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Abstract We survey some recent progress in the theory of dynamical zeta functions and
explain its implications for counting problems.

0. The results

One particularly elegant aspect of dynamical zeta functions, particularly in the context

of hyperbolic flows, is the analogy with the Riemann zeta function in number theory.
Following different earlier definitions by Selberg and Smale (1967), Ruelle (1976b)

proposed a formal definition of a dynamical zeta function for such a flow of the following

form

C*(s) = 1‘[(1 —e MYl s eC (0.1)

wherer denotes a closed orbit of least peritid) (and the extra factok > 0, denoting

the topological entropy of the flow, has been introduced for our convenience. Cf.
Baladi (1998), equation (2.14)). This definition should be compared with that of the
more familiar Riemann zeta function

{(s) = 1_[(1— pH)Y secC (0.2
n=1

where{p,}>2, ={2,3,5,7,11, ...} is the enumeration of the prime numbers.

In the case of both zeta functions, the formal products converge to analytic functions
in the region Ré&) > 1 and have extensions with simple polessat 1. However, this
correspondence remains a formal one and there are no examples of hyperbolic flows for
which ¢*(s) = ¢(s). The Riemann zeta function is an object of profound study in prime
number theory and its analytic features hold the key to many important results on the
distribution of prime numbers. Probably the best known statement is the following.
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PRIME NUMBER THEOREM. ¢(s) has no zeros on the linRe(s) = 1. Equivalently,
the counting functionN(x) = Cardp, < «x} is asymptotic tox/logx (i.e.
”mx—>+oo N(x)/(x/ IOg.X) = l)

Undoubtedly the best known conjecture is the following.

RIEMANN HYPOTHESIS (OR CONJECTURB. ¢(s) has no zeros in the half-plaree(s) >
1/2: equivalently, for anyl/2 < 6 < 1 we can writer(x) = li(x)(1 + 0(x?)) (i.e.
limsup,_, ;o [7(x) = li(x)|/x? < +00).

We recall that'i (x) = f2°° du/logu is asymptotic tax/logx asx — +oo.

The correspondence between the analytic propertiegsofand the estimates a¥ (x)
is based on the following simple identity for the related quantity7) = flT ¥(x)dx,
wherey (T) = ZnﬁST log p,: foranyc > 1

I//(T)_i c+ioo <_§/(S)> Ts+l
nT () ) ss+ 1)

2mi c—ioo
To estimate this quantity one moves the curve of integration past the lie Rel to
a curvel in the pole free region fot;’/z)(s). The pole ats = 1 then contributes the
principal term and the error term comes from dominating the remaining integrallover
(We shall return to this point, in the context of the dynamical zeta function§?.n

By additional features of the Riemann zeta functigm) (in particular, the existence
of functional equations) the Riemann hypothesis is equivalent to the zeragsfoin
the critical strip O< Re(s) < 1 lying on the line Ré&) = 1/2.

In order to formulate similar statements for the dynamical zeta function we need to
first introduce a condition. We say that a flow is topologically weak-mixing if there
are no non-trivial solutions to the identity o ¢, = ¢'“F, where F € C°%M, C).
Parry and Pollicott (1983) showed that for a topologically weak-mixing hyperbolic flow
¢, - M — M the analogue of the prime number theorem is true (earlier Margulis (1970)
obtained this result in the context of Anosov flows). That is, that on the line)Rel
there are no poles (or zeros) fot(s) except for the simple pole at= 1. Using a similar
analysis to that in the case of prime number theory, it follows #ab = {z : I(t) < x}
is asymptotic ta"* / hx (cf. Baladi (1998), Theorem 2.8; see also Margulis (1969)}; If
is not weak-mixing, the situation can be reduced to the case of hyperbolic diffeomorphism
(see Baladi (1998), Theorem 2.4).

Now we describe the case where an almost optimal result is known. Some partial
results are discussed at the end of the paper.VLdéenote a compact smooth surface of
strictly negative, possibly variable, curvature. 8et= {(x,v) € TV : ||v|| = 1} to be the
unit tangent bundle and define the geodesic fflpwM — M by ¢,(x, v) = (y(t), y (1)),
wherey : R — V is the unique unit speed geodesic: R — V with y(0) = x and
y(0) = v. ¢, is known to satisfy Axiom A. The following result describes the distribution
of poles for the associated dynamical zeta functéty).

(0.3

THEOREM 1. (Dolgopyat)Let ¢, : M — M be a geodesic flow on a compact surface
of negative curvature. There exists> 0 such thatZ*(s) has no zeros or poles in the
half-planeRe(s) > 1 — ¢, except for the simple pole at= 1.
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Previously, it had been shown that(s) has a meromorphic extension to a larger
such half-plane Rg) > 1 — ¢p (where O< € < ¢p), but without any information on the
location of poles (Pollicott 1986).

Note.The above theorem is true under a somewhat more general hypothesis. For example,

the following hypotheses on the hyperbolic flew: M — M suffice for the proof:

(1) the strong stable and strong unstable sub-bungiteand E* are C*;

(2) the splitting is not locally-integrable;

(3) ¢ is weak-mixing;

(4) the measure of maximal entropy, satisfies theFederer condition there is a
constantC so that for anyx in non-wandering set and amy> 0 mo(B(x, 2r)) <
Cmo(B(x,r)).

These conditions hold automatically for a geodesic flow for a compact negatively curved

surfaceV. In higher dimensions they can only be verified in very special cases. (See

Hirsch and Pugh (1975) concerning hypothesis (1).)

Note.Local non-integrability means that the flow is not a suspension by a locally constant
roof function. The necessity of this condition is shown by the following statement.

PROPOSITION1.

(& (Ruelle 1983, Pollicott 1983f a hyperbolic flow is locally integrable theg*(s)
has poles arbitrary close to the lirRe(s) = 1;

(b) (Pollicott 1990)For generic locally integrable hyperbolic flows the error term has
polynomial decay.

1. The method of extending the zeta function

There are two principal tools in extending the domain of the dynamical zeta function
¢*(s). The first involves replacing the flow by a simplified model. The second involves
analyzing the zeta function for this model using transfer operators.

1.1. The simplified model. Given the flowy, : M — M we can choose a finite number
of co-dimension one transverse sectidns. .., 7y. Let7 = U;7;, then we can consider
the Poincag mapP : 7 — 7 and the return timgf : 7 — R (i.e. ¢7(x) = P(x) for
xeT).

We can introduce a new zeta functigf(s) for the mapP : 7 — 7 and the function
f T — R which is defined formally by

00 n—1

G5(s) =expy 1 > exp ( —shy f(Tkx)> (L1
n=1 n Trx=x k=0

(compare with Baladi (1998), equation (2.16)). Although at first sight this appears to

be of a different form from the zeta functiari'(s) given in (0.2), they are intimately

related. In particular, a periodic orbjt, Px, ..., P" 1x} gives rise to a closed orbit

of periodi(t) = f(x) + f(Px)+---+ f(P"1x). By also arranging for these sections

to have an appropriate Markov property we have gidk) = ¢5(s)n(s), wheren(s) is

analytic for Rés) > 1 — ¢, for somee, > 0 (cf. Bowen (1973%5). The functionn(s)
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is a correction for the overcounting of closed orbits which pass through the boundaries
of the sections/, ..., 7y.

To introduce the transfer operator, we need one further reduction in our model for the
flow ¢. In essence, the additional Markov property of the sections allows us to identify
(or ‘collapse’) each of the sectiorig along the ‘stable direction’ (in a way that can be
made completely rigorous) and so replace
(@ 7 by X c R" (with dense interior);

(b) P:T — T by an expanding map : X — X;
() f:T — R* by a continuous function : X — R*.
Heren is the dimension of the ‘unstable direction’, which in the present example is one.
Moreover, in this case we can identif§ with a finite disjoint union of intervals.
These reductions do not effect the zeta funcgy).

1.2. Transfer operators. The transfer operator (associated to complex numf)er
Lo COX,C) — COX, C) is defined by

Lock@) = Y7 e Vk(y)
Ty=x
wherek e C°(X, C) (cf. Baladi (1998), equation (2.3)). For the proof of Theorem 1,
we want to consider the operator acting on the smaller spac€!ofunctions, i.e.
L. CYX,C) — CY(X, C). The appropriate norm on the Banach sp&dex, R) is
lkll1 = Iklloo + || Dk|lso, Where| - || denotes the usual supremum norm ddddenotes
the derivative ofk € C1(X, C).

A very simple estimate on the spectral radjpieC,-+) of L.- is that p(Le-) <
e wheres = o +it and P(—or) denotes the pressure of the functiear : X — R
relative toT : X — X (cf. Baladi (1998), Theorem 2.1). In particular, whenr= /4 then
P(—hr) = 0 andp(L.-+) < 1. The following result gives stronger estimates on this
spectral radius when=£ 0.

PrRoOPOSITION2. (Dolgopyat 1996afhere exists > 0,0 <6 <1, D > 1lande > 0
such that
”£n ”1 < C- emP(for) . 9[

oS

wheres = o + it, with |[t| > 2ando > h — ¢, andn = [[Dlog|t|]] + m
In particular, we have the following elegant estimate.

COROLLARY 2.1.For s = o + it, witho > h — ¢ and |tf| > 2, we have that
(L) <0 < 1.

The proof of Proposition 2 involves a number of steps. One of the more familiar
ingredients is the following simple inequality

ID(Le-k)lloo = C - |t] - lIklloo + 6 | Dl 1.2)

for someC > 0 and O< 6y < 1 and allk € C1(X, C) (where we assume for convenience
thatL_,,1 =1, by the simple device of modifying up to the addition of a coboundary
uoT —u and a constant).
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The most important step is to show that there ex@gts- 0 and O< 6; < 1 such that
given any functionk € C*(X, R) such that||k|o = 1 and||Dk|o < 2C|t| then we can
bound

/ |Lo-wkldp < C1-6f, Vn=>0 1.3

whereu is a convenient measure. (In fagt,is simply the Gibbs measure associated to
the potential-or : X — R.)
This L convergence is then converted into uniform convergence using the following

identity
o= [ Izzk

for some O< 6, < 1, where the last inequality follows from the well-known convergence
estimateL” .k = [kdu + 0(922”||k||1), say, for the transfer operator with a real
weighting (cf. Baladi (1998), Theorem 3.2(1)).

Comparing (1.3) and (1.4) we see that! .. k[lo = O (67, 65 t]).

Finally, by substitutingL” .k for k in (1.2) we can bound

L2, k()| < | £, £k

e—sr

du+ 0©03"]1]), (1.4)

ILZk|| = 088, 1116}, |t16™),

where all of the implied constants are independenk agfind depend only o€ > 0
in (1.3). In the event thalk|p = 1 and| Dk|lo > 2C, then norm contraction follows
directly from (1.2). In either case, the estimate in Proposition 2 can be easily deduced.

Note. The hypothesis that the sub-bundI&$ and E* are C! manifests itself in the
functions 7 and r being C! and allows us to work in the Banach spa€é(X, R).
Although the proof is ‘symbolic’ in essence, the differential structure is important in
the details of the proofs. The hypothesis that the splitting is not integrable is crucial
to the proof of (1.3). If we knew that for each € X there exists a continuous
choice of two distinct pre-images; = yi(x) and y, = y»(x) with the property that

x = y1(x) — y»(x) has a gradient large enough in comparison Wity and|jo~||; then

we would essentially be able to ‘integrate by parts’ the expresgén k|*(x) (and use

the Holder inequality) to obtain (1.3). For geodesic flows on negatively curved surfaces
the last assumption follows from the contact structure of the flow (that is horocycles are
orthogonal to geodesics) (cf. Plante 1972). In general, one can show (cf. Sinai 1972)
that local non-integrability is equivalent to the existencec& X, § > 0 such that for

all large enough: there are two branches 1(x) andy, 2(x) of ¢~ so that

|Vx (rn(ynl) - rn()’n,Z))‘ ()C()) >4
which still suffices for the proof.
1.3. Applying the transfer operators.It only remains to use the spectral estimate on
the transfer operators in Proposition 2 to deduce the analytic extension in Theorem 1.

Let X = U; X; be the partition (into intervals) corresponding to the urior= U;7;.
The key result relating the transfer operators to the zeta fung¢gias) as follows.
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PropPosITION3. (Ruelle 1990)There exist® < 6 < 1 such that for any fixed choice of
pointsx; € X; uniformly ass varies over a compact set

n—1 N
> exp( —s Zr(T-"x)) =Y (Ll x )N+ 00", n=0 (15
j=0 i=1

Thx=x

where xy, denotes the characteristic function fat.

Comparing (1.5) and Theorem 1 we see that the series in (1.1) is uniformly convergent
for s = o + it satisfyinge > 1 —¢ and|f| > 2. In particular, we see thag (s) is
analytic in this domain and we can make the same deduction*fe), completing the
outline of the proof of Theorem 1.

2. Applications and other results

2.1. Counting closed orbits. By analogy with the Riemann hypothesis in number
theory, one would expect that Theorem 1 would give rise to error terms in the counting
of closed orbits for geodesic flows. The appropriate statement turns out to be as follows.

THEOREM 2. Let ¢, : M — M be the geodesic flow on a surface of variable negative
curvature. The number of closed orbits is givenzoy) = li(e"*)(1 4+ O(e~)), for
somee, > 0.

If we definey*(T) = Zewmgr hi(y) andy;(T) = flT Y*(x)dx then for anyc > 1
we have a formula analogous to (0.3):

w*(T) _ 1 c+ioco §*/(S) Ts+1
YT 2t e N 09 ) s+ D)
If we move the line of integration to Re) = 1 — ¢*/2, say, then we can write
T2 1 (1—€*/2)+ico g“*/(s) Ts+1
[(T) = — + —/ (— ) ds (2.1)
Vi 2 2ti Jaepio \ CF) ) sGs+D)

and the integral in (2.1) grows with a smaller exponent then the principal T&it2.
The details of Theorem 2 appear in Pollicott and Sharp (1997).

Note.Passing fromy* to v; depends on our knowledge of the behavioug 8 ¢* for
large Im(s). It follows from Dolgopyat (1996b) that under rather general circumstances
€/ A+ it) = 0(t|Y) for someN. In this case one has to convolye® with a
rapidly decreasing function in order to get integrability. However, due to the lack of
suitable analytic continuation one is only able to estimate the rate of convergengés of
in the space of distributions (cf. Fried 1986a).

2.2. Decay of correlations. The prime orbit theorem is closely related to the problem
of correlation decay (or rate of mixing) for hyperbolic flows. We briefly recall the
statement. Leiny be a Gibbs measure for adkler potentialF on the unit tangent
bundle M for the geodesic flow.

Given two smooth functiong, B : M — R we denote

Pi,B(t)ZfAO¢thmF—/Ade/Bdmp, t eR.
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THEOREM 3. (Dolgopyat 1996a)The correlation function p} (1) tends to zero
exponentially fast af| — +o0, i.e. |pj z(1)| < e~<!" for all 7, for somee, > 0.

(See Baladi (1998) Subsection 2.2 for a list of earlier results.) More generally, one
can obtain asymptotic estimates for integrals of the form

¢ x
Ic(D,t) = / D(¢p;x, x) exp[/ Gj| dx,

where D is a function onM x M and G is a potential. The correlation decay problem
corresponds to takin@ (x, y) = A(x)B(y), whereas if we takeD = giag We get prime
orbit theorems. (Of course, in the later case we have to integrate in the time variable,
since the graph o, is not transversal to the diagonal and so there is no asymptotic
for individual values oft (see Margulis (1970) for details).) Similarly, taking other
submanifolds instead of the diagonal, one can obtain other types of counting theorems.
Theorem 3 remains true in the broader setting of Axiom A flows satisfying
hypothesis (1)—(4) (withng replaced bym ).

2.3. More general zeta functions.Given a Hblder functionF : M — R one can weight
closed orbitsr for the geodesic flow by the real numbgfééf) F(¢,x.) dt, for any choice
x; € T. A natural generalization of the zeta function (0.2) which takes account of this
weighting is the following:

-1

(1)
Cr(s) = 1_[ (1 — eXp|:f (G(pixy) — s) dti|> , seC.
. 0

This formal product converges to an analytic function in the half-plang)Re P(F),
where P(F) is the topological pressure of the functiegh: M — R. The importance of
generalized zeta function is clear from the following result. Let

ﬁjB(s)=/ ey p(0)dt
R

be the Laplace transform of the correlation function.

ProPOSITION4. (Pollicott 1985)There is a numbee such thatpy z(s)/¢z(s — P(F))
has analytic continuation tike(s) > —s. More precisely,i , is meromorphic in this
domain, its only possible poles are the poleg pfs) and the corresponding residues are
given by a non-degenerate bilinear form 4f B.

Note. The similar statement holds for the Laplace transformlgfD,t) but the
corresponding formulas become more complicated. We refer the reader to Dolgopyat
(1997) for details.

The following generalization of Theorem 1 is an immediate consequence of
Proposition 4 and Theorem 3.

COROLLARY 4.1. Given a geodesic flow on a negatively curved surface ancbled”
continuous potentiaF : M — R there existg > 0 such that the zeta functiarf.(s) has
an analytic extension to the half-plafte(s) > P(F) — ¢, except for a simple pole at
s = P(F).
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The value of this is clearly related t@, in Theorem 2 and is therefore an important
value. However, from the outline of the proof of Theorem 1 one can see that it is difficult
to estimate the value. It is known from the analysis of surfaces of constant negative
curvature (using very different techniques) that there are examples for whitiay be
arbitrarily small. On the other hand, if for some more accessible valkec0< ¢, we
know that¢;(s) has a meromorphic extension to (Re> P(F) — € with only a finite
number of poles, one can still hope thﬁB(t) can be approximated to a generalized
trigonometric polynomial with erro0 (e~¢'). Denote byz the supremum of al with
this property. The following procedure (diagonal approximation) to baumslused in
physics literature. Consider

|Loe k()
= > explFy+or) () + (Fy+0r)(y2) — it (ra(y1) — ra (3K (yDK (y2).

Ty =T"y,=x
Whent is large one can argue that the main contribution comes from the non-oscillatory
diagonal term (cf. the note at the end&fL.2) which suggests the following estimate

§~&=P(F)—3P(2F).

Unfortunately, there are few (if any) rigorous results about this approximation. We would
therefore like to pose the following question.

Problem.Give a formula (or, at least, a reasonable estimatekfon particular, is it
true thaté = ¢ for geodesic flows on manifolds of constant negative curvatureCifid
potentials?

2.4. L-functions. So farF has been considered to be a real-valued potential, but there
is one important case when we have to deal with complex-valued functions. Namely,
let ¢ be the vectorfield generating our flow and fetdenote a closed form. If we set

F = 2miw(é) then the Euler product

A1)
L.s)=]] (1 - exp[Zm‘(/ (@) (Prxy) — s) dtD
. 0

is called adynamical L-function Clearly, it only depends on the cohomology classvof
so expandingy = 27:1 6;w; in an appropriate basis,, ..., w; € HX(M, R) we obtain
a function of two variabled.(d, s), where we denoté = (41, ..., 60,). SinceL(,s)
is periodic ing we can view it as a compact family of functions, each analytie for
Re(s) > h. The methods described above give the following result.

-1

THEOREM 4. There are constant®, ¢ > 0 such that for any € R? L(4, s) has analytic
continuation intoRe(s) > h — ¢, | Im(s)| > R.

For a fixed homology clasg let 7, (1) be the number of closed orbits of period less
thant in this class. Combining Theorem 4 with the analysii@@, s) for smalls given
by Adachi and Sunada (1987) (cf. also Parry and Pollicott (1986)) we get the following
orbit distribution theorem.
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THEOREM 5. Under the conditions of the previous theoramt) has asymptotic series

ehz X .
~ Cj——— el
7y (1) Cdtd/2+l<ztj>’

j=0

whered = dim H{(M).

Note. In the constant curvature case, Phillips and Sarnak (1987) gave geometric
interpretations of the first few coefficients of this series. It would be nice to do this
for variable curvature.

3. Concluding remarks

We hope that the technique of twisted transfer operators described here can be useful in

some other situations. Of course, there is no hope of obtaining any satisfactory results

about either zeta functions or periodic orbit asymptotics without some hyperbolicity

assumptions. However, even in the later case there are many open problems. The

references to some partial result could be found in the following papers.

(1) Non-uniformly hyperbolic systems: Baladi (1996 and§6, Young (1996).

(2) Non-compact negatively curved manifolds: Pollicott and Sharp (1994), Dolgopyat
(1997).

(3) Anosov flows in higher dimensions: Dolgopyat (1996a).

We hope that these cases will be treated in the near future.
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