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Abstract

Propositional formulas that are equivalent in intuitionistic logic, or in its extension known

as the logic of here-and-there, have the same stable models. We extend this theorem to

propositional formulas with infinitely long conjunctions and disjunctions and show how to

apply this generalization to proving properties of aggregates in answer set programming.
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1 Introduction

This paper is about the extension of the stable model semantics to infinitary

propositional formulas defined by Truszczynski (2012). This extension, introduced

originally as a tool for proving a theorem about the logic FO(ID), has been used

also to prove a new generalization of Fages’ theorem (Lifschitz and Yang 2012).

One of the reasons why stable models of infinitary formulas are important is

that they are closely related to aggregates in answer set programming (ASP). The

semantics of aggregates proposed by Ferraris (2005, Section 4.1) treats a ground

aggregate as shorthand for a propositional formula. An aggregate with variables has

to be grounded before that semantics can be applied to it. For instance, to explain

the precise meaning of the expression 1{p(X)} (“there exists at least one object with

the property p”) in the body of an ASP rule, we first rewrite it as

1{p(t1), . . . , p(tn)},

where t1, . . . , tn are all ground terms in the language of the program, and then turn

it into the propositional formula

p(t1) ∨ · · · ∨ p(tn). (1)
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But this description of the meaning of 1{p(X)} implicitly assumes that the Herbrand

universe of the program is finite. If the program contains function symbols, then an

infinite disjunction has to be used instead of (1).

There is nothing exotic or non-computable about ASP programs containing both

aggregates and function symbols. For instance, the program

p(f(a))

q ← 1{p(X)}

has simple intuitive meaning, and its stable model {p(f(a)), q} can be computed

by Version 3 of the answer set solver clingo.1 More generally, stable models of

infinitary propositional formulas in the sense of Truszczynski (2012) can be used to

define the semantics of aggregates in the input language of clingo (Harrison 2013);

this is our main motivation for studying their properties.

Remark 1

Attempts to define the semantics of aggregates for other ASP languages encounter

similar difficulties if the Herbrand universe is infinite. For instance, the defini-

tion of a ground instance of a rule in Section 2.2 of the ASP Core document

(https://www.mat.unical.it /aspcomp2013/files/ASP-CORE-2.0.pdf, Version

2.02) talks about replacing the expression {e1; . . . ; en} in a rule with a set denoted

by inst({e1; . . . ; en}). But that set can be infinite and then it cannot be included in a

rule.

Our goal here is to develop methods for proving that pairs F , G of infinitary

formulas have the same stable models. From the results of Pearce (1997) and Ferraris

(2005) we know that in the case of grounded logic programs in the sense of Gelfond

and Lifschitz (1988) and, more generally, sets of finite propositional formulas, it is

sufficient to check that the equivalence F ↔ G is provable intuitionistically. Some

extensions of intuitionistic propositional logic, including the logic of here-and-there,

can be used as well. In this paper, we extend these results to deductive systems of

infinitary propositional logic.

This goal is closely related to the idea of strong equivalence (Lifschitz et al., 2001).

The provability of F ↔ G in the deductive systems of infinitary logic described below

guarantees not only that F and G have the same stable models but also that for any

set H of infinitary formulas, H∪ {F} and H∪ {G} have the same stable models.

We review the stable model semantics of infinitary propositional formulas in

Section 2. Then we define a basic infinitary system of natural deduction, similar

to propositional intuitionistic logic (Section 3), and study its properties (Section 4).

The main theorem is stated and proved in Section 5, and applied to examples

involving aggregates in Section 6. A useful extension of the basic system is discussed

in Section 7.

A preliminary report on this work was presented at the 2013 International

Conference on Logic Programming and Nonmonotonic Reasoning (Harrison et al.,

2013) .

1 http://potassco.sourceforge.net.
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2 Stable models of infinitary propositional formulas

The definitions of infinitary formulas and their stable models given below are

equivalent to the definitions proposed by Truszczynski (2012).

Let σ be a propositional signature, that is, a set of propositional atoms. The sets

Fσ
0 , Fσ

1 , . . . are defined as follows:

• Fσ
0 = σ,

• Fσ
i+1 is obtained from Fσ

i by adding expressions H∨ and H∧ for all subsets

H of Fσ
i , and expressions F → G for all F,G ∈ Fσ

i .

The elements of
⋃∞
i=0Fσ

i are called (infinitary) formulas over σ.

Remark 2

This definition differs from the syntax introduced in early work on infinitary

propositional formulas (Scott and Tarski 1958; Karp 1964) in several ways. It treats

the collection H of conjunctive or disjunctive terms as a set, rather than a family

indexed by ordinals. Thus, there is no order among conjunctive or disjunctive terms

in this framework, and there can be no repetitions among them. More importantly,

there is no restriction here on the cardinality of the set of conjunctive or disjunctive

terms. On the other hand, in the hierarchy Fσ
i of sets of formulas, i is a natural

number; transfinite levels are not allowed.

A set H of formulas is bounded if it is contained in one of the sets Fσ
i . For a

bounded set H of formulas, H∧ and H∨ are infinitary formulas.

The symbol ⊥ will be understood as an abbreviation for ∅∨; ¬F stands for F → ⊥,

and F ↔ G stands for (F → G) ∧ (G→ F).

We will write {F,G}∧ as F ∧ G, and {F,G}∨ as F ∨ G. This convention allows us

to view finite propositional formulas over σ as a special case of infinitary formulas.

For any bounded family {Fα}α∈A of formulas, we denote the formula {Fα : α ∈ A}∧
by

∧
α∈A Fα, and similarly for disjunctions.

Subsets of a signature σ will be also called its interpretations. The satisfaction

relation between an interpretation I and a formula F is defined as follows:

• For every p ∈ σ, I |= p if p ∈ I .
• I |=H∧ if for every formula F ∈ H, I |= F .

• I |=H∨ if there is a formula F ∈ H such that I |= F .

• I |= F → G if I |= F or I |= G.

We say that I satisfies a set H of formulas if I satisfies all elements of H.

Two sets of formulas are equivalent to each other if they are satisfied by the same

interpretations. A formula F is tautological if it is satisfied by all interpretations.

The reduct FI of a formula F with respect to an interpretation I is defined as

follows:

• For p ∈ σ, pI = ⊥ if I |= p; otherwise pI = p.

• (H∧)I = {GI | G ∈ H}∧.
• (H∨)I = {GI | G ∈ H}∨.
• (G→ H)I = ⊥ if I |= G→ H; otherwise (G→ H)I = GI → HI .
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The reduct HI of a set H of formulas is the set consisting of the reducts of the

elements of H. An interpretation I is a stable model of a set H of formulas if it is

minimal w.r.t. set inclusion among the interpretations satisfyingHI ; a stable model

of a formula F is a stable model of singleton {F}. This is a straightforward extension

of the definition of a stable model due to Ferraris (2005) to infinitary formulas.

It is easy to see that I |= FI iff I |= F . It follows that every stable model of H
satisfies H.

3 Basic infinitary system of natural deduction

Inference rules of the deductive system described below are similar to the standard

natural deduction rules of propositional logic.2 Its derivable objects are (infinitary)

sequents – expressions of the form Γ⇒ F , where F is an infinitary formula, and Γ is

a finite set of infinitary formulas (“F under assumptions Γ”). To simplify notation,

we will write Γ as a list. We will identify a sequent of the form ⇒ F with the

formula F .

There is one axiom schema F ⇒ F . The inference rules are the introduction and

elimination rules for the propositional connectives

(∧I) Γ⇒ H for all H ∈ H
Γ⇒H∧ (∧E) Γ⇒H∧

Γ⇒ H
(H ∈ H)

(∨I) Γ⇒ H
Γ⇒H∨ (H ∈ H) (∨E)

Γ⇒H∨ Δ, H ⇒ F for all H ∈ H
Γ,Δ⇒ F

(→I) Γ, F ⇒ G
Γ⇒ F → G

(→E) Γ⇒ F Δ⇒ F → G
Γ,Δ⇒ G

,

where H is a bounded set of formulas, and the weakening rule

(W ) Γ⇒ F
Γ,Δ⇒ F

.

Remark 3

The usual conjunction introduction rule is

Γ⇒ F Δ⇒ G

Γ,Δ⇒ F ∧ G ;

the corresponding infinitary rule above is similar to the more restrictive version:

Γ⇒ F Γ⇒ G

Γ⇒ F ∧ G .

In the presence of the weakening rule (W ), the two versions are equivalent to each

other. The situation with disjunction elimination is similar. The usual contradiction

rule

(C) Γ⇒ ⊥
Γ⇒ F

2 See, for instance, Lifschitz et al. (2008, Section 1.2.1).
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is a special case of (∨E). We do not include the law of the excluded middle in the

set of axioms so that this deductive system is similar to intuitionistic rather than

classical, propositional logic.

The set of theorems of the basic system is the smallest set of sequents that includes

the axioms of the system and is closed under the application of its inference rules.

We say that formulas F and G are equivalent in the basic system if F ↔ G is a

theorem of the basic system. The reason why we are interested in this relation is that

formulas equivalent in the basic system have the same stable models, as discussed

in Section 5.

Example 1

Let {Fi}i∈� be a bounded family of formulas. We will check that the formula

F0 ∧
∧
i�0

(Fi → Fi+1) (2)

is equivalent in the basic system to the formula
∧
i�0 Fi. The sequent

F0 ∧
∧
i�0

(Fi → Fi+1)⇒ F0 ∧
∧
i�0

(Fi → Fi+1)

belongs to the set of theorems of the basic system. Consequently, so do the sequents

F0 ∧
∧
i�0

(Fi → Fi+1) ⇒ F0

and

F0 ∧
∧
i�0

(Fi → Fi+1)⇒ Fj → Fj+1

for all j � 0. Consequently the sequents

F0 ∧
∧
i�0

(Fi → Fi+1)⇒ Fj

for all j � 0 belong to the set of theorems as well (by induction on j). Consequently,

so does the sequent

F0 ∧
∧
i�0

(Fi → Fi+1) ⇒
∧
i�0

Fi.

A similar argument (except that induction is not needed) shows that the sequent∧
i�0

Fi ⇒ F0 ∧
∧
i�0

(Fi → Fi+1)

is a theorem of the basic system also. Consequently, so is the sequent

⇒ F0 ∧
∧
i�0

(Fi → Fi+1) ↔
∧
i�0

Fi.

This argument could be expressed more concisely, without explicit references to

the set of theorems of the basic system, as follows. Assume (2). Then F0 and, for

every i � 0, Fi → Fi+1. Then, by induction, Fi for every i. And so forth. This style of

presentation is used in the next example.
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Example 2

Let {Fα}α∈A be a bounded family of formulas, and let G be a formula. Let us show

that (∨
α∈A

Fα

)
→ G (3)

is equivalent in the basic system to the formula∧
α∈A

(Fα → G). (4)

Left-to-right: Assume (3) and Fα. Then
∨
α∈A Fα, and consequently G. Thus, we

established Fα → G under assumption (3) alone for every α, and consequently

established (4) under this assumption as well. Right-to-left: Assume (4) and
∨
α∈A Fα,

and consider the cases corresponding to the disjunctive terms of this disjunction.

Assume Fα. From (4), Fα → G, and consequently G. Thus, we established G in each

case so that (3) follows from (4) alone.

It is easy to see that the infinitary counterparts of the intuitionistically provable

De Morgan’s laws ∨
F∈H
¬F → ¬

∧
F∈H

F (5)

and ∧
F∈H
¬F ↔ ¬

∨
F∈H

F, (6)

whereH is a bounded set of formulas, are theorems of the basic system. So are the

infinitary distributivity laws⎛
⎝ ∨
{Fi}i∈I

∧
i∈I
Fi

⎞
⎠→

(∧
i∈I

∨
F∈Hi

F

)
(7)

and (∨
i∈I

∧
F∈Hi

F

)
→

⎛
⎝ ∧
{Fi}i∈I

∨
i∈I
Fi

⎞
⎠ (8)

for every non-empty family {Hi}i∈I of sets of formulas such that its union is bounded.

The disjunction in the antecedent of (7) and the conjunction in the consequent of

(8) extend over all elements {Fi}i∈I of the Cartesian product of the family {Hi}i∈I .
In Section 7, we discuss an extension of the basic system in which we postulate the

converses of implications (5), (7), and (8).

4 Properties of the basic system

The following property of the basic system is easy to verify.
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Proposition 1

If a sequent consisting of finite formulas is intuitionistically provable, then it is a

theorem of the basic system.

Recall that we define the set of theorems of the basic system to be the smallest set

of formulas that includes the axioms and is closed under the inference rules. When

we want to prove that every theorem of the basic system has a certain property P ,

it is clearly sufficient to check that every axiom has the property P , and that the set

of sequents that have the property P is closed under the application of the inference

rules. In this way we can establish, in particular, the following fact.

Proposition 2

For any theorem Γ⇒ F of the basic system, the formula Γ∧ → F is tautological.

Remark 4

The assertion of Proposition 2 will remain true even if we extend the set of axioms

to include the law of the excluded middle

F ∨ ¬F. (9)

The converse is not true, however, even in the presence of this axiom schema.

This fact can be established by standard methods used to prove incompleteness in

infinitary logic, which utilize the Downward Löwenheim–Skolem theorem and the

Mostowski Collapsing lemma.3 We can make the system complete by postulating

the following infinitary version of the law of the excluded middle:

∨
J⊆I

⎛
⎝∧
j∈J

Fj ∧
∧
j∈I\J

¬Fj

⎞
⎠ , (10)

for any non-empty bounded family {Fi}i∈I of formulas.4

Let σ and σ′ be disjoint signatures. In this section, a substitution is a bounded

family of formulas over σ with index set σ′. For any substitution φ and any formula F

over the signature σ ∪ σ′, φF stands for the formula over σ formed as follows:

• If F ∈ σ then φF = F .

• If F ∈ σ′ then φF = φF .

• If F is H∧ then φF = {φG | G ∈ H}∧.
• If F is H∨ then φF = {φG | G ∈ H}∨.
• If F is G→ H then φF = φG→ φH .

Formulas of the form φF will be called instances of F .

3 John Schlipf, personal communication.
4 The proof of this fact is similar to the proof of completeness of classical propositional logic due to

Kalmár (1935). For any interpretation I , let LI denote the conjunction of the corresponding set of
literals. It is easy to check by induction that for any formula F , LI → F is a theorem of the basic
system if I satisfies F , and LI → ¬F is a theorem of the basic system otherwise. The completeness of
the basic system with (10) added as an axiom schema easily follows.
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Proposition 3

If F is a theorem of the basic system, then every instance of F is a theorem of the

basic system also.

Proof

The notation φF extends to sequents in a natural way. The property “φS is a

theorem of the basic system” holds for every axiom S of the basic system, and it is

preserved by all inference rules. �

We will refer to Proposition 3 as the substitution property of the basic system.

Example 3

We will show that for any formulas F , G, the formula ¬(F ∨ G) is equivalent to

¬F ∧ ¬G in the basic system. Note first that the formula

¬(p ∨ q)↔ ¬p ∧ ¬q (11)

is intuitionistically provable. By Proposition 1, it follows that it is a theorem of the

basic system. The equivalence

¬(F ∨ G)↔ ¬F ∧ ¬G

is an instance of (11): take φp = F , φq = G. By the substitution property, it follows

that it is a theorem of the basic system as well.

Proposition 4

For any substitutions φ, ψ with the same index set, the implication∧
p

(φp ↔ ψp)→ (φF ↔ ψF)

(where p ranges over the indices) is a theorem of the basic system.

Proof

The proof is by induction on j such that F ∈ Fσ∪σ′
j , and it considers several cases,

depending on the syntactic form of F . Assume, for instance, that F is H∨. Then

φF = {φG | G ∈ H}∨ , ψF = {ψG | G ∈ H}∨ .

By the induction hypothesis, for each G in H, the implication∧
p

(φp ↔ ψp)→ (φG↔ ψG) (12)

is a theorem of the basic system. We need to show that∧
p

(φp ↔ ψp)→
(
{φG | G ∈ H}∨ ↔ {ψG | G ∈ H}∨

)
(13)

is a theorem of the basic system also. Assume∧
p

(φp ↔ ψp) (14)

and {φG | G ∈ H}∨, and consider the cases corresponding to the terms of this dis-

junction. Assume φG. Then, by (12) and (14), ψG. We can conclude {ψG | G ∈ H}∨,
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that is, ψF . So we established the implication φF → ψF . The implication in the

other direction is proved in a similar way. �

Corollary 1

If for every index p, φp is equivalent to ψp in the basic system, then φF is equivalent

to ψF in the basic system.

We will refer to this corollary as the replacement property of the basic system.

Example 4

The formula ∧
k�1

(pk → ¬pk)→ p0 (15)

is equivalent to ∧
k�1

¬pk → p0 (16)

in the basic system because (16) can be obtained from (15) by replacing pk → ¬pk
with the intuitionistically equivalent ¬pk . More formally, let qk (k � 1) be the indices

and let F be
∧
k�1 qk → p0. For the substitutions

φqk = pk → ¬pk, ψqk = ¬pk,

φF is (15), and ψF is (16). By the replacement property, (15) is equivalent to (16).

5 Relation of the basic system to stable models

Main Theorem

For any set H of formulas,

(a) if a formula F is a theorem of the basic system, then H∪ {F} has the same

stable models as H;

(b) if F is equivalent to G in the basic system, then H∪ {F} and H∪ {G} have

the same stable models.

Lemma 1

For any formula F and interpretation I , if I does not satisfy F then FI ⇒ ⊥ is a

theorem of the basic system.

The proof is straightforward by induction on i such that F ∈ Fσ
i .

By ΓI we denote the set {GI | G ∈ Γ}; (Γ⇒ F)I stands for ΓI ⇒ FI .

Lemma 2

For any sequent S and any interpretation I , if S is a theorem of the basic system,

so is SI .
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Proof
Consider the property of sequents: “SI is a theorem of the basic system.” To prove

the lemma, it suffices to show that all theorems of the basic system have that

property. It is clear that the reduct of every axiom of the basic system is a theorem

(of the basic system). Verifying that the set of sequents with that property is closed

under inference rules follows the same pattern for all inference rules but those

involving implication. Consider, for instance, disjunction elimination:

Γ⇒H∨ Δ, H ⇒ F for all H ∈ H
Γ,Δ⇒ F

(17)

and assume that the reducts of all sequents that are premises of that rule are

theorems. Because (H∨)I is (HI )∨, all premises of the disjunction elimination rule:

ΓI ⇒ (HI )∨ ΔI , HI ⇒ FI for all H ∈ H
ΓI ,ΔI ⇒ FI

are theorems. Therefore, so is the sequent ΓI ,ΔI ⇒ FI and consequently, also the

sequent (Γ,Δ⇒ F)I .

Consider now the implication introduction rule:

Γ, F ⇒ G

Γ⇒ F → G

and assume that the reduct (Γ, F ⇒ G)I is a theorem. To show that (Γ⇒ F → G)I

is a theorem, it suffices to show that ΓI ⇒ (F → G)I is a theorem.

Case 1: I satisfies Γ. Since the sequent (Γ, F ⇒ G)I is a theorem, so is the sequent

ΓI , FI ⇒ GI . Thus, ΓI ⇒ FI → GI is a theorem and so (ΓI )∧ → (FI → GI ) is

tautological. Since I satisfies Γ, the comment at the end of Section 2 implies that

I satisfies ΓI . Consequently, I satisfies FI → GI and, by the same comment again,

also F → G. It follows that (F → G)I is FI → GI . Since the sequent (Γ, F ⇒ G)I or,

equivalently, the sequent ΓI , FI ⇒ GI is a theorem, applying the rule

ΓI , FI ⇒ GI

ΓI ⇒ FI → GI

we obtain that ΓI ⇒ FI → GI is a theorem. Thus, ΓI ⇒ (F → G)I is a theorem too.

Case 2: I does not satisfy Γ. Then I does not satisfy one of the elements H of Γ. By

Lemma 1, HI ⇒ ⊥ is a theorem, and ΓI ⇒ (F → G)I can be derived from HI ⇒ ⊥
by rules (C) and (W ). Thus, it is a theorem.

Next, consider the implication elimination rule:

Γ⇒ F Δ⇒ F → G

Γ,Δ⇒ G

and assume that the sequents (Γ ⇒ F)I and (Δ ⇒ F → G)I are theorems. We will

show that (Γ,Δ⇒ G)I , or equivalently ΓI ,ΔI ⇒ GI is a theorem too.

Case 1: I satisfies F → G. Then (F → G)I is FI → GI . Thus, the sequents ΓI ⇒ FI

and ΔI ⇒ FI → GI are theorems, and the claim follows by applying the rule

ΓI ⇒ FI ΔI ⇒ FI → GI

ΓI ,ΔI ⇒ GI
.
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Case 2: I does not satisfy F → G. Then (F → G)I is ⊥ and so ΔI ⇒ ⊥ is a theorem.

Moreover, ΓI ,ΔI ⇒ GI can be derived from ΔI ⇒ ⊥ by rules (C) and (W ). Thus,

ΓI ,ΔI ⇒ GI is a theorem too. �

Proof of Main Theorem

(a) Assume that F is a theorem of the basic system. By Lemma 2, for any

interpretation I , FI is a theorem of the basic system, and consequently is tautological,

by Proposition 2. It follows that HI and (H ∪ F)I are satisfied by the same

interpretations.

(b) Assume that F is equivalent to G in the basic system, that is, F ↔ G is a

theorem of the basic system. By Lemma 2, for every interpretation I , (F ↔ G)I is

a theorem of the basic system. Moreover, by Proposition 2, F ↔ G is tautological.

Thus, (F ↔ G)I = FI ↔ GI and so FI ↔ GI is a theorem of the basic system.

Consequently, FI ↔ GI is tautological, that is, FI and GI are equivalent. It follows

that (H∪ F)I and (H∪ G)I are satisfied by the same interpretations. �

6 Examples involving aggregates

As discussed in the Introduction, infinitary formulas can be used to precisely define

the semantics of aggregates in ASP when the Herbrand universe is infinite. In this

section, we give two examples demonstrating how the theory described above can

be applied to prove equivalences between programs involving aggregates.

Example 5

Intuitively, the rule

q(X)← 1{p(X,Y )} (18)

has the same meaning as the rule

q(X)← p(X,Y ). (19)

To make this claim precise, consider first the result of grounding rule (18) under the

assumption that the Herbrand universe C is finite. In accordance with the standard

practice in ASP, we treat variable X as global and variable Y as local. Then the

result of grounding (18) is the set of ground rules

q(a)← 1{p(a, b) | b ∈ C}

for all a ∈ C . In the spirit of the semantics for aggregates proposed by Ferraris

(2005, Section 4.1) these rules have the same meaning as the propositional formulas(∨
b∈C

p(a, b)

)
→ q(a). (20)

Likewise, rule (19) can be viewed as shorthand for the set of formulas

p(a, b)→ q(a) (21)

for all a, b ∈ C . It easy to see that these sets of formulas are intuitionistically

equivalent.

https://doi.org/10.1017/S1471068414000088 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068414000088


Equivalence of infinitary formulas 29

How can we lift the assumption that the Herbrand universe is finite? We can

treat (20) as an infinitary formula, and show that the conjunction of formulas (20) is

equivalent to the conjunction of formulas (21) in the basic system. The fact that the

conjunction of formulas (21) for all b ∈ C is equivalent to (20) in the basic system

follows from Example 2 (Section 3).

Example 6

Intuitively,

q(X)← 2{p(X,Y )} (22)

has the same meaning as the rule

q(X)← p(X,Y 1), p(X,Y 2), Y 1 = Y 2. (23)

To make this claim precise, consider the infinitary formulas corresponding to (22):⎛
⎜⎝∨
b∈C

p(a, b) ∧
∧
b∈C

⎛
⎜⎝p(a, b)→∨

c∈C
c=b

p(a, c)

⎞
⎟⎠

⎞
⎟⎠→ q(a) (24)

(a ∈ C); see Ferraris (2005, Section 4.1) for details on representing aggregates with

propositional formulas. The formulas corresponding to (23) are

(p(a, b) ∧ p(a, c))→ q(a) (25)

(a, b, c ∈ C, b = c). We will show that the conjunction of formulas (24) is equivalent

to the conjunction of formulas (25) in the basic system.

It is sufficient to check that for every a ∈ C , (24) is equivalent to the conjunction

of formulas (25) over all b, c ∈ C such that b = c. By Example 2, this conjunction is

intuitionistically equivalent to⎛
⎜⎝ ∨

b,c∈C
b =c

(p(a, b) ∧ p(a, c))

⎞
⎟⎠→ q(a). (26)

By the replacement property of infinitary formulas, it suffices to check that the

antecedents of (24) and (26) are equivalent to each other.

Left-to-right: Assume

∨
b∈C

p(a, b) ∧
∧
b∈C

⎛
⎜⎝p(a, b)→∨

c∈C
c=b

p(a, c)

⎞
⎟⎠ . (27)

Then
∨
b∈C p(a, b). We will reason by cases, with one case corresponding to each

possible value b0 of b. Case p(a, b0): By the second conjunctive term of (27),

p(a, b0)→
∨
c∈C
c=b0

p(a, c).

Then the consequent of this implication follows. Again, we will reason by cases, with

one case for each value c0 of c where c0 = b0. Case p(a, c0): then p(a, b0) ∧ p(a, c0).
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Consequently, ∨
b,c∈C
b =c

p(a, b) ∧ p(a, c). (28)

Right-to-left: Assume (28). We reason by cases, with one case for each pair b0, c0,

where b0 = c0. Case p(a, b0) ∧ p(a, c0): from p(a, b0) we derive the first conjunctive

term of (27); from p(a, c0) we derive ∨
c∈C,
c=b

p(a, c),

and consequently the implication

p(a, b)→
∨
c∈C
c=b

p(a, c).

The conjunction of these implications for all b ∈ C is the second conjunctive term

of (27).

7 The extended system of natural deduction

In this section, we show that the assertion of the main theorem will remain true if

we extend the basic system by adding the axiom schema

F ∨ (F → G) ∨ ¬G (29)

characterizing (in the finite case) the logic of here-and-there (Hosoi 1966), and the

converses to the implications discussed at the end of Section 3:

¬
∧
F∈H

F →
∨
F∈H
¬F, (30)

(∧
i∈I

∨
F∈Hi

F

)
→

⎛
⎝ ∨
{Fi}i∈I

∧
i∈I
Fi

⎞
⎠ , (31)

and ⎛
⎝ ∧
{Fi}i∈I

∨
i∈I
Fi

⎞
⎠→

(∨
i∈I

∧
F∈Hi

F

)
. (32)

When all conjunctions and disjunctions are finite, formula (30) can be derived

intuitionistically from (29), and (31) and (32) are intuitionistically provable. We

do not know to what extent the additional axiom schemas postulated here are

independent when infinite conjunctions and disjunctions are allowed.

In the extended system, we can derive the theorem

∨
J⊆I

⎛
⎝¬ ∨

j∈I\J

Fj ∧ ¬¬
∧
j∈J

Fj

⎞
⎠ (33)

for any non-empty bounded family {Fi}i∈I of formulas. (This is a generalization of

the weak law of the excluded middle ¬F∨¬¬F to sets of infinitary formulas, similar
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to the generalization of the law of the excluded middle given in Remark 2. It is

equivalent in the basic system to the special case of (33) corresponding to a family

with a single element.) Indeed ∧
i∈I

(¬Fi ∨ ¬¬Fi)

is a theorem of the extended system because ¬Fi ∧ ¬¬Fi can be intuitionistically

derived from (29) with Fi as F and ¬Fi as G. Using (31) we obtain

∨
J⊆I

⎛
⎝ ∧
j∈I\J

¬Fj ∧
∧
j∈J
¬¬Fj

⎞
⎠ ,

and (33) follows by De Morgan’s laws.

In the extended system, we can also derive the theorem(
F →

∨
i∈I
Gi

)
→

∨
i∈I

(F → Gi) (34)

for any formula F and non-empty family {Gi}i∈I of formulas. We use instantiations

of (29) for all Gi to obtain ∧
i∈I
F ∨ (F → Gi) ∨ ¬Gi.

By (31) we obtain ∨
{Fi}i∈I

∧
i∈I
Fi (35)

where the disjunction extends over all elements {Fi}i∈I of the Cartesian product of

the family {F, F → Gi,¬Gi}i∈I . We reason by cases, with one case corresponding to

each disjunctive term
∧
i∈I Fi of (35). If at least one of the formulas Fi is F then from

the antecedent of (34) we can derive
∨
i∈I Gi, and the consequent of (34) follows

immediately. If at least one of the formulas Fi is F → Gi then the consequent of

(34) is immediate as well. Otherwise,
∧
i∈I Fi is

∧
i∈I ¬Gi. Then from the antecedent

of (34) we can derive ¬F and every disjunctive term of the consequent follows.

It is easy to check that the properties of the basic system proved in Section 4 hold

for the extended system as well.

To show that the assertion of the main theorem applies to the extended system,

we will prove the modification of Lemma 2 stated below. The classical extended

system is obtained from the extended system by replacing the axiom schema (29)

with the law of the excluded middle (9).

Lemma 3

For any sequent S and any interpretation I , if S is a theorem of the extended system,

then SI is a theorem of the classical extended system.

Proof

It suffices to show that every theorem S of the extended has this property: “SI is a

theorem of the classical extended system.” We only need to check that the reducts

of axioms (29)–(32) have this property; the fact that the set of sequents with that
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property is closed under the inference rules is checked in the same way as in the

proof of Lemma 2.

Let S be (29). Then SI is

FI ∨ (F → G)I ∨ (¬G)I .

If I |= G, then the second disjunctive term is FI → GI , and the disjunction can be

derived from FI ∨¬FI . If I |= G, then the third disjunctive term is equivalent to ¬⊥.

Let S be (30). Since S is tautological, SI is(
¬

∧
F∈H

F

)I

→
∨
F∈H

(¬F)I .

If I satisfies the conjunction in the antecedent, then the antecedent is ⊥. Otherwise,

at least one disjunctive term in the consequent is equivalent to ¬⊥.

Let S be (31). Since S is tautological, SI is(∧
i∈I

∨
F∈Hi

FI

)
→

⎛
⎝ ∨
{Fi}i∈I

∧
i∈I
FIi

⎞
⎠ ,

which is an instantiation of the same axiom schema. The reasoning for sequents of

the form (32) is similar. �

Main Theorem for the Extended System

For any set H of formulas,

(a) if a formula F is a theorem of the extended system, then H ∪ {F} has the

same stable models as H;

(b) if F is equivalent to G in the extended system, then H∪ {F} and H∪ {G}
have the same stable models.

This assertion is derived from Lemma 3 in the same way as the Main Theorem

was derived from Lemma 2, using the fact that all theorems of the classical extended

system are tautological.

Example 7

Intuitively, the cardinality constraint {p(X)}0 (“the set of true atoms with form p(X)

has cardinality at most 0”) has the same meaning as the conditional literal ⊥ : p(X)

(“for all X, p(X) is false”). If we represent this conditional literal by the infinitary

formula ∧
a∈C
¬p(a) (36)

then this claim can be made precise by showing that (36) is equivalent in the

extended system to the infinitary formula corresponding to {p(X)}0 in the sense of

Ferraris (2005):

∧
A⊆C
A =∅

⎛
⎝∧
a∈A

p(a)→
∨

a∈C\A

p(a)

⎞
⎠ (37)

(where C is the Herbrand universe).
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It is easy to derive (37) from (36) in the basic system. The derivation of (36)

from (37) will use the following instance of (33):

∨
A⊆C

⎛
⎝¬ ∨

a∈C\A

p(a) ∧ ¬¬
∧
a∈A

p(a)

⎞
⎠ . (38)

We will reason by cases, with one case corresponding to each disjunctive term DA
in (38). In the case that A is empty, (36) follows from the first conjunctive term

of DA by De Morgan’s law. Otherwise, assume
∧
a∈A p(a). Then by (37),

∨
a∈C\A p(a),

which contradicts the first conjunctive term of DA. We conclude ¬
∧
a∈A p(a), which

contradicts the second conjunctive term of DA. So the assumptions DA and (37) are

contradictory. Consequently, they imply (36).

8 Conclusions

Two finite propositional formulas are strongly equivalent if and only if they are

equivalent in the logic of here-and-there (Ferraris 2005, Proposition 2). The results

of this paper show that, at least in one direction, an analogous statement holds

for infinitary propositional formulas: If two infinitary propositional formulas are

equivalent in the logic of here-and-there then they are strongly equivalent. We don’t

know how to extend the other direction of Ferraris’s theorem to infinitary formulas.

It is not clear whether or not any axioms or inference rules not included in the

extended system will be required. However, as we illustrated with several examples,

the results in this paper allow us to verify the equivalence of formulas involving

aggregates.
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