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Perturbation theory-based field analysis of
arbitrary-shaped microstrip patch antenna

karishma sharma, dharmendra k. upadhyay and harish parthasarathy

In this paper, the concept of perturbation theory is applied to derive a general electric field (E-field) expression for any
arbitrary-shaped microstrip patch antenna. The arbitrary shape is created by adding small perturbation in a regular
patch shape, which is used to find perturbed and unperturbed electromagnetic wave solutions for resultant E-field of patch
antenna. Ansoft HFSS simulator is used to validate the derived field expression in curvilinear coordinates for a regular
circular-shaped patch. Then the proposed field analysis is applied to develop two new arbitrary-shaped patches in C-band
for desired E-field patterns.
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I . I N T R O D U C T I O N

Microstrip patch antennas (MPA) have been extensively used
in wireless communication systems owing to its attractive
characteristics, such as low profile, light weight, and ease of
fabrication [1]. These antennas consist of a metallic radiating
patch on the grounded dielectric substrate with proper feeding
techniques as coaxial probe, microstrip line, aperture coup-
ling, and proximity coupling [2–6]. Further, the full-wave ana-
lysis is applied to characterize regular shaped patch resonators
using the numerical techniques such as mixed potential inte-
gral equation (MPIE), finite-difference time-domain (FDTD),
finite-element method (FEM) [7–9], etc. Thereafter, modifica-
tion in the shape of radiating patch has shown to improve the
radiation characteristics such as impedance bandwidth, gain,
and cross-polarization level (CPL) [10–15]. These modifica-
tion approaches include, removing or protruding patch metal-
lization [16–20], changing antenna profile through global
optimization [21–23], etc. The optimization capabilities of
Ansoft HFSS are discussed in [21], which are useful to
improve the design within a restricted domain by exploiting
the macro scripting language. Later in [22], optimized profiles
are obtained for monopole antennas by using global optimiza-
tion and FEM for ultrawide-band (UWB) applications.
Further Tseng and Han [23] applied the CAD-based compu-
tation method to achieve an optimum design of broadband,
circularly polarized slot antenna.

Furthermore, the numerical analysis has extended to
compute various parameters as electric current distribution,
input impedance, resonant frequencies, and field patterns

for arbitrary-shaped MPA [24–29]. In [24], an improved seg-
mentation technique is developed to analyze arbitrary-shaped
antennas for resonant frequency, input impedance, and radi-
ation patterns. Later, Mosig [25] has applied the MPIE tech-
nique in irregular microstrip patch shapes using the method
of moments (MoM) with subsectional basis functions for
current and charge distribution. Then in [26], an efficient
approach to compute resonant frequency, modal current,
quality factor, and far-field radiation patterns has been devel-
oped by using MPIE formulations in space domain. In [27],
the point-matching method is adopted for solving resonant
frequency of arbitrary-shaped MPA. Further, Yang and
Shafai [28] proposed a nodal-based analysis of arbitrary-
shaped micrsotrip antenna, which has subdivided geometry,
sharing common nodes with orthogonal current components.
These node currents are combined to give total patch current.
Later, Okoshi’s [30] contour integral (CI) method for arbitrary
patch shape has been improved by Omar et al. [29] using
rapidly convergent discretization of patch perimeter only.
This improved method includes fringe field correction with
physical radiations.

Generally, the perturbation theory comprises a mathemat-
ical tool, which approximates a complicated system in terms
of simpler one with known solution. Therefore, arbitrary-
shaped patches are formed by perturbing the regular shape,
which might improve the radiation characteristics [31–34].
In [31], Sun et al. have proposed a fast and accurate approach
to compute modal solution for an irregular shape of patch
derived from a regular shape. Further, broadband or multi-
frequency operation mode in perturbed rectangular patch
has been acquired for UMTS application [33, 34] and also
analyzed through a spectral domain full-wave formulation
and MoM numerical technique [35].

In [36, 37], Sarder has presented the perturbation tech-
nique incorporated with Green’s function and integral equa-
tion eigenvalue theory for the analysis of arbitrary shape
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represented in the form of refractive index profile. It is noted
that, this technique reduces the scalar wave equation to the
eigenvalue analysis of integral equation resulting in a rapid
and highly accurate semi-analytical method. In a similar
manner, the concept of perturbation may be applied to the
field analysis of arbitrary patch profiles of microstrip
antennas.

This paper presents a simple, fast and robust technique that
evaluates electric field (E-field) pattern for any perturbed
patch shape of microstrip antenna. One of the merits of this
presented technique is that the wave equation need only be
solved within the region of perturbation than the entire real
space, resulting in fast computation in comparison with the
other numerical analysis techniques such as FEM, FDTD
[36], etc. An arbitrary patch profile is created via perturbation
on an unperturbed profile with a known solution, in the curvi-
linear coordinate system to solve the Helmholtz wave equa-
tion. Eigenvalues associated with this equation helps in
determining the E-field pattern of created arbitrary-shaped
MPA.

The rest of the paper is organized as follows. Section II pre-
sents the field analysis of perturbed patch profiles in the curvi-
linear coordinate system. Section III shows the validation of
proposed analysis for a regular circular-shaped patch. This
section also shows the comparison of theoretical and
simulated E-field patterns for created arbitrary-shaped
patches, to radiate maximally in the directions of f ¼ 2458
and 2 1808. One of the created MPAs that radiates at
f ¼ 21808 is fabricated to validate the proposed analysis
with measured results. In last, the conclusions are given in
Section IV.

I I . F I E L D A N A L Y S I S O F
P E R T U R B E D P A T C H P R O F I L E S

Field analysis of regular patch shapes have already been char-
acterized using different numerical techniques as FDTD,
MPIE [7, 8], etc. Therefore such analysis is also required for
arbitrary patch shapes to generalize their radiation character-
istics. It is noted that perturbation theory eases the method of
finding an approximate mathematical solution for an arbitrary
shape, i.e. formed by perturbing the regular patch shape with
known solution. This perturbed shape may thus improve the
antenna characteristics. Consequently, this section develops a
versatile tool to obtain E-field pattern of any arbitrary-
radiating patch.

Consider an arbitrary-shaped patch lying in the plane of
orthogonal curvilinear coordinate system (q1, q2, z), i.e.
formed by perturbing the regular circular-shaped patch. A
Cartesian coordinate system (x, y, z) can be easily transformed
into the curvilinear coordinate system using an analytic func-
tion F of a complex variable−z = x + jy. This analytic function
may be represented in terms of real and imaginary parts as
F(−z) = q = q1 + jq2, where q1 defines a constant boundary
of the patch and q2 is tangential to this boundary. Let function
F be invertible to an analytic function G of complex variable q,
in curvilinear coordinates. This function G(q) may define any
patch profile in curvilinear coordinate system.

Let the circular-shaped patch be represented as G(q) ¼ eq

in curvilinear coordinate system. Now the perturbation
is applied over the considered profile G(q) to create an

arbitrary-shaped patch G1(q), which may be defined as:

G1(q) = eq (1 + dX(q)), (1)

where X(q) defines the perturbation and d is used to scale the
amount of perturbation. Then the Lame’s coefficients H1 and
H2, which univocally determine the reference coordinate
system are calculated for the considered perturbed shape
G1(q) to find the wave solution using (2) and (3).

H1 =
∂G1(q)
∂q1

∣∣∣∣
∣∣∣∣, (2)

H2 = ∂G1(q)
∂q2

∣∣∣∣
∣∣∣∣. (3)

Consider the perturbation X(q) to be symmetric for degen-
eracy, to obtain the Lame’s coefficients as:

H1 = H2 = G′
1(q)

∣∣ ∣∣ = |eq(1 + d(X(q) + X′(q))). (4)

The two-dimensional (2D) Laplacian operator to solve the
wave equation in curvilinear coordinates can be expressed as:

∇2 = 1
H1H2

∂

∂q1

H2

H1

∂

∂q1
+ ∂

∂q2

H1

H2

∂

∂q2

( )

= |G′
1(q)|−2 ∂2

∂q2
1

+ ∂2

∂q2
2

( )
, (5)

where |G′
1(q)|2 ¼ |eq (1 + d(X(q) + X′(q)))|2.

On further simplification |G′
1(q)|2 may be given by:

|G′
1(q)|2 = e2q1 (1 + 2dRe(X(q) + X′(q)) + o(d2)). (6)

Consider small amount of perturbation (d � 0) for
neglecting higher order terms in (6), simplified as:

|G′
1(q)|2 = e2q1 (1 + 2dh(q)), (7)

where h(q) ¼ Re(X(q) + X′(q)).
Consider a MPA having dielectric substrate of permittivity

e , permeability m and height d with circular-shaped patch of
radius a. It is assumed that the top and bottom surfaces of
this patch are perfect electric conductors while the sidewalls
are perfect magnetic conductors. The patch profile is then per-
turbed by a small amount to create an arbitrary-shaped patch.
In general, field configuration is obtained by solving the
Helmholtz wave equation [38, 39], therefore this equation is
solved in curvilinear coordinates for the considered perturbed
patch antenna as:

(∇2 + h2)c(q1, q2) = 0, (8)

where h is the wave number and c is the scalar wave function.
The Laplacian operator in (8) may be expanded by using (5)
and for simplicity of resultant equation ∂/∂q1 is replaced by
∂1 and ∂/∂q2 by ∂2 as given in (9).

(∂2
1 + ∂2

2 + |G′
1(q)|2h2)c(q) = 0, (9)
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|G′
1(q)|2 from (7) is substituted into (9) to give:

(∂2
1 + ∂2

2 + h2e2q1 (1 + 2dh(q)))c(q) = 0, (10)

where c(q) and h are the effective scalar wave function and
wave number, respectively, expressed as:

c(q) = co(q) + dc1(q) + o(d2), (11)

h2 = h2
o + dh2

1 + o(d2). (12)

Here, ho ¼ ho[m, n] ¼ am,n/c is the wave number for the
original patch shape and h1 is the wave number for the per-
turbed circular patch shape, in which am,n represents the
TM mode of the radiated wave in curvilinear coordinate
system and c is the velocity of light. Also, co(q) and c1(q)
are the scalar functions of original and perturbed patch
shape, respectively.

c(q) and h2 from (11) and (12), are substituted into (10).
Then the resultant equation is separated into two parts as per-
turbed and unperturbed, neglecting the higher order terms.
Finally, (10) is converted into the following form:

(∂2
1 + ∂2

2 + h2
oe2q1 )co(q) + d((∂2

1 + ∂2
2 + h2

oe2q1 )c1(q)
+ (h2

1e2q1 + 2h2
oe2q1h(q))co(q)) = 0.

(13)

Now this wave equation is solved separately for the per-
turbed and unperturbed parts. Firstly, consider the unper-
turbed part of (13) as:

[∂2
1 + ∂2

2 + h2
oe2q1 ]co(q) = 0. (14)

The above equation is transferred to polar coordinates (r,f, z)
for finding the wave solution using eq1¼ r and q2¼ f.
The resultant equation is given below:

1
r
∂

∂r
r
∂

∂r
+ 1

r2

∂2

∂f2 + h2
o

[ ]
co(r,f) = 0. (15)

Equation (15) may be solved by using the method of separ-
ation of variables, and the separated form is given below:

co(r,f) = R(r).w(f). (16)

Now the separated form of co(r, f) is substituted into (15),
which then reduces to two one-dimensional (1D) differential
equations. The resultant equations are solved to give a com-
plete solution for co as:

co(r,f) = c1umn(r,f) + c2vmn(r,f), (17)

where c1, c2 are the scaling coefficients, umn and vmn represents
the normalized versions of Jm(amn r/a)cos(mf) and Jm(amn

r/a)sin(mf), respectively, in which Jm is the mth -order Bessel
function. These eigenfunctions are orthogonal with respect to
rdrdf over 0 ≤ r ≤ a and 0 ≤ f ≤ 2p. Now the perturbed
part of (13) is considered to find solution for scalar function

c1 as:

[∂2
1 + ∂2

2 + h2
oe2q1 ]c1(q) + h2

1e2q1co(q)
+ 2h2

oe2q1h(q)co(q) = 0.
(18)

Convert the above equation in polar coordinates as earlier:

1
r
∂

∂r
r
∂

∂r
+ 1

r2

∂2

∂f2 + h2
o

[ ]
c1(r,f) + h2

1co(r,f)

+ 2h2
oh(r, u)co(r, u) = 0.

(19)

Solution of co(r, u) from (17) is substituted in the above
equation, and then the resultant equation is written in
Laplacian form as:

(∇2 + h2
o[m, n])c1(r,f) + h2

1(c1umn + c2vmn)
+2h2

o[m, n]h(r,f)(c1umn + c2vmn) = 0,
(20)

taking inner product with ukl and vkl of the above equation,
resulting in (21) and (22).

(h2
o[m, n] − h2

o[k, l])kukl, c1l + h2
1(c1dmn.dln)

+ 2h2
o[m, n](c1kukl, humnl) + c2kukl,hvmnl) = 0,

(21)

(h2
o[m, n] − h2

o[k, l])kvkl, c1l + h2
1(c2dmn.dkl)

+ 2h2
o[m, n](c1kvkl,humnl + c2kvkl,hvmnl) = 0.

(22)

Rewrite equations (21) and (22) in matrix form for k ¼ m
and l ¼ n.

2bumn, humn + h2
1 2umn, humnb

2bvmn, hvmn 2bvmn, hvmn + h2
1

[ ]
c1

c2

[ ]
= 0, (23)

where b = h2
o[m, n].

After solving this secular matrix, two perturbed mode
eigenvalues for h2

1 are obtained as h2
11[m, n] and h2

12[m, n],
whose corresponding eigenvectors are given below:

c11[m, n]
c21[m, n]

[ ]
and

c12[m, n]
c22[m, n]

[ ]
. (24)

For k = m and l = n, the eigenvectors may be represented
as c1 ¼ c1i [m, n] and c2 ¼ c2i [m, n] for i [ (1, 2) to give the
wave solutions for perturbed part as:

kukl,c1l=2h2
o[m,n](c1i[m,n]kukl,humnl+c2i[m,n]kukl,humnl)

(h2
o[k,l]−h2

o[m,n]) ,

(25)

kvkl, c1l =

2h2
o[m, n](c1i[m, n]kvkl,hvmnl

+ c2i[m, n]kvkl, hvmnl)
(h2

o[k, l] − h2
o[m, n]) . (26)

The generalized solution for the perturbed part c1 is
obtained by combining the solutions in (25) and (26).

c1i(r,f) =
∑

(k,l) = (m,n)
{ukl(r,f)kukl,c1il + vkl(r,f)kvkl,c1il}.

(27)
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Now, the resultant solutions for perturbed and unper-
turbed parts are transformed into curvilinear coordinates.
This transformation results as:

co(q1, q2) = c1umn(q1, q2) + c2vmn(q1, q2), (28)

dc1i(q1, q2) = d
∑

(k,l) = (m,n)
ukl(q1, q2)kukl, c1il
{

+ vkl(q1, q2)kvkl, c1il
}
.

(29)

Therefore, E-field in the z-direction for the perturbed radi-
ating patch is given below.

Ezmni (q1, q2) = co(q1, q2) + dc1i(q1, q2)
= c1i[m, n]umn(q1, q2) + c2i[m, n]vmn(q1, q2)

+ d
∑

(k,l)=(m,n)

ukl(q1, q2)kukl,c1il +
vkl(q1, q2)kvkl,c1il

{ }
.

(30)

A generalized form of radiating E-field in the z-direction
for arbitrary-shaped MPA may be represented as:

Ez(q1, q2, z) =
∑
mnpi

Ezmni (q1, q2) sin
ppz

d

( )
Re{Y}, (31)

where m, n, p are the positive integers and Y ¼ amnpi

e( j(ho
[m, n]2+ dh1i[m, n]2 + (p2p2/d2))1/2t), for which amnpi are

complex scalars.
This equation may be used to find E-field pattern for TMmn

mode of any arbitrary-shaped patch antenna. Such E-field
pattern for any antenna structure may also be obtained by
using any commercial software like, FEM-based Ansoft
HFSS [40]. However, there is a difference in the way by
which these methods are applied on the geometry of the
microstrip patch antenna for its field analysis. In the proposed
method, the wave equation needs to be solved only within the
region of perturbation, and a continuous solution to the
potential is obtained in terms of superposition of sine and
cosine functions. Also, for better approximation to the true
solution higher order perturbation can be applied. Whereas
the technique of FEM involves approximation of a continuous

potential by discrete vertex potentials in the entire real space,
and the grid elements are made smaller for approximating
closer to the solution, which increases the overall computation
time. This certainly makes the proposed method simpler,
accurate and faster in comparison with the FEM-based
technique for far-field analysis of arbitrary patch shapes.
However, FEM can give more accurate field analysis for
patch shapes where there is any change within the boundary
such as dissimilar material properties, creation of complex
geometry inside the boundary, etc. as this method captures
the local regional effects [9].

Section III gives the validation of derived E-field equation
by numerically analyzing E-field for various patch shapes of
microstrip antenna using MATLAB software, and then simu-
lating these arbitrary radiating patch antennas using Ansoft
HFSS software for validation.

I I I . A N T E N N A C O N F I G U R A T I O N
A N D R E S U L T S

The derived E-field expression in the previous section can be
obtained by evolving the considered shape G1(q) in curvilinear
coordinate system for which the symmetric perturbation X(q)
represented as:

X(q) =
∑p

k=1

ckqk, (32)

where coefficients ck are used to define the symmetric perturb-
ation. These coefficients can be varied to obtain a particular
patch shape for desirable field pattern. After substitution of
X(q) from (32) into (1), the considered shape G1(q) can be
expressed as:

G1(q) = eq 1 + d
∑p

k=1

ckqk

( )
. (33)

A regular circular-shaped MPA is considered for validation
of E-field expression, i.e. defined in (31). Then the coefficients
ck are varied to form two different arbitrary patch shapes for
desired directional field patterns. The following subsections
show the comparison of theoretical (MATLAB) and simulated
(HFSS) results for all the patch shapes, in which the last

Fig. 1. Circular shape (f ¼ 08). (a) Layout of circular-shaped MPA; (b) theoretical unperturbed circular patch shape.
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section also includes the validation of proposed analysis with
measured result for one of the created arbitrary patch shapes.

A) Circular patch antenna (f 5 088888)
It is noted that C-band has various applications in today’s
scenario in satellite communication, Wi-Fi devices, weather

radar systems etc. and also it offers minimal interference
from severe weather conditions resulting in consistent, reliable
services for any location. Therefore, this operating band is
selected to design a regular circular-shaped MPA to radiate
maximally at azimuth angle (xy-plane) f ¼ 08.

As per the conventional design procedure [1], initial
dimensions of a circular-shaped MPA are calculated for the

Fig. 2. Radiation patterns for circular-shaped MPA (f ¼ 08). (a) Simulated E-field pattern for 2908 , f ,908 (clockwise), (b) comparison of the simulated and
theoretical E-field patterns for 2908, f ,908 (clockwise).

Fig. 3. Characteristics of circular MPA (f ¼ 08). (a) Return loss, (b) gain versus f, (c) gain versus frequency, (d) cross-polarization level.
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design frequency of 6 GHz. The antenna layout consists of a
circular-shaped patch on grounded dielectric substrate RT/
Duroid with relative permittivity er of 2.2 and thickness of
0.762 mm, having an overall dimension of 50 mm × 50 mm.
Initial simulations are performed to obtain the resonant fre-
quency exactly at 6 GHz, which results into the radius of cir-
cular patch a ¼9.403 mm [11]. Coaxial probe feeding
technique is used to feed the radiating patch since it has the
merit of design simplicity through positioning of feed point
to adjust the input impedance level [7]. Simulated E-field
pattern is compared with the theoretical pattern for consid-
ered unperturbed circular patch shape G1(q).

Figure 1(a) shows the physical layout of considered
circular-shaped MPA and Fig. 1(b) shows the corresponding
theoretical shape G1(q) with the scaling parameter d ¼ 0.
The structure given in Fig. 1(a) is now simulated to obtain
the E-field pattern at elevation angle (yz-plane) u ¼ 908 for
comparison with the theoretical pattern Ez(q1, q2, z).

Figure 2(a) shows the simulated E-field pattern for reson-
ant frequency 6 GHz and Fig. 2(b) gives the comparison of
the simulated and theoretical E-field patterns. These results
signify that the simulated E-field pattern is similar to the the-
oretical pattern. Further, it is observed that the maximum and
minimum strengths of the simulated E-field are 4.85 (f ¼ 08)

and 0.39 (f ¼ 908), respectively; however the theoretical
values are 5.01 (f ¼ 08) and 0.36 (f ¼ 908). These observa-
tions validate the theoretical results. It is also noted that the
simulated results are broadside symmetric for the considered
circular MPA.

Figure 3 shows the other characteristics for circular MPA
as return loss, gain versus f, gain versus frequency and
CPL. From Fig. 3(a), it is observed that the considered radiating
patch resonates at 6 GHz with return loss 223.14 dB, having
the impedance bandwidth of 120 MHz. Further, Fig. 3(b)
shows the value of broadside gain as 7.68 dB (f ¼ 08) at
6 GHz; however Fig. 3(c) gives gain of 7.70 dB (f ¼ 08) at
6.09 GHz. The field components Eu and Ef are also traced
at u ¼ 908 in Fig. 3(d) to calculate CPL of 253 dB.

B) Arbitrary-shaped antenna (f 5 24588888)
The coefficients of the patch shape G1(q) are varied to perturb
the considered circular shape of patch for achieving the
desired radiation characteristics. Therefore, a new arbitrary
patch shape is evolved, i.e. perturbed at the circumference of
circular patch, which has the maximum field strength directed
at f ¼ 2458. Figure 4(a) shows the developed theoretical
shape G1 (q) with d ¼ 0.029 and Fig. 4(b) shows the

Fig. 4. Arbitrary shape (f ¼2458). (a) Theoretical arbitrary-shaped patch, (b) layout of arbitrary-shaped MPA.

Fig. 5. Radiation patterns for arbitrary-shaped MPA (f ¼ 2458). (a) Simulated E-field pattern for 2 1208 , f , 608 (clockwise), (b) comparison of the
theoretical and simulated E-field patterns for 21208 , f , 608 (clockwise).
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corresponding layout of proposed arbitrary shape
(f ¼ 2458), preserving the structure configuration of original
circular MPA.

The proposed arbitrary-shaped MPA (f ¼2458) is simu-
lated, then it is observed that the resonant frequency shifted
to 5.18 GHz owing to change in effective dimensions of
considered patch. Figure 5(a) shows the simulated E-field
pattern (u ¼ 908) and Fig. 5(b) shows the comparison of
theoretical and simulated E-field patterns. It clears that the
simulated field pattern is comparable with the theoretical
pattern. Further, it is observed that the direction of maximum
field strength rotates anticlockwise by 458 as compared with
that of circular MPA, the maximum strengths of simulated
and theoretical E-field are 4.24 and 4.22 at f ¼2458

respectively, however the minimum strengths are 1.76 (f ¼
608) and 1.83 (f ¼ 108).

Figure 6 shows the other antenna characteristics for
arbitrary-shaped MPA (f ¼ 2458) as return loss, gain
versus f, gain versus frequency and CPL. Figure 6(a) clears
that the considered radiating patch resonates at 5.18 GHz
with return loss 224.82 dB, having the improved impedance
bandwidth of 230 MHz as compared with that of circular
MPA. Further, Fig. 6(b) shows the gain as 6.87 dB
(f ¼ 2458) at 5.18 GHz; however Fig. 6(c) gives gain of
7.13 dB (f ¼ 2458) at 5.15 GHz. From Fig. 6(d), it is clear
that the CPL is reduced to 27.40 dB. Therefore, the proposed
structure has trade-off between the impedance bandwidth and
CPL characteristics. Circular polarization is also observed in
Fig. 7 for the proposed radiating structure with axial ratio of
0.32 dB at resonant frequency.

C) Arbitrary-shaped antenna (f 5 218088888)
The coefficients for the patch shape G1(q) are again varied
for achieving maximum E-field strength along direction
f ¼ 21808. This variation perturbs the circular shape to
new arbitrary shape with d ¼ 0.052, i.e. given in Fig. 8(a).
Further, Fig. 8(b) shows the corresponding layout of pro-
posed arbitrary shape (f ¼ 21808), preserving the structure
configuration of original circular MPA. This shape is also
fabricated to validate the proposed technique, i.e. creating
arbitrary-shaped MPAs for the desired field pattern, with
measured results. The fabricated model is shown in
Fig. 8(c).

Fig. 6. Characteristics of arbitrary-shaped MPA (f ¼ 2458). (a) Return loss, (b) gain versus f, (c) gain versus frequency, (d) cross-polarization level.

Fig. 7. Axial ratio of arbitrary-shaped MPA (f ¼2458).
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The proposed arbitrary-shaped MPA (f ¼ 21808) is
simulated, and then it is observed that the resonant frequency
shifted to 6.34 GHz due to the variation in effective dimen-
sions of considered patch. Figure 9(a) shows the simulated
E-field pattern (u ¼ 908) and Fig. 9(b) shows the comparison
of theoretical, simulated, and measured E-field patterns. These
radiation results clear that the measured and simulated
pattern appears to be same as the theoretical pattern. It is
also observed that the direction of maximum field strength
rotates anticlockwise by 1808 as compared with that of circular

MPA. Further, it is noted that the maximum strengths of mea-
sured, simulated and theoretical E-field are 4.82, 4.96, and 4.87
at f ¼ 21808; respectively; however, the minimum strengths
are 1.48, 0.96, and 1.00 at f ¼ 908.

Figure 10 shows the other characteristics for arbitrary-
shaped MPA (f ¼ 21808) as return loss, gain versus f,
gain versus frequency and CPL. It is observed from
Fig. 10(a) that this patch antenna resonates at 6.34 GHz
with return loss 212.16 dB, having the impedance bandwidth
of 40 MHz as compared with that of original circular MPA.

Fig. 8. Arbitrary shape (f ¼ 21808). (a) Theoretical arbitrary-shaped patch, (b) layout of arbitrary-shaped MPA, (c) prototype of arbitrary-shaped patch antenna.

Fig. 9. Radiation patterns for arbitrary-shaped MPA (f ¼ 21808). (a) Simulated E-field pattern for 2 908 , f , 908 (anticlockwise), (b) comparison of
theoretical and simulated E-field patterns for 2908 , f , 908 (anticlockwise).
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Further, Fig. 10(b) clears that the gain is 7.36 dB (f ¼ 21808)
at 6.34 GHz; however, Fig. 10(c) gives gain of 7.37 dB
(f ¼ 21808) at 6.35 GHz. Figure 10(d) shows that the CPL
is reduced to 244.31 dB. These observations may conclude
that the theoretical E-field pattern for any patch shape holds
in good agreement with the simulated HFSS results.

I V . C O N C L U S I O N

Field analysis of an arbitrary-shaped MPA is evolved by deriv-
ing the E-field expression based on the concept of perturb-
ation theory. Change in the geometry of a radiating patch
varies the impedance and radiation characteristics such as
gain, bandwidth, CPL, direction of radiation, etc. A mathem-
atical perturbed shape is defined in the curvilinear coordinate
system to create different arbitrary patch shapes for the
desired radiation pattern. Initially, a regular circular-shaped
MPA is designed for broadside radiation pattern (f ¼ 08) to
validate the evolved field analysis. Further, this analysis is
used to create two arbitrary-shaped patch antennas,
which radiate maximally in the directions of f ¼ 2458 and
2 1808. The simulated results show that the designed MPA
(f ¼ 2458) has improved bandwidth of 230 MHz with add-
itional characteristic of circular polarization at resonant

frequency, and other designed MPA (f ¼ 21808) radiates
exactly in opposite direction to that of circular MPA, preserv-
ing its radiation characteristics at the cost of impedance band-
width. The method presented in this paper is simple, accurate,
adaptable, fast, and will serve as a useful tool in the design and
analysis of MPA for pattern specific applications.
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