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Abstract

Electromagnetic inverse-scattering problems (ISPs) are concerned with determining the prop-
erties of an unknown object using measured scattered fields. ISPs are often highly nonlinear,
causing the problem to be very difficult to address. In addition, the reconstruction images of
different optimization methods are distorted which leads to inaccurate reconstruction results.
To alleviate these issues, we propose a new linear model solution of generative adversarial
network-based (LM-GAN) inspired by generative adversarial networks (GAN). Two sub-
networks are trained alternately in the adversarial framework. A linear deep iterative network
as a generative network captures the spatial distribution of the data, and a discriminative
network estimates the probability of a sample from the training data. Numerical results validate
that LM-GAN has admirable fidelity and accuracy when reconstructing complex scatterers.

Introduction

Electromagnetic inverse-scattering problems (ISPs) aim to reconstruct the physical properties
of unknown objects using the scattered field. Due to the non-destructive property, the imaging
techniques based on ISPs have a wide range of important applications, such as non-destructive
evaluation, microwave imaging, remote sensing, biomedical imaging, and civil measurement
[1–5]. However, ISPs are challenging to address because they are often intrinsically ill-posed
and nonlinear.

A large variety of inverse-scattering algorithms have been developed to retrieve the
unknown objects more efficiently and reliably. Relevant solutions for ISPs can be classified
into linear and nonlinear methods. In the category of linear method, the first-order Born
approximation (BA) [6] is used to describe the total field, and thus linearize the relationship
between objects contrast and received scattered field. The main regularization methods for lin-
ear ill-posed ISPs include truncated singular value decomposition [7] and low-rank constraints
[8]. By and large, linear methods can reconstruct the permittivity of non-strong scatterers with
high quality and require lower-computing resources. However, for strong scatterers, the per-
formance of linear approaches would dramatically decrease. In the kind of nonlinear method,
in order to cope with strong scatterers in a better fashion, the multiple scattering effect should
be considered in physical modeling, and nonlinear iterative optimization approaches have been
developed, such as Born iterative method [9], contrast source inversion method [10, 11], sub-
space optimization method (SOM) [12, 13], etc. These iterative approaches minimize the
objective function, which quantifies the mismatch between the calculated data and the mea-
sured one to reconstruct unknown scatterers’ permittivity distribution. By contrast, nonlinear
iterative inverse methods can reconstruct spatial distribution of strong scatterers. Nevertheless,
it is often sensitive to initialization values and converges at a relatively slow speed, so that not
suitable for real-time reconstruction. Moreover, even if the iterative methods are adopted, it is
relatively difficult to reconstruct the complex scatterers. This is because the data equations
used to solve nonlinear inverse problems are usually underdetermined [14]. The reconstructed
distribution still can be distorted and can deviate away from the ground truth even when the
error between the calculated scattered field and the measured field is small.

In recent years, deep learning has achieved promising performance in a variety of engin-
eering applications [15–17]. Many deep neural networks (DNNs) have been proposed to pro-
vide solutions for ISPs [18, 19]. For example, Li et al. [20] proposed a DNN-based nonlinear
ISP inversion method by exploiting the DNN architecture combined with the iterative method
of non-linear inverse scattering. Chen et al. [29] employed the result of the traditional back-
propagation method as the input of DNN to obtain a better estimation of the contrast. Wei
et al. [21] exploited an induced current learning method. It contains several strategies to inte-
grate the domain knowledge of physical iterative methods into the neural network structure.
The above-mentioned deep learning-based inverse-scattering research has mainly focused
on deep learning-assisted optimization and nonlinear iterative physical model-driven methods.
Zhou et al. [22] presented a linear model-based network (LMN) with a learnable regularizer
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for solving linear ISPs. Although LMN is almost comparable to
advance nonlinear iterative methods from the perspective of the
relative error of reconstructed permittivity, the texture details of
the scatterers will be lost to a certain extent when the experimen-
tal environment further degrades.

A convolutional neural network (CNN) is the most widely
used network for inverse-scattering imaging on which many
state-of-the-art approaches rely. However, while achieving rela-
tively accurate imaging, solutions of CNN optimization problems
often lack high-frequency content which results in perceptually
unsatisfying reconstruction of images. In generative adversarial
networks (GANs), Goodfellow et al. [23] put forward a new
framework for estimating generative models through adversarial
processes. Besides, the GAN may offer a way to break current lim-
its in supervised learning [24]. In this paper, an adversarial frame-
work is proposed to strengthen the capabilities of the BA model to
predict complex profiles. We choose BA, because BA can adapt to
low-frequency diffraction tomography and therefore is more suit-
able for a wider frequency range [25]. More specifically, we inherit
the spirit of SRGAN [26] and try to apply the generative adversar-
ial model to approximate the contrast mapping instead of the
popularly-used CNN. According to the processing mode of linear
ISPs, the roughly reconstructed result serves as the input of the
designed generative network, which outputs the fine recon-
structed image of the relative permittivity. However, the recon-
structed complex contour will usually lack high-frequency
details when only the generative network is employed.
Therefore, the discriminative network is introduced to ensure
the fidelity of the reconstruction results. The purpose of the dis-
criminative network differentiates the reconstructed scatterers and
the ground truths. In addition, the gradient updated by the gen-
erator network is not directly derived from the data sample, but
uses back-propagation from a discriminator network. Training
generative network and discriminative network alternately in a
confrontational manner until reaching the Nash equilibrium to
make the reconstructed spatial distribution is more similar to
the ground truth in semantics and style.

The remainder of this paper is organized as follows. In Section
“Problem formulation for ISPs,” the general model and basic the-
ory of the ISPs are introduced. In Section “Generative network
architecture,” the structure of the generative network is presented.
In Section “Discriminative network and loss function,” the struc-
ture of the discriminative network and loss function are intro-
duced. In Section “Numerical results,” numerical examples
demonstrate the accuracy and effectiveness of the LM-GAN.
And conclusions are drawn in Section “Conclusion.”

Notion: ��x denotes the matrix. Then, AH denotes the conjugate
transpose of a matrix A. || ⋅ ||F denotes the Frobenius norm of a
matrix. Finally, in the reconstructed images, the units of the hori-
zontal and vertical coordinates are meters.

Problem formulation for ISPs

Figure 1 presents the representative schematic diagram of ISPs. To
define the ISPs conveniently, the case of two-dimensional trans-
verse magnetic is considered, where the longitude direction is
along ẑ. One or more nonmagnetic scatterers are located in a
domain of interest (DoI) in free-space background. The sources
and receivers are equally placed outside the DoI, and their rele-
vant position vectors are recorded as rj, j = 1, 2, …, Ni and rq,
q = 1, 2, …, Ns, respectively. A total number of Ni line sources
radiate harmonic electromagnetic waves through the unknown

scatterers. Then, the scattered electric field generated by each inci-
dence is measured by an array of Ns antennas, so the size of the
obtained total data of the scattered field is NiNs. The unknown
scatterers are located in the DoI where the background medium
is evenly distributed, so the relevant permittivity of the back-
ground is ε0 and the permeability is μ0.

The total field in the DoI can be described by using the
Lippmann–Schwinger equation:

Etot(r) = Einc(r)+ k20

∫
D
G(r, r′)x(r′)Etot(r′)dr′, (1)

where Etot(r) and Einc(r) denote the total and incident electric
fields, respectively. k0 = v

������
m010

√
represents the background

medium wave number. ω is the angular frequency of the incident
electromagnetic wave. G(r, r

′
) is the two-dimensional free-space

Green’s function. The diagonal matrix stands for the contrast of
reconstructed object scatterer whose diagonal element is χ(rn,n)
= ε(rn)− 1, ε(rn) is the relative permittivity at rn. The scattered
field satisfies the integral equation:

Esca(r) = k20

∫
D
G(r, r′)x(r′)Etot(r′)dr′, (2)

where Esca(r) is the scattered field on the measurement surface S.
To streamline the problem, the above two integral equations

are discretized, thus yield two discretized formulations. The
total field in the DoI can be expressed as:

��E
tot = ��E

inc + ��GD��x
��E
tot
. (3)

The scattered field satisfies the discretized equation:

��E
sca = ��GS��x

��E
tot
. (4)

From formulations (3) and (4), it is concluded that the relative
permittivity of the unknown objects can be determined from the
measured scattering field. In this paper, only linear ISPs are

Fig. 1. Two-dimensional configuration of electromagnetic ISPs.
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considered. The integral equation can be solved for ��x under
the BA:

��E
tot = ��E

inc
, (5)

��E
sca = ��GS diag(��E

tot
)��x. (6)

We also add a learnable regularization function Zq(��x) con-
cerning the prior of ��x in equation (7) to mitigate the ill-posedness
of linear ISPs:

��x = argmin
��x

||��Esca − ��GS diag(��E
tot
)��x||22 + h||Zq(��x)||2. (7)

Generative network architecture

By setting Zq(��x) to be network-contained, it yields

Zq(��x) = ��x− Uq(��x). (8)
The objective function (7) is decomposed into two sub-

problems equations (9) and (10):

��xn+1 = argmin
��x

||��Esca − ��GS diag(��E
tot
)��x||22 + h||��x− ��Bn||2, (9)

��Bn+1 = Uq(��xn+1), (10)

where ��Bn is a learnable regularizer CNN estimator that depends
on the network parameters q. In addition, ��Bn is applied to stabil-
ize the imaging process.

By calculating the gradient of sub-problem equation (9) and
letting it to be zero, it attains:

[(��GS diag(��E
tot
))H(��GS diag(��E

tot
))+ hI]��xn+1

= (��GS diag(��E
tot
))H��E

sca + h��Bn (11)

The schematic diagram of the generative network framework is
depicted in Fig. 2. The generative network is initialized with

�x0 = �AH�Esca, where ��A
H = (��GS diag(��E

tot
))H . Afterward, ��Bn+1 and

��xn+1 are updated alternately by the U-net [27] based denoiser
step (10) and conjugate gradient step (11).

To sum it up, the above update rules can be considered as a
generative network consisting of K-stages (K = 1, 2, …, N). Each
stage consists of the learnable regularization CNN module and
the data-consistency (DC) unit. Especially, the conjugate gradient
in the DC unit is determined. The widely used U-net is applied in
the learnable regularization module. Besides, η is a learnable

regularization parameter. The same regularization module is
applied to the generative network, and the weights of the regular-
ization module in different stages are shared. Hence, a significant
reduction in network complexity is allowed.

Discriminative network and loss function

The discriminator network DqD and the generator network GqG are
updated alternately to solve the adversarial maximum–minimum
problem to achieve the Nash equilibrium, as shown in equation
(12). The general idea behind this formulation is that it allows one
to traina generativemodelwith thegoalof fooling adifferentiabledis-
criminator that is trained to distinguish reconstruction images from
the ground truth. Equippedwith this strategy, the generative network
can learn solutions that arehighlysimilar to the ground truth, hence it
isdifficult toclassifywithDqD .Additionally, toavoid themax-pooling
of the entire network, LeakyReLU activation is used. The superscript
ground truth is represented by gt:

min
qG

max
qD

E��xgt�Ptrain(��x
gt)[logDqD (��x

gt)]+ E��xnoise�PG(��x
noise)

[log(1− DqD (GqG (��x
niose)))].

(12)

LM-GAN trains the generation function that estimates its cor-
responding denoised counterpart for a given rough image. To
achieve this, we train a generator network as a feed-forward
CNN GqG parameterized by qG = {W1:k, b1:k, which is a weighted
mixture of multiple loss components. The weights and biases of
the generative network are obtained by optimizing a loss function
ℓlosstotal . For training ��xgtm, m = 1, …, M with corresponding ��xnoisem , m
= 1, …, M, it resolves as follows:

q∗
G= argmin

qG

1
M

∑M
m=1

ℓlosstotal(GqG (��x
noise
m ), ��xgtm). (13)

The loss functionℓlosstotal is composedof several loss components.Tobet-
ter implement the performance of the generator network, we improve
the components of the loss functionon thebasis ofLedig et al. [26].We
formulateℓlosstotal as theweighted sumof amean square error (MSE) con-
tent loss (ℓlossMSE) and an adversarial loss component (ℓlossGen) as:

ℓlosstotal = ℓlossMSE + 10−3ℓlossGen. (14)
ℓlossMSE is between the generator-reconstructed image and ground truth
for each pixel are calculated as:

ℓlossMSE = 1
WH

∑W
x=1

∑H
y=1

((��xm)
gt
x,y − GqG (��x

noise
m )x,y). (15)

Fig. 2. Overall network architecture of LM-GAN. The regularization sub-network employed a U-net structure, which consists of four layers of up-sampling and four
layers of down-sampling. The discriminative network contains five layers of convolution.
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Fig. 3. Reconstructed relative permittivity profiles from scattered fields with 0% (noise-free), 10% (SNR = 20 dB), 23% (SNR = 13 dB), and 33% (SNR = 10 dB) AWGNs
for BA, SOM, BPS, LMN, and LM-GAN, where the relative permittivity is between 1 and 2. The first row shows the real images for the test and the other rows are the
reconstruction results.

Table 1. MSE value and cost time comparison among BA, SOM, BPS, LMN, and LM-GAN in example 1

Methods Noiseless 20 dB 13 dB 10 dB Time (s)

BA 0.2783 0.7194 0.8624 1.0261 14.2

SOM 0.0783 0.0820 0.0901 0.0975 33.7

BPS 0.1132 0.1290 0.2383 0.2571 0.8241

LMN 0.0831 0.0911 0.0975 0.1027 0.6331

LM-GAN 0.0571 0.0616 0.0692 0.0844 0.4814
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Fig. 4. Reconstructed relative permittivity profiles of BA,
SOM, BPS, LMN, and LM-GAN from scattered fields under
various SNRs, where the relative permittivity is between
1 and 2. The first row shows the ground-truth for the
test and the other rows are the reconstruction results.
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The generative component of LM-GAN is added to the loss function
ℓlosstotal , in addition to the content loss mentioned so far. On all training
samples, the concept of the generative loss ℓlossGen is based on the prob-
abilities of discriminator DqD (GqG (��x

noise)) as:

ℓlossGen =
∑M
m=1

−logDqD (GqG (��x
noise)). (16)

In order to obtain a more suitable gradient, the network minimizes
−logDqD (GqG (��x

noise)) instead of log(1− DqD (GqG (��x
noise))), where

DqD (GqG (��x
noise)) is the probability that the reconstructed image

GqG (��x
noise) is a ground truth.

Numerical results

In the process of reconstructing the relative permittivity from the
scattered field, the performance of the proposed network is eval-
uated. We implement its architecture in MATLAB on a PC
equipped with Intel (R) Core (TM) i7-9800X and GeForce RTX
2080Ti. The results under comprehensive data, including cylin-
ders, “Austria” profile and EMNIST datasets [28] are presented.

In the numerical tests, in order to avoid the inverse crime, we
consider a DOI of 2 × 2m2 in size and discretize the domain into
100 × 100 pixels. In the inversion process, the DOI is divided into
64 × 64 pixels. There are 16 line sources and 32 line receivers are
equally placed on a circle centered at (0,0) m and with radius 3 and
6m. The scattered fields from Ni incidences are generated numeric-
ally by using the momentmethod and recorded in a matrix ��E

sca
with

the size ofNr ×Ni. Then, additive white Gaussian noise ��nwas added
to ��E

sca
. The resulting noise matrix ��E

sca + ��n is regarded as the mea-
sured scattered field used to reconstruct the relative permittivity,
and the noise level is quantified as ||��n||F . The operating frequency
is 400MHz, unless stated otherwise, and the scatterers are lossless
and fall into the range of non-negative contrast a priori information.
Finally, the spatial distribution of the permittivity of the scatterer is
reconstructed by using BA [6], SOM [12, 13], the backpropagation
scheme (BPS) [29], LMN [22], and LM-GAN, respectively.

In order to evaluate the quality of reconstructed images, the
MSE of the relative permittivity is defined as:

MSE = 1
N

∑N
i=1

||��1r(rn)− ��1(rn)||F/||��1(rn)||F . (17)

Here, ��1r(rn) and ��1(rn) denote the reconstructed and ground truth
relative permittivity profiles, respectively. N is the number of tests
performed.

Comparison under cylinders

In the first example, we select overlapping cylinders and set the
relative permittivity of the cylindrical scatterers between 1 and
2. The scattered field is polluted by 0% noise level, 10% noise
level, 23% noise level, and 33% noise level additive white
Gaussian noises (AWGNs), respectively. We test these configur-
ation profiles on the trained network. In Fig. 3, the reconstructed
permittivity profiles of four noise level tests are shown. As the
noise level increases (i.e., the signal to noise ratio (SNR) decreases),
the quality of reconstruction gradually degrades. When the noise
level is 33% (SNR = 10 dB), a clear boundary can still be recon-
structed. In order to quantitatively evaluate the performance of
the proposed scheme, the test MSE values of these four representa-
tive SNRs are further calculated and tabulated in Table 1. The more
noise the scattered field contained, the higher the MSE is. Similarly,
it indicates that BPS, LMN, and SOM are slightly inferior to LM-
GAN. Moreover, each test using LM-GAN is implemented on
the computer within 1 s, thus being suitable for real-time
reconstruction.

Comparison under EMNIST database

In the second example, to study the promotion generalization of
the introduced neural network, we thoroughly evaluate the net-
work trained under EMNIST datasets. The proposed network
does not recognize and classify the Latin alphabet but quantita-
tively reconstructs the contour of the scatterer in the Latin

Table 2. MSE value and cost time comparison among BA, SOM, BPS, LMN, and LM-GAN about the English letter G

Methods Noiseless 20 dB 13 dB 10 dB Time (s)

BA 0.5453 0.7424 0.8152 1.2311 16.3

SOM 0.0692 0.0721 0.0797 0.0915 35.6

BPS 0.0703 0.0751 0.0782 0.1267 0.7913

LMN 0.0786 0.0847 0.0925 0.1127 0.7122

LM-GAN 0.0601 0.0693 0.0776 0.0896 0.5814

Table 3. MSE value and cost time comparison among BA, SOM, BPS, LMN, and LM-GAN about the English letter Y

Methods Noiseless 20 dB 13 dB 10 dB Time (s)

BA 0.1583 0.2967 0.4724 0.6541 14.7

SOM 0.0413 0.0528 0.0741 0.0873 30.5

BPS 0.0476 0.0553 0.0912 0.1678 0.8423

LMN 0.0482 0.0584 0.0805 0.0913 0.6685

LM-GAN 0.0341 0.0473 0.0674 0.0768 0.5157
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Fig. 5. Reconstructed relative permittivity profiles of BA, SOM, BPS, LMN, and LM-GAN from scattered fields under various SNRs, where the relative permittivity is
between 1 and 2. The first row shows the ground truth for the test and the other rows are the reconstruction results.

Table 4. MSE value and cost time comparison among BA, SOM, BPS, LMN, and LM-GAN in example 3

Methods Noiseless 20 dB 13 dB 10 dB Time (s)

BA 0.3453 0.6894 0.7724 0.1261 16.9

SOM 0.0681 0.0731 0.0851 0.0944 31.7

BPS 0.1531 0.1926 0.2411 0.2860 0.9454

LMN 0.0713 0.0792 0.0896 0.0923 0.6731

LM-GAN 0.0592 0.0667 0.0747 0.0885 0.5643
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alphabet. Compared with the cylinders in the previous example,
these profiles are undoubtedly more challenging. One is because
these images are not regular. The other is that the relative permit-
tivity of these unknown objects is non-uniformly distributed.
Also, the relative permittivity of the scatterers is set between 1
and 2. The size of these letters and digits in the EMNIST database
is 28 × 28 pixels. In the forward problem, the size of DoI is 2 × 2
m2, which is discretized into 128 × 128 pixels. In the inverse prob-
lem, DoI is discretized into 64 × 64 pixels in order to avoid
inverse crime. According to the experimental experience, we ran-
domly select 100 samples in EMNIST datasets to train the pro-
posed network. Each sample is trained for 100 times. Moreover,
the training samples used by LM-GAN in the training phase
are all noise-free.

There are two representative profiles to be reconstructed,
including the English letter G and English letter Y. They are avail-
able only during the testing phase. The relative permittivities of
scatterers are set between 1 and 2. In practice, the noise level is
often unknown. Therefore, AWGNs with 0% (noise-free), 10%
(20 dB), 23% (13 dB), and 33% (10 dB) are added to the scattered
field to test the trained LM-GAN, respectively. In Fig. 4, the
reconstructed permittivity profiles for BA, SOM, BPS, LMN,
and the proposed LM-GAN are shown.

By comparing the reconstruction results of the four methods,
it can be observed that the information loss of the reconstructed
object increases gradually with the decrease of the SNR. When the
noise level is 33% (10 dB), the profile of the scatterer recon-
structed by BA and BPS are obviously smaller than the profile
of the ground truth, and obvious distortion appears in Fig. 4.
However, LM-GAN can significantly reconstruct the profile of
the scatterer with preferable accuracy. Furthermore, compared
with the LMN, LM-GAN achieves satisfactory results and outper-
forms it. The reconstruction results can be quantitatively evalu-
ated by considering the MSE of the normalized overall
mismatch in all pixels in Tables 2 and 3. It validates the above
analysis. The proposed method can minimize the impact of
noise on the reconstructed object due to the adversarial learning
method, and has good anti-noise performance. It is observed that
the imaging quality of SOM is very similar to LM-GAN by evalu-
ating and examining the reconstruction effects of SOM and
LM-GAN. Additionally, LMN is a bit inferior to LM-GAN
from the perspective of the MSE of reconstruction. Although
the reconstruction effects of SOM, LMN, and LM-GAN are satis-
factory, the reconstruction time required in SOM is longer, as can
be observed from the average reconstruction time listed in Tables
2 and 3. It is worth noting that the fast computational time of
LM-GAN enables real-time reconstruction for dielectric profiles.

Comparison under “Austria” profile

In the third example, we use “Austria” profile as a benchmark
to evaluate the performance of the proposed network. It is
well-known in the inverse-scattering field and also is used as a
representative test. It consists of a ring and two small disks with
the same characteristics. The ring’s outer radius is 0.6 m and
the inner radius is 0.3 m, respectively. The radius of the two
disks is 0.2 m, as observed in the first row of Fig. 5. The relative
permittivities of “Austria” profile are set between 1 and 2.

The reconstructed permittivity values of the five methods are
visualized in Fig. 5, the SNR are noise-free, 20, 13, and 10 dB.
It is noticed that the corresponding reconstructions of BA and
BPS have very serious distortion because of the large error. In

addition, when the SNR is 10 dB, we find that the shapes of
images reconstructed by SOM and LMN are slightly distorted.
It can be observed that the proposed LM-GAN can successfully
reconstruct the profiles. Although there are large errors in the
reconstructed images with a 10 dB, the locations and shapes of
profiles can be roughly reconstructed. The MSE values of all
tests are included in Table 4. This implies that the proposed
scheme has achieved satisfactory results.

Conclusion

This paper proposed a GAN-based fast solution to tackle linear
ISPs through alternatively training of generative network and dis-
criminative network in an adversarial way. A connection between
GAN and deep iterative solutions was built up to linear ISPs.
Numerical results demonstrated that LM-GAN can accurately
reconstruct complicated scatterers’ electrical performance para-
meters and profiles under high-noise conditions with very few
training samples. It can be comparable to the state-of-the-art non-
linear inversion algorithms. Furthermore, it outperformed the
mentioned learning approaches and BA in reconstructing some
challenging profiles, in terms of MSE measure and computational
cost time.
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