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The background method has been a successful tool in obtaining strict bounds on global
quantities such as the rate of energy dissipation and heat transfer in turbulent flows.
However, all applications of this method until now have focused on flows confined between
solid boundaries. An important class of problems that, by contrast, has received no
attention is the class of external flows, i.e. flow past a body. In this context, obtaining
the dependence of the drag coefficient on the Reynolds number is of crucial relevance
for many engineering applications. In this paper, we consider the classical problem of
flow past a flat plate of finite length at zero angle of incidence and use the background
method to obtain a bound on the drag coefficient. Assuming a statistically steady state
and appropriate far-field decay rates for the flow variables, we show that at large Reynolds
numbers, the drag coefficient (CD) is bounded by a constant, a bound that is within a
logarithmic factor of experimental data.
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1. Introduction

The idea of obtaining bounds on mean quantities using analysis techniques goes back
to Howard (1963), who was interested in deriving an upper bound on the heat transfer
in Rayleigh–Bénard convection, and inspired by Malkus’ maximal transport hypothesis
(Malkus 1954). With the help of variational techniques, Howard (1963) obtained a formal
bound on the heat transfer for solutions satisfying two integral constraints derived from the
governing equations. Busse (1969, 1970) subsequently improved and extended Howard’s
technique to obtain bounds on the rate of energy dissipation in plane Couette flow and
Poiseuille flow. Later, in a series of papers (Doering & Constantin 1992, 1994; Constantin
& Doering 1995; Doering & Constantin 1996), Doering and Constantin laid the foundation
of a new bounding method called the ‘background method’. This method also requires
certain integral constraints to be satisfied with the help of trial functions to obtain
a bound on the desired quantity. The freedom of choice of trial functions makes the
Doering–Constantin technique easier to implement than the Howard–Busse technique.
Kerswell (1997, 1998) showed that the best bounds obtained using the Howard–Busse
technique and the Doering–Constantin technique are the same for turbulent shear flows,
thereby establishing the link between the two approaches.
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900 A6-2 A. Kumar and P. Garaud

Until now, all the applications of the background method have focused on flows confined
between solid boundaries. Examples include bounds on the rate of energy dissipation
in surface-velocity-driven flows (Doering & Constantin 1992, 1994; Marchioro 1994;
Nicodemus, Grossmann & Holthaus 1997; Wang 1997; Hoffmann & Vitanov 1999;
Plasting & Kerswell 2003), pressure-driven flows (Constantin & Doering 1995) and
surface-stress-driven flows (Tang, Caulfield & Young 2004; Hagstrom & Doering 2014);
bounds on the heat transfer in Rayleigh–Bénard convection in various settings (Doering
& Constantin 1996, 2001; Otero et al. 2002; Plasting & Ierley 2005; Wittenberg 2010;
Whitehead & Doering 2011b; Whitehead & Wittenberg 2014; Goluskin 2015; Goluskin &
Doering 2016; Fantuzzi 2018) and Bénard–Marangoni convection (Hagstrom & Doering
2010; Fantuzzi, Pershin & Wynn 2018; Fantuzzi, Nobili & Wynn 2020); and bounds on
buoyancy flux in stably stratified shear flows (Caulfield & Kerswell 2001; Caulfield 2005).

Despite the tremendous success of the background method applied to confined flows,
there has been no application to external flows, such as flows past a streamlined or
bluff body. Studying external flow problems is crucial because of the numerous potential
applications in aerospace and naval engineering, including the design of airfoils, turbine
blades, ship hulls and submarines, to name a few. An important question of investigation
in all these cases is that of the dependence of the drag coefficient on the Reynolds
number. In general, this dependence can be quite complex. For example, in a uniform
flow past a cylinder, the flow dynamics undergoes several transitions, which leads to a
complex dependence of the drag coefficient on the Reynolds number (see Williamson
1996). Ideally, one would like to construct a theory to explain and quantify this complex
dependence; however, this task is too ambitious. As pointed out by Roshko (1993), there
is no theory to predict the drag coefficient associated with the flow past a cylinder at
moderate or large Reynolds numbers, a statement that still holds today. As such, obtaining
instead a strict upper bound on the drag coefficient that has the same scaling with
Reynolds number as the observations would be a significant and useful first step in the
right direction. Howard (1972) and Doering & Constantin (1994) have also previously
raised the possibility of extending bounding techniques to external flows, specifically
for a flow past a sphere. However, this extension has remained elusive due to various
mathematical difficulties. Proving bounds on the drag coefficient for flow past an object
therefore remains an open problem. As we demonstrate in this work, the case of flow past
a flat plate avoids these difficulties, enabling us to apply the background method to an
external flow problem for the first time.

The flow past a flat plate is a classical fluid problem that has served as a benchmark for
aerodynamicists for over a century. The first breakthrough towards obtaining an analytical
result was due to Prandtl (1904). He postulated that the effect of viscosity would only
be significant in a thin layer close to the surface of the body. This approximation led
to a reduction of the equations that were subsequently solved by Blasius (1908) for a
semi-infinite plate in the laminar regime using the similarity technique. The problem
considered in this paper, which is more relevant to engineering applications, is the problem
of a plate of finite length. Based on the Blasius solution, the drag coefficient for a plate of
finite length in the laminar regime decreases as O(Re−1/2) (see Schlichting & Gersten 2016,
p. 160), where Re = U∞L/ν is the Reynolds number based on the free-stream velocity
U∞, the length of the plate L and the kinematic viscosity ν. Wake formation behind the
plate leads to a higher-order correction to the Blasius solution, which is quite complicated
to obtain (see Stewartson 1969; Messiter 1970; Jobe & Burggraf 1974). In the turbulent
regime no exact analytical solutions exist, and one must rely on empirical formulae for the
drag coefficient obtained from experimental measurements. One of the standard empirical

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

47
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.477


Bound on the drag coefficient for a flat plate 900 A6-3

formulae (see Schlichting & Gersten 2016, p. 583) suggests that the drag coefficient for the
flat plate decreases as O((ln Re)−2) at high Reynolds number, when the flow is turbulent.
As we demonstrate in this paper, it is possible to obtain a bound on the drag coefficient
for a flat plate. This bound is independent of the Reynolds number, and therefore only a
logarithmic factor away from the experimental measurements at high Reynolds number.

The rest of the paper is arranged as follows. In § 2, we describe the flow configuration
and define the drag coefficient. In § 3, we describe the background method in the context
of a flat plate. In § 4, we divide our domain into subdomains for the purpose of defining
the background flow. We then obtain bounds on quantities in different subdomains and
combine them to obtain a bound on the drag coefficient. Finally, we conclude in § 5.

2. Flow configuration

Consider a plate of zero thickness and length L kept at zero incidence in a uniform
flow of an incompressible Newtonian fluid with flow speed U∞ and far-field pressure p∞.
The extent of the plate is infinite in the spanwise direction. Let ρ and ν, respectively, be
the density and kinematic viscosity of the fluid. The equations governing the flow are the
incompressible Navier–Stokes equations and in the non-dimensional form are given by

∇ · u = 0,
∂u
∂t

+ u · ∇u = −∇p + 1
Re

∇2u,

}
(2.1)

where we have used the following non-dimensionalization:

u = u∗

U∞
, p = p∗ − p∞

ρU2∞
, t = U∞t∗

L
, x = x∗

L
. (2.2a–d)

Here, u, p, t, and x are the non-dimensional velocity field, pressure field, time and spatial
coordinates, respectively, and Re = U∞L/ν is the Reynolds number for the flow. The
quantities with a superscript star are the dimensional quantities. The flow configuration can
be best described in a Cartesian coordinate system x = (x1, x2, x3). We fix the origin of
the coordinate system at the leading edge of the plate, with x1 pointing in the downstream
direction, x2 pointing upward, normal to the plate, and x3 being the spanwise direction.
The boundary condition on the surface of the plate is that of no slip, i.e.

u = 0 if x2 = 0 and 0 ≤ x1 ≤ 1. (2.3)

Far away from the plate, the flow is uniform and the pressure is constant. This condition
in non-dimensional variables can be written as

u → ex1, p → 0 as x1, x2 → ±∞, (2.4)

where ex1 denotes the unit vector in the streamwise direction. Finally, we also assume that
the flow is periodic in the spanwise direction (x3), with a non-dimensional period Ls. The
domain of interest therefore is

Ω = {(x1, x2, x3) | x3 ∈ [0, Ls]} \ {(x1, 0, x3) | x1 ∈ [0, 1], x3 ∈ [0, Ls]}. (2.5)
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900 A6-4 A. Kumar and P. Garaud

2.1. Drag coefficient
Let F∗ denote the long-time-averaged dimensional drag force on a section of the plate
with dimensional length L∗

s in the spanwise direction, where L∗
s = LLs. For a flat plate in

a uniform flow at zero incidence, the drag force is entirely due to skin friction, so we can
obtain F∗ in terms of the shear stress integrated over the top and bottom surface of the
plate. We define the drag coefficient to be the non-dimensional force per unit area:

CD = F∗

2 LL∗
s

/
1
2
ρU2

∞. (2.6)

In terms of non-dimensional variables, the drag coefficient is given by

CD = F
Re Ls

, (2.7)

where F = F∗/ρνU∞L is the non-dimensional force that can be written as

F = F∗

ρνU∞L
=
∫ Ls

0

∫ 1

0
τt dx1 dx3 +

∫ Ls

0

∫ 1

0
τb dx1 dx3, (2.8)

where τt and τb are the non-dimensional shear stresses on the top and bottom surfaces of
the plate at point (x1, 0, x3):

τt = ∂u1

∂x2

∣∣∣∣
x2→0+

, τb = − ∂u1

∂x2

∣∣∣∣
x2→0−

(2.9a,b)

and the overbar denotes the long-time average given as

[·] = lim
T→∞

〈[·]〉T, where 〈[·]〉T = 1
T

∫ T

0
[·] dt. (2.10)

2.2. The relationship between drag coefficient and non-dimensional dissipation
Let ũ denote the perturbation from the uniform flow, mathematically expressed as

ũ = u − ex1 . (2.11)

The governing equations for ũ are given by

∇ · ũ = 0, (2.12)

∂ũ
∂t

+ (ex1 + ũ) · ∇ũ = −∇p + 1
Re

∇2ũ, (2.13)

along with the boundary and the far-field conditions

ũ = −ex1 if x2 = 0 and 0 ≤ x1 ≤ 1, (2.14)

ũ → 0, p → 0 as x1, x2 → ±∞. (2.15)

The energy equation for ũ can be obtained by taking the dot product of (2.13) with ũ and
using the divergence-free condition (2.12), and is given by

1
2

∂|ũ|2
∂t

+ 1
2
∇ · [(ex1 + ũ)|ũ|2] = −∇ · (ũp) + 1

2Re
∇2|ũ|2 − 1

Re
|∇ũ|2. (2.16)
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Bound on the drag coefficient for a flat plate 900 A6-5

We define a domain ΩR as

ΩR = {(x1, x2, x3) | x3 ∈ [0, Ls], x2
1 + x2

2 ≤ R2} ∩ Ω, (2.17)

and we integrate (2.16) over ΩR with R > 1. After using the divergence theorem (see
Folland 2002, p. 240) and the boundary condition on the surface of the plate, this results
in

1
2

d
dt

∫
ΩR

|ũ|2 dx + 1
2

∫
SR

|ũ|2(ex1 + ũ) · n ds

= −
∫

SR

pũ · n ds + 1
2Re

∫
SR

∇|ũ|2 · n ds

+ 1
2Re

∫ Ls

0

∫ 1

0

[
(∇|ũ|2)|x2→0− − (∇|ũ|2)|x2→0+

] · ex1 dx1 dx3 − 1
Re

∫
ΩR

|∇ũ|2 dx,

(2.18)

where SR is the outer boundary of ΩR and n denotes the unit normal vector on the
boundary. At this point, we make two assumptions. We consider only those solutions
for which the decay rate of the flow variables ũ and p far from the plate is sufficient to
conclude that in (2.18) terms with an integral over SR vanish, while terms with a volume
integral over ΩR converge as R → ∞ uniformly in time t ∈ [0, T] for any T . We also
assume that the flow achieves a statistically steady state. Next, we perform the following
sequence of steps on (2.18):

(i) We take the time average of the equation from t = 0 to t = T .
(ii) We take the limit R → ∞.

(iii) We take the limit T → ∞.

We obtain the following result:

CD = 1
Re Ls

‖∇ũ‖2
2, (2.19)

where ‖ · ‖2 denotes the L2-norm defined as

‖ · ‖2 =
(∫

Ω

| · |2 dx
)1/2

. (2.20)

Now u = ũ + ex1 , which implies ∇u = ∇ũ. Therefore, in terms of the total velocity field,
the drag coefficient is

CD = 1
Re Ls

‖∇u‖2
2. (2.21)

This type of relation is commonly used in calculations of the drag force on bubbles and
drops (see Moore 1963; Harper & Moore 1968; Leal 2007, pp. 747–748) where it is
possible to calculate the dissipation in the flow field with higher order of accuracy than
the stresses on the surface.

3. Background method formulation

The background method formulation used here is the same as given in Doering &
Constantin (1994). The background method proceeds by decomposing the total flow (u)
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900 A6-6 A. Kumar and P. Garaud

into a divergence-free background flow (U) and a perturbed flow (v), i.e. u = U + v
with the condition that ∇ · U = 0 and ∇ · v = 0. We require that the background flow
U satisfies the no-slip boundary condition at the surface of the plate, and that far away
from the surface, U approaches ex1 sufficiently quickly so that the far-field decay rate of
perturbations v = u − U is comparable to that of ũ in the previous section. After some of
the usual algebraic manipulations, we obtain the energy equation of the perturbed flow as

1
2

∂|v|2
∂t

+ 1
2
∇ · (v|v|2) + 1

2
∇ · (U |v|2) + (v · ∇U) · v + (U · ∇U) · v

= −∇ · ( pv) + 1
Re

∇ · (v · ∇UT) − 1
Re

∇U : ∇v + 1
2Re

∇2|v|2 − 1
Re

|∇v|2, (3.1)

where, in index notation,

(v · ∇UT)i = vj∂iUj and ∇U : ∇v = ∂ivj∂iUj. (3.2)

Using the identity

∇u : ∇u = ∇U : ∇U + ∇v : ∇v + 2∇U : ∇v (3.3)

in (3.1), we obtain

1
2

∂|v|2
∂t

+ 1
2
∇ · (v|v|2) + 1

2
∇ · (U |v|2) + (v · ∇U) · v + (U · ∇U) · v + 1

2Re
|∇u|2

= −∇ · ( pv) + 1
Re

∇ · (v · ∇UT) + 1
2Re

∇2|v|2 + 1
2Re

|∇U |2 − 1
2Re

|∇v|2. (3.4)

Next, we perform the following sequence of steps on (3.4):

(i) We integrate it over ΩR for R > 1.
(ii) We take the time average of the equation from t = 0 to t = T .

(iii) We take the limit R → ∞.
(iv) We take the limit T → ∞.

We obtain the following result:

1
2Re

|∇u‖2
2 = 1

2Re
‖∇U‖2

2

− lim
T→∞

〈
1

2Re
‖∇v‖2

2 +
∫

Ω

(v · ∇U) · v dx +
∫

Ω

(U · ∇U) · v dx
〉

T

. (3.5)

In obtaining the above equation, we have used the assumption of a statistically steady state
and appropriate far-field decay rates for the flow variables, as in § 2.2. Next, we define the
functional H(v) as follows:

H(v) =
∫

Ω

(v · ∇U) · v dx︸ ︷︷ ︸
I

+
∫

Ω

(U · ∇U) · v dx︸ ︷︷ ︸
II

+ 1
2Re

‖∇v‖2
2︸ ︷︷ ︸

III

. (3.6)

The key to the background method is to find a constant γ and an incompressible
background flow U , with U → ex1 as |x| → ∞ and satisfying the no-slip boundary
condition at the surface of the plate, such that H(v) + γ is non-negative for all
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Bound on the drag coefficient for a flat plate 900 A6-7

time-independent incompressible vector fields v that decay to zero at infinity. This ensures
that H(v) + γ ≥ 0 also for time-dependent velocity fields v satisfying the equations of
motion of the flow. If we can find such U and γ , then (3.5) yields a bound

‖∇u‖2
2 ≤ ‖∇U‖2

2 + 2Re γ. (3.7)

Combining this with (2.21) gives an upper bound on the drag coefficient:

CD ≤ 1
Re Ls

‖∇U‖2
2 + 2

Ls
γ. (3.8)

4. Upper bound on drag coefficient

Obtaining the best upper bound on the drag coefficient using the background method
requires finding the optimal background flow that would minimize the right-hand side
of (3.8). However, it is not possible to find this optimal background flow analytically for
our problem, and even with the help of numerical methods this task is quite challenging
(Plasting & Kerswell 2003; Wen et al. 2013, 2015; Fantuzzi & Wynn 2015, 2016; Fantuzzi
2018; Tilgner 2017, 2019) and is a study in its own right. Therefore, in this paper, we
restrict the analysis to a simple family of background flow fields, involving a single free
parameter, for which the algebra remains tractable. In the next subsections, we therefore
have the following tasks at hand: (1) to define the background flow, (2) to obtain bounds
on terms I and II in (3.6) and (3) using these results, to obtain a bound on the drag
coefficient.

4.1. Background flow construction
In section § 3, the calculations merely required that U goes sufficiently quickly to ex1 as
|x| → ∞. However, to simplify the algebra, in this paper we choose a U that is actually
equal to ex1 outside a rectangular box Γ centred around the plate (see figures 1 and 2).
This ensures that ∇U is zero outside of Γ , so that any non-zero contribution to terms I
and II in (3.6) can only come from within the domain Γ . As a result, we only have to
estimate terms I and II inside Γ , which makes the forthcoming analysis easier to perform.
The rectangular box Γ is formally given by

Γ = {(x1, x2, x3) | − δ ≤ x1 ≤ 1 + δ, −δ ≤ x2 ≤ δ, 0 ≤ x3 ≤ Ls} ∩ Ω. (4.1)

The width of Γ in the spanwise direction is Ls which is the same as the periodicity of the
flow in that direction. The box Γ encloses the plate on all sides with a margin of length δ

(see figure 1), which we call the boundary layer thickness. For now, δ > 0 is an unknown
quantity, which will be adjusted later to make H(v) + γ positive semi-definite for some
constant γ . For the purpose of defining the background flow, we then partition Γ into eight
subdomains, also shown in figure 1. These can be mathematically written as

R1 = {(x1, x2, x3) | − δ ≤ x1 < 0, 0 ≤ x2 ≤ δ, 0 ≤ x3 ≤ Ls},
R2 = {(x1, x2, x3) | 0 ≤ x1 ≤ 1/2, 0 < x2 ≤ δ, 0 ≤ x3 ≤ Ls},
R3 = {(x1, x2, x3) | 1/2 ≤ x1 ≤ 1, 0 < x2 ≤ δ, 0 ≤ x3 ≤ Ls},

R4 = {(x1, x2, x3) | 1 < x1 ≤ 1 + δ, 0 ≤ x2 ≤ δ, 0 ≤ x3 ≤ Ls},
R5 = {(x1, x2, x3) | 1 < x1 ≤ 1 + δ, −δ ≤ x2 ≤ 0, 0 ≤ x3 ≤ Ls},

R6 = {(x1, x2, x3) | 1/2 ≤ x1 ≤ 1, −δ ≤ x2 < 0, 0 ≤ x3 ≤ Ls},
R7 = {(x1, x2, x3) | 0 ≤ x1 ≤ 1/2, −δ ≤ x2 < 0, 0 ≤ x3 ≤ Ls},
R8 = {(x1, x2, x3) | − δ ≤ x1 < 0, −δ ≤ x2 ≤ 0, 0 ≤ x3 ≤ Ls}.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.2)
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900 A6-8 A. Kumar and P. Garaud

R1

R8

R2

R7

R3

R6

R4

R5

δ

δ

FIGURE 1. The solid line in the centre represents the plate. The box Γ is the domain enclosed
between the plate and the thick dashed rectangular envelope (the spanwise direction is not visible
in this figure). Also shown is the division of Γ into the eight subdomains R1 to R8.

For convenience, we choose the background flow U to be spanwise invariant. We note
that this choice may not be possible in general. For example, for a flat plate with an
irregular leading edge (see figure 5b), we may have to use a background flow which
is three-dimensional. We define two functions, f : [0, δ] → R and g : [−δ, 0] → R, as
follows:

f (x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
1 + √

2
2δ

)
x2, 0 ≤ x ≤ δ√

2
,

(
√

2 + 2)x − 1 + √
2

2δ

(
x2 + δ2

)
,

δ√
2

< x ≤ δ,

(4.3)

g(x) =
(

1 + x

δ

)2
(

1 − 2x

δ

)
, −δ ≤ x ≤ 0. (4.4)

With these definitions, we are equipped to construct the streamfunction, Ψ : Ω → R, for
our background flow:

Ψ (x1, x2, x3) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( f (x2) − x2)g(x1) + x2, (x1, x2, x3) ∈ R1,

f (x2), (x1, x2, x3) ∈ R2 ∪ R3,

( f (x2) − x2)g(1 − x1) + x2, (x1, x2, x3) ∈ R4,

(−f (−x2) − x2)g(1 − x1) + x2, (x1, x2, x3) ∈ R5,

−f (−x2), (x1, x2, x3) ∈ R6 ∪ R7,

(−f (−x2) − x2)g(x1) + x2, (x1, x2, x3) ∈ R8,

x2, (x1, x2, x3) ∈ Ω \
8⋃

i=1

Ri.

(4.5)

The background velocity field is defined based on the streamfunction (4.5) as

U = (U1, U2, U3) =
(

∂Ψ

∂x2
,−∂Ψ

∂x1
, 0
)

. (4.6)

See appendix B for a sketch of the construction this background flow. It can be shown that
this flow is piecewise differentiable in Ω . Figure 2 shows the streamwise component of
U as a function of x2 at different positions x1 as well as lines of constant Ψ which are
streamlines of U . Outside Γ , the background flow is uniform. It then enters from the left
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(a) (b)

FIGURE 2. (a) Streamwise velocity profile at different positions x1. (b) Streamlines of the
background flow field given by (4.6). In both panels, the dashed line marks the boundary of Γ .

side of Γ , rearranges itself to satisfy the no-slip boundary condition on the surface of the
plate and leaves Γ in the exact same manner as it entered. The imposed divergence-free
condition on the background flow explains the observed bulge in the streamwise velocity
profile. Note that this background flow is a purely mathematical construct and is different
from the mean flow that would be obtained in the standard Reynolds decomposition.

4.2. Bounds in subdomain R1

In what follows, we make frequent use of two inequalities, which are stated as lemmas
below. Their proof can be found in appendix A.

LEMMA 4.1. If w : R2 → R is a square integrable scalar function with w(x1, 0, x3) = 0
for 0 ≤ x1 ≤ 1/2 and 0 ≤ x3 ≤ Ls then

∫
R2

w2 dx ≤ δ2

2

∫
R2

|∇w|2 dx. (4.7)

LEMMA 4.2. Let w : R1 ∪ R2 → R be a square integrable scalar function such that
w(x1, 0, x3) = 0 for x1 ∈ [0, δ] and x3 ∈ [0, Ls]. If δ ≤ 1/2 then the following inequality
holds: ∫

R1

w2 dx ≤ 4δ2
∫

R1∪R2

|∇w|2 dx. (4.8)

For the chosen background flow, the integrands of I and II in (3.6) are non-zero only
inside Γ . Also, the fore–aft and top–bottom symmetry of the background flow ensures that
bounds on I and II restricted to R1, R4, R5 and R8 are identical. We first obtain a bound on
I restricted to R1 and denote it by IR1 :

|IR1 | =
∣∣∣∣
∫

R1

(v · ∇U) · v dx

∣∣∣∣ =
∣∣∣∣
∫

R1

[
v2

1
∂U1

∂x1
+ v1v2

(
∂U1

∂x2
+ ∂U2

∂x1

)
+ v2

2
∂U2

∂x2

]
dx

∣∣∣∣
≤ K1

δ

∫
R1

v2
1 dx + K2

δ

∫
R1

|v1||v2| dx + K3

δ

∫
R1

v2
2 dx

≤ 1
δ
(K1 + K2c1)

∫
R1

v2
1 dx + 1

δ

(
K3 + 1

4c1
K2

)∫
R1

v2
2 dx
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≤ 4δ(K1 + K2c1)

∫
R1∪R2

|∇v1|2 dx

+ 4δ

(
K3 + 1

4c1
K2

)∫
R1∪R2

|∇v2|2 dx, (4.9)

where

K1 = ess sup
(x1,x2,x3)∈R1

δ

∣∣∣∣∂U1

∂x1

∣∣∣∣ = 3
2

achieved as x1 → −δ

2
, x2 → 0,

K2 = ess sup
(x1,x2,x3)∈R1

δ

∣∣∣∣∂U1

∂x2
+ ∂U2

∂x1

∣∣∣∣ = 5√
2

− 1
2

achieved as x1 → 0, x2 → δ√
2
,

K3 = ess sup
(x1,x2,x3)∈R1

δ

∣∣∣∣∂U2

∂x2

∣∣∣∣ = 3
2

achieved as x1 → −δ

2
, x2 → 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.10)

and c1 is some positive constant. In (4.10) ‘ess sup’ denotes the essential supremum. We
have used Young’s inequality to obtain line three in (4.9). We then used lemma 4.2 to get
the last inequality in (4.9).

A bound on II restricted to subdomain R1 is given by

|IIR1 | =
∣∣∣∣
∫

R1

(U · ∇U) · v dx

∣∣∣∣ ≤
∫

R1

K4

δ
|v| dx

≤
∫

R1

δ−1/2|v|2 dx + K2
4δ

1/2Ls

4

≤ 4δ3/2
∫

R1∪R2

|∇v|2 dx + K2
4δ

1/2Ls

4
, (4.11)

where

K4 = ess sup
(x1,x2,x3)∈R1

δ|U | |∇U | = 1 + √
2

2
√

2

√
39 − 10

√
2 ≈ 4.2556,

which is achieved as x1 → −δ

2
, x2 → 0. (4.12)

As before, we have used Young’s inequality to obtain line two and then lemma 4.2 to
obtain line three in (4.11). Later, we will see that the contribution of II is of higher order
in δ compared with that of I, and therefore will not participate in the leading term of the
final bound.

4.3. Bounds in subdomain R2

We first note that bounds on I and II restricted to subdomains R2, R3, R6 and R7 will be
identical. A bound on I restricted to subdomain R2 can be obtained as follows:

|IR2 | =
∣∣∣∣
∫

R2

(v · ∇U) · v dx

∣∣∣∣ =
∣∣∣∣
∫

R2

v1
dU1

dx2
v2 dx

∣∣∣∣
≤ K5

δ

∫
R2

|v1||v2| dx
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≤ K5c2

δ

∫
R2

v2
1 dx + K5

4c2δ

∫
R2

v2
2 dx

≤ K5c2

2
δ

∫
R2

|∇v1|2 dx + K5

8c2
δ

∫
R2

|∇v2|2 dx, (4.13)

where

K5 = ess sup
(x1,x2,x3)∈R2

δ

∣∣∣∣dU1

dx2

∣∣∣∣ = 1 +
√

2 which is achieved when x2 ∈
(

0,
δ√
2

)
∪
(

δ√
2
, δ

)
,

(4.14)

and c2 is some positive constant. We have used Young’s inequality to obtain line three in
(4.13). To obtain line four, we used lemma 4.1.

Finally, since U is unidirectional in R2, we have

|IIR2 | =
∣∣∣∣
∫

R2

(U · ∇U) · v dx

∣∣∣∣ = 0. (4.15)

4.4. Bound on drag coefficient
In this subsection, we combine the bounds obtained from §§ 4.2 and 4.3 to obtain a
bound on the sum of the absolute value of I and II. We then optimize the size of the
boundary layer (δ) to ensure that H(v) + γ is positive semi-definite for some constant γ

and simultaneously obtain a best possible bound on the drag coefficient compatible with
our estimates. From the bounds obtained in R1 and R2, we first note that

2∑
i=1

∣∣∣∣
∫

Ri

(v · ∇U) · v dx

∣∣∣∣ ≤ δ

(
4K1 + 4K2c1 + K5c2

2

)∫
R1∪R2

|∇v1|2 dx

+ δ

(
4K3 + K2

c1
+ K5

8c2

)∫
R1∪R2

|∇v2|2 dx. (4.16)

A similar type of calculation can be performed for terms

4∑
i=3

∣∣∣∣
∫

Ri

(v · ∇U) · v dx

∣∣∣∣ , 6∑
i=5

∣∣∣∣
∫

Ri

(v · ∇U) · v dx

∣∣∣∣ and
8∑

i=7

∣∣∣∣
∫

Ri

(v · ∇U) · v dx

∣∣∣∣ .
Combining these estimates yields a bound on I as

|I| =
∣∣∣∣
∫

Ω

(v · ∇U) · v dx

∣∣∣∣ ≤ 8∑
i=1

∣∣∣∣
∫

Ri

(v · ∇U) · v dx

∣∣∣∣
≤ δ

(
4K1 + 4K2c1 + K5c2

2

)∫
⋃8

i=1 Ri

|∇v1|2 dx

+ δ

(
4K3 + K2

c1
+ K5

8c2

)∫
⋃8

i=1 Ri

|∇v2|2 dx

≤ δM
∫

Ω

|∇v|2 dx, (4.17)
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where

M = inf
c1,c2>0

max
{

4K1 + 4K2c1 + K5c2

2
, 4K3 + K2

c1
+ K5

8c2

}

= 21
4

(1 +
√

2) ≈ 12.6746. (4.18)

Note that the infimum is achieved when

c1 = c2 = 1
2 . (4.19)

Using the results from §§ 4.2 and 4.3, a bound on II is given by

|II| =
∣∣∣∣
∫

Ω

(U · ∇U) · v dx

∣∣∣∣ ≤ 4δ3/2
∫

Ω

|∇v|2 dx + K2
4δ

1/2Ls. (4.20)

From § 3, we note that our goal is to make H(v) + γ non-negative for some constant
γ . Using the estimates obtained on I in (4.17) and II in (4.20) along with the triangle
inequality, we get a bound on H(v) as

H(v) ≥
(

1
2Re

− δM − 4δ3/2

)
‖∇v‖2

2 − K2
4δ

1/2Ls. (4.21)

If we define γ = K2
4δ

1/2Ls, then choosing δ such that

δ(M + 4δ1/2) ≤ 1
2Re

(4.22)

ensures that H(v) + γ is positive semi-definite. Another constraint on δ comes from the
applicability of lemma 4.2, which requires

δ ≤ 1
2 . (4.23)

Once γ is fixed, we can obtain the desired bound on the drag coefficient by substituting
the background flow (4.6) in (3.8). This yields

CD = 1
Re Ls

‖∇u‖2
2 ≤ 4B1

Re Ls
+ 4B2

Re Ls
+ 2K2

4δ
1/2, (4.24)

where

B1 =
∫

R1

|∇U |2 dx ≈ 2.96Ls and B2 =
∫

R2

|∇U |2 dx = (1 + √
2)2

2
Ls

δ
. (4.25)

The value of B1 is calculated numerically. Inserting (4.25) along with the value of K4 from
(4.12) into (4.24), leads to

CD ≤ 2(1 + √
2)2

Re δ
+
(

12
√

2 + 77
4

)
δ1/2 + 11.84

Re
, (4.26)

where δ satisfies the constraints (4.22) and (4.23). For Re > 0.0645, the optimal bound is
obtained when δ satisfies

δ(M + 4δ1/2) = 1
2Re

(4.27)
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(see appendix C for more detail). In the limit of high Reynolds number, we can solve (4.27)
for δ to get

δ = 1
2MRe

+ O(Re−3/2). (4.28)

Combining (4.18) and (4.28) with (4.26) yields a bound on the drag coefficient for
sufficiently high Re as

CD ≤ 21 × (1 +
√

2)3 + O(Re−1/2) ≈ 295.49 + O(Re−1/2). (4.29)

4.5. Comparison with observations
We now compare our findings with existing theoretical and experimental results for the
drag coefficient for flow past a flat plate. The drag coefficient for a laminar flow past a flat
plate was obtained using the triple-deck theory (see Stewartson 1969; Messiter 1970; Jobe
& Burggraf 1974), and is given by

CD = 1.328√
Re

+ 2.67
Re7/8 + O(Re−1) for 100 � Re � 5 × 105. (4.30)

In the turbulent regime, an empirical formula for the drag coefficient based on the law of
the wall for a smooth plate (see Schlichting & Gersten 2016, p. 583) is given by

CD = 2
[ κ

ln Re
G(Λ; D)

]2
for Re � 107, (4.31)

where κ = 0.41 is the von Kármán constant,

Λ = ln Re, D = 2 ln κ + 2κ, (4.32a,b)

and G is the solution of the following equation:

Λ

G
+ 2 ln

Λ

G
− D = Λ. (4.33)

This function has the property that

lim
Λ→∞

G(Λ; D) = 1, (4.34)

which implies that at very high Reynolds number

CD ∼ 0.34
ln2 Re

. (4.35)

In terms of scaling, our upper bound therefore overestimates the drag coefficient by
the square of the logarithm of the Reynolds number for sufficiently large Re. Figure 3
compares the bound (4.29) with the analytical result (4.30) in the laminar regime and with
empirical formula (4.31) in the turbulent regime. Although our theory only applies to a
smooth flat plate, we also show for comparison empirical results for the drag coefficients
for a flow past rough plates (see Schlichting & Gersten 2016, p. 584). It is interesting to
note that the drag coefficient does tend to a constant at high Reynolds number in these
cases, which is the same scaling as our bound. We also note that in many scenarios, it
has been possible to produce simple power-law bounds with logarithms (Doering, Otto &
Reznikoff 2006; Otto & Seis 2011; Whitehead & Doering 2011a; Whitehead & Wittenberg
2014; Fantuzzi et al. 2020). Whether there exists a more careful construction of the
background flow for the flat plate, which may produce the logarithmic correction needed
to match empirical observations, remains to be seen.
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Re

CD

103 104 105 106 107 108 109
10−5

10−4

10−3

10−2

10−1

100

101

102

295.49

103

Laminar: (4.30)
Turbulent: (4.31)

Rough plates

Bound: (4.29)

FIGURE 3. The solid black line is the leading-order term in the bound (4.29) on the drag
coefficient. For the range of Reynolds number considered in this figure, a bound obtained by
solving (4.26) and (4.27) would differ only by 0.3 % from this leading term at most. The blue
line shows the analytical expression for the drag coefficient in the laminar regime given by (4.30).
The red line shows the empirical formula for the drag coefficient in the turbulent regime for a
smooth plate given by (4.31). In both of these cases a solid line denotes the region of validity
of the formulae. For 5 × 105 � Re � 107, the experimental data seem to fall between these two
lines (see Schlichting & Gersten 2016, p. 10). The green dashed lines show the drag coefficient
variation for two rough plates with different roughnesses (see Schlichting & Gersten 2016,
p. 584).

5. Discussion and concluding remarks

In this paper, we presented the first application of the background method to an external
flow problem. Using this method, we were able to obtain an upper bound on the drag
coefficient for a flat plate in a uniform flow kept at zero incidence. In particular, we showed
that the drag coefficient is bounded by a constant at high Reynolds number (see 4.29).

In obtaining this bound, we considered a fairly simple family of background flows that
involves only one free parameter δ, and used relatively crude estimates derived from
standard inequalities. We acknowledge that a better bound can most likely be obtained
using more refined analysis techniques, and with a better background flow. For example, by
choosing a family of background flows which involves additional free parameters, we can
in principle improve the bound. However, such considerations will almost certainly come
at the expense of complicated algebraic manipulations. It is worth noting that in other
studies involving the background method, such as those concerned with plane Couette
flow (Doering & Constantin 1992, 1994), it is possible to obtain a constant bound on
the drag coefficient that is relatively close to the empirically determined values even
with crude estimates. The reason behind this disparity between our study and that of
plane Couette flow lies in the fact that in the case of a flat plate, the no-slip boundaries
have lower-dimensional boundaries of their own, namely the plate’s leading and trailing
edges. This fact makes it challenging to obtain good analytical bounds in the regions R1,
R4, R5 and R8 which are not immediately adjacent to no-slip boundaries (see proof of
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Bound on the drag coefficient for a flat plate 900 A6-15

lemma 4.2 in appendix A). Regardless of this difficulty, we did not do any worse in terms
of scalings of the bound: as in the case of Couette flow, we obtain a bound which is within
a logarithmic factor of the observations.

As noted early on (Doering & Constantin 1994; Plasting & Kerswell 2003), the
background flow is different from the mean flow that one would obtain from the Reynolds
decomposition. However, it is worth mentioning that for plane Couette flow, the optimal
background profile does bear some resemblance to the mean flow. In particular, Plasting
& Kerswell (2003) found that it has steep gradients near the wall, and is flat in the bulk,
even though this optimal background flow does not capture the logarithmic layer. For
the case of a flat plate, experiments at high Reynolds numbers show the development
of a laminar boundary layer near the leading edge, followed by a transition to a thicker
turbulent boundary layer further downstream. Behind the plate, a wake forms which
gradually dissipates far away from the plate. Since the family of background flows that we
consider here does not have these features, it would be interesting to determine whether
the optimal background flow for the flat plate problem bears any similarity to the mean
flow, and whether the corresponding optimal bound would improve on the scaling with
Re that we have obtained. To answer these questions would require finding the optimal
background flow, using techniques similar to the studies of Plasting & Kerswell (2003),
Wen et al. (2013), Wen et al. (2015), Fantuzzi & Wynn (2015), Fantuzzi & Wynn (2016),
Fantuzzi (2018), Tilgner (2017) and Tilgner (2019). However, this will be substantially
more complicated in the case of the flat plate owing to the fully two-dimensional nature of
the background flow.

In this paper, we chose to obtain a bound on the drag coefficient for a flat plate because
of the fundamental nature of the problem. Unfortunately, this analysis cannot be directly
extended to the problem of flow past a bluff body, or flow past a flat plate at a non-zero
angle of attack (see figure 4). Indeed, while in the present case |∇U | = O(δ−1) in the
boundary layer, for these problems an elementary choice of the background flow U , where
∇U is non-zero only in a thin boundary layer of thickness δ near the body, would have
|∇U | = O(δ−2) because of the divergence-free condition on U . As a result, the equivalent
bound on I, obtained from arguments similar to the ones given in § 4, would be

|I| ≤ C
∫

Ω

|∇v|2 dx = 2C Re III, (5.1)

where C is some positive constant independent of δ. Because the factor multiplying III in
(5.1) is independent of δ, it is not possible to choose δ to ensure that H(v) + γ be positive
semi-definite. Hence, with the naive choice of background flow considered in figure 4,
it is impossible to obtain a bound on the drag coefficient. It remains to be determined
whether there exists a smarter choice of background flow for these cases, that would allow
the analysis to proceed, or whether it is impossible to obtain a bound without invoking
additional dynamical constraints.

Nevertheless the procedure developed in this paper can be generalized to other
interesting scenarios with applications in engineering. For example, we can obtain a
similar type of bound for a yawed flat pate, a flat plate with an irregular leading edge
or a group of flat plates (see figure 5). Interestingly, some of these scenarios can be quite
challenging to simulate numerically at high Reynolds numbers. It would be interesting to
find out if, in reality, the drag coefficient tends to a constant at high enough Reynolds
number for these problems.
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(b)(a)

FIGURE 4. An elementary choice of the background flow (U): (a) case of flow past a cylinder
and (b) case of flow past a flat plate with non-zero angle of attack. In both cases the streamlines
have to squeeze around the body because of the incompressiblity of the background flow. As
a result, |∇U | = O(δ−2) as opposed to the present case where |∇U | = O(δ−1) inside the
boundary layer.

U∞ U∞

U∞

(b)(a)

(c)

FIGURE 5. A few flow configurations where the present analysis can be generalized. The arrow
shows the direction of the uniform flow, and in all the configurations the objects are kept at zero
incidence and are of zero thickness. These configurations are (a) a yawed flat plate (top view),
(b) a flat plate with irregular leading edge (top view) and (c) a group of flat plates (side view).
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Appendix A. Proof of lemmas 4.1 and 4.2

In this appendix, we first state the two lemmas used in the main text in their full form
and then prove them.

LEMMA 4.1. Let w : [0, δ] → R be a square integrable function such that w(0) = 0 for
x = 0, then the following inequality holds:∫ δ

0
w2 dx ≤ δ2

2

∫ δ

0

(
dw
dx

)2

dx . (A 1)

As a result, if w : R2 → R is a square integrable function with w(x1, 0, x3) = 0 for 0 ≤
x1 ≤ 1/2 and 0 ≤ x3 ≤ Ls then∫

R2

w2 dx ≤ δ2

2

∫
R2

(
∂w
∂x2

)2

dx ≤ δ2

2

∫
R2

|∇w|2 dx. (A 2)

Proof. For y ∈ [0, δ], using the fundamental theorem of calculus and the Cauchy–Schwarz
inequality, we can prove the following estimate:

w2( y) =
∣∣∣∣
∫ y

0

dw
dx

dx

∣∣∣∣2

≤
(∫ y

0
12 dy

)(∫ δ

0

(
dw
dx

)2

dx

)
= y

∫ δ

0

(
dw
dx

)2

dx . (A 3)

Integrating in y from 0 to δ gives the desired result (A 1). The inequality such as in this
lemma has been frequently used in previous studies involving the background method
going back to Doering & Constantin (1992). �

LEMMA 4.2. Let w : R1 ∪ RT → R be a square integrable function such that
w(x1, 0, x3) = 0 for x1 ∈ [0, δ] and x3 ∈ [0, Ls], then the following inequality holds:∫

R1

w2 dx ≤ 4δ2
∫

RT

[(
∂w
∂x1

)2

+
(

∂w
∂x2

)2
]

dx + δ2
∫

R1

(
∂w
∂x1

)2

dx, (A 4)

where
RT = {(x1, x2, x3) | x1 ≥ 0, x2 > 0, x1 + x2 ≤ δ, 0 ≤ x3 ≤ Ls}. (A 5)

Note that if δ ≤ 1/2 then RT ⊆ R2 and therefore we also have∫
R1

w2 dx ≤ 4δ2
∫

R2

[(
∂w
∂x1

)2

+
(

∂w
∂x2

)2
]

dx + δ2
∫

R1

(
∂w
∂x1

)2

dx

≤ 4δ2
∫

R1∪R2

|∇w|2 dx. (A 6)

Proof. The proof of this inequality roughly works as follows. We first control the value of
w at point p2 (see figure 6) using the gradient of w along the line p2p3, similar to the proof
of lemma 4.1. We then control the value of w at point p1 using the gradient of w along
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p1

p2

p3

FIGURE 6. The thick line in the centre is the plate. Here Γ is the domain enclosed between
the plate and the dashed rectangle (the spanwise direction is not visible in this figure). The
shaded triangular region is RT as defined in (A 5). Here, p1, p2 and p3 are the points (x1, x2, x3),
(0, x2, x3) and (x2, 0, x3). The point p1 belongs to R1.

the line p1p2, again similar to the proof of lemma 4.1. For (0, y2, y3) ∈ R1 ∩ RT , using the
fundamental theorem of calculus and the Cauchy–Schwarz inequality, we can prove the
following estimate:

|w(0, y2, y3)| =
∣∣∣∣
∫ y2

−y2

∂

∂η
w
(

y2 − η

2
,

y2 + η

2
, y3

)
dη

∣∣∣∣
≤
(∫ y2

−y2

12 dη

)1/2
(∫ y2

−y2

[
∂

∂η
w
(

y2 − η

2
,

y2 + η

2
, y3

)]2

dη

)1/2

≤ (2δ)1/2

(∫ y2

−y2

[
∂

∂η
w
(

y2 − η

2
,

y2 + η

2
, y3

)]2

dη

)1/2

. (A 7)

This implies ∫ Ls

0

∫ δ

0
w2(0, y2, y3) dy2 dy3

≤ 2δ

∫ Ls

0

∫ δ

0

∫ y2

−y2

[
∂

∂η
w
(

y2 − η

2
,

y2 + η

2
, y3

)]2

dη dy2 dy3. (A 8)

We use the following change of variables on the right-hand side of (A 8):

(η, y2, y3) �→ (x2 − x1, x1 + x2, x3). (A 9)

The region of integration for the integral on the right-hand side of (A 8) in the old
coordinates is

{(η, y2, y3) | − y2 ≤ η ≤ y2, 0 ≤ y2 ≤ δ, 0 ≤ y3 ≤ Ls}. (A 10)

In the new coordinates, it is easy to show that this corresponds to

{(x1, x2, x3) | 0 ≤ x1, 0 ≤ x2, x1 + x2 ≤ δ, 0 ≤ x3 ≤ Ls}. (A 11)

The Jacobian for the coordinate transformation (A 9) is given by∣∣∣∣ ∂(η, y2, y3)

∂(x1, x2, x3)

∣∣∣∣ = 2, (A 12)
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and the partial derivative of a quantity with η in the new coordinates is

∂[·]
∂η

= 1
2

∂[·]
∂x2

− 1
2

∂[·]
∂x1

. (A 13)

Using these pieces of information, we rewrite (A 8) in the new coordinates (x1, x2, x3) as∫ Ls

0

∫ δ

0
w2(0, y2, y3) dy2 dy3

≤ δ

∫ Ls

0

∫ δ

0

∫ δ−x2

0

[
∂

∂x2
w(x1, x2, x3) − ∂

∂x1
w(x1, x2, x3)

]2

dx1 dx2 dx3

=⇒
∫ Ls

0

∫ δ

0
w2(0, y2, y3) dy2 dy3

≤ 2δ

∫ Ls

0

∫ δ

0

∫ δ−x2

0

[
∂

∂x1
w(x1, x2, x3)

]2

+
[

∂

∂x2
w(x1, x2, x3)

]2

dx1 dx2 dx3. (A 14)

We also have, for any ( y1, y2, y3) ∈ R1,

w( y1, y2, y3) = w(0, y2, y3) +
∫ y1

0

∂

∂η
w(η, y2, y3) dη

=⇒ w2( y1, y2, y3) ≤ 2w2(0, y2, y3) + 2
(∫ y1

0

∂

∂η
w(η, y2, y3) dη

)2

≤ 2w2(0, y2, y3) + 2(−y1)

∫ 0

y1

[
∂

∂η
w(η, y2, y3)

]2

dη. (A 15)

Note that we have obtained the second line using Young’s inequality and the last line using
the Cauchy–Schwarz inequality.

=⇒
∫ Ls

0

∫ δ

0

∫ 0

−δ

w2( y1, y2, y3) dy1 dy2 dy3 ≤ 2δ

∫ Ls

0

∫ δ

0
w2(0, y2, y3) dy2 dy3

+ δ2
∫ Ls

0

∫ δ

0

∫ 0

−δ

[
∂

∂η
w(η, y2, y3)

]2

dη dy2 dy3. (A 16)

Renaming the variables in the second integral of the above inequality from (η, y2, y3) to
(x1, x2, x3) and using (A 14) gives∫ Ls

0

∫ δ

0

∫ 0

−δ

w2( y1, y2, y3) dy1 dy2 dy3

≤ 4δ2
∫ Ls

0

∫ δ

0

∫ δ−x2

0

[
∂

∂x2
w(x1, x2, x3)

]2

+
[

∂

∂x1
w(x1, x2, x3)

]2

dx1 dx2 dx3

+ δ2
∫ Ls

0

∫ δ

0

∫ 0

−δ

[
∂

∂x1
w(x1, x2, x3)

]2

dx1 dx2 dx3, (A 17)

which is the desired result. �
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Appendix B. Sketch of the construction of the background flow (4.6)

The choice of a background flow, which leads to a constant bound on the drag
coefficient, is not unique. Beyond the fact that the background flow (U) should be
divergence-free and should satisfy the inhomogeneous boundary conditions, the principle
that guides our choice of background flow is the simplification of the algebra. We start by
restricting U to be spanwise invariant. Next, we choose this U to be ex1 outside a bounded
domain Γ enclosing the plate. Therefore ∇U = 0 outside Γ , which makes the terms I
and II in (3.6) vanish outside Γ . Undoubtedly, the most straightforward choice of Γ is
a rectangular box. We choose this box to be centred around the plate with a margin of δ

(see figure 1). At this stage, the goal is to construct a divergence-free background flow U
satisfying the no-slip boundary condition on the plate surface, which is equal to ex1 outside
this rectangular box. Within Γ , we select for simplicity a flow that is symmetric about the
plane x2 = 0, which leaves the problem of defining the background flow U to regions R1,
R2, R3 and R4 in figure 1. In regions R2 and R3, we choose U to be unidirectional (so the
streamwise component is non-zero) which drops to zero on the surface. Its value should
reach ex1 at a height δ from the surface, i.e. at the edge of Γ . The most straightforward
choice of U would be a velocity profile which linearly varies from 0 to ex1 , a choice which
is usually made in the study of confined flows between planar boundaries (see e.g. Doering
& Constantin 1992; Hagstrom & Doering 2014). However, in the present case, this choice
would not preserve the mass flux that enters from the left-hand side of the box. The next
simplest choice of U is a piecewise linear function with two pieces, as shown in figure 7(a)
and given as follows:

U |R2∪R3(x) =

⎧⎪⎨
⎪⎩

Up
x2

δp
ex1, 0 ≤ x2 ≤ δp,(

Up
δ − x2

δ − δp
+ x2 − δp

δ − δp

)
ex1, δp < x2 ≤ δ,

(B 1)

where Up denotes the maximum value of the streamwise component of U and δp is the
height at which this maximum value is achieved. Along with balancing the mass flux,
we choose (again for simplicity) the quantities Up and δp such that the magnitude of
the gradient of U is equal above and below the height x2 = δp. In total, we require the
following two conditions to be satisfied:

∫ Ls

x3=0

∫ δ

x2=0
U |R2∪R3 dx2 dx3 =

∫ Ls

x3=0

∫ δ

x2=0
ex1 dx2 dx3,

∣∣∣∣Up

δp

∣∣∣∣ =
∣∣∣∣1 − Up

δ − δp

∣∣∣∣
=⇒ Up = 1 + 1√

2
, δp = 1√

2
. (B 2)

Once U is fully constructed on the top and bottom of the plate, we focus on the region
R1, which is not immediately adjacent to the plate. This is the region where the streamlines
shift upward, which implies that the vertical component of U is also non-zero. In order to
satisfy the divergence-free condition, it is convenient to work with the streamfunction Ψ
to construct U . First, note that the expression for the streamfunction Ψ corresponding to
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U = Upex
1 Ψ = ?Ψ = x2

Ψ = x2

Ψ = f (x2)δ
δp

(b)(a)

FIGURE 7. (a) Illustration of the piecewise linear choice of background flow on top of the plate.
Here, Up is the maximum value of the streamwise component of U and δp denotes the height
from the plate where this value is achieved. (b) Illustration of the region R1, where the
streamfunction Ψ of the background flow U remains to be determined once Ψ is constructed
on top of the plate.

the velocity field on top of the plate is

Ψ |R2∪R3(x) = f (x2) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
1 + √

2
2δ

)
x2

2 , 0 ≤ x2 ≤ δ√
2
,

(
√

2 + 2)x2 − 1 + √
2

2δ

(
x2

2 + δ2
)
,

δ√
2

< x2 ≤ δ,

(B 3)

where f is the same as defined in (4.3). Inside the region R1, the streamfunction Ψ
must smoothly change from Ψ (x) = x2 on the left-hand side of R1 (at x1 = −δ) to
Ψ (x) = f (x2) on the right-hand side of R1 (at x1 = 0), as shown in figure 7(b). Imposing
the condition of mirror symmetry about x2 = 0 also requires the vertical component of U
to be zero at x2 = 0, which implies that ∂Ψ/∂x1 = 0 at x2 = 0. One way of defining the
streamfunction in the region R1, which obeys these conditions, is as follows:

Ψ |R1(x) = (f (x2) − x2)g(x1) + x2, (B 4)

where we require the function g to satisfy the boundary conditions g(−δ) = 0 and
g(0) = 1. Now to ensure the continuity of U the function g should be smooth enough
and a choice of g that suffices for our purpose is

g(x1) =
(

1 + x1

δ

)2
(

1 − 2x1

δ

)
, −δ ≤ x1 ≤ 0. (B 5)

This function g is the same as defined in (4.4). Finally, we define the streamfunction Ψ

in region R4 so that the resultant flow goes back to being uniform on the right-hand edge
of R4, in a manner which is the inversion of flow in the region R1 and, therefore, can be
obtained after appropriate translation and reflection of Ψ defined in R1 (see (4.5)).

Appendix C. Optimal condition for the bound (4.26)

Recall from (4.22) and (4.23) that the two constraints on δ are

δ(M + 4δ1/2) ≤ 1
2Re

and δ ≤ 1
2
. (C 1)

The left-hand side of the first constraint is a monotonically increasing function of δ, and
therefore it possible to combine these two constraints as follows:

δ ≤ min
{
δ∗,

1
2

}
where δ∗ satisfies δ∗(M + 4δ1/2

∗ ) = 1
2Re

. (C 2)
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Given the bound (4.26) on the drag coefficient,

CD ≤ 2(1 + √
2)2

Reδ
+
(

12
√

2 + 77
4

)
δ1/2 + 11.84

Re
, (C 3)

our goal is to minimize the right-hand side under the constraint (C 2). This right-hand side
is a convex function of δ, whose minimum is achieved when

δ = δc =
(

16(1 + √
2)2

(48
√

2 + 77)Re

)2/3

. (C 4)

This critical value δc, however, does not satisfy the constraint (C 2). As the right-hand side
of (C 3) is a convex function of δ, to minimize the bound under the given constraints, we
simply choose a value of δ that satisfies (C 2) and is as close as possible to the critical
value δc. The bound is therefore optimized when we choose

δ = min
{
δ∗, 1

2

}
. (C 5)

Using the equation of δ∗ from (C 2), we see that

δ∗ < 1
2 when Re > 4

√
2

58+21
√

2
≈ 0.0645. (C 6)

Therefore, the optimal strategy is to choose

δ = δ∗ when Re > 0.0645. (C 7)
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