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Abstract. We survey some recent progress in the theory of dynamical zeta functions and
explain its implications for counting problems.

0. The results
One particularly elegant aspect of dynamical zeta functions, particularly in the context
of hyperbolic flows, is the analogy with the Riemann zeta function in number theory.

Following different earlier definitions by Selberg and Smale (1967), Ruelle (1976b)
proposed a formal definition of a dynamical zeta function for such a flow of the following
form

ζ ∗(s) =
∏
τ

(1 − e−sh·l(τ ))−1, s ∈ C (0.1)

whereτ denotes a closed orbit of least periodl(τ ) (and the extra factorh > 0, denoting
the topological entropy of the flow, has been introduced for our convenience. Cf.
Baladi (1998), equation (2.14)). This definition should be compared with that of the
more familiar Riemann zeta function

ζ(s) =
∞∏
n=1

(1 − p−s
n )

−1, s ∈ C (0.2)

where{pn}∞n=1 = {2,3,5,7,11, . . .} is the enumeration of the prime numbers.
In the case of both zeta functions, the formal products converge to analytic functions

in the region Re(s) > 1 and have extensions with simple poles ats = 1. However, this
correspondence remains a formal one and there are no examples of hyperbolic flows for
which ζ ∗(s) = ζ(s). The Riemann zeta function is an object of profound study in prime
number theory and its analytic features hold the key to many important results on the
distribution of prime numbers. Probably the best known statement is the following.
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PRIME NUMBER THEOREM. ζ(s) has no zeros on the lineRe(s) = 1. Equivalently,
the counting functionN(x) = Card{pn ≤ x} is asymptotic tox/ logx (i.e.
limx→+∞N(x)/(x/ logx) = 1).

Undoubtedly the best known conjecture is the following.

RIEMANN HYPOTHESIS (OR CONJECTURE). ζ(s) has no zeros in the half-planeRe(s) >
1/2: equivalently, for any1/2 < θ < 1 we can writeπ(x) = li(x)(1 + O(xθ )) (i.e.
lim supx→+∞ |π(x)− li(x)|/xθ < +∞).

We recall thatli(x) = ∫ ∞
2 du/ logu is asymptotic tox/ logx asx → +∞.

The correspondence between the analytic properties ofζ(s) and the estimates ofN(x)
is based on the following simple identity for the related quantityψ1(T ) = ∫ T

1 ψ(x) dx,
whereψ(T ) = ∑

pkn≤T logpn: for any c > 1

ψ1(T ) = 1

2πi

∫ c+i∞

c−i∞

(
−ζ

′(s)
ζ(s)

)
T s+1

s(s + 1)
ds. (0.3)

To estimate this quantity one moves the curve of integration past the line Re(s) = 1 to
a curve0 in the pole free region for(ζ ′/ζ )(s). The pole ats = 1 then contributes the
principal term and the error term comes from dominating the remaining integral over0.
(We shall return to this point, in the context of the dynamical zeta functions, in§2.)

By additional features of the Riemann zeta functionζ(s) (in particular, the existence
of functional equations) the Riemann hypothesis is equivalent to the zeros forζ(s) in
the critical strip 0< Re(s) < 1 lying on the line Re(s) = 1/2.

In order to formulate similar statements for the dynamical zeta function we need to
first introduce a condition. We say that a flow is topologically weak-mixing if there
are no non-trivial solutions to the identityF ◦ φt = eiatF , whereF ∈ C0(M,C).
Parry and Pollicott (1983) showed that for a topologically weak-mixing hyperbolic flow
φt : M → M the analogue of the prime number theorem is true (earlier Margulis (1970)
obtained this result in the context of Anosov flows). That is, that on the line Re(s) = 1
there are no poles (or zeros) forζ ∗(s) except for the simple pole ats = 1. Using a similar
analysis to that in the case of prime number theory, it follows thatπ(x) = {τ : l(τ ) ≤ x}
is asymptotic toehx/hx (cf. Baladi (1998), Theorem 2.8; see also Margulis (1969)). Ifφt

is not weak-mixing, the situation can be reduced to the case of hyperbolic diffeomorphism
(see Baladi (1998), Theorem 2.4).

Now we describe the case where an almost optimal result is known. Some partial
results are discussed at the end of the paper. LetV denote a compact smooth surface of
strictly negative, possibly variable, curvature. SetM = {(x, v) ∈ T V : ‖v‖ = 1} to be the
unit tangent bundle and define the geodesic flowφt : M → M by φt(x, v) = (γ (t), γ̇ (t)),
whereγ : R → V is the unique unit speed geodesicγ : R → V with γ (0) = x and
γ̇ (0) = v. φt is known to satisfy Axiom A. The following result describes the distribution
of poles for the associated dynamical zeta functionζ ∗(s).

THEOREM 1. (Dolgopyat)Let φt : M → M be a geodesic flow on a compact surface
of negative curvature. There existsε > 0 such thatζ ∗(s) has no zeros or poles in the
half-planeRe(s) > 1 − ε, except for the simple pole ats = 1.
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Previously, it had been shown thatζ ∗(s) has a meromorphic extension to a larger
such half-plane Re(s) > 1 − ε0 (where 0< ε ≤ ε0), but without any information on the
location of poles (Pollicott 1986).

Note.The above theorem is true under a somewhat more general hypothesis. For example,
the following hypotheses on the hyperbolic flowφt : M → M suffice for the proof:
(1) the strong stable and strong unstable sub-bundlesEu andEs areC1;
(2) the splitting is not locally-integrable;
(3) φ is weak-mixing;
(4) the measure of maximal entropym0 satisfies theFederer condition: there is a

constantC so that for anyx in non-wandering set and anyr > 0 m0(B(x,2r)) ≤
Cm0(B(x, r)).

These conditions hold automatically for a geodesic flow for a compact negatively curved
surfaceV . In higher dimensions they can only be verified in very special cases. (See
Hirsch and Pugh (1975) concerning hypothesis (1).)

Note.Local non-integrability means that the flow is not a suspension by a locally constant
roof function. The necessity of this condition is shown by the following statement.

PROPOSITION1.
(a) (Ruelle 1983, Pollicott 1985)If a hyperbolic flow is locally integrable thenζ ∗(s)

has poles arbitrary close to the lineRe(s) = 1;
(b) (Pollicott 1990)For generic locally integrable hyperbolic flows the error term has

polynomial decay.

1. The method of extending the zeta function
There are two principal tools in extending the domain of the dynamical zeta function
ζ ∗(s). The first involves replacing the flow by a simplified model. The second involves
analyzing the zeta function for this model using transfer operators.

1.1. The simplified model. Given the flowφt : M → M we can choose a finite number
of co-dimension one transverse sectionsT1, . . . , TN . Let T = ∪iTi , then we can consider
the Poincaŕe mapP : T → T and the return timef : T → R (i.e. φf (x)(x) = P(x) for
x ∈ T ).

We can introduce a new zeta functionζ ∗
0 (s) for the mapP : T → T and the function

f : T → R which is defined formally by

ζ ∗
0 (s) = exp

∞∑
n=1

1

n

∑
T nx=x

exp

(
− sh

n−1∑
k=0

f (T kx)

)
(1.1)

(compare with Baladi (1998), equation (2.16)). Although at first sight this appears to
be of a different form from the zeta functionζ ∗(s) given in (0.2), they are intimately
related. In particular, a periodic orbit{x, Px, . . . , P n−1x} gives rise to a closed orbitτ
of period l(τ ) = f (x)+ f (Px)+ · · · + f (P n−1x). By also arranging for these sections
to have an appropriate Markov property we have thatζ ∗(s) = ζ ∗

0 (s)η(s), whereη(s) is
analytic for Re(s) > 1 − ε2, for someε2 > 0 (cf. Bowen (1973)§5). The functionη(s)
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is a correction for the overcounting of closed orbits which pass through the boundaries
of the sectionsT1, . . . , TN .

To introduce the transfer operator, we need one further reduction in our model for the
flow φ. In essence, the additional Markov property of the sections allows us to identify
(or ‘collapse’) each of the sectionsTi along the ‘stable direction’ (in a way that can be
made completely rigorous) and so replace
(a) T by X ⊂ R

n (with dense interior);
(b) P : T → T by an expanding mapT : X → X;
(c) f : T → R

+ by a continuous functionr : X → R
+.

Heren is the dimension of the ‘unstable direction’, which in the present example is one.
Moreover, in this case we can identifyX with a finite disjoint union of intervals.

These reductions do not effect the zeta functionζ ∗
0 (s).

1.2. Transfer operators. The transfer operator (associated to complex numbers)
Le−sr : C0(X,C) → C0(X,C) is defined by

Le−sr k(x) =
∑
Ty=x

e−sr(y)k(y)

wherek ∈ C0(X,C) (cf. Baladi (1998), equation (2.3)). For the proof of Theorem 1,
we want to consider the operator acting on the smaller space ofC1 functions, i.e.
Le−sr : C1(X,C) → C1(X,C). The appropriate norm on the Banach spaceC1(X,R) is
‖k‖1 = ‖k‖∞ +‖Dk‖∞, where‖ ·‖∞ denotes the usual supremum norm andDk denotes
the derivative ofk ∈ C1(X,C).

A very simple estimate on the spectral radiusρ(Le−sr ) of Le−sr is that ρ(Le−sr ) ≤
eP(−σr), wheres = σ+it andP(−σr) denotes the pressure of the function−σr : X → R

relative toT : X → X (cf. Baladi (1998), Theorem 2.1). In particular, whenσ = h then
P(−hr) = 0 andρ(Le−sr ) ≤ 1. The following result gives stronger estimates on this
spectral radius whent 6= 0.

PROPOSITION2. (Dolgopyat 1996a)There existsC > 0, 0 < θ < 1, D > 1 and ε > 0
such that

‖Lne−sr‖1 ≤ C · emP(−σr) · θ l
wheres = σ + it , with |t | ≥ 2 andσ > h− ε, andn = l[D log |t |] +m

In particular, we have the following elegant estimate.

COROLLARY 2.1. For s = σ + it , with σ > h − ε and |t | ≥ 2, we have that
ρ(Le−sr ) ≤ θ < 1.

The proof of Proposition 2 involves a number of steps. One of the more familiar
ingredients is the following simple inequality

‖D(Le−sr k)‖∞ ≤ C · |t | · ‖k‖∞ + θn0 ‖Dk‖∞ (1.2)

for someC > 0 and 0< θ0 < 1 and allk ∈ C1(X,C) (where we assume for convenience
thatL−σr1 = 1, by the simple device of modifyingr up to the addition of a coboundary
u ◦ T − u and a constant).
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The most important step is to show that there existsC1 > 0 and 0< θ1 < 1 such that
given any functionk ∈ C1(X,R) such that‖k‖0 = 1 and‖Dk‖0 ≤ 2C|t | then we can
bound ∫

|Lne−sr k| dµ ≤ C1 · θn1 , ∀n ≥ 0 (1.3)

whereµ is a convenient measure. (In fact,µ is simply the Gibbs measure associated to
the potential−σr : X → R.)

ThisL1 convergence is then converted into uniform convergence using the following
identity

|L2n
e−sr k(x)| ≤ ∥∥Ln−σr ∣∣Lne−sr k∣∣∥∥∞ =

∫ ∣∣Lne−sr k∣∣ dµ+O(θ2n
2 |t |), (1.4)

for some 0< θ2 < 1, where the last inequality follows from the well-known convergence
estimateLn−σrk = ∫

k dµ + O(θ2n
2 ‖k‖1), say, for the transfer operator with a real

weighting (cf. Baladi (1998), Theorem 3.2(1)).
Comparing (1.3) and (1.4) we see that‖Lne−sr k‖0 = O(θn1 , θ

n
2 |t |).

Finally, by substitutingLne−sr k for k in (1.2) we can bound

‖L2nk‖ = O(θn0 , |t |θn1 , |t |θn),

where all of the implied constants are independent ofk and depend only onC > 0
in (1.3). In the event that‖k‖0 = 1 and‖Dk‖0 > 2C, then norm contraction follows
directly from (1.2). In either case, the estimate in Proposition 2 can be easily deduced.

Note. The hypothesis that the sub-bundlesEs and Eu are C1 manifests itself in the
functions T and r being C1 and allows us to work in the Banach spaceC1(X,R).
Although the proof is ‘symbolic’ in essence, the differential structure is important in
the details of the proofs. The hypothesis that the splitting is not integrable is crucial
to the proof of (1.3). If we knew that for eachx ∈ X there exists a continuous
choice of two distinct pre-imagesy1 = y1(x) and y2 = y2(x) with the property that
x 7→ y1(x)−y2(x) has a gradient large enough in comparison with‖r‖1 and‖σ−1‖1 then
we would essentially be able to ‘integrate by parts’ the expression|Lne−sr k|2(x) (and use
the Hölder inequality) to obtain (1.3). For geodesic flows on negatively curved surfaces
the last assumption follows from the contact structure of the flow (that is horocycles are
orthogonal to geodesics) (cf. Plante 1972). In general, one can show (cf. Sinai 1972)
that local non-integrability is equivalent to the existence ofx0 ∈ X, δ > 0 such that for
all large enoughn there are two branchesyn,1(x) andyn,2(x) of σ−n so that

∣∣∇x(rn(yn1)− rn(yn,2))
∣∣ (x0) > δ

which still suffices for the proof.

1.3. Applying the transfer operators.It only remains to use the spectral estimate on
the transfer operators in Proposition 2 to deduce the analytic extension in Theorem 1.

Let X = ∪iXi be the partition (into intervals) corresponding to the unionT = ∪iTi .
The key result relating the transfer operators to the zeta functionζ ∗

0 (s) as follows.
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PROPOSITION3. (Ruelle 1990)There exists0 < θ < 1 such that for any fixed choice of
pointsxi ∈ Xi uniformly ass varies over a compact set

∑
T nx=x

exp

(
− s

n−1∑
j=0

r(T jx)

)
=

N∑
i=1

(Lne−sr (χXi ))(xi)+O(θn), n ≥ 0 (1.5)

whereχXi denotes the characteristic function forXi .

Comparing (1.5) and Theorem 1 we see that the series in (1.1) is uniformly convergent
for s = σ + it satisfyingσ > 1 − ε and |t | > 2. In particular, we see thatζ ∗

0 (s) is
analytic in this domain and we can make the same deduction forζ ∗(s), completing the
outline of the proof of Theorem 1.

2. Applications and other results
2.1. Counting closed orbits. By analogy with the Riemann hypothesis in number
theory, one would expect that Theorem 1 would give rise to error terms in the counting
of closed orbits for geodesic flows. The appropriate statement turns out to be as follows.

THEOREM 2. Let φt : M → M be the geodesic flow on a surface of variable negative
curvature. The number of closed orbits is given byπ(x) = li(ehx)(1 + O(e−ε∗x)), for
someε∗ > 0.

If we defineψ∗(T ) = ∑
enhl(γ )≤T hl(γ ) andψ∗

1 (T ) = ∫ T
1 ψ

∗(x) dx then for anyc > 1
we have a formula analogous to (0.3):

ψ∗
1 (T ) = 1

2πi

∫ c+i∞

c−i∞

(
−ζ

∗′(s)
ζ ∗(s)

)
T s+1

s(s + 1)
ds.

If we move the line of integration to Re(s) = 1 − ε∗/2, say, then we can write

ψ∗
1 (T ) = T 2

2
+ 1

2πi

∫ (1−ε∗/2)+i∞

(1−ε∗/2)−i∞

(
−ζ

∗′(s)
ζ ∗(s)

)
T s+1

s(s + 1)
ds (2.1)

and the integral in (2.1) grows with a smaller exponent then the principal termT 2/2.
The details of Theorem 2 appear in Pollicott and Sharp (1997).

Note.Passing fromψ∗ to ψ∗
1 depends on our knowledge of the behaviour ofζ ∗′/ζ ∗ for

large Im(s). It follows from Dolgopyat (1996b) that under rather general circumstances
(ζ ∗′/ζ ∗)(1 + it) = O(|t |N) for someN . In this case one has to convolveψ∗ with a
rapidly decreasing function in order to get integrability. However, due to the lack of
suitable analytic continuation one is only able to estimate the rate of convergences ofψ∗

in the space of distributions (cf. Fried 1986a).

2.2. Decay of correlations. The prime orbit theorem is closely related to the problem
of correlation decay (or rate of mixing) for hyperbolic flows. We briefly recall the
statement. LetmF be a Gibbs measure for a Hölder potentialF on the unit tangent
bundleM for the geodesic flow.

Given two smooth functionsA,B : M → R we denote

ρFA,B(t) =
∫
A ◦ φtB dmF −

∫
AdmF

∫
B dmF , t ∈ R.
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THEOREM 3. (Dolgopyat 1996a)The correlation function ρFA,B(t) tends to zero
exponentially fast as|t | → +∞, i.e. |ρFA,B(t)| ≤ e−ε∗|t | for all t , for someε∗ > 0.

(See Baladi (1998) Subsection 2.2 for a list of earlier results.) More generally, one
can obtain asymptotic estimates for integrals of the form

IG(D, t) =
∫
D(φtx, x)exp

[ ∫ φt x

x

G

]
dx,

whereD is a function onM ×M andG is a potential. The correlation decay problem
corresponds to takingD(x, y) = A(x)B(y), whereas if we takeD = δdiag we get prime
orbit theorems. (Of course, in the later case we have to integrate in the time variable,
since the graph ofφt is not transversal to the diagonal and so there is no asymptotic
for individual values oft (see Margulis (1970) for details).) Similarly, taking other
submanifolds instead of the diagonal, one can obtain other types of counting theorems.

Theorem 3 remains true in the broader setting of Axiom A flows satisfying
hypothesis (1)–(4) (withm0 replaced bymF ).

2.3. More general zeta functions.Given a Ḧolder functionF : M → R one can weight
closed orbitsτ for the geodesic flow by the real numbers

∫ l(τ )
0 F(φtxτ ) dt , for any choice

xτ ∈ τ . A natural generalization of the zeta function (0.2) which takes account of this
weighting is the following:

ζ ∗
F (s) =

∏
τ

(
1 − exp

[ ∫ l(τ )

0
(G(φtxτ )− s) dt

])−1

, s ∈ C.

This formal product converges to an analytic function in the half-plane Re(s) > P (F),
whereP(F) is the topological pressure of the functionF : M → R. The importance of
generalized zeta function is clear from the following result. Let

ρ̂FA,B(s) =
∫

R+
e−stρFA,B(t) dt

be the Laplace transform of the correlation function.

PROPOSITION4. (Pollicott 1985)There is a numberε such thatρ̂FA,B(s)/ζ
∗
F (s − P(F))

has analytic continuation toRe(s) > −ε. More precisely,ρ̂FA,B is meromorphic in this
domain, its only possible poles are the poles ofζ ∗

F (s) and the corresponding residues are
given by a non-degenerate bilinear form ofA,B.

Note. The similar statement holds for the Laplace transform ofIG(D, t) but the
corresponding formulas become more complicated. We refer the reader to Dolgopyat
(1997) for details.

The following generalization of Theorem 1 is an immediate consequence of
Proposition 4 and Theorem 3.

COROLLARY 4.1. Given a geodesic flow on a negatively curved surface and a H¨older
continuous potentialF : M → R there existsε > 0 such that the zeta functionζ ∗

F (s) has
an analytic extension to the half-planeRe(s) > P (F) − ε, except for a simple pole at
s = P(F).
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The value of thisε is clearly related toε∗ in Theorem 2 and is therefore an important
value. However, from the outline of the proof of Theorem 1 one can see that it is difficult
to estimate the valueε. It is known from the analysis of surfaces of constant negative
curvature (using very different techniques) that there are examples for whichε0 may be
arbitrarily small. On the other hand, if for some more accessible value 0< ε̃ < ε0 we
know thatζ ∗

F (s) has a meromorphic extension to Re(s) > P (F) − ε̃ with only a finite
number of poles, one can still hope thatρFA,B(t) can be approximated to a generalized
trigonometric polynomial with errorO(e−ε̃t ). Denote byε̃ the supremum of all̃ε with
this property. The following procedure (diagonal approximation) to boundε̃ is used in
physics literature. Consider

|Ln
eF−sr k|2(x)
=

∑
T ny1=T ny2=x

exp[(Fn + σrn)(y1)+ (Fn + σrn)(y2)− it (rn(y1)− rn(y2))]k(y1)k(y2).

Whent is large one can argue that the main contribution comes from the non-oscillatory
diagonal term (cf. the note at the end of§§1.2) which suggests the following estimate

ε̃ ≈ ε̄ = P(F)− 1
2P(2F).

Unfortunately, there are few (if any) rigorous results about this approximation. We would
therefore like to pose the following question.

Problem.Give a formula (or, at least, a reasonable estimate) forε̃. In particular, is it
true thatε̃ = ε̄ for geodesic flows on manifolds of constant negative curvature andC∞

potentials?

2.4. L-functions. So farF has been considered to be a real-valued potential, but there
is one important case when we have to deal with complex-valued functions. Namely,
let Ee be the vectorfield generating our flow and letω denote a closed form. If we set
F = 2πiω(Ee) then the Euler product

L(ω, s) =
∏
τ

(
1 − exp

[
2πi

( ∫ λ(τ)

0
ω(Ee)(φtxτ )− s

)
dt

])−1

is called adynamical L-function. Clearly, it only depends on the cohomology class ofω

so expandingω = ∑d
j=1 θjωj in an appropriate basisω1, . . . , ωd ∈ H 1(M,R) we obtain

a function of two variablesL(Eθ, s), where we denoteEθ = (θ1, . . . , θd). SinceL(Eθ, s)
is periodic in Eθ we can view it as a compact family of functions, each analytic ins for
Re(s) > h. The methods described above give the following result.

THEOREM 4. There are constantsR, ε > 0 such that for anyEθ ∈ R
d L(Eθ, s) has analytic

continuation intoRe(s) > h− ε, | Im(s)| > R.

For a fixed homology classγ let πγ (t) be the number of closed orbits of period less
thant in this class. Combining Theorem 4 with the analysis ofL(Eθ, s) for small s given
by Adachi and Sunada (1987) (cf. also Parry and Pollicott (1986)) we get the following
orbit distribution theorem.
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THEOREM 5. Under the conditions of the previous theoremπγ (t) has asymptotic series

πγ (t) ∼ cd
eht

td/2+1

( ∞∑
j=0

cj

tj

)
,

whered = dimH1(M).

Note. In the constant curvature case, Phillips and Sarnak (1987) gave geometric
interpretations of the first few coefficients of this series. It would be nice to do this
for variable curvature.

3. Concluding remarks
We hope that the technique of twisted transfer operators described here can be useful in
some other situations. Of course, there is no hope of obtaining any satisfactory results
about either zeta functions or periodic orbit asymptotics without some hyperbolicity
assumptions. However, even in the later case there are many open problems. The
references to some partial result could be found in the following papers.
(1) Non-uniformly hyperbolic systems: Baladi (1998)§5 and§6, Young (1996).
(2) Non-compact negatively curved manifolds: Pollicott and Sharp (1994), Dolgopyat

(1997).
(3) Anosov flows in higher dimensions: Dolgopyat (1996a).
We hope that these cases will be treated in the near future.
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