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In this paper, the dynamics of electrons emitted by a spherical object when the total
charge of the system is constant is studied in detail. In particular, the condition for
which the total electron charge presents damped oscillations is deduced rigorously
by considering a perturbation with respect to the steady-state solution. The results
obtained can be of utility in simulating the expansion of a spherical plasma by
separating the ion and electron time scales.
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1. Introduction
The present work concerns the analysis of the time evolution of the distribution of

electrons that are emitted by a sphere of radius R all having the same initial velocity
v0. A similar study, i.e. the analysis of the electron flow between two electrodes
where space-charge effects are taken into account, is a classic problem in plasma
physics, with contributions dating back to Child (1911) and to Langmuir & Blodgett
(1924), until recent works (in particular, the papers by Akimov et al. (2001, 2003)
and by Ender et al. (2000), Kuznetsov & Ender (2010a,b), Ender & Kuznetsov
(2014)). Actually, the problem considered here is significantly different, as the total
charge of the system (i.e. the charge of the sphere and of the electrons) is fixed, and
when the negative charge exceeds a critical value all of the newly emitted electrons
eventually move back and are reabsorbed by the sphere, due to its positive charge.
The present analysis was carried out in the framework of a study on the mitigation
of the effects of electric charge, which accumulates on a satellite when an electron
beam is emitted into the ionosphere (Hendrickson, McEntire & Winckler 1975), by
emitting a plasma around the spacecraft (Delzanno et al. 2016). Under the hypothesis
of spherical symmetry, the numerical simulation of the plasma expansion into space
can be carried out in a simple way by means of particle techniques. However, in order
to reduce the computational effort, the calculation should somehow take advantage of
the different time scales for the ions and electrons, e.g. by calculating the equilibrium
distribution of the electrons that is reached in a time interval for which the ion motion
is negligible; then, the electric field contribution due to the electrons is employed
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to move the positive ions for a new time step (Colandrea 2018). In order to better
understand the details of the numerical method and to obtain reference solutions, the
authors decided to start studying the problem in its simplest configuration, in which
only electron charge is present outside the sphere. Notwithstanding its simplicity, the
study has other applications beside the one considered above, in particular, in the
analysis of the electron emission by a solid nanosphere when it is ionized by a laser
beam, which represents the early stage of a Coulomb explosion (Ditmire et al. 1996).
Also in this case, the electron dynamics is influenced by the positive charge of the
sphere (Peano et al. 2006).

As mentioned before, the phenomenon is here schematized by considering the
emission of monoenergetic electrons moving in the radial direction. The electron flux
I0 (I01t being the number of electrons emitted in time interval 1t) can be written as
n0v04πR2, with n0 the density of the emitted particles at r = R, or, equivalently, as
N0v0, with N0= 4πR2n0. As long as there are no overtakings (i.e. if electrons emitted
at t2 > t1 have a radial coordinate r smaller than those emitted at t1), the electric field
acting on the electrons emitted at time t0 is simply given by

E(r)=−
eQS(t0)

r2
, (1.1)

with QS(t0)= QS(0)+ eI0t0 the charge of the body at the time of emission (there is
not a charge grounding mechanism as the satellite is in space). In fact, for t> t0 the
charge of the body will be QS(0) + eI0t, while the electron charge emitted between
t0 and t (which is all inside the sphere of the electrons emitted at t0) is −eI0(t− t0),
so the total charge ‘seen’ by an electron emitted at t0 is always QS(t0). As long as
eQS(t0)/R is smaller than mv2

0/2, the electrons are ‘free’ particles, in the sense that
their distance from the sphere tends to +∞ as t → +∞. However, as QS grows,
beyond a given time the electrons emitted are all trapped. After reaching a turning
point, these electrons move back toward the sphere, and eventually they are absorbed
by the body. The present work concerns only the dynamics of trapped electrons.
This is possible because all the free electrons have a larger radial coordinate (since
they have been emitted before and the attractive electric field is smaller) and, due
to Gauss’s theorem, their charge does not contribute to the electric field in the inner
region that is occupied by the trapped particles. In particular, the study shows that
the time evolution of the trapped electrons presents periodic oscillations. In some
cases the oscillations are damped, leading to a steady state; their determination is
investigated in § 2. Instead, for different sets of physical parameters the electron
charge presents oscillations of growing amplitude until saturation. Also in these cases
a stationary solution exists, but clearly it is unstable. To discriminate analytically
between these two situations a study is presented in § 3, in which the time evolution
of a small perturbation of a steady state is considered, so providing a rigorous
condition for the occurrence of the instability.

2. Steady-state distribution
In this section, the problem of finding a stationary distribution for trapped electrons

is considered. A possible way of finding a steady-state distribution, if it exists, is
by considering the transient in which electrons are emitted by the sphere. As the
dynamics of free and trapped electrons are completely independent, as discussed in § 1,
only the phase in which all the (new) emitted electrons are trapped is considered here.
This can be done simply by imposing an initial positive charge on the spherical body,
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FIGURE 1. Damped oscillations for the total electron charge outside the sphere.
Dimensionless units are used, as described in the text. The normalized electron flux, I0,
and the normalized initial charge on the sphere, Q0, are both set equal to 1.

FIGURE 2. Oscillating behaviour of the total electron charge. For this case, I0 = 2 and
Q0 = 1 have been chosen.

QS(0)= Q0 > 0. In practice, the charge Q0 is due to the previous emission of (free)
electrons or to other causes (e.g. the emission of a high-energy electron beam, as in
space experiments). If eQ0/R is larger than (1/2)mv2

0 , all the electrons are confined
by the potential of the sphere. At time t, an electric charge, Qe(t) < 0, due to the
electrons will be present outside the body, and, consequently, the charge of the body
is QS(t)=Q0 −Qe =Q0 + |Qe|. Typical numerical results are presented in figures 1–4.
The numerical simulation of the transients has been performed by using the ‘shell’
method (Boella et al. 2018). The method uses computational particles in the shape of
spherical shells, and the electric field is evaluated with Gauss’s theorem on a shell of
radius r by summing the charges of the particles included in the shell without using a
computational grid. In this way, no boundary conditions are necessary for the electric
potential. The shell method provides accurate, noiseless results that can be regarded
as a reference.

For different values of the parameters, the evolution of Qe presents two different
situations: damped oscillations (figure 1), or oscillating behaviour (figure 2). The
corresponding phase-space distributions are shown in figures 3 and 4 (in these
figures, as for all the results presented in the paper, lengths are normalized to R,
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times to R/v0, charges to mv2
0R/e, particle fluxes to mv3

0/e
2). These results suggest

that a stationary solution for the phase-space distribution may exist, at least if the
parameters of the problem, QS, v0, I0, are in a given domain. The steady-state solution
can be easily found by using the Poisson equation for the electric potential

1
r2

d
dr

(
r2 dΦ

dr

)
=−4πρ, (2.1)

and considering that, for a stationary flow of electrons, one can write the charge
density ρ as:

ρ =−
1

4πr2

2eI0

v(r)
(2.2)

(the factor 2 is justified by noticing that, for a given r, electrons move with
velocity +v(r) and −v(r)). The velocity v(r) is calculated by considering that
E = (1/2)mv2

0 − eΦ(r) is a constant of the motion (assuming Φ(R)= 0, E is simply
equal to (1/2)mv2

0). Finally, by introducing the potential energy for an electron,
U(r)=−eΦ(r) and using equations (2.1), (2.2), one eventually obtains the equation:

d
dr

(
r2 dU

dr

)
=−

2e2I0[
2
m
(E −U)

]1/2 , (2.3)

to be solved with the initial conditions:

U(R)= 0,
dU
dr
(R)=

eQS

R2
, (2.4a,b)

as dU/dr=−edΦ/dr= eE(r) and E(R)=QS/R2. Although (2.3) is well known (it
was initially considered by Langmuir & Blodgett (1924) studying an electron diode),
in the present case the interest is not in the electron flow between two electrodes, but
in the motion of trapped particles, which return to the same electrode. Therefore the
solution of (2.3) presents some peculiarities, as it must be solved in the r−interval
[R, rmax], with rmax the turning point for the electrons, for which E −U(rmax)= 0.
Equivalently, equation (2.3) can be cast into two first-order differential equations:

dU
dr
=
Ψ

r2
, U(R)= 0,

dΨ
dr
=−

2e2I0[
2
m
(E −U)

]1/2 , Ψ (R)= eQS.

 (2.5)

Equation (2.3), or system (2.5), must be solved numerically, but a direct solution
presents two problems: (i) rmax is unknown; (ii) (E −U)−1/2 diverges when r→ rmax.
On the other hand, the range for U is known, as U ∈ [0, E], and therefore U itself
can be used as independent variable (i.e. r= r(U) and Ψ =Ψ (U)), giving

dr
dU
=

r2

Ψ
, r(U = 0)= R,

dΨ
dU
=−

r2

Ψ

2e2I0[
2
m
(E −U)

]1/2 , Ψ (U = 0)= eQS.


(2.6)
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FIGURE 3. Phase-space evolution for the electron distribution in the same case as figure 1.
The different curves a,b,c,d,e’-e”, f, correspond to different times t= 0.5, 1, 1.5, 2, 2.5, 100.
The steady-state solution (from system (2.7)) is also presented (circles).

FIGURE 4. Phase-space distribution for the electrons at different times covering the period
of an oscillation, for the same case as figure 2.

Finally, the singularity for U→ E can be eliminated by using the momentum
p= {2m(E −U)}1/2 as independent variable:

dr
dp
=−

p
m

r2

Ψ
, r(p0)= R,

dΨ
dp
= 2e2I0

r2

Ψ
, ψ(p0)= eQS,

 (2.7)

with p ∈ [0, p0] and p0 =mv0. An example of the solution of this equation is shown
in figure 3, where the phase-space distribution obtained by (2.7) is compared with
the asymptotic distribution as obtained with the shell method. As the system presents
damped oscillation, one must expect a complete agreement between these two
distributions. This is confirmed by the results presented in the figure.
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(a) (b)

FIGURE 5. (a) Charge on the sphere, Q1, as a function of the total charge of the system,
Q1 +Qe for I0 in the range 1 ÷ 5 (with step 0.5). (b) Maximum value of the radial
coordinate of the electron distribution, rmax, as a function of Q1 +Qe for the same values
of I0.

System (2.7) can be rewritten by introducing the new dimensionless quantities
r̄= r/R, p̄= p/p0 and Ψ =Ψ/(eQS), as

dr̄
dp̄
=−2

(
eQS/R
E

)−1

p̄
r̄2

Ψ
, r̄(1)= 1,

dΨ
dp̄
= 2

(
eQS/R
E

)−2 (e2N0

E

)
r̄2

Ψ
, Ψ (1)= 1,

 (2.8)

with p̄ ∈ [0, 1]. Equations (2.8) show that the dynamics of the beam depends on two
dimensionless parameters: eQS/R/E and e2N0/E .

By solving system (2.7) all the physical quantities, in particular, the electron
charge Qe = [Ψ (rmax)−Ψ (R)]/e, can be calculated as a function of the charge on
the sphere, QS. In other words, having fixed all the other physical parameters, the
function Qe(QS) is obtained, representing the electron charge in equilibrium with the
charge QS on the sphere. In a real situation, one can imagine an initial condition
with a charge Q0 on the sphere and Qe = 0. As the total charge is conserved, after
the transient the charge on the sphere becomes Q1 =Q0 + |Qe(Q1)|. If Q0 is known,
the equation Q1 − |Qe(Q1)| =Q0 must be solved with respect to Q1. This can be
done graphically, as shown in figure 5(a), where the curves of parametric equation
x=Q1 − |Qe(Q1)|, y=Q1 are plotted for different values of I0. In the figure, each
curve represents the value of the charge on the sphere after the transient, Q1, as a
function of its initial value Q0. One can observe that the curves are defined if Q0 > 0.
When Q0→ 0+, the electric field for r= rmax tends to 0, and the right-hand sides of
the two equations (2.7) become singular. For this case, system (2.7) must be solved
with ‘initial’ conditions

U(rmax)= E, Ψ (rmax)= 0. (2.9a,b)
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A solution for this particular case is provided in the following. By making use
of the kinetic energy K = E −U instead of U, and defining suitable dimensionless
variables:

s= 1− r/rmax, K̃ =K/K1, Ψ̃ =Ψ/Ψ1, (2.10a−c)

with K1 = [2e2I0/(2/m)1/2]2/3 and Ψ1 =K1rmax, system (2.7) becomes:

dK̃
ds
=

Ψ̃

(1− s)2
, K̃(s= 0)= 0,

dΨ̃
ds
=

1

K̃1/2
, Ψ̃ (s= 0)= 0.

 (2.11)

If s� 1, the denominator in the first (2.11) can be approximated by 1, and system
(2.11) admits a simple analytic solution:

K̃(s)= ( 9
4)

2/3s4/3, Ψ̃ (s)= 4
3(

9
4)

2/3s1/3, (2.12a,b)

as can be verified by inspection. In general, when s is not negligible, one can write
K̃ and Ψ̃ as:

K̃(s)= ( 9
4)

2/3s4/3T (s), Ψ̃ (s)= 4
3(

9
4)

2/3s1/3W(s), (2.13a,b)

and system (2.11) becomes

dT
dz
=

4
3

{
W

(1− ez)2
− T

}
, T (−∞)= 1,

dW
dz
=

1
3

{
1

T 1/2
−W

}
, W(−∞)= 1,

 (2.14)

having introduced the new variable z= log(s) in order to eliminate the singularity
for s→ 0. Now the new system can be readily solved numerically. In addition, for
z→−∞, when s� 1 and T ,W ' 1, one can write T = 1+ τ , W = 1+w, with
|τ |, |w| � 1 and (1− ez)−2

' 1+ 2ez. By linearizing the equations, one obtains:

T (z)∼ 1+ 16
15 ez, W(z)∼ 1− 2

15 ez. (2.15a,b)

It is worthwhile noticing that K̃(s) and Ψ̃ (s) are ‘universal’ functions, as they do not
depend on the parameters of the specific problem. In particular, these functions can
be used to calculate the value of Q1 corresponding to Q0 = 0 (as in figure 5a) for
different values of I0, by solving the equations:

mv2
0

2
=K1K̃(1− R/rmax), (2.16)

eQ1 =K1rmaxΨ̃ (1− R/rmax). (2.17)

After obtaining rmax from (2.16), one has Q1(Q0 = 0) from (2.17). It has been verified
that the values of Q1(Q0 = 0) obtained in this way are in perfect agreement with the
results shown in figure 5(a).
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3. Transient analysis
The rise of the instability of the steady states, as studied in § 2, can be explained

qualitatively in a simple way. Starting from a steady-state configuration with charge
QS on the sphere and charge Qe(QS) due to the electrons (thus with total charge
QS +Qe(QS)), one can imagine adding a charge δQS on the sphere. Now the
equilibrium electron charge is Qe(QS + δQS)'Qe(QS)+ dQe/dQS(QS) · δQS. As the
total charge is now QS +Qe(QS)+ δQS, after a time τ (approximately of the order
of the transit time of the electrons from emission to reabsorption), the charge on the
sphere must become QS + δQ′S, such that

QS +Qe(QS)+ δQS =QS + δQ′S +Qe(QS + δQS). (3.1)

In other words, after a time interval τ , the charge excess on the sphere is

δQ′S =
[

1−
dQe

dQS
(QS)

]
δQS. (3.2)

After a time n · τ , the initial perturbation is multiplied by a factor (1− dQe/dQS)
n.

Considering that dQe/dQS is always non-negative, the perturbation causes damped
oscillations if dQe/dQS < 2, otherwise their amplitude is amplified. Of course, this
condition is only approximate, and the real threshold to the instability requires a
rigorous analysis of the dynamics of the system, which is the subject of the present
section. The technique employed here represents an extension of the Lagrangian
method introduced by Akimov et al. (2001, 2003) for the study of the stability
of a planar electron diode. However, the spherical geometry makes the problem
intrinsically more complicated and, as will be shown in the following, only a mixed
analytical–numerical solution is possible.

First of all, the function R(t, t0), which represents the radial position at time t of
an electron emitted by the sphere at time t0, is introduced, together with its velocity:

V(t, t0)=
∂R
∂t
(t, t0). (3.3)

The time evolution of V is governed by the equation:

∂V
∂t
(t, t0)=−

e
m

E(R(t, t0), t), (3.4)

with E(r, t) the electric field. As in the time interval dt1 a number of electrons I0dt1
are emitted and they will have position R(t, t1) and velocity V(t, t1) at time t, a phase-
space distribution f (r, v, t) can be defined as

f (r, v, t)=
∫

I0 dt1δ(r−R(t, t1))δ(v − V(t, t1)). (3.5)

The quantity f (r, v, t)drdv represents the number of electrons in [r, r+ dr] with radial
velocity within [v, v + dv]. From f (r, v, t), the electron charge in the region [r1, r2]

at time t can be written as

Qe(r1, r2, t)=−e
∫ r2

r1

dr
∫

I0 dt1δ(r−R(t, t1)). (3.6)
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FIGURE 6. Behaviour of R(t, t1), for fixed t, as a function of t1. Obviously,
R(t, t1 = t)= R and there are no electrons at time t if the emission time, t1, is larger than
t. As t1 decreases, R(t, t1) increases until the time t1 = tmax(t) for which R is maximum
(in other words, R(t, tmax(t)) is the maximum radial distance at time t for any electron of
the system). For t1 < tmax(t), R(t, t1) decreases, as electrons are moving back after reaching
their maximum distance. Finally, all electrons emitted for t1 < t̃(t) have been reabsorbed
by the sphere.

As the charged contained in a sphere of radius r> R is given by

Q(r, t)=QS(t)+Qe(R, r, t), (3.7)

where QS(t) is the charge of the sphere at time t, the electric field E(R(t, t0), t) can
be written as:

E(R(t, t0), t)=
Q(R(t, t0), t)
R2(t, t0)

. (3.8)

Making use of (3.6), the contribution of electrons to Q(R(t, t0), t) can be expressed
as:

Qe(R,R(t, t0), t)=−eI0

∫
dt1

∫ R(t,t0)

R
δ(r−R(t, t1)) dr, (3.9)

in which the value of the r−integral is 1 if R(t, t1) ∈ [R,R(t, t0)], otherwise it
vanishes. The typical behaviour of R(t, t1) as a function of t1 is shown in figure 6.
Once t0 ∈ (t̃(t), t) is fixed, a new time, t̃0(t, t0) 6= t0 can be determined such that
R(t, t̃0(t, t0))=R(t, t0) (as in figure 6). It must be noticed that t̃0 < tmax if t0 > tmax
and vice versa. With reference to figure 6, one can conclude that, for t0 > tmax:∫ R(t,t0)

R
δ(r−R(t, t1)) dr=

{
1 for t1 ∈ [t̃, t̃0] ∪ [t0, t],
0 otherwise, (3.10)

and, consequently, from (3.9) one has:

Qe(R,R(t, t0), t)=−eI0[t− t0 + t̃0(t, t0)− t̃(t)]. (3.11)
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Instead, for t0 < tmax, equation (3.11) must be modified, as:

Qe(R,R(t, t0), t)=−eI0[t− t̃0(t, t0)+ t0 − t̃(t)]. (3.12)

Finally, Q(r, t) must be evaluated. To do this, one can start by writing the charge
Q(t, t0) ‘seen’ at time t by the electron emitted at t0 as:

Q(t, t0)=QS(t)+Qe(R,R(t, t0), t). (3.13)

Moreover, the total charge of the system Qtot =QS(t)+Qe(R, rmax(t), t) is constant,
and therefore one has:

Q(t, t0) = Qtot +Qe(R,R(t, t0), t)−Qe(R, rmax(t), t)
= Qtot + eI0|t0 − t̃0(t, t0)|, (3.14)

making use of (3.11), (3.12) and noticing that if R(t, t0)= rmax(t) then t̃0(t, t0)= t0 =

tmax(t) (as in figure 6). In summary, equations (3.3), (3.4), (3.8), (3.14) determine the
electron dynamics.

In a steady-state situation, all the previous quantities depend upon λ≡ t− t0 only.
In particular, R(t, t0)=R(λ) and V(t, t0)= V(λ). Moreover, in this case the curve of
figure 6 is symmetric with respect to tmax(t)= t−T/2, with T the total time of the
trajectory for a single electron (from emission to absorption) and where t0 − t̃0 is equal
to T− 2λ, for λ ∈ (0,T/2). Therefore, the previous equations become:

dR
dλ
= V, R(λ= 0)= R,

dV
dλ
=−

e
m

(
Q0 − 2eI0λ

R2

)
, V(λ= 0)= v0,

 (3.15)

for λ ∈ [0,T/2], with Q0 =Qtot + eI0T. For λ ∈ [T/2,T], one has simply

R(λ)=R(T− λ), V(λ)=−V(T− λ). (3.16a,b)

It can be readily proved that system (3.15) is equivalent to the ones in the previous
section1. To study a transient, a suitable perturbation is added to the steady-state
solution, in the form:

R(t, t0)=R(λ)+ εR̂(λ)eiωt,

V(t, t0)= V(λ)+ εV̂(λ)eiωt,

E(t, t0)= E(λ)+ εÊ(λ)eiωt,

 (3.17)

in which ε� 1 and ω ∈C. Of course, only the real (or the imaginary) parts of R and
V define the real perturbation. After introducing definitions (3.17) into (3.3), (3.4), one
obtains:

dR̂
dλ
= V̂ − iωR̂,

dV̂
dλ
=−

e
m

Ê(λ)− iωV̂ .

 (3.18)

1Moreover, by introducing dimensionless quantities: R̃= R/R, Ṽ =V/v0, λ̃= λv0/R, Q̃=Qe/(mv2
0R),

Ĩ0 = I0e2/(mv3
0), system (3.15) can be rewritten as:

{
dR̃/dλ̃= Ṽ, R̃(0)= 1,
dṼ/dλ̃=−Q̃0 − 2̃I0λ̃/R̃2, Ṽ(0)= 1.

In practice, using

the new variables is equivalent to setting v0, R, e, m all equal to 1.
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In the following, E(R(t, t0), t) and Q(R(t, t0), t) are indicated simply as E(t, t0) and
Q(t, t0), respectively. The value of Ê(λ) can be calculated by writing the ‘total’ electric
field E(t, t0) as:

E(t, t0) =
Q(t, t0)

R2(t, t0)
=

Q(λ)+ εQ̂(λ)eiωt

[R(λ)+ εR̂(λ)eiωt]2

=
Q(λ)

R2
(λ)
+ ε

1

R2
(λ)

{
Q̂(λ)−

2Q(λ)
R(λ)

R̂
}
+O(ε2) (3.19)

where

Q(λ)=Q0 − 2eI0λ, λ ∈ [0,T/2],
Q(λ)=Q(T− λ), λ ∈ [T/2,T].

}
(3.20)

Thus, one can write:

Ê(λ)=
1

R2
(λ)

{
Q̂(λ)−

2Q(λ)
R(λ)

R̂(λ)
}
. (3.21)

The amplitude of the charge perturbation, Q̂(λ), can be calculated by means of (3.14),
and therefore t̃0(t, t0) must be evaluated. From its definition, t̃0 satisfies the equation:

R(t− t̃0)+ εR̂(t− t̃0)eiωt
=R(λ)+ εR̂(λ)eiωt. (3.22)

For the steady state, t− t̃0 =T− λ, as 1/2(t− t̃0)= t−T/2. When the transient is
considered, a term of order of ε must be added

t− t̃0 =T− λ− εθ̂(λ)eiωt. (3.23)

Introducing definition (3.23) into (3.22) one obtains:

dR
dλ
(T− λ){−εθ̂(λ)eiωt

} + εR̂(T− λ)eiωt

= εR̂(λ)eiωt
+O(ε), (3.24)

and, eventually,

θ̂ (λ)=
R̂(T− λ)− R̂(λ)

dR
dλ
(T− λ)

. (3.25)

Going back to (3.14), the charge Q(t, t0) can be written as

Q(t, t0) = Qtot + eI0|T− 2λ− εθ̂(λ)eiωt
|

= Qtot + eI0{|T− 2λ| ∓ εθ̂(λ)eiωt
}. (3.26)

The sign – is for λ<T/2, the opposite sign for λ>T/2. Therefore, one finally
obtains:

Q̂(λ)=±eI0
R̂(λ)− R̂(T− λ)

V̂(T− λ)
. (3.27)
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In summary, equations (3.15), (3.21), (3.27) can be used to determine the behaviour of
the perturbation. However, equation (3.27) contains both R̂(λ) and R̂(T− λ); for this
reason, it turns out to be useful to define new unknowns only in the range [0,T/2]:

R+(λ)= R̂(λ), R−(λ)= R̂(T− λ),
V+(λ)= V̂(λ), V−(λ)= V̂(T− λ),

}
(3.28)

which satisfy the following set of equations:

dR+
dλ
= V+ − iωR+,

dR−
dλ
=−V− + iωR−,

dV+
dλ
=−

e
m

1

R2
(λ)

{
Q̂(λ)− 2

Q(λ)
R(λ)

R+
}
− iωV+,

dV−
dλ
=+

e
m

1

R2
(λ)

{
−Q̂(λ)− 2

Q(λ)
R(λ)

R−
}
+ iωV−,

Q̂(λ)= eI0
R+(λ)−R−(λ)
−V(λ)

.



(3.29)

Equations (3.29) represent a linear, homogeneous system of differential equations, to
be solved with the boundary conditions:

R+(0)= 0, V+(0)= 0,
R+(T/2)=R−(T/2), V+(T/2)= V−(T/2).

}
(3.30)

Two linearly independent solutions can be found numerically, with ‘initial’ conditions:

(1) R+(T/2)=R−(T/2)= A, V+(T/2)= V−(T/2)= 0;
(2) R+(T/2)=R−(T/2)= 0, V+(T/2)= V−(T/2)= B;

}
(3.31)

where A and B are arbitrary, non-zero and constant, giving the solutions R(1)
± (λ, ω),

V (1)
± (λ, ω), R(2)

± (λ, ω), V (2)
± (λ, ω). The most general solution of system (3.29)

satisfying the boundary conditions for λ=T/2 can be written as a linear superposition
of these two solutions, in particular:

R+(λ, ω)= c1R(1)
+ (λ, ω)+ c2R(2)

+ (λ, ω),

V+(λ, ω)= c1V (1)
+ (λ, ω)+ c2R(2)

+ (λ, ω).

}
(3.32)

By imposing the boundary conditions for λ= 0, one obtains a linear homogeneous
system that has non-trivial solution only if:

D(ω)≡ det
(
R(1)
+ (0, ω) R(2)

+ (0, ω)
V (1)
+ (0, ω) V (2)

+ (0, ω)

)
= 0. (3.33)

Equation (3.33) allows one to calculate the set of ω values for a given set of physical
parameters. As the perturbation evolves in time as exp(iΩt− Γ t), where ω=Ω + iΓ ,
the steady state is stable if all Γ values are positive. If one of the Γ values is negative,
a perturbation grows exponentially until a nonlinear regime is reached.

To confirm the validity of the theory, a number of tests have been performed.
Two of them are presented in the following. The first analysis refers to the case
shown in figure 1. The behaviour of Qe(t), as obtained numerically with the shell
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FIGURE 7. Damped oscillations of the electron charge for the same case as figure 1
(full line), and best fit as Qe − 〈Qe〉 = A sin(Ω0t+ α) exp(−Γ0t) (dashed line); (〈Qe〉 is the
steady state for Qe, as given by (2.7)).

method, has been fitted by a damped sinusoid Qe(t)' A sin(Ω0t+ α) exp(−Γ0t) giving
Ω0 = 2.9206 and Γ0 = 0.1218. Then (3.33) has been solved numerically, starting from
the trial value ω0 =Ω0 + iΓ0, eventually giving ω= 2.9139+ i0.1237.

Another study is presented in figure 8. By considering a fixed value for the total
charge of the system, Qtot, the steady state of Qe, obtained from (2.7), and the
corresponding values from numerical solution with the shell method are reported for
different values of I0 (figure 8a). When I0 increases, there is a transition between
damped and steady oscillations for the electron charge. For the same values of
the parameters, the value of Γ = Im(ω) is reported (figure 8b). As can be noticed,
the value of I0 for the transition corresponds to the condition Γ (I0)= 0. In reality,
equation (3.33) has a complicated set of eigenvalues ω. Here, only one has been
calculated for each value of the electron flux I0 with a simple procedure. For the
smallest value of I0 considered, for which the oscillations are damped, ω has been
obtained as for the case in figure 7. Then, I0 was increased by 1I0 and the new ω
was calculated numerically from (3.33) using the previous ω as a guess. Obtaining
the full spectrum of ω′ was beyond the purposes of the present work.

4. Discussion and conclusive remarks
One may wonder why the system considered here shows an irreversible behaviour

(in particular, the tendency towards a steady-state configuration), which is usually
associated with collisional phenomena. In reality, there are well-known situations in
which a collisionless plasma presents damped oscillations (e.g. Landau damping),
however in the case studied in this paper the physical cause is completely different,
as collisions do exist when the electrons are absorbed by the sphere. In this case, the
information about their velocity is lost, and the only way to time revert the electron
dynamics would be by reemitting electrons that are absorbed with the right velocity
(i.e. the velocity when they hit the sphere), which is unknown after the collision.
Also, the case of steady oscillations can be regarded as an irreversible behaviour, as
it is a limit cycle, which is independent of the initial perturbation of the steady-state
equilibrium. With reference to figure 4, it can be noticed that the initial velocity of
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(a)

(b)

FIGURE 8. (a) Electron charge Qe as a function of the flux I0 for a fixed value of the total
charge Q0 = 1, as given by system (2.8) (full line, red). Average electron charge after the
transient (averaged over the oscillations), evaluated with the shell method, together with
the maximum and the minimum values of Qe in a period of oscillation, as a function
of I0 (dots, blue). (b) Plot of Γ = Im(ω) as a function of I0, for the same value of Qtot,
obtained from (3.29)–(3.32).

the emitted electrons is a known quantity (v0, a constant in the present model), but
the velocity of the particles when they are absorbed is variable (it oscillates in time)
as the electric potential is time dependent and the energy of a single particle is not
a constant of the motion.

As mentioned in the Introduction, the initial motivation for the present study was
to investigate the possibility of calculating the equilibrium distribution of the electrons
when the density of the positive charge is known. The answers of the present work
are these:

(i) in every situation which is significant from a physical point of view (i.e. a
non-negative charge on the sphere before the electron emission) a steady-state
distribution for the electrons exists;

(ii) the solution either corresponds to a real stationary state (when the oscillations are
damped) or it represents the mean value of the charge over an oscillation period.
As the period is usually much smaller with respect to the characteristic time of
the ion dynamics, also in the latter case the steady-state solution can be usefully
employed.

In order to apply these methods to the original problem (i.e. plasma expansion in
a vacuum in spherical geometry) two extensions are still necessary:

(i) to include the effect of the ion charge outside the sphere, which can be easily
introduced into the equations; this can be done by suitably modifying (2.5), as

dU
dr
=
Ψe + eQi

r2
,

dΨe

dr
=−

2e2I0[
2
m
(E −U)

]1/2 ,

 (4.1)
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where Ψe(r)/er2 is the electric field due to the sphere and to the electrons, while
Qi(r) is the ion charge in the region [R, r]; however, in general U(r) may not be
a monotonic function of r, and, consequently, in these cases U (or p) cannot be
used as independent variables;

(ii) to consider the real velocity distribution (e.g. a Maxwellian) for the electrons
when they are emitted. This last point can be dealt with by approximating
the energy spectrum of the emitted electrons as a superposition of cold beams
of different velocity. An alternative possibility is suitably adapting the ergodic
method (Peano et al. 2006) originally introduced to study the dynamics of
nanoplasmas; this will be the object of future research.
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