
Euro. Jnl of Applied Mathematics (2006), vol. 17, pp. 651–663. c© 2007 Cambridge University Press

doi:10.1017/S0956792507006791 Printed in the United Kingdom
651

Reconstruction of a stationary flow from
incomplete boundary data using iterative methods

TOMAS JOHANSSON and DANIEL LESNIC

Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT, UK

email: amt5ld@maths.leeds.ac.uk

(Received 16 March 2006; revised 15 November 2006; first published online 5 February 2007)

In this paper, three iterative procedures (Landweber-Fridman, conjugate gradient and minimal

error methods) for obtaining a stable solution to the Cauchy problem in slow viscous flows

are presented and compared. A section is devoted to the numerical investigations of these

algorithms. There, we use the boundary element method together with efficient stopping

criteria for ceasing the iteration process in order to obtain stable solutions.

1 Introduction

Much of the literature on the solution of inverse boundary value problems has been

devoted to inverse transient heat transfer, Beck et al. [3], inverse elasticity, Yakhno [21],

inverse steady-state heat conduction, Ingham & Yuan [12], and inverse scattering, Sabatier

and Pike [20], whilst research in the field of inverse fluid flow problems has been limited;

see for example Zeb et al. [23, 24]. In the latter references, emphasis was made on the

numerical solution of several inverse problems in Stokes flows of a viscous fluid, but with

little theoretical justification. Whilst these inverse formulations are much more difficult to

attack from the theoretical point of view, in this paper we consider one classical Cauchy

formulation and propose some iterative procedures, for which one can show convergence

and stability. Let us just mention that a quite different alternating iterative procedure

valid for the Stokes system, but not for the generalized Stokes system, with Cauchy data

in fractional Sobolev spaces, has been recently proposed in Bastay et al. [2]. However, our

methods work with L2 boundary data (a very desirable feature from both the practical and

computational points of view), as well as for the more general generalized Stokes system.

Preliminary accepted papers by the authors, Johansson & Lesnic [13, 14], proposed a

Landweber-Fridman and a conjugate gradient method, respectively, for the numerical

solution of the Cauchy problem for the Stokes equations. In this paper, yet another

iterative method, namely the minimal error method, is numerically implemented for the

first time and furthermore, all these three iterative methods are compared in terms of the

rate of convergence, accuracy and stability.

2 Cauchy problem in slow viscous flow

Consider slow viscous flow occupying a bounded region D ⊂ �n, where n � 2, between

two infinitely long cylinders in 2-D, or between two spheres in 3-D, having outer boundary
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Γ0 and inner boundary Γ1 such that ∂Ω = Γ = Γ0 ∪ Γ1 is of class C2. As a possible

practical motivation, one can imagine that the inner wall Γ1 of a pipe is moving with an

unknown velocity and measurements of velocity and traction are taken on the exposed

outer wall Γ0 of the pipe. Alternatively, an inner sphere may rotate and oscillate with an

unknown velocity whilst the outer sphere is kept fixed.

In non-dimensional form the generalized Stokes viscous fluid flow equations can be

written as

{
Lu− ∇p = 0 in Ω,

divu = 0 in Ω,
(2.1)

where

Lu =

(
∆ui +

n∑
j=1

bj(x)
∂ui
∂xj

)
1�i�n

.

Here, u = (u1, . . . , un) is the fluid velocity, p is the pressure and b is a coefficient function

which is assumed of class C1(Ω). Letting ν = (ν1, . . . , νn) be the outward unit normal to

the boundary of Ω, the stress force T can be written as

T = pν − Nu,

where

Nu =

( n∑
j=1

( ∂ui
∂xj

+
∂uj
∂xi

)
νj

)
1�i�n

.

In a direct problem formulation, the knowledge of the fluid velocity u and/or the stress

force T , on the whole boundary, give rise to well-posed boundary value problems [7].

However, in our formulation we only assume that one can prescribe u and T on the

boundary part Γ0. Altogether, we have the following problem to study:

⎧⎪⎪⎨
⎪⎪⎩

Lu− ∇p = 0 in Ω,

divu = 0 in Ω,

u = ϕ on Γ0,

pν − Nu = ψ on Γ0.

(2.2)

This is termed as the Cauchy problem for slow viscous flow and it is ill-posed since

although the uniqueness of the solution is ensured, the solution usually does not (globally)

exist, or even if it exists it does not depend continuously on the Cauchy data ϕ and ψ,

see later the compactness of the operator defined in § 4.1.

2.1 Notations and preliminaries

Let L2(Ω) be the space of square integrable real-valued functions on Ω with the usual

norm. The space Hk(Ω), where k = 1, 2, . . . , denotes the standard Sobolev space on Ω, i.e.,
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the space of functions with generalized derivatives of order � k in L2(Ω). The dual space

of Hk(Ω) with respect to the L2-inner product is denoted by (Hk(Ω))∗. We let the product

of n samples of a space X be denoted by Xn.

We assume that the function b that appears in the operator L is chosen so that the

problem (2.1), supplied with the boundary conditions u = 0 on Γ1 and pν − Nu = 0 on

Γ0, has only the trivial solution in H2(Ω)n × H1(Ω).

3 A regularizing procedure

Here, we present an iterative procedure for solving the Cauchy problem (2.2). Let us first

introduce the problems

⎧⎪⎪⎨
⎪⎪⎩

Lu− ∇p = 0 in Ω,

divu = 0 in Ω,

u = η on Γ1,

pν − Nu = ψ on Γ0,

(3.1)

and

⎧⎪⎪⎨
⎪⎪⎩

L∗v − ∇q = 0 in Ω,

divv = 0 in Ω,

v = 0 on Γ1,

qν − N∗v = ξ on Γ0,

(3.2)

where

L∗v =

(
∆vi −

n∑
j=1

∂

∂xj
(bj(x)vi)

)
1�i�n

,

N∗v =

( n∑
j=1

( ∂vi
∂xj

+
∂vj
∂xi

− bj(x)vi

)
νj

)
1�i�n

.

The procedure is as follows.

• Choose a function η0 ∈ L2(Γ1)
n. The first approximation u0 and p0 is obtained by

solving (3.1) with u = η0 on Γ1.

• Then we find v0 and q0 by solving (3.2) with ξ = u0 − ϕ on Γ0.

• Having constructed uk−1, pk−1, vk−1, and qk−1, we obtain uk and pk by solving prob-

lem (3.1) with u = ηk on Γ1, where

ηk = ηk−1 + γ(qk−1ν − N∗vk−1)

and γ is a constant.

• Finally, vk and qk are obtained by solving (3.2) with ξ = uk − ϕ on Γ0.

This procedure converges if the constant γ is chosen in a certain interval, see Theorem 4.1.
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4 Convergence of the procedure given in § 3

4.1 Definition of an operator

Let u and p1 solve the problem

⎧⎪⎪⎨
⎪⎪⎩

Lu− ∇p1 = 0 in Ω,

divu = 0 in Ω,

u = η on Γ1,

p1ν − Nu = 0 on Γ0,

(4.1)

and let v and p2 solve

⎧⎪⎪⎨
⎪⎪⎩

Lv − ∇p2 = 0 in Ω,

divv = 0 in Ω,

v = 0 on Γ1,

p2ν − Nv = ψ on Γ0.

(4.2)

For the problem (4.1) let us introduce an operator K : L2(Γ1)
n → L2(Γ0)

n defined by

Kη = u|Γ0
for η ∈ L2(Γ1)

n. (4.3)

Similarly, for the problem (4.2) we introduce the operator K1 : L2(Γ0)
n → L2(Γ0)

n defined

by

K1ψ = v|Γ0
for ψ ∈ L2(Γ0)

n. (4.4)

It has been shown elsewhere [13] that these operators are well-defined, linear and bounded,

and that K is an injective and compact operator.

Finding a solution to the Cauchy problem (2.2) is then equivalent to finding η ∈ L2(Γ1)
n

such that

Kη = ϕ− K1ψ. (4.5)

If such an η exists, then by the construction of the operators K and K1, we have

u|Γ0
= ϕ− v|Γ0

,

where u solves (4.1) and v solves (4.2). Hence, u+ v is a solution to problem (2.2). Since K

is a compact operator this means in particular that K has no bounded inverse. Therefore,

equation (4.5) is an ill-posed problem.

4.2 The adjoint operator

The following lemma describes how problem (3.2) can be used to define the action of the

adjoint operator K∗.

Lemma 4.1 [13] Let ξ ∈ L2(Γ0)
n. The adjoint operator K∗ : L2(Γ0)

n → L2(Γ1)
n to the

operator K defined in (4.3) is given by K∗ξ = −(qν − N∗v)|Γ1
, where v ∈ L2(Ω)n and

q ∈ (H1(Ω))∗ solve the problem (3.2).
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4.3 Theorem of convergence

We conclude with a theorem that the procedure given in § 3 is convergent.

Theorem 4.1 [13] Let ϕ and ψ be given in L2(Γ0)
n. Assume that the Cauchy problem (2.2)

has a solution u ∈ L2(Ω)n and p ∈ (H1(Ω))∗, and let 0 < γ < ‖K‖−2. Let uk and pk be the

k-th approximate solution in the procedure presented in § 3. Then

lim
k→∞

‖u− uk‖L2(Ω)n = 0 and lim
k→∞

‖p − pk‖(H1(Ω))∗ = 0

for any initial data element η0 ∈ L2(Γ1)
n.

We remark that the procedure described in § 3 is the Landweber-Fridman method for

solving (4.5), Engl et al. [6]. From this it follows that the procedure presented above is a

regularization method and that it therefore works with inexact data.

In what follows, we suppose that instead of ϕ, we have only its approximation, say

ϕε ∈ L2(Γ0)
n, where ϕε is the measured data,

‖ϕ− ϕε‖L2(Γ0)n � ε (4.6)

and ε � 0 is a known upper bound for the error in the measurements. No preassumption

is stipulated on the nature of the noise and this, in turn, is very useful for applications

wherein experimental (unknown) noise is inherently present in any practical measurement.

Then, we stop the iteration of the algorithm according to the discrepancy principle,

namely at the smallest index k = k(ε) for which

ec(k) := ‖uεk |Γ0
−ϕε‖L2(Γ0)n � τε (4.7)

where τ > 1 is some fixed constant and uεk is obtained from the iterative procedure with

Cauchy data ϕε and ψ. The Landweber-Fridman method (LFM) has been numerically

implemented in Marin & Lesnic [18] and Johansson & Lesnic [13] for the Cauchy problem

of the Lame system in elasticity and the Stokes system in hydrostatics, respectively.

From a numerical point of view, it might be difficult to choose the parameter γ in the

right interval in order to ensure the convergence of the LFM, as given by Theorem 4.1. In

addition, if γ > 0 is chosen too small then the LFM becomes computationally very slow.

However, it is possible to propose parameter-free procedures, and two such methods are

described in the next section.

5 Parameter free procedures

Let K and K1 be the same operators as defined by equations (4.3) and (4.4), respectively.

The Cauchy problem (2.2) is equivalent to the operator equation (4.5). Let us denote

y = ϕ− K1ψ and yε = ϕε − K1ψ. Then equation (4.5) becomes Kη = y and the aim is to

recover η from noisy approximations yε of y, as given by (4.6), namely

‖y − yε‖L2(Γ0)n � ε. (5.1)
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5.1 The conjugate gradient method (CGM)

The conjugate gradient method (CGM) for solving (2.2) is based on solving the normal

equation

K∗(Kη) = K∗yε,

which is equivalent to minimizing the residual functional

‖Kη − yε‖2
L2(Γ0)n

. (5.2)

Using Lemma 4.1 for the definition of K∗ and applying Algorithm 7.1 of Engl et al. [6]

to our problem, produces the following convergent algorithm:

(a) Choose an arbitrary function η0 ∈ L2(Γ1)
n, and set k = 0.

(b) Solve for uk and pk the problem (3.1) with η = ηk and determine the residual

r̃k = ϕε − uk|Γ0
.

(c) Solve the adjoint problem (3.2) with ξ = r̃k on Γ0. Determine

rk = (qkν − N∗vk)|Γ1
,

then calculate dk = −rk + βk−1dk−1 on Γ1, with the convention that β−1 = 0 and

βk−1 =
‖rk‖2

L2(Γ1)n

‖rk−1‖2
L2(Γ1)n

, k � 1.

(d) Solve for uk and pk the problem (3.1) with η = dk on Γ1 and ψ = 0 on Γ0. Set

αk =
‖rk‖2

L2(Γ1)n

‖uk|Γ0
‖2
L2(Γ0)n

,

and let ηk+1 = ηk + αkdk on Γ1.

(e) Increase k by one and go to step (b).

If η0 = 0, the k−th iterate ηk minimizes the residual norm (5.2) among all elements η

in the k−th Krylov subspace

Kk = span{K∗yε, (K∗K)K∗yε, (K∗K)2K∗yε, ..., (K∗K)k−1K∗yε}, (5.3)

see Groetsch [8, Lemma 2.5.2]. Moreover, the residuals

‖Kηk − yε‖L2(Γ0)n and ‖ηk − K−1yε‖L2(Γ1)n (5.4)

are strictly decreasing if yε ∈ R(K), where R(K) denotes the range of K and K−1 :

R(K) → L2(Γ1)
n is the inverse of the injective operator K . We have convergence in the

sense that

ηk → K−1yε, as k → ∞ (5.5)

for y ∈ R(K).
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As a stopping criterion, we choose the first k = k(ε) such that

‖r̃k‖L2(Γ0)n � τε, (5.6)

where τ > 1 is some fixed constant. It follows from Nemirovskii [19] that (5.6) is an order

optimal stopping rule if yε ∈ R(K).

The CGM has been numerically implemented for the Cauchy problem: for the Laplace

equation in Dinh Nho Hào & Lesnic [5], for the heat equation in Dinh Nho Hào &

Reinhardt [4] and Bastay et al. [1], for the Lame system in elasticity in Marin et al. [17],

and for the Stokes system in hydrostatics in Johansson & Lesnic [14].

5.2 The minimal error method (MEM)

The minimal error method (MEM) [15] is based on a variant of CGM, which, for exactly

given data, i.e. ε = 0, minimizes the iteration error

‖η − K−1(ϕε − K1ψ)‖2
L2(Γ1)n

, (5.7)

rather than the data fit (5.2) in the same Krylov subspace.

Using Lemma 4.1 for the definition of K∗ and applying the algorithm of Hanke [9] to

our problem, produces the following convergent algorithm:

(a) Choose an arbitrary function η0 ∈ L2(Γ1)
n and set k = 0.

(b) Solve for uk and pk the problem (3.1) with η = ηk and determine the residual

r̃k = ϕε − uk|Γ0
.

(c) Solve the adjoint problem (3.2) with ξ = r̃k on Γ0. Determine

rk = (qkν − N∗vk)|Γ1
,

then calculate ξk = −rk + γk−1ξk−1 on Γ1, with the convention that γ−1 = 0 and

γk−1 =
‖r̃k‖2

L2(Γ0)n

‖r̃k−1‖2
L2(Γ0)n

, k � 1.

(d) Solve for uk and pk in (3.1) with η = ηk+1 on Γ1, where

ηk+1 = ηk + χkξk on Γ1

and

χk =
‖r̃k‖2

L2(Γ0)n

‖ξk‖2
L2(Γ1)n

.

(e) Increase k by one and go to step (b).

The kth iterate ηk minimizes the error norm (5.7) at each iteration among all elements

η in the kth Krylov subspace Kk defined by (5.3). From this it follows readily the

convergence of the MEM iterates ηk to K−1yε in the case yε ∈ R(K). However, unlike in
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the CGM, the errors (5.7) need not decrease monotonically. Moreover, if yε � R(K), then

the MEM iteration either breaks down after a finite number of steps, or ‖ηk‖L2(Γ1)n → ∞,

as k → ∞ [9].

It was previously shown [9] that the discrepancy principle (5.1) is no regularization

stopping rule for the MEM; instead, as a stopping criterion, we choose the first k = k(ε)

such that

⎛
⎝ k∑

j=0

‖Kηj + K1ψ − ϕε‖−2
L2(Γ0)n

⎞
⎠

−1/2

� τε, (5.8)

where τ > 1 is some fixed constant. To the authors’ knowledge the MEM has never been

previously numerically implemented.

6 Numerical investigations

6.1 The boundary element method

In practice, the direct, well-posed, mixed problems (3.1) and (3.2) of the iterative procedures

described in the previous sections can seldom be solved analytically and therefore some

form of numerical approximation is necessary. Since only boundary data is needed, this

can most advantageously be performed using the boundary element method (BEM), and

in this subsection we briefly describe the BEM for the Stokes equations, i.e. b ≡ 0 in the

definition of the operator L, namely

{
∆u− ∇p = 0 in Ω,

divu = 0 in Ω.
(6.1)

Using Green’s formula we can recast the Stokes equations (6.1) into a boundary integral

form [16]

c(x)u(x) =

∫
Γ

[
K(x, y)u(y) − U(x, y)t(y)

]
dS(y), x ∈ Ω (6.2)

where c(x) is a coefficient function which is equal to 1 if x ∈ Ω, and 0.5 if x ∈ ∂Ω,

t = −pν +Nu is the fluid traction and, in two-dimensions, the tensors K and U are given

by

Kkl(x, y) = − (xk − yk)(xl − yl)

π | x − y |4
2∑

m=1

(xm − ym)νm, k, l = 1, 2,

Ukl = − 1

4π

[
−δklln | x − y | +

(xk − yk)(xl − yl)

| x − y |2

]
, k, l = 1, 2.

Here δkl is the Kronecker tensor, x = (x1, x2), y = (y1, y2) and ν = (ν1, ν2). Nevertheless,

solving the boundary integral equation (6.2) analytically can be performed only in very

simple cases and therefore numerical methods seem more appropriate. The discretisation
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of the boundary integral equation (6.2) applied at x ∈ Γ is performed using the BEM [22]

for solving the direct mixed well-posed problems of the iterative algorithms described in

§ 3 and § 5.

The iterative processes are ceased according to the stopping criteria (4.7), (5.6) and

(5.8).

6.2 Numerical results and discussion

In this section we discuss the numerical results obtained using the iterative algorithms

proposed in § 3 and § 5 combined with the BEM described in § 6.1 for solving a Cauchy

problem in a two-dimensional bounded domain Ω, although the same conclusions hold

in higher dimensions. Let Γ0 and Γ1 be two infinitely long circular cylinders of radii

R0 and R1 satisfying 0 < R1 < R0. Let Ω = {(x, y) | R2
1 < x2 + y2 < R2

0} be the

annular domain between these cylinders which is filled with viscous fluid flowing at

low Reynolds numbers governed by the Stokes equations (6.1). The inverse Cauchy

problem is to determine the fluid velocity and the stress force (fluid traction) at the

inner cylinder Γ1 = {(x, y) | x2 + y2 = R2
1} by taking measurements at the outer cylinder

Γ0 = {(x, y) | x2 + y2 = R2
0}. Let us consider the following benchmark test example

u(x, y) = (4y3 − x2, 4x3 + 2xy − 1), p(x, y) = 24xy − 2x, (x, y) ∈ Ω (6.3)

which satisfies the Stokes equations (6.1) and has been previously considered by Zeb et

al. [23] in another type of inverse problem. Of course, in the practical fluid dynamics

context the viscous flow assumption implies that the velocity at the boundary should

equal the wall velocity, but in our benchmark test example we investigate a more general

situation. Furthermore, although example (6.3) has no physical meaning, because its

solution is explicitly known, the accuracy of the numerical results can easily be assessed.

The analytical example (6.3) generates the Cauchy data on Γ0 as given by

ϕ(x, y) = (4y3 − x2, 4x3 + 2xy − 1), (x, y) ∈ Γ0 (6.4)

ψ(x, y) = (−12y3 − 2y2 + 2x2 + 12x2y,−12x3 + 12xy2 − 8xy)/R0, (x, y) ∈ Γ0. (6.5)

For simplicity, we take R1 = 1 and R0 = 2 and employ M = 128 boundary elements to

discretise uniformly the boundary Γ = Γ0 ∪ Γ1 in the BEM discretisation of (6.2). An

arbitrary initial guess such as η0 =0 has been chosen to initiate the iterative algorithms

described in § 3 and § 5. To test the stability of the methods we add, in the input boundary

velocity data ϕ, some noise of the form

ϕε = ϕ(1 + αδ) (6.6)

where α% represents the percentage of noise and, for each component of ϕ, and δ is a

random real number taken from the uniform distribution over the interval [−1, 1].

Let us introduce the convergence and accuracy errors define by

ec(k) = ‖uk |Γ0
−ϕε‖L2(Γ0)n = ‖r̃k‖L2(Γ0)n , ea(k) = ‖ηk − u |Γ1

‖L2(Γ1)n , (6.7)
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Table 1. The optimal iteration numbers k(ε) for the CGM, LFM and MEM methods obtained

according to the stopping criteria (6.8) with τ ≈ 1 and (6.9) with τ ≈ 1.35, and the

convergence and accuracy errors ec and ea, respectively, for various percentages of noise

α ∈ {1, 3, 5}%

ε = 0.4900 ε = 1.4702 ε = 2.4504

τε = 0.6615 τε = 1.9845 τε = 3.3075

α = 1% α = 3% α = 5%

kCGM 9 7 5

kLFM 239 91 42

kMEM 6 3 2

ec(kCGM) 0.4794 1.4691 2.4460

ec(kLFM) 0.4898 1.4699 2.4483

ec(kMEM) 0.6608 1.6220 3.1763

ea(kCGM) 0.2881 1.2626 2.1000

ea(kLFM) 0.5334 1.4606 2.1455

ea(kMEM) 1.5988 2.7082 3.1075

where k is the iteration number, u |Γ1
is the exact fluid velocity on Γ1 which can be

obtained from (6.3) if the analytical solution is available, and ηk is obtained from the

iteration procedures with the Cauchy data ϕ = ϕε and ψ.

Based on (6.7), the LFM and CGM are ceased according to the discrepancy stopping

criteria (4.7) and (5.6), i.e. at the smallest index k = k(ε) for which

ec(k) � τε, (6.8)

whilst the MEM is ceased according to the stopping criterion (5.8), i.e. at the smallest

index k = k(ε) for which

Ec(k) :=

⎛
⎝ k∑

j=0

ec(j)
−2

⎞
⎠

−1/2

� τε. (6.9)

The comparison between the LFM (with γ = 0.1) and CGM has recently been undertaken

by Johansson & Lesnic [14], and below we extend the comparison with the MEM.

Using the stopping criteria (6.8) and (6.9), Table 1 shows the values of the noise level

ε, the stopping index k(ε), the convergence error ec(k(ε)) on Γ0 and the accuracy error

ea(k(ε)) on Γ1 given by (6.7), for various amounts of noise α ∈ {1, 3, 5}% added in ϕ as

in (6.6). Whilst for the CGM and the LFM the constant τ can be chosen close to unity,

for the MEM, values of τ between 1 and 1.1 produce numerical results which exhibit

a slightly oscillatory unstable behaviour and they become inaccurate, especially for the

fluid traction t. This investigation shows that the MEM is more sensitive to the choice

of τ than in the other iterative methods, as something expected from the preliminary

investigation of King [15]. In Table 1, a value of τ ≈ 1.35 was found to be optimal for

the MEM for all levels of noise. However, the values of τ > 1 chosen are still in the

range of suggestions made by Hansen & Hanke [11] and Hanke [10]. In any case, from
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Figure 1. The numerical solution for (a) u1(R1, θ), (b) u2(R1, θ), (c) t1(R1, θ) and (d) t2(R1, θ) for

α = 1% obtained using the CGM (–....–), LFM (− − −) and MEM (–..–) methods in comparison

with the corresponding analytical solutions (—) obtained from (6.3). The absolute errors (6.10) are

also included.

Table 1 it can be clearly seen that the parameter free procedures described in § 5 are much

faster (about 10–20 times) than the LFM described in § 3. In terms of accuracy, the CGM

performs best, followed by the LFM and the MEM.

Figures 1(a)–(d) show the numerical solutions for u1(R1, θ), u2(R1, θ), t1(R1, θ) and

t2(R1, θ), respectively, in comparison with the corresponding analytical solutions obtained

from (6.3), when α = 1%. For this value of α, according to Table 1, the LFM, CGM and

MEM are stopped after 239, 9 and 6 iterations, respectively. The corresponding absolute

errors between the numerical and analytical solutions denoted by

e(ui) = ‖uik |Γ1
−ui |Γ1

‖L2(Γ1), e(ti) = ‖tik |Γ1
−ti |Γ1

‖L2(Γ1), i = 1, 2 (6.10)

are also included in these figures. From Figures 1(a)–(d) it can be seen that the CGM

outperforms the LFM followed by the MEM in terms of accuracy. However, all the

methods produce stable and reasonably accurate numerical solutions. Similar results have

been obtained for other amounts of noise α ∈ {3, 5}%, and are therefore not presented.
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Once the boundary values for u and t are obtained accurately over the whole bound-

ary Γ , then the fluid velocity u and the pressure p inside the domain Ω can easily be

obtained from the integral equations [16]

u(x) =

∫
Γ

[
K(x, y)u(y) − U(x, y)t(y)

]
dS(y), x ∈ Ω

p(x) =

∫
Γ

[L(x, y) · u(y) − q(x, y) · t(y)] dS(y), x ∈ Ω

where, in two-dimensions, the vectors q and L are given by

qk(x, y) = − (xk − yk)

2π | x− y |2 , k = 1, 2,

Lk(x, y) =
nk

π | x− y |2 − 2(xk − yk)

π | x− y |2
2∑

m=1

(xm − ym)nm, k = 1, 2.

7 Conclusions

In this paper, we studied numerically the Cauchy problem for viscous stationary linear

generalized incompressible Stokes flow system with Cauchy data in L2 using three iterative

methods, namely the Landweber-Fridman (LFM), the conjugate gradient (CGM) and the

minimal error (MEM) methods. This rather weak requirement for the Cauchy data offers

practical applicability of the approach. The numerical implementation of the LFM, CGM

and MEM is accomplished by using the boundary element method (BEM) for solving

at each iteration two mixed direct well-posed boundary value problems for the Stokes

system. The iterative methods are ceased according to optimal order stopping criteria.

For a typical benchmark test example, a rapidly stable numerical solution is achieved

using the parameter free procedures in less than 10 iterations. Furthermore, a comparison

of the numerical results show that the CGM outperforms the LFM followed by the

MEM in terms of accuracy. While the LFM is quite slow to be competitive, especially for

large-scale problems, it requires further the choice of a parameter γ in a suitable range in

order to achieve convergence of the iterative method. On the other hand, whilst the MEM

whilst indicates a very fast iterative method, it is less stable and more inaccurate than

the other methods investigated. Overall, from the three iterative methods investigated in

this paper, the CGM is shown to perform the best in terms of rapidity of convergence,

stability and accuracy.
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