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The stability with respect to initial condition perturbations of solitary travelling-
wave solutions of the Euler equations for continuously, stably stratified, near two-
layer fluids is examined numerically and analytically for a set of parameters of
relevance for laboratory experiments. Numerical travelling-wave solutions of the
Dubreil–Jacotin–Long equation are first obtained with a variant of Turkington, Eyland
and Wang’s iterative code by testing convergence on the equation’s residual. In this
way, stationary solutions with very thin pycnoclines (and small Richardson numbers)
approaching the near two-layer configurations used in experiments can be obtained,
allowing for a stability study free of non-stationary effects, introduced by lack
of numerical resolution, which develop when these solutions are used as initial
conditions in a time-dependent evolution code. The thin pycnoclines in this study
permit analytical results to be derived from strongly nonlinear models and their
predictions compared with carefully controlled numerical simulations. This brings
forth shortcomings of simple criteria for shear instability manifestations based on
parallel shear approximations due to subtle higher-order effects. In particular, evidence
is provided that the fore–aft asymmetric growth observed in all simulations requires
non-parallel shear analysis. Collectively, the results of this study reveal that while the
wave-induced shear can locally reach unstable configurations and give rise to local
convective instability, the global wave/self-generated shear system is in fact stable,
even for extreme cases of thin pycnoclines and near-maximum-amplitude waves.

Key words: absolute/convective instability, internal waves, shear layers

1. Introduction
Field as well as laboratory experiments in recent years have revealed that internal

wave motion, and in particular its form of near-solitary travelling waves, is ubiquitous
in geophysics and can commonly attain large displacements of density isolines from
equilibrium (see e.g. the review by Helfrich & Melville 2006), challenging the
usefulness of theoretical models based on small amplitude asymptotics. The renewed
attention to large-amplitude motion has also illustrated, with both field (Moum et al.
2003; Duda et al. 2004) and laboratory measurements (Grue et al. 1999; Fructus
et al. 2009), how shear instability in the form of Kelvin–Helmholtz rolls can be
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self-induced when wave amplitudes become sufficiently large, and direct numerical
simulations have further demonstrated (Tiron 2009; Barad & Fringer 2010) that this
instability can be governed by the appropriate Euler (or Navier–Stokes) equations.
While all these works have provided ample evidence that self-induced shear from
internal wave motion can become unstable, most of these studies have illustrated this
in the context of time-evolving, near-solitary waves. This of course is unavoidable in
field and even in laboratory experiments, where solitary waves can only be created
by either natural or manufactured classes of initial/boundary conditions which ensure
their structural emergence only over some finite time–space scales. Thus, the evolution
towards solitary-wave motion can mask the true dynamics of solitary-wave instability
in these studies. Naturally, for experiments, and to an even greater extent for their field
counterparts, an unambiguous determination of the onset of instability may be affected
by several other unrelated causes.

Renewed attention is being paid to this class of problems from a numerical
viewpoint, e.g. Carr, King & Dritschel (2011) and Lamb & Farmer (2011), with a
focus on the shear instability of solitary internal wave solutions via direct numerical
simulations in the framework of the so-called Boussinesq approximation of neglecting
fluid inertia. These studies adopt complementary viewpoints: Carr et al. (2011) are
concerned with the ‘free’ travelling-wave problem set-up, whereby the infinite line
in the horizontal coordinate is emulated with large periodic domains, while Lamb &
Farmer (2011) study the ‘forced’ problem with inflow–outflow boundary conditions, in
the stationary wave frame. All these studies point to the evidence of shear instabilities,
when solitary-wave amplitudes become large and/or the pycnocline region of the
quiescent stratified fluid becomes sufficiently thin.

Despite the recent attention to this class of problems, it seems that a study that
draws a distinction between the instability of the self-induced shear and that of the
whole wave solution is still missing. This would imply adopting the viewpoint of
stability in the sense of Lyapunov (see e.g. Arnold 1992) of solitary travelling wave
solutions of the governing Euler equations. Thus, according to this definition, stability
would require finding an appropriate norm to define a perturbation neighbourhood
of the travelling-wave solution, and show that initial conditions chosen within this
neighbourhood stay for all time close to the travelling wave as measured by a related
norm. Reducing the size of the perturbation makes the closeness in this norm approach
zero. Unfortunately, compounding the known obstacles to proving stability in this
sense for stratified flows (as noticed, among others, by Benjamin 1986 and Friedlander
2001) there remains the fact that travelling-wave solutions, whose perturbed evolution
could then be studied analytically or numerically, are not known in closed form. This
makes such a stability study difficult, as finding unperturbed solutions also has to
rely on numerical tools. Furthermore, as noted by Long (1965) and Benjamin (1966),
the Boussinesq approximation can be problematic for (large) internal waves: to avoid
its limitations we have to retain the extra physics of the original Euler equations
and hence the added mathematical complexity. This situation is somewhat helped by
analytical solutions from asymptotic models, which are particularly effective (see e.g.
Camassa et al. 2006) when the pycnocline is rather thin and sandwiched between two
layers of homogeneous density. When the smoothly stratified fluid is close to this limit,
closed-form solutions for travelling waves for all amplitudes (up to their degenerate
limit to conjugate states) are available in terms of tabulated functions, and can be used
to reconstruct the velocity field. This in turn provides asymptotic approximations for
the wave-induced shear, making possible some predictions of stability parameters, such
as local Richardson number and length scales of the unstable shear regions.
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FIGURE 1. The stratified fluid set-up and relevant notation.

The set-up we consider is motivated by the experiments of Grue et al. (1999),
and we use the dimensional parameters of those experiments throughout this work
to anchor our analysis to a physically realizable case. We assume the dynamics is
governed by the incompressible stratified Euler equations for a fluid in the two-
dimensional strip −L/2 < x < L/2, 0 < z < H, between slip impenetrable walls, with
velocity (u,w), pressure p, and density ρ satisfying

ux + wz = 0, (1.1)
ut + uux + wuz =−px/ρ, (1.2)

wt + uwx + wwz =−pz/ρ − g, (1.3)
ρt + uρx + wρz = 0, (1.4)

where g = 981 cm s−2 is the acceleration of gravity. The lateral boundary conditions
for all physical quantities are assumed to decay (sufficiently fast) to equilibrium if
L→∞, or L-periodic for numerical implementations, with L sufficiently large. In
order to model the diffused salt interface, we choose for the smooth background
density stratification the antisymmetric profile

ρ(z)= ρmin + ρmax − ρmin2

(
1+ tanh

[
γ (zp − z)

])
, z ∈ [0,H], (1.5)

where ρmin, ρmax are the densities below and above the pycnocline, zp is the
location of the inflection point (the centre) of the density stratification, and γ is a
parameter inversely proportional to the thickness of the pycnocline. We define this
thickness as the distance between the points of 10 and 90 % of the total density
variation, i.e. the vertical locations in the density stratification corresponding to
ρmin + 0.11ρ and ρmax − 0.11ρ, respectively. We fix the densities ρmin = 0.999 g cm−3,
ρmax = 1.022 g cm−3, the total height of the fluid column H = 77 cm, the parameter
γ ≈ 1.033 cm−1 (corresponding to a relatively thin pycnocline of approximately 2 cm)
and the centre of the pycnocline of the undisturbed configuration located at 62 cm. For
a definition of wave amplitude, we take the maximum displacement of the average
density isoline, and denote by h1 = H − zp and h2 = zp the widths of upper and
lower layer, respectively, for the reference density stratification (1.5). See figure 1
for a sketch of the set-up. While the functional form (1.5) is different from an
error function, which can be expected to develop from salt diffusivity between two
homogeneous layers, we have verified that most of our results are largely independent
of different functional forms of the stratification in the thin pycnocline limit.

Our stability study begins in § 2 with the task of producing accurate travelling
internal wave solutions to be used as initial conditions in a time-evolution code. The
numerical algorithm of Turkington, Eydeland & Wang (1991) (henceforth referred
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to as TEW) is adapted to our purposes for thin pycnoclines. Next, by using the
iteration code solutions as initial conditions, in § 3 we carry out a validation study
of an incompressible Euler (and Navier–Stokes) variable density solver based on
a conservative projection method for the time-dependent flows in two dimensions
(VARDEN), described in detail in Almgren et al. (1998). Once we are able to
discern between numerically induced time-dependence and true shear instability, we
study in § 4 the stability of travelling-wave solutions with respect to the initial value
perturbation problem. The VARDEN code is used to provide the evolution of initial
perturbations for waves with unstable shear tested against the predictions from the
spectral analysis of flow linearization around the wave-induced shear background.
In particular, we test a simple criterion for predicting the development of shear
instability based on the combined approximations of strongly nonlinear long-wave
models, envelope equations for disturbance growth and local shear eigenvalue analysis.
We provide details of our numerical implementations and tests in the appendices.

2. Convergence of the TEW algorithm for thin pycnoclines
In this section we describe our numerical implementation of the TEW

algorithm (Turkington et al. 1991). Seeking travelling-wave solutions of the Euler
system (1.1)–(1.4) leads to the so-called Dubreil–Jacotin–Long (DJL) equation (see
e.g. Yih 1980, p. 104, and Turkington et al. 1991)

M η = λη
H
ρ ′(z− η) in D, η = 0 on ∂D, η→ 0 as x→±∞, (2.1)

where D = {(x, z) ∈ R2 : −∞ < x <∞, 0 < z < H} denotes the fluid domain, ρ(z) is
the background stratification, ρ ′(z) denotes derivative with respect to its argument z, M
denotes the quasi-linear elliptical operator

M η ≡− (ρ(z− η)ηx)x− (ρ(z− η)ηz)z− 1
2 |∇η|2 ρ ′(z− η), (2.2)

and λ is an eigenvalue-like parameter defined in terms of the wave travelling speed c
by

λ= gH

c2
. (2.3)

Assuming that there are no closed isopycnal surfaces, (2.1) determines the unknown
function η(x, z), which represents the vertical displacement of the isopycnal surface
passing through the point (x, z) from its undisturbed level at ±∞ (in the above we
have suppressed the arguments of this displacement function for ease of notation).
This form of the DJL equation is further modified by Turkington et al. (1991), who
exploit an ingenious change of variables and a variational structure for the equation to
implement a recurrence algorithm for its solutions. For completeness, we report some
details of their method in appendix A, while concentrating here on the main steps.
First, by replacing η in favour of a new unknown φ,

φ = s(z)− s(z− η) with s(z)=
∫ z

0

√
ρ(ξ) dξ, (2.4)

the quasi-linear eigenvalue problem in η (2.1) turns into a semilinear eigenvalue
problem in φ:

−1φ + eφ(z, φ)− λfφ(z, φ)= 0, φ = 0 on ∂D, φ→ 0 as x→±∞ (2.5)
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(see § A.2 for the definitions of the functionals eφ , fφ and for further details on this
transformation). This semilinear eigenvalue problem can be solved iteratively thanks to
the variational structure (see § A.3 for an outline of the procedure).

The explicit construction of the iterative scheme that determines a solution of the
DJL equation for a given stratification ρ(z) with a prescribed available potential energy
A (defined by (A 2)) is reducible to the following three steps.

(i) Solve the two elliptic boundary value problems (for the two unknowns vk and wk)

(−1+ α)vk = αφk − eφ(z, φ) in D, vk = 0 on ∂D, (2.6)

(−1+ α)wk = fφ(z, φ) in D, wk = 0 on ∂D. (2.7)

(ii) Evaluate the four integrals

S1 =
∫

D
fφ(z, φ

k)wk dx dz, (2.8)

S2 =
∫

D
fφ(z, φ

k)(φk − vk) dx dz, (2.9)

S3 =
∫

D

[
|∇(φk − vk)|2+α (φk − vk)

2
]

dx dz, (2.10)

F =
∫

D
f (z, φk) dx dz. (2.11)

(iii) Define the iteration step by relating the auxiliary functions vk and wk to the
updated DJL unknowns (φ, λ)

µk+1 =max
[

0,
A− F(φk)+ S2 + βS3

S1 + 2βS2 + β2S3

]
, (2.12)

φk+1 = vk + µk+1[wk + β(φk − vk)], (2.13)

λk = µk

1− βµk
. (2.14)

In the above, α, β are two parameters that control the convexity of the functionals
involved in the iterative scheme (see relations (A 15) and (A 17) for their definition).

As observed in Turkington et al. (1991), the convergence of the TEW algorithm
is greatly reduced for stratifications with narrow pycnoclines, and this is precisely
the regime in which we are interested. In fact, Lamb (2002) reports lack of
convergence for flows with Richardson numbers (Ri) lower than ≈0.23, with failure
to converge attributed to the intrinsic instability of the sought solutions. However,
our implementation of the TEW algorithm, while maintaining the same structure,
shows that convergence can be achieved at lower Richardson numbers. By adjusting
some of the parameters controlling the convergence of the scheme, and improving
on the stopping criterion for the iteration, we show next that accurate solutions
can be determined in stratifications with narrow pycnoclines that have regions with
Richardson numbers as low as 0.07.

2.1. Numerical implementation
We use the fast Fourier transform for the Poisson problems (2.6), (2.7) in our
implementation of the TEW algorithm. First, the infinite strip domain D is truncated
assuming periodicity in the horizontal direction. The period is chosen sufficiently large
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to ensure adequate decay at the horizontal boundaries and the spatial discretization
is chosen to be uniform. Taking advantage of the homogeneous boundary conditions
at the top and bottom boundaries, we mirror the domain in the vertical direction,
imposing periodic boundary conditions in both directions on the resulting domain. The
equations are thus solved in Fourier space, the ensuing method being fourth-order
convergent.

To evaluate the integrals (2.8)–(2.11) we use a fourth-order Simpson rule. The
integrands in these expressions involve the transformation function s and its inverse
(see relation (2.4)), for which two discretized look-up tables with 106 uniformly spaced
points are pre-computed. For determining the inverse, we use a quadratic interpolation
scheme. We remark that the evaluation of the integral (2.10) can be further simplified
by using integration by parts and relation (2.6), which yields

S3 =
∫

D
(φk − vk)[eφ(z, φk)−1φk] dx dz, (2.15)

and then by evaluating the Laplacian 1φk in the frequency domain.

2.2. Stopping criterion
The stopping criterion for the iterative scheme suggested in Turkington et al. (1991)
(O(10−3) in the L2-norm of the relative error in the eigenfunction φ) is not sufficient
for our purposes. In fact, for stratifications with narrow pycnoclines, we found this
criterion to be somewhat misleading, suggesting convergence in instances in which
other tests indicate that the numerical solution is not in fact a travelling-wave solution.
This can checked most directly by monitoring the (non-dimensionalized) horizontal
mass flux,

Q(x)≡
∫ H

0
ρ(x, z) u(x, z) dz

/∫ H

0
c ρ(z) dz, (2.16)

a quantity which is conserved by a truly steady solution. As shown in figure 2(a), even
when the L∞-norm of the relative error of ‖φ(k+1) − φ(k)‖/‖φ(k)‖ has decreased to less
than 10−5, the mass flux still displays significant variations along the horizontal span
of the fluid domain.

Of course, the error between two successive iterations can become very small
without necessarily guaranteeing that the iterating solution is within the same accuracy
from the sought attractor, as simple examples of slow convergence with a progressively
decreasing contraction factor readily show. Thus, apart from monitoring convergence
in the relative error of the eigenfunction φ and the eigenvalue λ as suggested in
Turkington et al. (1991), we also monitor the residual of the DJL equation in the
transformed variable φ (2.5). An estimate of this residual can be constructed inside the
iterative loop. Thus, by subtracting φk from relation (2.13) and applying the operator
(α −1), we obtain

(α −1)(φk+1 − φk)= µ
k+1

λk+1
[(α −1)(vk + λk+1wk)+ (α −1)φk], (2.17)

which, by using relations (2.6) and (2.7), we can rewrite as

(α −1)(φk+1 − φk)= µ
k+1

λk+1
[−1φk + eφ(z, φ

k)− λk+1fφ(z, φ
k)]. (2.18)

The right-hand side of this relation is the residual of (2.5). We note that by evaluating
the residual in terms of appropriately non-dimensionalized quantities (scaling the
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FIGURE 2. Convergence of the TEW iteration algorithm for a near-solitary travelling-
wave solution in the periodic box L = 1232 cm, with A (non-dimensional potential energy)
3.2× 10−3, amplitude a/h1 = 1.51, and parameters chosen as described in § 1. The resolution
is 512 points in the vertical. (a) Horizontal mass flux Q(x) after the φ-relative error in
L∞-norm becomes less than 10−5; (b) L∞-norms of φ-relative error (dashed line), and
residual (2.18) (solid line) respectively, versus the number of iterations.

spatial coordinates with the total depth H and the velocities with
√

gH), the magnitude
of 1φk for the pycnocline thicknesses of interest is of order 102. Figure 2(b) shows
that the magnitude of the residual is substantial even when the relative error in φ could
suggest convergence.

2.3. Order and rate of convergence
We have monitored the convergence of the eigenvalue λ (2.3) by fixing a threshold
for the residual and looking at the relative convergence of λ while refining the
discretization grid of the system. As expected, based on the fourth-order construction
of all portions of the numerical scheme, the order of convergence was found to be
four. The rate of convergence, however, is strongly dependent on the parameters α
and β which control the convexity of the functionals involved in the iterative scheme.
We note that choosing α substantially bigger than the estimate provided by relation
(A 17) greatly accelerates convergence. We thus used α ≈ 200 in the majority of the
numerical results presented.

The rate of convergence is also smaller when the sought solutions are strongly
nonlinear, as demonstrated by figure 3, where the first figure shows the residual
versus the number of iterations for three numerical solutions in the stratification
(1.5) (with parameters as described in § 1) for increasing values of the parameter
A corresponding to three non-dimensionalized potential energies. We remark that
the minimum Richardson number corresponding to the large-amplitude wave with
A= 3.2× 10−3 is 0.076.

To illustrate the marked improvement in monitoring convergence based on the
residual, we perform time-evolution simulations with VARDEN for two initial
conditions corresponding to a solitary wave of amplitude a/h1 = 1.51 (close to the
maximum amplitude a/h1 = 1.55 for the above choice of parameters). The first initial
condition is obtained by using the stopping criterion suggested in Turkington et al.
(1991) (namely relative error in eigenfunction φ of 0.001) while the other initial
data are from a solution whose residual has converged to below 10−7: see figure 4.
Note that even though the two initial conditions are graphically indistinguishable, as
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FIGURE 3. (a) Residual versus the number of iterations for three numerical solutions of the
TEW algorithm in the stratification (1.5), with parameters chosen as described in § 1, for
values of the parameter A (non-dimensionalized potential energy) of 3.2× 10−3, 2× 10−3 and
10−3 respectively (from black to light grey). (b) The average density isoline corresponding
to the final iteration for the three cases presented in (a). The computational domain is
1232 cm × 77 cm with periodic boundary conditions in the horizontal direction while the
resolution is of 512 points in the vertical.

(bii)

(aii)

(bi)

(ai)

FIGURE 4. (ai, bi) Density snapshots at t = 0 and 15 s respectively from the time-evolution
simulation for a solitary-wave solution of the TEW algorithm of amplitude a/h1 = 1.51
for a solution with relative error in φ (L∞-norm) of 0.001. (aii, bii) The same as above,
for a converged solution, with magnitude of the residual of 10−7. Only a section of the
computational domain (period L = 1232 cm) is shown, centred at the peak of the wave, of
horizontal length 300 cm, uniform scale for both x and z. The resolution is 1024 points in the
vertical.

figures 4(ai) and 4(aii) show, in the first simulation the solitary wave develops a
noticeable asymmetry during its time evolution, accompanied by the manifestation
of Kelvin–Helmholtz billows. Conversely, in the second simulation starting from the
converged TEW solution, the wave preserves its shape symmetry, behaving as a steady
wave (with no visible manifestation of shear instability). In the following section
we assess in quantitative terms how far the initial condition is from a travelling
permanent-form solution supported by the evolution code.

3. Validation of the evolution code
For sufficiently large amplitudes, solitary waves emerging from the experimental

initialization process never fully develop into symmetric shapes and achieve travelling-
wave form (Grue et al. 1999; Tiron 2009, §4.2). While the highly fluctuating fluid
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(× 10–4)
2.5
2.0
1.5
1.0
0.5

0

FIGURE 5. Magnitude of the relative error in the density field after 5 s, between two time-
evolution runs performed at resolutions 256 and 512 points in the vertical, respectively, for a
long periodic wave (near the solitary-wave limit), of amplitude a/h1 = 1.51. We show here
a portion from x = 385 cm to x = 847 cm of the computational domain of 1232 cm × 77 cm,
uniform scale for both x and z.

motion in their wakes is travelling at a slower group speed and is eventually
left behind by the large waves, its upstream influence is not clear and cannot
be completely ruled out, as evidenced by the slightly asymmetric shape of the
precursor large wave. In order to assess whether this asymmetry originates in the
initial conditions or is related to an inherent instability of large waves, we seek
to initialize the evolution code with a permanent-form solitary-wave solution. The
boundary conditions for the evolution code are zero vertical velocity at the top and
bottom boundaries and periodic in the horizontal direction. We use the single-grid
version of the code with isotropic spatial discretization and the time step selected
by enforcing the Courant–Friedrichs–Lewy condition: see Puckett et al. (1997) and
Almgren et al. (1998) for details. We initially perform our study on a long periodic
wave (near the solitary-wave limit) with period L = 1232 cm and large amplitude
(a/h1 = 1.51). There are two interconnected issues that we address in this section: one
is the convergence of the evolution code itself for large density gradients, and the
second is the correctness of the initialization, namely how far the initial condition is
from a travelling-wave, permanent-form solution supported by the evolution code. We
remark that the first issue can be analysed without reference to any DJL internal wave
solution, by simply focusing on parallel shears where a spectral study can be carried
out essentially in closed form, with growth rates of most unstable modes determined
with arbitrary accuracy. This is taken up in § 4.2 and again in appendix B.

We have tested the order of convergence of the evolution code both for initialization
with experimental set-ups (starting from an initial step in density) and for solitary-
wave initializations. For the first case, we obtain first-order convergence – as expected
due to the lack of smoothness of a step initial condition. Second-order convergence of
the evolution code is achieved in the case of smooth initial conditions by initializing
with a solitary-wave solution obtained with the iterative scheme (Turkington et al.
1991), with a square grid at the (vertical) resolution N = 1024, and running three time-
evolution simulations at resolutions N = 256, 512 and 1024, respectively. We have
monitored the L∞-norm of the error in the velocity and density fields. The numerical
errors concentrate in the pycnocline region, where we register the highest gradients
of density: see figure 5. This figure also reveals that part of the initial error lies
simply in the travelling-wave speed, which varies slightly with the resolution used in
the evolution code for the same initial condition. Furthermore, an additional source of
this error is the difference in speed between the TEW iteration code solution and that
supported by the time-evolution code for a (near) solitary wave of the same amplitude.
In fact, the structure of the error depicted in figure 5 can clearly be ascribed to a small
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FIGURE 6. Variation of the total energy for the time evolution of the wave of amplitude
a/h1 = 1.51 (normalized with the energy at time t = 0 s). Solid line, resolution N = 256
points in the vertical; dashed line, N = 512; dotted line, N = 1024. The computational domain
is 1232 cm× 77 cm.

overall horizontal shift in the wave position occurring at short times. This horizontal
shift error decreases with increasing resolution at any given time. Of course, this
observation also partially addresses the second issue mentioned above, i.e. closeness
of the initial condition to a wave of permanent form supported by the evolution
code. Another indicator of the magnitude of the numerical error induced by the sharp
stratification is the total energy: this should be conserved in our set-up (periodic
boundary conditions in horizontal direction, slip in the vertical). Figure 6 shows the
variation of the total energy for three resolutions N = 256, 512, 1024, respectively. We
note that while the total energy decays in time due to numerical diffusion, this decay
is smaller for finer resolutions, and the choice of N = 1024 is adequate for most time
scales of interest.

Conservation of energy also pertains to the closeness issue of the TEW initial
condition to waves of permanent form for the evolution code. Monitoring the wave
amplitude, the phase speed and the potential and kinetic energy separately further
addresses this issue, as all of these quantities should be constants of motion for a
steady travelling wave. As we see in figure 7, the time variation of these quantities
decreases significantly with increasing resolution.

4. Instability study
In this section we embark on the stability study of solitary-wave solutions obtained

with the TEW code described in § 2. Specifically, in § 4.1 we look at the self-induced
shear instability of these solutions during their time evolution and the role played by
the resolution used in the evolution code. Next, in § 4.2 we perform a local stability
analysis of the solitary wave, while in § 4.3 we discuss local versus global stability of
internal wave solutions. In § 4.4 we derive and test a simple envelope equation for the
amplitude of unstable growth based on the local stability analysis. Then, in § 4.5 we
provide stability estimates from strongly nonlinear long-wave models, and in § 4.6 we
employ these estimates to determine an amplitude threshold for manifestation of shear
instability.

4.1. Self-induced instabilities
We focus on the case of the solitary wave of near-maximum amplitude a = 1.51,
which we used in the validation study above. We found evidence of shear instability
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FIGURE 7. Variation of (a) potential energy, (b) kinetic energy, (c) amplitude, (d) phase
speed for the time evolution of the wave of amplitude a/h1 = 1.51. Solid line, resolution
N = 256; dashed line, N = 512; dotted line, N = 1024. All quantities are non-dimensionalized
with the corresponding quantities at time t = 0 s.

for all the resolutions tested, as can be seen in figures 8–9, where we present several
time snapshots of the density field during the evolution of the wave. (The simulations
presented are performed in the wave frame, a frame of reference moving at the
speed cwave, the speed of the wave as predicted by the TEW code.) Nonetheless,
the magnitude of the roll-ups decreases with increased resolution (to the point that
they are not easy to identify visually, as the inset of figure 9c shows), which can
be interpreted as yet another confirmation of convergence of the iterative code to
actual travelling-wave solutions of the Euler equations. Moreover, the instabilities are
manifested only on the trailing side of the wave, as also noticed in experiments (Grue
et al. 1999; Fructus et al. 2009).

In all three simulations, we have observed (qualitatively) three episodes of shear
instability: an initial episode triggered by numerical error (followed by a period in
which the wave travels at quasi-constant speed and amplitude), a second episode of
instability of smaller magnitude (which occurs roughly in the interval 30–40 s) and
finally the interaction with the wake created by the first episode, which wraps around
the periodic box: see figure 8 for resolutions N = 256, where the first two episodes
are clearly visible, and N = 512, where the second episode is barely discernible in the
density field (the inset of figure 8f (ii) magnifies the region where growing modes are
detected).

We argue that the simulations, at all the resolutions we have tested, retain important
physical features of the actual phenomenon. Thus, the first episode of instability
is induced by numerical error in both the evolution code and the initial condition,
which can be viewed as an initial perturbation superimposed on the travelling-wave
solution of the discrete operator associated with the evolution code. (We stress that
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FIGURE 8. (ai–hi) Time snapshots of the density field at (a) 8, (b) 12, (c) 16, (d) 20, (e) 26,
(f ) 40, (g) 45 and (h) 50 s during the propagation of a large-amplitude internal wave with
a/h1 = 1.51. Only a window of the computational domain (period L = 1232 cm) is shown,
centred at the peak of the wave, with horizontal length 300 cm, uniform scale for both x and
z. (The simulation is performed in the wave frame moving at the speed cwave, the speed of the
wave as predicted by the TEW code.) Resolution is 256 points in the vertical. (aii–hii) The
same as above, for a resolution of 512 points in the vertical.

(a)

(b)

(c)

FIGURE 9. The same as figure 8 (at (a) 8, (b) 12, (c) 16 s), resolution 1024 points in the
vertical.

this perturbation is due to numerical errors, in contrast with the perturbations used
later on, which will be seeded to target maximum growth rates of shear instability.)
Simultaneously with the growth in the unstable region of the wave, this perturbation
is shed downstream (in the wave frame), and starts propagating in a stable region of
the flow field. The shear in this region on the downstream side of the wave decays
to zero exponentially fast for solitary waves, with the density stratification limiting to
that of the quiescent state. The perturbation therefore propagates mainly as a dispersive
(weakly nonlinear for sufficiently large time) wave train governed by the dispersion
relations determined by the background stratification. It can be shown that in the frame
of reference of the wave, all normal modes in this region are travelling from right to
left, both their phase speed and group velocity being thus bounded below by c0 − cwave
and above by c0 + cwave, where c0 is the linear long wave speed (critical speed) in
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FIGURE 10. The two branches of the dispersion relation for the background stratification
(1.5). Group velocity (solid line) and phase speed (dashed line) (both in the frame of the
wave of amplitude a/h1 = 1.51 travelling with speed cwave ≈ 20.44 cm s−1), as function of the
wavenumber.

the background stratification and cwave is the speed of the wave (with cwave > c0): see
figure 10 for the two branches of the dispersion curves. We will return to this fact and
its implications for stability later on in this section.

We remark that all time-dependent simulations for propagation of solitary-wave
solutions (regardless of whether shear instabilities occur or not) exhibit a wake
in the pycnocline region, which is visible in both the density and the velocity
fields. Its magnitude decreases with resolution, indicating that the wake is a result
of a downstream-shed initial perturbation. In fact, we can identify qualitatively the
superposition of normal modes of the background stratification in the velocity field
associated with the wake: see figure 11. Of course, for a rigorous quantitative
comparison of the normal modes with the features in the wake, knowledge of the exact
form of the initial perturbation would be needed. However, as shown in figure 11(c),
from the dispersive wave train, the fastest travelling normal mode wrapping around the
period-box would emerge first. Thus, we argue that the second episode of instability is
triggered by the fastest travelling normal mode of the background stratification (which
travels with a group velocity bounded above by c0 + cwave) and it is not part of the
instability triggered by the initial evolution of the perturbation.

We test this conjecture by doubling the length of the computational domain, thus
initializing the evolution code with a long periodic wave solution of the TEW code,
with double the period and the same amplitude and speed. We perform simulations
at the resolution N = 512. Since, for this resolution, the shear instability is not
immediately apparent in the density field, we monitor and display the horizontal
pressure gradient. In figure 12 we show the horizontal pressure gradient at time
t = 50 s for both the wave of period L = 1232 cm and of period 2464 cm, respectively.
Note that the wave with period 2464 cm does not exhibit a pressure mark of instability,
as opposed to the wave of shorter period. In fact, we can estimate the minimum
time of travel of the fastest normal mode above as (c0 + cwave)/L, where L is the
period. In particular, for the long wave of period L = 1232 cm (taking into account
that the critical speed c0 is ≈16 cm s−1, whereas the speed of the wave cwave is
≈20.44 cm s−1) this estimate is ≈34 s, which falls in the range 30–40 s observed in
the simulations.

All numerical experiments we have performed suggest, apart from the convergence
of the steady solution, some interesting stability properties of the flow. In the limit
of an infinite period, the internal waves investigated would be globally linearly stable
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FIGURE 11. Horizontal velocity profiles (in the laboratory frame) at times t = 0 (dotted line)
and t = 17.5 s (solid line) for an evolution simulation of a wave of amplitude a/h1 = 1.51
and period L= 1232 cm, measured at (a) X = 50 cm, (b) X = 100 cm from the left end of the
computational domain and at (c) X = 100 cm from the right end respectively. (The simulation
is performed in the wave frame moving at the speed cwave, the speed of the wave as predicted
by the TEW code, with a resolution of 512 points in the vertical.) It can be inferred that
the perturbation left behind the wave wraps around the periodic computational domain and
the first to emerge here is the fastest travelling normal mode of the background stratification
(represented with dashed line in c). (d) Horizontal velocity profiles for normal modes of the
background stratification with wavenumbers ranging from 0 (black) to 0.4 cm−1 (light grey).
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FIGURE 12. Horizontal pressure gradient px at time t = 50 s from the time evolution of two
waves of the same amplitude a/h1 = 1.51, with periods (a) L= 1232 cm and (b) L= 2464 cm.
Both simulations are performed in the wave frame, moving at the speed cwave, the speed of
the wave as predicted by the TEW code, with a resolution of 512 points in the vertical. In
both cases the entire computational domain is shown, displayed here with modified vertical-
to-horizontal scale ratio 4:1.

since the initial perturbation (after some growth in the unstable region located at the
peak of the wave) is advected away, leaving the wave in an equilibrium state, close to
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the unperturbed solitary wave, possibly after compensating for horizontal translations,
as appropriate for orbital stability of travelling waves (see e.g. Benjamin 1972 for the
exemplary case of the Korteweg–de Vries equation). For a finite period, however, the
dispersive train generated by the first episode of instability wraps around the periodic
box potentially triggering subsequent episodes of shear instability. It is tempting to
conjecture that such periodic travelling waves, as time progresses, would relax to a
state where the dispersive wave trains no longer excite shear instabilities, by effectively
stirring the pycnocline region to a larger thickness and possibly reducing the amplitude
of the wave by transferring its energy to different modes. Such a state could ultimately
be independent of the magnitude and nature of the initial perturbation, and would
depend on the background stratification only, thus indicating overall instability of the
original wave train. In the following section, in order to shed some light on these
observations, we examine in detail the local spectrum of the self-induced shear flow.

4.2. Local stability analysis of the solitary-wave solution
As argued before, both the shear and the density stratification of the solitary wave
have slow variation in the horizontal direction, hence the first-order approximation
reduces to the case of a parallel stratified shear flow. Linearizing the Euler equations
(1.1)–(1.4) with respect to small perturbations of the basic parallel shear flow u0(z)
with stratification ρ0(z) and assuming that any perturbation can be decomposed in
independent wave components leads to the linear eigenvalue problem for the stability
problem (often referred to as Taylor–Goldstein equation)

ψ ′′ + ρ
′
0

ρ0
ψ ′ −

[
ρ ′0
ρ0

g

(u0 − c)2
+ (ρ0u′0)

′

ρ0(u0 − c)
+ k2

]
ψ = 0, (4.1)

where ψ(z) is the magnitude of the perturbation stream function and k, c are
the wavenumber and phase speed of the perturbation, respectively. The boundary
conditions for a flow confined between two rigid walls at 0 and H are

ψ(0)= ψ(H)= 0. (4.2)

Note that the form (4.1) of the Taylor–Goldstein equation we use retains the
stratification contribution to inertia; the term ρ ′0/ρ0 in the coefficient of ψ ′ is
often dropped in the so-called Boussinesq approximation of neglecting the fluid’s
inertia. The papers by Long (1965) and Benjamin (1966) warn about the use of
this approximation in (large) internal wave studies, and we avoid the approximation
throughout this work. We also remark that the influence of viscosity on the stability
properties is expected to be minimal, slightly reducing the growth rates, as confirmed
by our numerical investigations of viscous shear flows (not reported here) and in
agreement with Maslowe & Thompson (1971), who show that the viscosity effects
on the maximum growth rates are very small for Reynolds number above 100.
We recall that for our set-up, which refers to an experiment with stratified water,
typical Reynolds numbers would be uL/ν ≈ 5 × 105, where ν = 10−6 m2 s−1 is the
kinematic viscosity and the length scale L is given by the characteristic wavelength
of the solitary wave (≈500 cm), while the characteristic velocity u corresponds to the
maximum fluid velocity (≈10 cm s−1).

Since our principal aim is to investigate the mathematical stability (in the Lyapunov
sense) of travelling solitary-wave solutions, in what follows we focus on the
temporal evolution of an initial perturbation superimposed on the base flow. The
temporal evolution approach is the most appropriate for this particular viewpoint,
which naturally focuses on the real wavenumber case through an initial condition
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perturbation. Hence, (4.1) is solved with boundary conditions (4.2), for fixed real
wavenumber k and phase speed c = cR + icI as the eigenvalue. In this interpretation
the eigenvalue problem is non-symmetric, and hence in general c can be complex. The
flow is unstable if cI > 0, and the associated normal mode has the rate of growth
ωI = kcI . We note that (4.1) becomes singular for c real and in the range of u0.
Eigenvalues c with this property are singular neutral modes, and correspond to the
boundaries of linear stability.

We solve (4.1), with boundary conditions (4.2), by employing a shooting method
similar to the one in Hazel (1972). For fixed wavenumber k, we integrate from the
centre of the pycnocline location zp to left and right by imposing continuity of both
the eigenfunction (ψL(zp) = ψR(zp) = ψp, with ψp a normalization constant for the
eigenfunction) and its derivative in the centre (ψ ′L(zp) = ψ ′R(zp) = ψ ′p). We thus define
two functions depending on the slope of the eigenfunction ψ ′p and on the eigenvalue c.
We determine the eigenvalue c and the slope of the eigenfunction by imposing the
boundary conditions (4.2), and by solving the corresponding nonlinear system. Unlike
Hazel (1972), we choose to integrate from the centre of the pycnocline outwards in
order to control the magnitude of the eigenfunction. In order to locate numerically
all unstable modes, we search within a domain of the complex c-plane identified by
the semicircle theorem of Howard (1961), i.e. the semicircle in the upper half-plane
of the complex c-plane which has as diameter the range of the horizontal shear. We
have detected a single unstable branch for all configurations investigated, as expected
based on the general principles for the stratification we use (Miles 1963). In fact, the
evolution code captures rather well both the growth rate and the phase speed of these
linear normal modes: see appendix B, where we present a comparison of the time
evolution of normal modes predicted by the linear theory and numerical solutions with
VARDEN. These tests are performed for a parallel shear constructed with the velocity
and density profile from the maximum displacement of the large amplitude wave
a/h1 = 1.51, computed with the TEW algorithm. Detailed spectrum calculations are
presented next for this large-amplitude wave a/h1 = 1.51. The local unstable spectrum
is computed by ‘parallelizing’ the shear flow of this solution for a series of horizontal
locations in between the point of maximum displacement of the wave and the end of
the region of potential instability Ri < 1/4 (noting that both the horizontal velocity
and the density stratification are symmetric with respect to the point of maximum
displacement): see figure 13, where we show a contour plot of the Richardson number
for the area of potential instability. All the stability computations are performed in the
frame of reference of the wave (moving at horizontal speed cwave with respect to the
fixed-laboratory frame).

In figure 15 we show the phase speed of the unstable modes for the eight
combinations of shears and density stratifications shown in figure 14. Note that the
phase speed of the normal modes is negative, and moreover it decreases for increasing
k, which implies that the group velocity (dωR/dk) is also negative. Next, we illustrate
the dependence of the unstable spectrum on the horizontal location across the region
of local instability. First, we note that the normal mode that would first be visible in
the evolution of a perturbed initial state can be expected to correspond to the mode
with the maximum growth rate. We expect this to be the case as long as the horizontal
extent of the area of local instability is larger than the periods associated with these
modes, which is the case for most of the waves considered in this study. From
figure 16(a) we can infer that the wavenumber associated with the most unstable mode
does not vary significantly along the wave profile. Furthermore, in figure 17, we can
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FIGURE 13. Contour lines of the Richardson number in the region of potential instability
(half of the region represented with altered aspect ratio) for a wave of amplitude a/h1 = 1.51.
The horizontal extent of (half of) the region where Ri< 1/4 is 155.3 cm.
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FIGURE 14. (a) Horizontal velocity profiles, (b) density profiles for the wave from figure 13,
at eight equidistant locations in between X = 0 cm (the peak of the wave) and X = 134.75 cm
(close to the end of the area of Ri< 1/4).

see that the period of the self-induced shear instability for an actual wave evolution
falls in the range predicted by the local eigenvalue calculation (12.69–14.27 cm).

In figure 16(b) we show the variation of the growth rate associated with the most
unstable normal mode in the horizontal direction. Note that the horizontal range of
potential local instability corresponding to Ri < 1/4 (2 × 155.3 cm) almost coincides
with the range of actual local instability (2 × 153.8 cm). Finally, in figure 16(c) we
show the phase speed and the group velocity associated with the most unstable mode,
which is negative at all horizontal locations in the region of local instability. This fact
explains at first order the behaviour described in § 4.1, namely the initial perturbation
located at the peak of the wave grows and it is advected away from the pocket of
instability. This advection allows for further classification of internal wave stability,
which we briefly review next.
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FIGURE 15. Phase speed of the unstable branches versus the wavenumber for the eight
parallel shears constructed with the density and horizontal velocity profiles from figure 14.
Black, X = 0 cm; light grey, X = 134.75 cm.
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FIGURE 16. (a) Wavenumber corresponding to the maximum growth unstable mode along
the wave profile for the wave represented in figure 13. (b) Maximum growth rate along the
wave profile. (c) Phase speed (dashed line) and group velocity (solid line) associated with the
maximum growth rate along the wave profile. The thin vertical dashed lines mark the range of
the region of potential local instability, Ri < 1/4, whose (half) horizontal extent is 155.3 cm,
while the (half) horizontal extent of the region with non-zero imaginary component of c is
153.8 cm.

4.3. Local versus global stability of internal wave solutions
Relatively recent advancements in the stability theory of spatially varying flows as
presented in Huerre & Monkewitz (1985, 1990) and Huerre (2007), based on slowly

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

36
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.366


342 A. Almgren, R. Camassa and R. Tiron
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FIGURE 17. Portion of the horizontal pressure gradient px (located at the left of the peak
of the wave) from the time-evolution simulation of the wave of amplitude a/h1 = 1.51 and
period L = 1232 cm at resolutions (a) 512 and (b) 1024 respectively. The snapshot is taken at
t = 11 s in both cases. Superimposed on each plot is a grid with spatial resolution of 10 cm, to
show the characteristic wavelength of the self-induced instability.

varying asymptotics (WKBJ analysis), shed some light on the class of self-induced
instabilities in internal wave propagation. The approach assumes scale separation, i.e.
the streamwise variation of the flow must be slow over a typical wavelength of the
perturbation, so that the local dispersion relation can be used in the global stability
analysis of the flow, as a leading-order approximation. We note that the internal wave
flows we are studying appear to meet these requirements.

The foundation of the approach of Huerre & Monkewitz (1985, 1990) and Huerre
(2007) lies in the fundamental distinction between absolute and convective instability
(see also Briggs 1964). A parallel shear flow is said to be convectively unstable
if the growing wave train generated by an initial perturbation is advected away.
Conversely, the flow is said to be absolutely unstable if the instability contaminates the
entire medium. This distinction seems trivial in the case of strictly parallel stationary
flows, which are frame-invariant: a simple change of frame of reference renders a
convectively unstable parallel flow into an absolutely unstable one. However, when
considering spatially developing stationary flows, these concepts become relevant,
since the frame of reference in which the flow is stationary is singled out. The
main conjecture of the theory is that a necessary (although not sufficient) condition for
the existence of time-periodic intrinsic oscillations (or self-sustained global modes) is
the existence of a pocket of absolute instability somewhere in the flow field.

The flow considered here appears to have a pocket of convective instability (as
evidenced by the negative group velocity of the local spectrum in the region of
local instability and supported by the time-dependent simulations), while being locally
stable outside this region. Thus, in the framework of the theory described above, this
flow does not support self-sustained global modes – a conjecture supported by the
numerical simulations.

We remark that the term ‘convective’ is also used in the literature to qualify another
mechanism of wave breaking that occurs when the fluid velocity approaches the phase
speed of the wave, or equivalently the fluid is stationary in the frame of reference of
the wave (see for instance Holyer 1979). The waves investigated in this work do not
exhibit this property and thus throughout the remainder of this paper we employ the
term convective only in the context described in the paragraph above.

We also remark that throughout this work we focus on the temporal, or initial-value,
stability problem, as opposed to time-signalling stability, whereby a time-dependent
perturbing forcing term is applied at some spatial location for all forward times. A
natural setting for such a signalling problem is that of a time-periodic perturbation
added to the upstream (constant) flow in the reference frame in which the wave
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appears stationary (as in Lamb & Farmer 2011). However, such a set-up (which
essentially corresponds to a boundary forced problem since the upstream boundary
conditions are de facto assigned) is conceptually different from the case we are
focusing on: that of a freely propagating wave, which would change its energy and
hence its physical parameters (such as its velocity) in response to perturbations, in a
time-dependent fashion. In order to make the time-signalling approach relevant to the
free wave case, one would need to implement some sort of feedback loop to modify
the upstream boundary conditions according to the system’s response in the wave
frame.

The mathematical scenario emerging from the results of the last two sections on
the stability properties for solitary internal waves can be summarized as follows.
For solitary waves with an instability pocket centred at their peaks, localized initial
perturbations grow in the region around the peak where the local unstable shear
is strongest and supports the highest growth rates of the unstable mode. Because
the instability appears to be convective, perturbations are swept away from the peak
region, with the wave reaching a state of local equilibrium afterwards. Thus, for
localized perturbations, the finite extent of the unstable shear region (which for thin
pycnoclines essentially coincides with the region where Ri < 1/4) combined with the
convective nature of the instability would ensure that the bulk of the travelling wave
flow returns to a balanced state. Mathematically, in truly laterally unbounded domains,
it can then be conjectured that internal travelling-wave solutions of the stratified
Euler system (1.1)–(1.4) are stable in the sense of Lyapunov (see e.g. Arnold 1992).
Accordingly, measured with an appropriate norm in functional space, the distance
between an exact internal wave solution and its perturbation should scale for all times
as a vanishing function of the initial distance. This is because the growth of localized
initial perturbations is limited to the time of residence in the instability pocket, which
is a function of the associated phase and group velocities of normal modes. Hence it
should always be possible to control the time evolution of a normed measure of the
perturbation by its initial magnitude measured in the same functional norm, which is
essentially the definition of Lyapunov stability.

As already remarked above, this mathematical scenario of stability might not
apply to periodic internal wave trains, where instability pockets would be strung
periodically throughout the flow domain, thus allowing for convective perturbations to
revisit unstable regions for all times. However, there might be mathematical subtleties
associated with this scenario, as the dynamics between unstable pockets might strip an
evolving perturbation of its unstable modes, thereby again reaching a balanced state
whose distance, in some functional norm, from the periodic solution is controlled by
the initial perturbation size. Moreover, the stability of periodic wave trains is likely to
be affected by a version of the Benjamin–Feir instability just as for their free-surface
counterparts. Finally, we remark that the case of sufficiently nonlinear conjugate states
whereby the instability pocket would extend to infinity downstream of the front should
provide an actual unstable solution of system (1.1)–(1.4) in the strict mathematical
sense of Lyapunov, as any localized upstream perturbation would eventually reach an
unbounded domain of convectively unstable shear flow, leading to growth which could
not be controlled by the magnitude of the initial perturbation. Of course, none of these
considerations can be made rigorous without a precise definition of a functional norm
with which the distance between solutions of (1.1)–(1.4) can be measured, which is
likely to constitute a substantial mathematical task, as noted by Benjamin (1986).
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While Lyapunov stability is mathematically relevant, a fluid dynamics perspective in
the classification of different types of instability might be more useful in applications,
and we turn next to introducing some simple tools to this end.

4.4. Simple envelope equation for instability
In the experimental investigations of Grue et al. (1999) and Fructus et al. (2009), as
well as in the numerical simulations of a number of authors (Barad & Fringer 2010;
Carr et al. 2011; Lamb & Farmer 2011), Kelvin–Helmholtz roll-ups invariably develop
after the point of maximum displacement of the wave, with no growth observed in the
front of the wave. This spatial asymmetry of the instability can be explained in part
by its convective nature, which imparts a growth rate to a downstream moving wave
packet (in the wave reference frame). However, the details of asymmetric growth may
involve a more subtle dynamics, as the analysis of the shear and the direct numerical
simulation we present next seem to suggest.

We use the local spectrum calculation developed in the previous section to construct
a simple envelope equation for the perturbation evolution in the unstable region,
and compare it qualitatively to numerical simulations, following the same strategy as
in Troy & Koseff (2005). An estimate of the time of travel of the perturbation in the
unstable region, denoted by Tw, can be constructed based on the length of the area of
local instability and the speed of propagation of instability. However, because the shear
flows generated by internal (long) wave motion are (slowly) varying in the horizontal
coordinate X, both the phase speed and the group velocity of the vertical normal
modes vary along the unstable region (up to ∼10 % of the speed of propagation of
the wave). In an attempt to include the spanwise variation of both the phase speed
and of the growth rate of the most unstable mode, we propose the following envelope
equation for the evolution of a monochromatic perturbation with wavenumber close to
the maximum growth rate normal mode (as predicted by the local stability analysis)

At + cR(X)AX − ωI(X)A= 0, (4.3)

where A(X, t) is the amplitude of the perturbation, cR(X) is the phase speed (the
appropriate quantity for a monochromatic train) corresponding to the maximum (with
respect to wavenumber k) growth rate at location X and ωI(X) is the maximum growth
rate at location X. No attempt is made here to follow the dispersive evolution in
both (slow) time and space of the wavenumber and frequency of the perturbation
normal modes; however, by considering only maximal quantities this model can
serve the purpose of illustrating how a crude approximation of convectional unstable
growth may not fully account for the observed instability in the Ri < 1/4 pocket of
wave-induced shear around the maximum pycnocline displacement. A more detailed
mathematical approach would ultimately be needed to model the unstable evolution.
We solve (4.3) by the method of characteristics. We denote the length of the region of
local instability by L̃, and place the coordinate system origin at the point of maximum
displacement of the pycnocline. Then the time of travel of a perturbation across the
instability region is

Tw = F(L̃/2)− F(−L̃/2), (4.4)

where

F(X)=
∫

1
cR(X)

dX. (4.5)
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FIGURE 18. Amplification factor (A/A0) for a perturbation initiated at the right boundary of
the instability region. Thin solid line, calculated by accounting for the spatial variation of
the phase speed and growth rate of the most unstable local mode; dashed line, calculated
by replacing the phase speed with the group velocity; thick solid line, calculated by
approximating both the local growth rate and the local phase speed with the corresponding
values at the maximum displacement. The data points correspond to the two VARDEN
simulations described in figure 19: filled squares, initial magnitude of the perturbation in
stream function of 0.01 cm2 s−1; empty squares, magnitude of 0.1 cm2 s−1.

The characteristic curve initiating at the right boundary of the instability region is
parametrized by {[X(s)= s, t(s)= F(s)−F(L̃/2)] : −L̃/2< s< L̃/2}, and the amplitude
of the perturbation along this characteristic is

A(X, t(X))= A0(L̃/2) exp
[∫ X

L̃/2

ωI(s)

cR(s)
ds

]
, X ∈ [−L̃/2, L̃/2]. (4.6)

In figure 18, we show the amplification factor A/A0 for the wave of amplitude
a/h1 = 1.51, computed by: (i) taking into consideration the spatial variation of
both the phase speed and growth rate pertaining to the dominant unstable mode;
(ii) replacing the phase speed of the dominant local unstable mode with its group
velocity; and (iii) approximating both the phase speed and the growth rate with
the corresponding values at the peak of the wave. Note that replacing the phase
velocity with the group velocity yields a smaller but comparable amplification rate
across the unstable region. On the other hand, using exclusively the growth rate and
phase velocity of the dominant unstable mode at the peak of the wave leads to
over-prediction of the amplification by several orders of magnitude. The amplification
factor at the peak of the wave predicted by this simple model for the large-amplitude
wave a/h1 = 1.51 is substantial (104). Hence, for a perturbation entering the unstable
region from the front of the wave, we expect to see appreciable growth at this
particular point. We remark, however, that in both experiments (Grue et al. 1999)
and time-evolution simulations of solitary-wave solutions (in § 4.1, see in particular
figure 8) no significant growth is noticeable at the point of maximum displacement,
and practically no growth is detected in the front of the wave’s maximum-amplitude
point. We also remark that, in agreement with the findings of Carr et al. (2011), our
studies of amplification prove to be sensitive to the details of the shear flow, making
simplistic models of amplification somewhat inaccurate.
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(eii)
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FIGURE 19. (ai–f i) Time snapshots of the density field at (a) 9.9, (b) 11, (c) 12,
(d) 13, (e) 14 and (f ) 15 s during the propagation of a large-amplitude internal wave
with a/h1 = 1.51, seeded with an initial perturbation in the stream function of magnitude
0.01 cm2 s−1. The perturbation has wavenumber 0.5 cm−1 and is initially situated in front of
the wave (259 cm with respect to the maximum displacement of the wave). Only a section of
the computational domain (period L = 1232 cm) is shown, centred at the peak of the wave,
of horizontal length 539 cm, uniform scale for both x and z. Simulation is performed in the
wave frame moving at speed cwave, the speed of the wave as predicted by the TEW code. The
resolution is 1024 points in the vertical. (aii–f ii) The same as above, for initial magnitude of
the perturbation of 0.1 cm2 s−1.

To further quantify the aforementioned asymmetry in growth, we seed the large
solitary-wave solution of amplitude a/h1 = 1.51 with a perturbation in stream function
located in front of the wave (at x0 = 259 cm with respect of the peak of the wave)

ψ̃ = ψ̂ sech [χ (x− x0)] cos (kx) sech
[
γ
(
zp − z

)]
, (4.7)

where ψ̂ is the magnitude of the perturbation, k is its wavenumber (we chose
k = 0.5 cm−1 close to the wavenumber of the dominant local instability at the point
of maximum displacement) and χ = 0.1 cm−1 specifies the horizontal width of the
envelope. We perform two tests for ψ̂ ≈ 0.01 and 0.1 cm2 s−1 respectively.

In order to estimate the amplification factor, we monitor the amplitude of the
average density profile. This amplitude of the mean-density isoline displacement
is initially ≈0.001 cm for the first simulation and 0.01 cm for the second one,
respectively. The simulations are performed in a frame of reference moving with
the wave, at a spatial resolution of 1024 points in the vertical. (Recall that for this
particular resolution, shear instability developing from an unperturbed TEW initial
cannot be detected in the density field: see figure 9.) As can be seen from figure 19,
roll-ups at the peak of the wave are visible for both simulations, and for the larger
perturbation roll-up occurs even in front of the wave’s peak amplitude location: see
in particular figure 19(bii). The summary of simple model analysis and numerical
experiments depicted in figure 18 shows that the simple envelope equation based on
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local parallel shear analysis over-predicts the amplification factor of the perturbation.
Thus, such simple envelope models result in conservative estimates of the possibility
of roll-ups occurring during wave propagation.

4.5. Stability estimates from strongly nonlinear long-wave models

Long-wave asymptotics for two-layer fluids can successfully model several features of
large nonlinear internal waves (Choi & Camassa 1999; Camassa & Tiron 2011). Next,
we use these models to produce direct analytical expressions for the quantities that
govern the self-induced shear instability we have examined in the previous section.
First, we derive an approximation for the Richardson number along the profile
of a solitary wave in a continuous stratification with a thin pycnocline, using the
predictions of the strongly nonlinear model (Choi & Camassa 1999) with the choice of
parameters appropriately adjusted to include the presence of a finite-width pycnocline
(Camassa & Tiron 2011). We assume that the pycnocline thickness d is constant
along the wave profile. While this assumption can be relaxed for improved accuracy
(Camassa & Tiron 2011), for sufficiently thin pycnoclines of the type used in this
study spatial variations in thickness can be neglected at first.

We fix the location X = x − ct along the wave profile, where c denotes the wave
phase speed. The Richardson number is defined as

Ri(z)=− ρ ′(z)g

ρ(z)u′ (z)2
. (4.8)

The derivative of the horizontal velocity u and of the density ρ can be approximated
by u′(z) ≈ 1u/d and ρ ′(z) ≈ −1ρ/d, respectively, where 1u is the jump in velocity
across the interface, 1ρ = ρ2 − ρ1, the difference between the densities of the two
layers, and d is the thickness of the pycnocline. We also approximate the density
inside the pycnocline by the average value ρav. We thus have

Ri≈ gd1ρ

ρav (1u)2
. (4.9)

By neglecting O(ε2) correction terms (where ε = H/L is the long wave parameter
with H the fluid layer height and L a typical horizontal length scale), the velocity jump
at the interface 1u can be written as

1u(ζ )= c

(
h1

η1
− h2

η2

)
, (4.10)

where ζ is the interface displacement with respect to the quiescent state, whereas
η1 = h1 − ζ and η2 = h2 + ζ are the widths of the two layers: see Camassa et al.
(2006).

Thus the Richardson number at any X location of the wave profile can be expressed
solely in terms of the interfacial displacement

Ri(X)= g d1ρ

ρav

[
(h1 − ζ(X))(h2 + ζ(X))

cHζ(X)

]2

. (4.11)

Dropping of higher-order terms in (4.11) is justified, since the variation of pycnocline
width along the wave profile has been neglected in this simple estimate, which can
induce an error more significant than that of the long-wave asymptotic O(ε2) terms.
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This formula can be further manipulated by substituting the phase speed of the
solitary wave in terms of the signed wave amplitude a (Choi & Camassa 1999),

c2

c2
0

= (h1 − a)(h2 + a)

h1h2 − (c2
0/g)a

, (4.12)

with c0 the linearized long internal wave speed,

c2
0 =

g h1h21ρ

ρ1h2 + ρ2h1
, (4.13)

to read

Ri(X)= d (ρ1h2 + ρ2h1 + a1ρ)

ρavH2

(ζ(X)− h1)(ζ(X)+ h2)

(a− h1)(a+ h2)

×
(

h1

ζ(X)
− 1
)(

h2

ζ(X)
+ 1
)
. (4.14)

This equation can be used to evaluate the (X, ζ ) location(s) along the wave profile
where the Richardson number first becomes critical as functions of the wave amplitude
parameter a. Setting Ri = 1/4 yields a rational equation for ζ(X), whose solution,
subject to the constraint a < ζ(X) < 0 for waves of depression, can in turn be used
to find the possible locations X = ±Xc where the self-induced shear flow can become
critical.

Finally, the minimum Richardson number along the wave profile is located at the
maximum displacement of the pycnocline, where the velocity jump is maximum.
Setting X = 0 in (4.14) (with ζ(0)= a) yields

Rimin(a)= d(ρ1 h2 + ρ2 h1 + a1ρ)

ρavH2

(
h1

a
− 1
)(

h2

a
+ 1
)
. (4.15)

Next, model results such as (4.14) and (4.15), together with the parallelized shear
analysis of § 4.4, can be assembled into a simple predictive criterion for shear
instability manifestations.

4.6. Amplitude threshold for manifestation of shear instability
In this final section we explore the stability properties of waves of various amplitudes
on the same background stratification as the large-amplitude wave (a/h1 = 1.51)
investigated in the previous sections, in an effort to determine a threshold amplitude
for the manifestation of instability. We focus on the stability properties at the peak of
the wave, where the shear is maximal (and thus, when the flow is locally unstable,
the growth rates of the unstable normal modes are maximal). We find that for all
the locally unstable waves investigated, the group velocity of the unstable modes at
this particular location is negative, suggesting that the flows under consideration can
only be convectively unstable. Under this assumption, we construct an estimate of the
amplification of a perturbation that traverses the region of local instability (4.6) by
taking the growth rate at the peak as an upper bound for the growth rate across the
region of local instability. The time of travel of the perturbation in the unstable region
Tw is approximated by LRi/cR, where LRi is the length of the pocket with Ri < 1/4
(which, as shown in the previous section, is an excellent estimate for the extent of the
region of local instability), and cR is the phase speed of the fastest growing mode at
the peak of the wave.
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FIGURE 20. The thick line marks the minimum Richardson number at the peak of the wave
as a function of the wave amplitude, whereas the thin line corresponds to the prediction
using the two-layer approximation. The circles mark waves of amplitudes a/h1 0.73, 0.79
respectively. The shaded area (Ri < 1/4) corresponds to the domain where the necessary
condition for local instability is satisfied.

We remark that Troy & Koseff (2005) and Fructus et al. (2009) constructed a
similar estimate by considering only half of the pocket of Ri < 1/4, based on the
assumption that the shear instability originates at the centre of the wave. In fact, as
can be seen in figure 19, for sufficiently large magnitudes of the initial perturbation
roll-ups can develop before the peak of the wave. While our numerical experiments
reveal that the local growth rates are inhibited in the front of the wave, this is
expected to be a first-order (in the long wave parameter) correction. Thus we argue
that considering the full extent of the area of local instability offers a more robust
estimate for the amplification factor.

In order to isolate an amplitude range for which we expect to identify local
instability within the flow field, we first evaluate the minimum Richardson number at
the peak of the wave as a function of the wave amplitude. We thus identify a minimal
amplitude amin/h1 ≈ 0.76 corresponding to Rimin = 1/4: see figure 20, which also
shows that the two-layer approximation (appropriately adjusted to include the presence
of a finite-width pycnocline as in Camassa & Tiron 2011) furnishes a reasonable
estimate for this minimum Richardson number (see relation (4.15), § 4.5). Furthermore,
by evaluating the local spectrum at the point of maximum displacement for two
waves bracketing the threshold amplitude amin (corresponding to the points I and II
in figure 20), we confirm again that the Ri < 1/4 is an accurate indicator of local
instability. Indeed, we have identified unstable normal modes only for the amplitude II:
0.79.

Next, we evaluate the unstable local spectrum in the amplitude range amin to
maximal: see figure 21, where we depict the maximum growth rate and the phase
speed corresponding to the dominant growing mode, both corresponding to the peak of
the wave.

Finally we determine the length of the area with Ri < 1/4: see figure 22, showing
this area for several of the waves investigated, and figure 23, where we show the
dependence of the length of these areas on the amplitudes. As can be observed
from both of these figures, the two-layer model offers reasonable estimates for the
location of the points that limit the horizontal extent of this area (this location can
be determined by setting Ri = 1/4 in relation (4.14)). (We remark that the height
associated with these points has a weak dependence on amplitude, suggesting a critical
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FIGURE 21. (a) Maximum growth rate at the peak as a function of amplitude. The dashed
vertical line marks the amplitude amin/h1 ≈ 0.76, corresponding to the wave that has the
minimum Richardson number at the peak of the wave Rimin = 1/4. (b) Phase speed of the
dominant unstable mode at the peak as a function of amplitude.
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FIGURE 22. (Colour online) Regions with Richardson number smaller than 1/4 for waves
of amplitudes a/h1 0.79, 0.98, 1.14, 1.23 and 1.51 respectively. The dashed line marks the
two-layer model estimate for the horizontal extent of this area: see relation (4.14).
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FIGURE 23. Dependence of the length of the area of local instability on the wave amplitude.
The dashed line marks the the two-layer model estimate.

height mechanism that could be obtained by scaling arguments independent of the
details of a model.)
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FIGURE 24. Amplification factor (defined by relation (4.6)) as a function of wave amplitude.

Having determined the extent of the area of local instability and the growth rate
and phase speed of the dominant unstable mode at the peak of the waves, we
can estimate the amplification factor, which we depict in figure 24. For waves of
amplitude amin/h1 < a/h1 < 0.9 the amplification factor is less than 10, thus we do
not expect Kelvin–Helmholtz billows to develop for this amplitude range, even for
relatively large magnitudes of the initial perturbation. Note that this particular value
for the amplification factor does not represent a rigorous threshold for instability,
but rather provides an indication as to whether the shear instability would eventually
become visible in the density field. Another factor that might inhibit shear instability
development is when the length of the area of instability becomes comparable to
the the dominant instability wavelength (which is ≈12 cm based on the local linear
stability analysis). Note, however, that in our case this happens when a/h1 < 0.7, an
amplitude range already excluded by the criterion based on the amplification factor. To
demonstrate the effectiveness of the threshold for the manifestation of shear instability
identified above, we have performed numerical simulations for the evolution of several
waves with amplitudes marked in figure 24 (a/h1 of 1.023, 1.14 and 1.23 respectively:
see figures 25–27). In all instances, we use an initial perturbation stream function of
magnitude 0.001 cm2 s−1 and with wavenumber k = 0.5 cm−1 (close to the dominant
instability wavenumber),

ψ(x, z, 0)= ψ̂0 sech2
[
κ(zp − z)

]
cos kx, (4.16)

where zp is the centre of the pycnocline at the maximum displacement, the parameter
κ = 0.2 cm−1 is chosen so that the thickness of the perturbation-band is ≈10 cm, and
ψ̂0 is the magnitude of the perturbation.

We remark that a wave of amplitude a/h1 = 1.23 emerging from a step initial
condition as in the experiment does not exhibit shear instability during its evolution,
as seen in both experimental and numerical (Tiron 2009, §4.2) investigations. However,
as shown in figure 27, we can detect shear instability when a sufficiently large
perturbation is superimposed on a travelling-wave solution of this amplitude.

5. Discussion
We have carried out a numerical and analytical study of the stability of solitary

waves of large amplitude in a near two-layer stratification, working for definiteness
with parameters from the laboratory experiments reported in Grue et al. (1999). While
we have worked with dimensional quantities and ‘hardware’ parameters chosen from
an actual experimental set-up, many of the results we present reflect general behaviour
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FIGURE 25. Snapshots of the horizontal pressure gradient from the time evolution simulation
of a wave of amplitude a/h1 = 1.023, perturbed with a monochromatic perturbation (4.16)
of non-dimensional amplitude 10−3 at (a) t = 0 s and (b) t = 5 s. Only a section of the
computational domain (period L = 1232 cm) is shown, centred at the peak of the wave, of
horizontal length 300 cm, uniform scale for both x and z. (The simulation is performed in the
wave frame moving at the speed cwave, the speed of the wave as predicted by the TEW code.)
Resolution is 512 points in the vertical.
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FIGURE 26. The same as figure 25, a/h1 = 1.14.
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FIGURE 27. The same as figure 25, a/h1 = 1.23.

of internal waves with relatively thin pycnoclines, as we have checked by varying
these parameters for several different cases.
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In order to identify the origin of shear instability for waves of large amplitude, we
have studied the propagation of solitary-wave solutions of Euler equations (obtained
with a variant of the algorithm presented in Turkington et al. 1991, which we describe
in § 2 and appendix A). Our resolution study has demonstrated the convergence of
both the evolution code and of the initial condition. While demonstrating convergence,
we have also provided evidence on the stability properties of the flow: sufficiently
large numerical errors in the initial data induce a first episode of shear instability
which can lead to development of Kelvin–Helmholtz billows. These, however, are
advected away from the region of maximum displacement of the pycnocline, leaving
the wave in a state of equilibrium. Thus, no global self-sustained instability of the
whole wave has emerged from our study.

To analyse this further, we have performed a local spectral stability analysis
of the steady solution. The stability analysis reveals that sufficiently large waves
develop locally unstable shear flows in a finite region around the point of maximum
displacement whose horizontal extent is very well approximated by the Ri < 1/4
criterion. The phase speed and the group velocity associated with the unstable local
modes are negative in the frame of reference of the wave, suggesting that the flow
is convectively unstable, and thus precluding the existence of a global self-sustained
mode. Furthermore, the wavenumber associated with the maximal growth rates of
eigenmodes was found to be almost constant across the region of local instability,
and consistent with the wavenumbers observed in numerical simulations. The finite
extent of the region of shear instability, combined with the information of phase and
group velocity from the real part of unstable eigenvalues, gives an estimate of the
time duration available for perturbation growth. This information can be estimated
analytically by the strongly nonlinear two-layer models, which can accurately predict
the minimum Richardson number along the wave profile and therefore the horizontal
and vertical extent of the area of local instability. Furthermore, two-layer models can
be extended (Camassa & Tiron 2011) to afford a reasonable reconstruction of both
the density and velocity profiles of solitary waves in near two-layer stratifications
even when the transition layer has relatively large thickness. Explicit closed-form
solutions are available for these models and could be exploited for estimating the local
spectrum of solitary waves. We have also refined a simple amplitude equation for
the growth of a monochromatic perturbation (associated with the optimally growing
normal modes) across the region of local instability. Combined with the analytical
results from asymptotic models of long wave propagation, this approach can provide
a rough predictive estimate for the possibility of Kelvin–Helmholtz roll-ups during
the evolution of a given amplitude internal solitary wave. This analysis merits
further investigation and extensions, as it would allow exploring a priori the stability
properties of solitary waves for a large class of stratifications relevant to geophysical
applications.

The class of solitary waves we study appears to be mathematically stable in the
Lyapunov sense. We note that an analytical treatment of this problem, as part of
the general topic of stability of stratified flows, seems to present some formidable
difficulties (as discussed, among others, by Benjamin 1986), which in fact have led to
incorrect results published in the literature (see e.g. Friedlander 2001 for a critique of
past work on this particular topic) even for the presumably simpler case of parallel
stratified shear flow solutions. While we do not attempt a rigorous mathematical proof
for the stability conjecture, to the best of our knowledge our study is the first to
provide a careful numerical assessment of the question of global stability of solitary
internal waves, which we have corroborated with numerous checks and validations on
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both the travelling-wave solution and the time-evolution code (presented in §§ 2.1,
4.1 and appendix B), based on analytical tools whenever available. It is interesting to
note in this context the analysis by Kataoka (2006), which claims that solitary-wave
solutions in two-layer fluids are absolutely stable except for extremely low densities of
the lighter layer, a situation which essentially corresponds to the surface gravity waves
case. Kataoka’s (2006) result in fact provides an extreme example of internal waves
being stable as a whole, even though the shear is unstable locally, in fact ill-posed due
to the velocity jump across the interface between the layers in an inviscid set-up.

In order to provide the evidence to support our stability conjecture, we have refined
the TEW algorithm to determine highly accurate travelling-wave solutions that would
also remain steady solutions for the time-dependent code. As shown by comparison
with the results of Carr et al. (2011), control of numerical perturbations requires high
accuracy, without which nonlinear saturation of instabilities can develop in simulations
of large-amplitude solitary-wave propagation.

It is also important to draw a distinction between our approach and the forced
problem, performed in the wave reference frame, in which upstream boundary
conditions are assigned (reflecting an assumed constant speed of the wave which
is stationary in the computational domain), which is the set-up of Lamb & Farmer
(2011). The ensuing study is naturally that of a ‘signalling problem’, in which a
time-dependent perturbation is applied at the upstream boundary and varies spatially
downstream. While clearly interesting, this problem is quite different from the spatially
doubly infinite or periodic set-up, as pointed out in § 4.3. Nonetheless, it is worth
noting that the weak nature of the shear instability observed in both numerical
simulations and laboratory experiments leads to a minimal energy depletion of the
solitary travelling wave in response to perturbations (when compared to the energy
of the base flow), which implies minimal upstream fluid velocity variations once in
the frame of reference of the wave (see for instance Camassa & Viotti 2012 for a
discussion of these points). This of course makes the signalling problem practically
relevant, while providing evidence in a different form of the inherent stability of
solitary waves in this configuration.

Our study has also brought forth some shortcomings of simple models of shear
instability amplification. In particular, the marked front–back asymmetry in growth
observed in our numerical simulations (and laboratory experiments such as Grue et al.
1999 and Fructus et al. 2009) requires a more in-depth approach. Growth rates appear
to be inhibited in front of the wave’s maximum, while, conversely, they seem to be
enhanced downstream from that location. As pointed out in Camassa & Viotti (2012),
non-normality of the Taylor–Goldstein spectrum can lead to decay of perturbations in
regions upstream of an internal wave maximum, so offering a possible mechanism for
growth inhibition. Further, some of these effects may be predicted by an extension to
the next order of the asymptotic expansion in the long wave parameter, although this is
proving to be a rather involved calculation. Ultimately, this would help us understand
the detailed physical mechanisms responsible for unstable growth, and how this relates
to the spatial variation of the flow dictated by the solitary internal wave propagation.
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Appendix A. The TEW algorithm
In this appendix we summarize the computational method for determining fully

nonlinear solitary-wave solutions of Euler equations in continuous stratification
presented in Turkington et al. (1991) (the TEW algorithm).

A.1. Variational principle

Equation (2.1) admits a variational formulation. Let the objective and constraint
functionals, respectively, be defined as

E(η)=
∫

D

1
2
|∇η|2 ρ(z− η) dx dz, (A 1)

and

F(η)=
∫

D
f (z, η) dx dz, (A 2)

with

f (z, η)= 1
H

∫ η

0
[ρ(z− η)− ρ(z− ξ)] dξ. (A 3)

Then a pair (η, λ) that satisfies the condition

E(η)→min subject to F(η)= A> 0 (A 4)

is a solution of (2.1). It is straightforward to verify that if η is a minimizer and λ is
the associated Lagrange multiplier then (2.1) holds, since

E′(η)=Mη, F′(η)=− η
H
ρ ′(z− η), (A 5)

where prime denotes the functional derivative in η. Note that c2E represents the kinetic
energy of the wave in the laboratory frame whereas g HF represents the potential
energy of the wave disturbance. Thus the physical interpretation of the variational
principle mentioned above is quite appealing: a solitary-wave solution minimizes the
kinetic energy of the admissible variations for a prescribed potential energy.

A.2. Semilinear form of the eigenvalue problem

An extra step in the numerical solution of (2.1) introduced by Turkington et al. (1991)
consists in a change of variable replacing η in favour of a new unknown:

φ = s(z)− s(z− η) with s(z)=
∫ z

0

√
ρ(ξ) dξ. (A 6)
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With this new variable, the quasi-linear eigenvalue problem (2.1) in η = z− s−1(s(z)−
φ) is transformed into a semilinear eigenvalue problem in φ,

−1φ + s′′(z)− s′′(s−1(s(z)− φ))=−2λ
H
[z− s−1(s(z)− φ)]s′′(s−1(s(z)− φ)), (A 7)

with boundary conditions

φ = 0 on ∂D, φ→ 0 as x→±∞. (A 8)

The objective and constraint functionals (A 1), (A 2) become

E(φ)=
∫

D

[
1
2
|∇φ|2+e(z, φ)

]
dx dz, (A 9)

and

F(φ)=
∫

D
f (z, φ) dx dz, (A 10)

where

e(z, φ)=
∫ φ

0
[s′′(z)− s′′(s−1(s(z)− ξ))] dξ, (A 11)

and

f (z, φ)=− 2
H

∫ φ

0
[z− s−1(s(z)− ξ)]s′′(s−1(s(z)− ξ)) dξ. (A 12)

The semilinear eigenvalue problem (A 7) can be compactly rewritten in terms of the
functional derivatives of f and e with respect to φ (denoted by φ-subscripts) as

−1φ + eφ(z, φ)− λfφ(z, φ)= 0. (A 13)

Finally, at the basis of the minimization technique lies the assumption that the
objective functional E is convex, which Turkington et al. (1991) show can be enforced
by requiring

max [eφφ]− < (π/H)2 . (A 14)

(One defines, for any scalar function χ , max[χ ]− ≡ maxχ<0 |χ | and max[χ ]+ ≡
maxχ>0 |χ |.)

It is important to notice that the above condition is sufficient but not necessary for
convexity, and that it is not met for many stratifications with narrow pycnoclines, such
as the ones we focus on in our work.

A.3. Iterative scheme
Turkington et al. (1991) introduced a globally convergent iterative algorithm that
solves the semilinear problem (A 7) by casting it in the form of a quadratic
programming subproblem. In the following, we outline their strategy, emphasizing
the steps which are relevant to our numerical implementation. The convergence of
the iterative scheme relies upon the convexity of the two functionals F + βE and E,
respectively, where the constant β is chosen such that

β(π2/H2 − q)− r > 0, (A 15)
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with q, r denoting the bounds

q=max [eφφ(z, φ)]−, r =max [fφφ(z, φ)]− . (A 16)

Then, by choosing

α =max [eφφ(z, φ)]+, (A 17)

E can be split as

E = E+ − E−, (A 18)

with

E+ =
∫

D

[
1
2
|∇φ|2+α

2
φ2

]
dx dz, (A 19)

convex and quadratic, and

E− =
∫

D

[α
2
φ2 − e(z, φ)

]
dx dz, (A 20)

convex.
Thus, with the above notation, the iterative algorithm can be described as follows.

Let φ0 be an initial condition satisfying F(φ0) = A. The iterative step φk → φk+1

consists in solving the problem

E+(φ)− E−(φk)− 〈E′−(φk), φ − φk〉
→min over F(φk)+ 〈F′(φk)+ βE′(φk), φ − φk〉> A, (A 21)

where 〈· , ·〉 denotes the inner product

〈u, v〉 =
∫

D
u v dx dz. (A 22)

Appendix B. Validation of the time-dependent code: linear growth of the
shear instability

Almgren et al. (1998) validated the evolution code by replicating numerically
the mixing layer experiments reported in Brown & Roshko (1974) and comparing
against their experimental data. However, since experiments introduce uncertainties, in
particular for inherently unstable flows such as mixing layers, a more stringent test
of code validity is given by the exact solutions of the underlying model equations. In
this work, we present two such tests: the first consists of the time evolution within
the class of solitary-wave solutions of Euler equations (see § 3) while the second is
given by the initial linear stage of growth of shear instabilities, which we test in this
appendix.

We simulate the time evolution of a parallel shear constructed with the density
stratification and the shear from the maximum displacement of the pycnocline for
the wave with amplitude a/h1 = 1.51, perturbed with a normal mode solution of the
Taylor–Goldstein equation (4.1) with wavenumber k = 77π/5 ≈ 0.4 cm−1 close to the
wavenumber of the dominant instability. The initial magnitude of the perturbation in
stream function is 0.001 cm2 s−1 and the corresponding amplitude of the isolines of
density is ≈10−4cm (since the displacement ∼ψ/(u0 − c)). The computational domain
consists of a square 77 cm × 77 cm with slip boundary conditions at top and bottom
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FIGURE 28. Snapshot of the density field at time t = 5 s from the time-evolution simulation
of a parallel shear constructed with the density and horizontal velocity profile from the
maximum displacement of the wave of amplitude a/h1 = 1.51, perturbed with an unstable
normal mode of wavenumber k = 77π/5 ≈ 0.4 cm−1. The computational domain is of
77 cm× 77 cm, periodic boundary conditions in the horizontal direction, while the resolution
is of 1024 points in the vertical.
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FIGURE 29. Density isolines corresponding to the average density at (a) 0.5, 1, 1.5 s; (b)
2, 2.5, 3 s; (c) 3.5, 4, 4.5 s. Solid line, linear theory; dotted line, numerical simulation with
VARDEN.

and periodic boundary conditions in the horizontal direction. The spatial discretization
is 1024 points in the vertical. We perform the simulation in the laboratory frame
where the phase speed of growing normal modes (and hence the horizontal excursion
of the the density isolines in the initial stage of linear growth) is relatively small
(≈1 cm s−1).

We first construct the perturbation density field associated with the normal
mode ρ̃ = −ρ ′0(z)/(u0 − c)ψ , where ψ is the perturbation stream function and
c ≈ (−1.02762 + 4.12321 i) cm s−1 is the complex eigenvalue velocity. We can thus
monitor the behaviour of the average density isoline predicted by the linear theory.
As can be seen in figure 29, the linear theory compares very well with the direct
numerical simulation, up to t ≈ 4.5 s when the magnitude of the isoline displacement
ψ/(u0 − c) becomes large and so the approximation for the density perturbation is
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FIGURE 30. Amplitude (half of the distance trough to crest corresponding to the average
density isoline). Solid line, linear theory A(t = 0)Exp(k cI t); circles, numerical simulation
with VARDEN.
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FIGURE 31. Perturbation horizontal velocity profile measured at x = 8 cm from the left
boundary of the domain at times (a) 2 s, (b) 3 s, (c) 4 s, (d) 5 s. Solid line, linear theory;
dotted line, numerical simulation with VARDEN.

no longer accurate. Nonetheless, the growth rate of the amplitude from the direct
numerical simulation (measured as distance crest-to-trough along the isoline) matches
remarkably well with the estimate based on the linear theory, for the entire time range
of the simulation t ∈ (0, 5 s): see figure 30. We also display in figure 31 the horizontal
velocity profile measured at a fixed location x = 8 cm from the left boundary of
the domain. Notice again the excellent agreement with the linear theory prediction
even at t = 5 s, when the behaviour of instability becomes nonlinear, as evidenced in
figure 28.
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