform of the survival probability when starting at a positive surplus x, given
by the function 1 − u+(x), is equal to

1

s
− �+(s) = Z

1

cs − λ(1 − β(s))

cs − λ(1 − β(s)) − ω

δ(ω, λ, c) − s
.

Example 2. (Exponential claim sizes in the insurance model.) We will keep the same notation
as previously. Fix ν > 0. In the exponential claim sizes case, we assume claim size density
νe−νy , and, hence,

β(s) = ν

s + ν
for Re s ≥ 0.
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In particular, ρ = λ/νc. In this case, we obtain

fω,λ,c = cs2 + (cν − ω − λ)s − ων

s + ν
for Re s ≥ 0.

This function has two zeros; namely,

η(ω, λ, c) = −√
(cν − ω − λ)2 + 4ωνc − (cν − ω − λ)

2c
< 0,

and

δ(ω, λ, c) =
√

(cν − ω − λ)2 + 4ωνc − (cν − ω − λ)

2c
> 0.

Therefore,

gω,λ,c = fω,λ,c(s)

s − δ(ω, λ, c)
= c

s − η(ω, λ, c)

s + ν
for Re s ≥ 0.

Applying (29), we obtain

Z = −
(

ν − λ

c

)
c

νω
δ(ω, λ, c).

Using the relation between the zeros δ(ω, λ, c) and η(ω, λ, c),

δ(ω, λ, c)η(ω, λ, c) = −ων

c
,

we obtain

Z = ν − λ/c

η(ω, λ, c)
.

Applying (30), we obtain, for x ≥ 0,

u−(x) = ν − λ/c

−η(ω, λ, c)
e−δ(ω,λ,c)x and ũ−(x) = 1 − ν − λ/c

−η(ω, λ, c)
e−δ(ω,λ,c)x . (33)

These results agree with results in [3, Section 2.1.1]. To explicitly determine the function �+
as given in (32), and so u+, we have to make the function hω,λ,c explicit in this case. After
some calculations, we obtain, for Re s ≥ 0,

hω,λ,c(s) = (νc − λ)s − νcη(ω, λ, c)

η(ω, λ, c)(s + ν)
.

We now can use (32) and deduce, for Re s ≥ 0,

�+(s) =
(

1 − ν − λ/c

−η(ω, λ, c)

)
1

s + ν − λ/c
.

Note that here the condition ρ < 1 is equivalent to ν −λ/c > 0. Finally, we obtain, for x ≥ 0,

u+(x) =
(

1 − ν − λ/c

−η(ω, λ, c)

)
e−(ν−λ/c)x . (34)

Note that using (33) and (34), we can check immediately that u+(0)+u−(0) = 1. Furthermore,
note that (33) and (34) coincide with [3, Equation (18)].

Figures 7 and 8 represent, respectively, the bankruptcy probability starting from a negative
surplus against the initial surplus −C0 and the bankruptcy probability starting from a positive
surplus against the initial surplus C0, in the exponential claim sizes case for the particular values
ν = 2, λ = 1, ω = 2, and c = 1.
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Figure 7: Bankruptcy probability starting from a negative surplus against the initial surplus C0 (ν =
2, λ = 1, ω = 2, and c = 1).
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Figure 8: Bankruptcy probability starting from a positive surplus against the initial surplus C0 (ν =
2, λ = 1, ω = 2, and c = 1).

Remark 3. The queueing/inventory and insurance risk models that we treat in this paper are
clearly closely related, although they are not dual in the sense discussed in, for example, [6,
Section III.2]. The results that we obtain for the densities and the Laplace transforms in [6] are
indeed very similar; see (17) and (31), and (18) and (30). It would be interesting to construct a
queueing/inventory model that is completely dual to the insurance risk model.

Remark 4. Albrecher and Ivanovs [2] have recently studied exit problems for Lévy processes
where the first passage time over a threshold is detected either immediately (‘ruin’) or at Poisson
observation epochs (‘bankruptcy’). The authors relate the two exit problems via a nice identity.
In the case of the Cramér–Lundberg insurance risk model, their identity is expressed as

ŝ(x) = E[s(x + U)], (35)

where s(x) is the survival probability in the case of the Cramér–Lundberg model with initial
capital x and ŝ(x) is the survival probability in the corresponding model with Poisson(ω)-
observations (note that u+(x) = 1 − ŝ(x)); finally, U is an exp(
)-distributed random
variable, where 
 is the inverse of the Laplace exponent of the spectrally negative Lévy
process corresponding to the Cramér–Lundberg model. In other words, 
 is the zero of
cs − λ(1 − β(s)) = ω. We conclude that 
 = δ(ω, λ, c).
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From (35), it follows that

ŝ(x) =
∫ ∞

t=0
δ(ω, λ, c) e−δ(ω,λ,c)t s(x + t) dt. (36)

When s(·) is explicitly known, then we can determine ŝ(x) explicitly using (36). In particular,
in the case of exp(ν) claim sizes, we have (see [6])

s(x) = 1 − λ

νc
e−(ν−λ/c)x, x > 0,

and, hence,

ŝ(x) = 1 − δ(ω, λ, c)

δ(ω, λ, c) + νc − λ

λ

νc
e−(ν−λ/c)x, x > 0.

Using the definition of δ(ω, λ, c), it is readily verified that this equation is indeed in agreement
with the expression for u+(x) = 1 − ŝ(x) in (34).

5. Analysis for ω(·) linear

In this section we focus on the queueing/inventory model. In this section we assume that
the function ω introduced in Section 2.1 is linear, i.e. there exists a constant a > 0 such that,
for all x ≥ 0, we have ω(x) = ax. Equation (3) can be written as

[s − λ(1 − β(s))]φ+(s)

= −[s − λ(1 − β(s))]φ−(−s) − a

∫ +∞

0
y(1 − esy)v−(y) dy for Re s = 0.

Set EI = ∫ +∞
0 yv−(y) dy. After integrating by parts, we obtain

[s − λ(1 − β(s))]φ+(s)

= −[s − λ(1 − β(s))]φ−(−s) + a
d

ds
[φ−(−s)] − aEI for Re s = 0. (37)

We will now discuss the case where the function β is rational. Suppose that there exist m ∈ N

and polynomials N and D in C[x] such that deg D = m, deg N ≤ m − 1, (N
∨

D) = 1, i.e
they do not have a common factor and β(s) = N(s)/D(s) for Re s = 0. In this configuration,
necessarily, the polynomial D has no zeros for Re s ≥ 0 and m zeros for Re s ≤ 0 (counted
with multiplicities). Denote them by −μ1, −μ2, . . . ,−μm with Re μj ≥ 0. Set

N(s) =
m−1∑
k=0

nks
k and D(s) =

m∑
k=0

dks
k for s ∈ C,

where n0, . . . , nm−1 and d0, . . . , dm are complex numbers. Note that β(0) = 1 implies that
n0 = d0. Multiplying (37) by D(s), we obtain, for Re s = 0,

[(s − λ)D(s) + λN(s)]φ+(s)

= −[(s − λ)D(s) + λN(s)]φ−(−s) + aD(s)
d

ds
[φ−(−s)] − aEID(s).
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Using the same techniques as previously, we can deduce that there exists a polynomial Rm such
that

[(s − λ)D(s) + λN(s)]φ+(s) = Rm(s) for Re s ≥ 0, (38)

− [(s − λ)D(s) + λN(s)]φ−(−s) + aD(s)
d

ds
[φ−(−s)] − aEID(s)

= Rm(s) for Re s ≤ 0. (39)

Since lims→+∞ φ+(s) = 0 and using (38), we can deduce that deg Rm ≤ m. Equation (38)
implies that Rm(0) = 0. Hence, set Rm(s) = ∑m

k=1 rks
k for s ∈ C, where r1, . . . , rm ∈ C.

From (38), it follows that

φ+(s) = Rm(s)

(s − λ)D(s) + λN(s)
, Re s ≥ 0. (40)

Using (40), we can also express φ+(0) in r1. Indeed,

φ+(0) = lim
s→0

Rm(s)

(s − λ)D(s) + λN(s)
= r1

d0 + λ(n1 − d1)
.

Since φ+(0) + φ−(0) = 1, we can also deduce that

φ−(0) = 1 − r1

d0 + λ(n1 − d1)
. (41)

Note that by substituting −μj for j ∈ {1, 2, . . . , m} into (39), we obtain the m relations

−λN(−μj )φ−(μj ) = Rm(−μj ), 1 ≤ j ≤ m. (42)

For s ∈ C, introduce the following notations: Ň(s) := N(−s), Ď(s) := D(−s), and Řm(s) :=
Rm(−s). Now, putting z = −s into (39), the function φ− is a solution of the following
first-order differential equation:

aĎ(z)
d

dz
[φ−(z)] + [−(z + λ)Ď(z) + λŇ(z))]φ−(z) + aEIĎ(z) + Řm(z)

= 0 for Re z ≥ 0. (43)

We can write the previous equation in the following form:

d

dz
[φ−(z)] = −λŇ(z)φ−(z) + Řm(z)

aĎ(z)
+ z + λ

a
φ−(z) − EI = 0 for Re z ≥ 0. (44)

Equation (42) implies that the function z �→ (λŇ(z)φ−(z) + Řm(z))/Ď(z) is analytic on
Re z > 0 and continuous on Re z ≥ 0. Equation (43) is a first-order algebraic differential
equation on the complex half-plane {Re z > 0}. It has m singularities μ1, μ2, . . . , μm; (44)
shows that these singularities are removable.

In principle, one can solve this first-order algebraic differential equation. However, the
singularities give rise to several technical difficulties. Below, we consider the m = 1 case, i.e.
exp(μ)-distributed service requirements, yielding one singularity z = μ. In Subsection 5.1 we
sketch its analysis. We formally solve the differential equation (44) only for Re z > μ, where μ

is the singularity. We also determine the two missing constants EI and r1. In addition, we
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formally invert the Laplace transform φ−(z) to find v−(x), but this inversion is not considered
in detail.

In Section 6 we briefly outline a completely different approach to the problem of finding
v−(x) and v+(x) for the ω(x) = ax case and exp(μ) service requirements. In that section we
do not use Laplace transforms, but differentiate (2) twice to obtain a second-order nonlinear
differential equation in v−(x), and we differentiate (1) once to obtain a simple first-order
differential equation in v+(x). The latter equation is easily solved; the solution of the former
differential equation is expressed in hypergeometric functions.

Finally, we should add that we do not see how the approach in Section 6 can be extended
to the case of an Erlang, hyperexponential, or, more generally, phase-type service requirement
distribution, as such distributions will give rise to a higher-order nonlinear differential equation
for v−(x). On the other hand, the approach of Section 7 towards the differential equation
(44) seems promising for such service requirement distributions, even though they give rise to
multiple singularities μ1, . . . , μm.

5.1. The Exponential service requirements case

In this case, we have P[B > x] = e−μx with μ > 0 and for Re s ≥ 0, β(s) = μ/(μ + s)

(N(s) = μ and D(s) = μ + s). Then, m = 1 and since R1(0) = 0, we obtain R1(s) = r1s,
where r1 ∈ C. Equation (43) can be written as

a(μ − z)
d

dz
[φ−(z)] + z(z + λ − μ)φ−(z) + aEI (μ − z) − r1z = 0 for Re z ≥ 0. (45)

Equation (45) is a first-order algebraic differential equation on the complex half-plane {Re z >

0}. It has one singularity which is μ. That makes the study of this differential equation
more complicated; therefore, we refer the reader to [8], which is an extended version of the
present paper, for a detailed treatment of (44). It exposes a way to handle the singularity
z = μ, and holds the promise of allowing an extension to Erlang or hyperexponential service
requirement distributions, the latter leading to multiple singularities μ1, . . . , μm. Remembering
that φ−(μ) = r1/λ and writing (45) in the following form:

d

dz
[φ−(z)] = μ

λa

φ−(z) − r1/λ

z − μ
+ z + λ

a
φ−(z) − EI − r1

a
,

we deduce that this singularity is regular. Solving (45) on {Re z > μ} and using the fact that
limz→+∞ φ−(z) = 0, we obtain

φ−(z) = z

(
z − μ

μ

)λμ/a

ez(z+2λ)/2a

∫ +∞

1

[
EI + r1zt

a(zt − μ)

](
μ

zt − μ

)λμ/a

e−zt (zt+2λ)/2a dt,

(46)

(note that here, for every α ∈ R, we consider the principal value of the function z �→ zα). For
Re z > μ, we introduce

Fα,β(z) := z

(
z − μ

μ

)α

ez(z+2λ)/2a

∫ +∞

1

(
μ

zt − μ

)β

e−zt (zt+2λ)/2a dt.

The function Fα,β is analytic on {Re z > μ} and one can check by the l’Hopital rule that the
function Fα,β can be analytically continued in μ for α ≥ β − 1. Now fixing α = λμ/a, (46)
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can be written as

φ−(z) =
(

EI + r1

a

)
Fα,α(z) + r1

a
Fα,α+1(z) for Re z > μ. (47)

We will denote by L−1 the inverse Laplace transform, and apply what is commonly known
as the Mellin inverse formula or the Bromwich integral. Let γ be any real number such that
γ > μ, then we have

v−(x) = 1

2iπ

∫ γ+i∞

γ−i∞
φ−(z)ezx dz = 1

2π

∫ +∞

−∞
φ−(γ + iω)e(γ+iω)x dω for x > 0.

Since the constant γ here is chosen to be larger than μ, one can use the expression of φ− given
in (47). Set fα,β(x) = (1/(2iπ))

∫ γ+i∞
γ−i∞ Fα,β(z)ezx dz. We obtain

v−(x) =
(

EI + r1

a

)
fα,α(x) + r1

a
fα,α+1(x), x > 0. (48)

Integrating the previous equation, we obtain φ−(0) = (EI +r1/a)Aα,α + (r1/a)Aα,α+1, where
Aα,β := ∫ +∞

0 fα,β(x) dx. According to (41), we have φ−(0) = 1 − r1/(μ − λ), and, hence,

1 −
(

1

μ − λ
+ Aα,α + Aα,α+1

a

)
r1 = Aα,αEI. (49)

Set Bα,β := ∫ +∞
0 xfα,β(x) dx; multiplying (48) by x, integrating it and remembering the fact

that EI = ∫ +∞
0 xv−(x) dx, we obtain

(1 − Bα,α)EI = Bα,α + Bα,α+1

a
r1. (50)

Thanks to (49) and (50), one can deduce the constants r1 and EI ; using (48), one can then
completely determine the function v−.

Finally, using (40), we obtain

v+(x) = r1e−(μ−λ)x, x > 0. (51)

It is not surprising that the density of the workload, when positive, is exponentially distributed
with the same rate μ − λ as in the corresponding M/M/1 queue (arrival rate λ, service re-
quirements exp(μ)) without inventory. Indeed, every time the workload becomes positive, this
occurs because of a customer arrival, and the memoryless property implies that the residual
part of the service requirement which makes that workload positive is exp(μ)-distributed.

6. Direct approach

In this section we use the analysis developed in [5] to state some explicit results when
ω(x) = ax in the exponential service requirements case. In [5], the authors studied directly the
functions v+ and v− without considering their Laplace transforms. Indeed, differentiating (1)
and (2), one can show that the functions v− and v+ satisfy some well known differential
equations.

Set C = ∫ +∞
0 e−μxv−(x) dx. Differentiating (1), we obtain

v+(x) = Cλe−(μ−λ)x for all x ≥ 0. (52)
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This is in agreement with (51), which we obtained following a Laplace transform approach.
On the other hand, differentiating (2), we obtain the following equation for v−:

v′−(x) + (λ + ax)v−(x) − λμeμx

∫ +∞

x

e−μxv−(x) dx = 0. (53)

Now, differentiating the expression in (53), the function v− satisfies the following second-order
differential equation:

v′′−(x) + (λ − μ + ax)v′−(x) + a(1 − μx)v−(x) = 0. (54)

Introduce the function θ(x) = v−(x)e(ax2/2)+λx . The function v− is a solution of (54) if and
only if the function θ is a solution of the following second-order differential equation:

θ ′′(x) − (λ + μ + ax)θ ′(x) + λμθ(x) = 0. (55)

One can check that θ is a solution of (55) if and only if θ(x) = J(ã, b̃, (a/2)(x+(λ + μ)/a)2),
where ã = −λμ/2a and b̃ = 1

2 , and J(ã, b̃, ·) is a solution of the degenerate hypergeometric
equation

zy′′(z) + (b̃ − z)y′(z) − ãy(z) = 0. (56)

According to [14, p. 322] and [16, p. 143], (56) has two standard solutions denoted by
z �→ M(ã, b̃, z) and z �→ U(ã, b̃, z), the so-called Kummer functions. Provided that b̃ /∈
{−1, −2, . . .}, the function z �→ M(ã, b̃, z) is given by

M(ã, b̃, z) =
+∞∑

0

(ã)s

(b̃)ss!
zs for all z ∈ C,

where (c)s = c(c + 1) · · · (c + s − 1). The function U(ã, b̃, z) is uniquely determined by the
property U(ã, b̃, z) ∼ z−a when z goes to +∞. In our case (b̃ = 1

2 ), we have

U(ã, b̃, z) = �(1/2)

�(1/2 − λμ/2a)
M

(
−λμ

2a
,

1

2
, z

)
+ �

(
−1

2

)
z

1
2 M

(
−λμ

2a
+ 1

2
,

3

2
, z

)
.

The following analysis was developed in detail in [5], using knowledge of the degenerate
hypergeometric equation (see, for example, [14, p. 322]). It appears that one needs to distinguish
between two cases.

Case 1: ã = −λμ/2a /∈ Z, i.e λμ/2a /∈ N. Denote ν := λμ/a. In this case, according
to [5], we have

v−(x) = Ke−(a/2)x2−λxU

(
−ν

2
,

1

2
,
a

2

(
x + λ + μ

a

)2)
for all x ≥ 0, (57)

where K ∈ R. Equations (52) and (57) imply that to determine completely the functions v+
and v−, it is enough to determine the constants C and K . According to [5], these constants are
given by the following system of equations:

C = K(λ + μ)U ′
(

−ν

2
,

1

2
,
(λ + μ)2

2a

)
(λμ)−1,

C
ρ

1 − ρ
+ K

∫ +∞

0
e−(a/2)x2−λxU

(
−ν

2
,

1

2
,
a

2

(
x + λ + μ

a

)2)
dx = 1.
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In particular, if ν is odd, i.e. ν = 2n + 1, where n ∈ N, from [5], we have

v−(x) = 2−ν/2Ke−(a/2)x2−λxHν

(√
ax + λ + μ√

a

)
for all x ≥ 0, (58)

where, for m ∈ Z, Hm(·) is the Hermite polynomial of order m (see [1, p. 775]) given by
Hm(x) = (−1)mex2/2(d/dx)m[e−x2/2].

Case 2: λμ/2a = n ∈ N, i.e. ν = 2n. In this case, according to [5], we have, for all x ≥ 0,

v−(x) = (−1)ν/2 (ν/2)!
ν! 2ν/2K∗e−ax2/2−λxHν

(√
ax + λ + μ√

a

)
, x ≥ 0, (59)

where K∗ ∈ R. Furthermore, similarly to case 1, one can find two linear equations involving
the unknowns C and K∗ and then determine them. One can see that (58) and (59) have the
same shape.

7. Analysis of the first-order differential equation

We now sketch a different method to find the unknowns EI and r1; full details appear in [8,
Section 7]. The solution φ−(z) of the differential equation (45) is analytic in Re z > 0 and
continuous and bounded in Re z ≥ 0, and satisfies the boundary conditions

−EI = φ−(0) = 1 − r1

μ − λ
, φ−(z) → 0, z → +∞; (60)

see (41) for the first expression. Denote

dk = φ
(k)
− (μ)

k! , ck = (−1)kdk, k = 0, 1, . . . .

From (45), there follows the three-term recursion

(ka − μλ)ck + (μ + λ)ck−1 − ck−2 = 0, k = 2, 3, . . . , (61)

with initialization

μλc0 = r1μ, (a − μλ)c1 + (μ + λ)c0 = aEI + r1. (62)

The standard calculus solution

y(x) = y0e−A(x) + e−A(x)

∫ x

x0

Q(t)eA(t) dt (63)

of the boundary value problem

y′(x) + P(x)y(x) = Q(x), y(x0) = y0

with integrable P and Q and A(x) = ∫ x

x0
P(t) dt cannot be used directly to solve (45) since

the latter is singular at z = μ. However, when we let

σ = μλ

a
, K = 
σ�,
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both
1

wσ

(
φ−(μ − w) −

K−1∑
k=0

ckw
k

)
, 0 ≤ w ≤ μ (64)

and
1

wσ

(
φ−(μ + w) −

K−1∑
k=0

dkw
k

)
, w ≥ 0, (65)

do satisfy a regular first-order differential equation. In both (64) and (65), the A that appears
in (63) is a quadratic function with known coefficients, while the Q are

−(σ − K)cKwK−σ−1 + 1

a
cK−1w

K−σ and − (σ − K)dKwK−σ−1 + 1

a
dK−1w

K−σ

for the two respective cases.
From the second expression in (60), used for (65), we obtain a linear relation between dK−1

and dK and, therefore, a linear relation between cK−1 and cK . Using (61) in a backward
direction, we can thus express c0, c1, . . . , cK−1 linearly in cK . Evaluation of the standard
calculation solution for (64) at w = μ then yields φ−(0) in terms of c0, c1, . . . , cK−1, cK , i.e.
in terms of cK . Combining the first expression in (60) and (62) then finally gives cK , and, thus,
via (62), we have found r1 and EI .
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