ON A CLOSE-TO-CONVEX ANALOGUE OF CERTAIN STARLIKE FUNCTIONS

VASUDEVARAO ALLU[∞], JANUSZ SOKÓŁ and DEREK K. THOMAS

(Received 11 October 2019; accepted 18 November 2019; first published online 22 January 2020)

Abstract

For *f* analytic in the unit disk \mathbb{D} , we consider the close-to-convex analogue of a class of starlike functions introduced by R. Singh ['On a class of star-like functions', *Compos. Math.* **19**(1) (1968), 78–82]. This class of functions is defined by |zf'(z)/g(z) - 1| < 1 for $z \in \mathbb{D}$, where *g* is starlike in \mathbb{D} . Coefficient and other results are obtained for this class of functions.

2010 Mathematics subject classification: primary 30C50; secondary 30C55, 30C45.

Keywords and phrases: univalent function, starlike function, convex function, alpha-convex function, coefficient estimate, integral mean.

1. Preliminaries

Let \mathcal{H} denote the class of functions f analytic in the unit disk $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ and \mathcal{A} the subclass of \mathcal{H} consisting of functions normalised by f(0) = 0 = f'(0) - 1. Let $S \subset \mathcal{A}$ be the class of univalent (that is, one-to-one) functions in \mathbb{D} . Any function $f \in \mathcal{A}$ has the series representation

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n.$$
 (1.1)

Denote by S^* the subclass of S of starlike functions. It is well known that $f \in S^*$ if and only if $\Re(zf'(z)/f(z)) > 0$, $z \in \mathbb{D}$. Denote by C the subclass of S^* of convex functions. It is well known that $f \in S^*$ if and only if f(z) = zg'(z), for some $g \in C$. By \mathcal{P} we denote the class of Carathéodory functions p which are analytic in \mathbb{D} and satisfy the condition $\Re(p(z)) > 0$ for $z \in \mathbb{D}$, with

$$p(z) = 1 + \sum_{n=1}^{\infty} p_n z^n.$$
 (1.2)

Suppose now that *f* is analytic in \mathbb{D} . Then *f* is close to convex if and only if there exist $\alpha \in (-\pi/2, \pi/2)$ and a function $g \in S^*$ such that $\Re(e^{i\alpha} zf'(z)/g(z)) > 0, z \in \mathbb{D}$.

^{© 2020} Australian Mathematical Publishing Association Inc.

When $\alpha = 0$, we denote this class of close-to-convex functions by \mathcal{K} , and note that $\mathcal{S}^* \subset \mathcal{K} \subset \mathcal{S}$.

Suppose next that $f \in \mathcal{A}$ and is given by (1.1) and satisfies |zf'(z)/f(z) - 1| < 1 for $z \in \mathbb{D}$. This class of functions \mathcal{S}_u^* was introduced in 1968 by Singh [9]. It is clear that $\mathcal{S}_u^* \subset \mathcal{S}^*$. Singh [9] showed that if $f \in \mathcal{S}_u^*$, then $|a_n| \le 1/(n-1)$ for $n \ge 2$, and that this inequality is sharp. Other properties of functions in \mathcal{S}_u^* were also given in [9].

We now define the close-to-convex analogue of the class S_u^* as follows.

DEFINITION 1.1. We say that $f \in \mathcal{K}_u$ if $f \in \mathcal{A}$ and there exists $g \in \mathcal{S}^*$ such that

$$\left|\frac{zf'(z)}{g(z)} - 1\right| < 1, \quad z \in \mathbb{D}.$$

Again it is clear that $S_u^* \subset \mathcal{K}_u \subset \mathcal{K} \subset S$. Although \mathcal{K}_u represents the natural close-toconvex analogue of S_u^* , we shall see that obtaining sharp estimates for the coefficients represents a much more difficult problem. We note that this phenomenon is often reflected in extending results from S^* to \mathcal{K} and will see in this paper that the class \mathcal{K}_u gives rise to some significant and interesting problems.

2. Lemmas

A function ω is called a Schwarz function if $\omega \in \mathcal{H}$, $\omega(0) = 0$ and $|\omega(z)| < 1$ for $z \in \mathbb{D}$. We denote the class of Schwarz functions by Ω .

Note that for $p \in \mathcal{P}$ given by (1.2), we can write $p(z) = (1 + \omega(z))/(1 - \omega(z))$, for some $\omega \in \Omega$. So writing

$$\omega(z) = \sum_{n=1}^{\infty} \omega_n z^n \tag{2.1}$$

and equating coefficients gives

I.

$$p_1 = 2\omega_1, \quad p_2 = 2\omega_2 + 2\omega_1^2.$$
 (2.2)

We will need the following lemmas.

LEMMA 2.1 [2, page 78]. Let $\omega \in \Omega$ be given by (2.1). Then

$$|\omega_{2n-1}| \le 1 - |\omega_1|^2 - |\omega_2|^2 - |\omega_3|^2 - \dots - |\omega_n|^2 \quad \text{for } n = 2, 3, \dots,$$

$$\omega_{2n}| \le 1 - |\omega_1|^2 - |\omega_2|^2 - |\omega_3|^2 - \dots - |\omega_{n-1}|^2 - |\omega_n|^2 \quad \text{for } n = 1, 2, 3, \dots.$$

LEMMA 2.2 [3]. Let $\omega \in \Omega$ be given by (2.1). If $\mu \in \mathbb{C}$, then

$$|\omega_2 - \mu \,\omega_1^2| \le \max\{1, |\mu|\}. \tag{2.3}$$

Using (2.2) and (2.3) immediately gives the following result.

LEMMA 2.3 [5]. Let $p \in \mathcal{P}$ be given by (1.2). Then for $\mu \in \mathbb{C}$,

$$|p_2 - \mu p_1^2| \le 2 \max\{1, |2\mu - 1|\}$$

The inequality is sharp for each complex μ .

LEMMA 2.4 [7, 10]. Let $p \in \mathcal{P}$ be given by (1.2). Then for $n \ge 1$, $|p_n| \le 2$ and

$$|p_2 - \frac{1}{2}p_1^2| \le 2 - \frac{1}{2}|p_1^2|.$$

The following Fekete–Szegö type inequalities for $g \in S^*$ due to Keogh and Merkes [3] will be used extensively in Section 5.

LEMMA 2.5 [3]. Let $g \in S^*$ be given by

$$g(z) = z + \sum_{n=2}^{\infty} b_n z^n.$$
 (2.4)

Then for any $\mu \in \mathbb{C}$ *,*

$$|b_3 - \mu b_2^2| \le \max\{1, |4\mu - 3|\},$$

$$|b_3 - \mu b_2^2| \le 1 + (|4\mu - 3| - 1) \frac{|b_2|^2}{4}.$$
 (2.5)

Both inequalities are sharp.

We will also use the following lemma concerning functions in \mathcal{P} , the proof of which follows easily from Lemma 2.5.

LEMMA 2.6. Let $p \in \mathcal{P}$. Then for any $t \in \mathbb{C}$,

$$|p_2 - tp_1^2| \le 2 + (|2t - 1| - 1)\frac{|p_1|^2}{2}.$$
(2.6)

The inequality is sharp.

PROOF. For $p \in \mathcal{P}$, there exists a function $g \in S^*$ given by (2.4) such that

$$p(z) = \frac{zg'(z)}{g(z)}, \quad z \in \mathbb{D}.$$

Thus $b_2 = p_1$ and $b_3 = \frac{1}{2}(p_2 + p_1^2)$. Substituting in (2.5) gives

$$|p_2 - (2\mu - 1)p_1^2| \le 2 + (|4\mu - 3| - 1)\frac{|p_1|^2}{2},$$

for all complex μ . Writing $\mu = (t + 1)/2$ gives (2.6) for all complex *t*. The function p(z) = (1 + z)/(1 - z) shows that the result is sharp for $|2t - 1| \ge 1$ and the function $p(z) = (1 + z^2)/(1 - z^2)$ shows the sharpness for $|2t - 1| \le 1$.

LEMMA 2.7 [1], [8, page 67]. Suppose that $f \in S$ and $z = re^{i\theta} \in \mathbb{D}$. If

$$m'(r) \le |f'(z)| \le M'(r)$$

where m'(r) and M'(r) are real-valued functions of r in [0, 1), then

$$\int_0^r m'(t) \, dt \le |f(z)| \le \int_0^r M'(r) \, dt.$$

270

LEMMA 2.8 (Baernstein's theorem, [2, page 198]). Let $\Phi(x)$ be a convex nondecreasing function for $-\infty < x < \infty$. If $f \in S$, then

$$\int_0^{2\pi} \Phi(\ln |f(re^{i\theta})|) \, d\theta \le \int_0^{2\pi} \Phi(\ln |k(re^{i\theta})|) \, d\theta,$$

where $k(z) = z/(1-z)^2$. If equality holds for some r in (0, 1) and strictly convex Φ , then $f(z) = \eta k(\overline{\eta}z)$ for some $|\eta| = 1$.

LEMMA 2.9 [2, page 200]. If $f \in C$, then

$$\int_0^{2\pi} |f'(z)|^{\lambda} \, d\theta \le \int_0^{2\pi} |F'(z)|^{\lambda} \, d\theta$$

for all $\lambda \ge 0$, 0 < r < 1, where F(z) = z/(1-z) and $z = re^{i\theta}$.

LEMMA 2.10 [6, page 70]. Suppose that $h \in \mathcal{H}$ is convex and univalent and $P \in \mathcal{H}$ satisfies $\Re(P(z)) > 0$ for $z \in \mathbb{D}$. If $p \in \mathcal{H}$, then

$$p(z) + P(z) \cdot zp'(z) \prec h(z) \Rightarrow p(z) \prec h(z).$$

3. Distortion theorems and integral means

THEOREM 3.1. If $f \in \mathcal{K}_u$ and $z = re^{i\theta}$, $0 \le r < 1$, then

$$\frac{1-r}{(1+r)^2} \le |f'(z)| \le \frac{1+r}{(1-r)^2},\tag{3.1}$$

$$\frac{2r}{1+r} - \log(1+r) \le |f(z)| \le \frac{2r}{1-r} + \log(1-r).$$
(3.2)

The inequalities are sharp.

PROOF. Write

$$f'(z) = \frac{g(z)}{z}(1 + \omega(z)),$$
(3.3)

for some $g \in S^*$ and some $\omega \in \Omega$. It is well known that for $g \in S^*$, with $z = re^{i\theta}$, $0 \le r < 1$,

$$\frac{1}{(1+r)^2} \le \left|\frac{g(z)}{z}\right| \le \frac{1}{(1-r)^2}.$$
(3.4)

Thus, using the Schwarz lemma,

$$1 - r \le |1 + \omega(z)| \le 1 + r, \tag{3.5}$$

and so from (3.3), using (3.4) and (3.5), we immediately obtain (3.1).

The inequalities in (3.1) are sharp when $f_1 \in \mathcal{K}_u$ is given by

$$f_1'(z) = \frac{g_0(z)}{z}(1+z)$$
 and $g_0(z) = \frac{z}{(1-z)^2}$,

in which case

$$f'_1(-r) = \frac{1-r}{(1+r)^2}$$
 and $f'_1(r) = \frac{1+r}{(1-r)^2}$.

Clearly (3.2) follows from Lemma 2.7, since $\mathcal{K}_u \subset S$. The upper bound in (3.2) is sharp for $f_1 \in \mathcal{K}_u$ and the lower bound for $f_2 \in \mathcal{K}_u$, where

$$f_1(z) = \frac{2z}{1-z} + \log(1-z)$$
 and $f_2(z) = \frac{2z}{1+z} - \log(1+z)$.

In the following two integral mean inequalities, the function f_1 shows that the orders of growth as $r \rightarrow 1$ are best possible (see [4, page 96]). However, the inequalities are not sharp.

THEOREM 3.2. Let $f \in \mathcal{K}_u$ be given by (1.1). Then with $z = re^{i\theta} \in \mathbb{D}$,

$$\int_{0}^{2\pi} |f(z)| \, d\theta \le 2\pi \log \frac{1}{1-r},\tag{3.6}$$

$$\int_{0}^{2\pi} |f'(z)| \, d\theta \le \frac{2\pi}{1-r}.\tag{3.7}$$

PROOF. Write

$$f'(z) = h'(z)(1 + \omega(z)), \tag{3.8}$$

for some $h \in C$ and some $\omega \in \Omega$. Integrating (3.8) and using the Schwarz lemma,

$$\begin{split} \int_0^{2\pi} |f(z)| \, d\theta &= \int_0^{2\pi} \left| \int_0^r h'(\rho e^{i\theta}) [1 + \omega(\rho e^{i\theta})] \, d\rho \right| d\theta \\ &\leq \int_0^r (1 + \rho) \int_0^{2\pi} |h'(\rho e^{i\theta})| \, d\theta \, d\rho. \end{split}$$

Applying Lemma 2.9 with n = 2 and using Parseval's theorem,

$$\int_0^{2\pi} |f(z)| \, d\theta \le \int_0^r \int_0^{2\pi} \frac{1+\rho}{|1-\rho e^{i\theta}|^2} \, d\theta \, d\rho = \int_0^r \frac{2\pi}{1-\rho} \, d\rho = 2\pi \log \frac{1}{1-r}.$$

This gives (3.6). In order to prove (3.7), we write

$$f'(z) = \frac{g(z)}{z} (1 + \omega(z)),$$
(3.9)

for some $g \in S^*$ and some $\omega \in \Omega$. Integrating (3.9) and using the Schwarz lemma,

$$\int_0^{2\pi} |f'(z)| \, d\theta = \int_0^{2\pi} \left| \frac{g(re^{i\theta})}{re^{i\theta}} [1 + \omega(re^{i\theta})] \right| d\theta \le \frac{1+r}{r} \int_0^{2\pi} |g(re^{i\theta})| \, d\theta.$$

Applying Lemma 2.8,

$$\int_{0}^{2\pi} |f'(z)| \, d\theta \le \frac{1+r}{r} \int_{0}^{2\pi} |g(re^{i\theta})| \, d\theta \le \frac{1+r}{r} \frac{2\pi r}{1-r^2} = \frac{2\pi}{1-r},$$

which is (3.7).

272

Close-to-convex functions

Let C(r, f) denote the image of the circle |z| = r < 1 under the mapping f and L(r, f) the length of C(r, f). We immediately deduce the following corollary.

COROLLARY 3.3. Let $f \in \mathcal{K}_u$. Then with $z = re^{i\theta} \in \mathbb{D}$,

$$L(r, f) = \int_0^{2\pi} |zf'(z)| \, d\theta \le \frac{2\pi r}{1 - r}.$$

THEOREM 3.4. Let $f \in \mathcal{K}_u$. Then with $z = re^{i\theta} \in \mathbb{D}$,

$$\int_{0}^{2\pi} |f'(z) - h'(z)| \, d\theta \le \frac{2\pi r}{1 - r^2},\tag{3.10}$$

where $h \in C$ and $h'(z) = f'(z)/(1 + \omega(z))$ for some $\omega \in \Omega$. Inequality (3.10) is sharp.

PROOF. Write (3.8) as $f'(z) - h'(z) = h'(z)\omega(z)$, with $\omega \in \Omega$. By the Schwarz lemma,

$$|f'(z) - h'(z)| = |h'(z)\omega(z)| \le |zh'(z)| = |g(z)|,$$
(3.11)

for some $g \in S^*$. Integrating (3.11) and applying Lemma 2.8,

$$\int_0^{2\pi} |f'(z) - h'(z)| \, d\theta \le \int_0^{2\pi} |g(z)| \, d\theta = \frac{2\pi r}{1 - r^2}$$

Choosing h(z) = z/(1-z) and $\omega(z) = z$, we have $f(z) = 2z/(1-z) + \log(1-z)$, which gives equality in (3.10).

4. Coefficients

Singh [9] was able to use the method of Clunie to obtain sharp coefficient estimates for functions in S_u^* . Since this is not possible in \mathcal{K}_u , the problem of extending the coefficient inequalities in [9] to the class \mathcal{K}_u appears not to be straightforward, with exact bounds not easy to find. We give the following results.

THEOREM 4.1. Let $f \in \mathcal{K}_u$ be given by (1.1). Then

$$|a_2| \le \frac{3}{2}, \quad |a_3| \le \frac{5}{3}, \quad |a_4| \le \frac{7.3731\dots}{4} = 1.8443\dots, \quad |a_5| \le \frac{8}{5} + \frac{3}{5\sqrt[3]{4}} = 1.97\dots$$

The inequalities for $|a_2|$ and $|a_3|$ are sharp.

PROOF. Write

$$zf'(z) = g(z)[1 + \omega(z)],$$
 (4.1)

for some $g \in S^*$ and some $\omega \in \Omega$. Equating coefficients in (4.1) and using (2.1) and (2.4) gives

$$2a_2 = b_2 + w_1, \tag{4.2}$$

$$3a_3 = b_3 + b_2 w_1 + w_2, \tag{4.3}$$

$$4a_4 = b_4 + b_3 w_1 + b_2 w_2 + w_3, (4.4)$$

where $|b_n| \le n$ and $|w_n| \le 1$ for $n \ge 1$. Therefore (4.2) gives

$$2|a_2| \le |b_2| + |w_1| \Longrightarrow 2|a_2| \le 3.$$

Now write $x_1 = |w_1|$, $x_2 = |w_2|$ and $x_3 = |w_3|$. From (4.3),

 $3|a_3| \le |b_3| + |b_2||w_1| + |w_2|,$

so that Lemma 2.1 implies

$$3|a_3| \le 3 + 2|w_1| + (1 - |w_1|^2) \le 5,$$

since $0 \le 4 + 2x_1 - x_1^2 \le 5$ for $x_1 \in [0, 1]$. The bound for $|a_4|$ is more complicated. Again from (4.4) and Lemma 2.1,

$$4|a_4| \le |b_4| + |b_3|w_1| + |b_2||w_2| + |w_3| \le 4 + 3x_1 + 2x_2 + x_3,$$

and so

$$0 \le x_1 \le 1$$
, $x_2 \le 1 - x_1^2$, $x_3 \le 1 - x_1^2 - x_2^2$.

We therefore need to find

$$\max_{H} g(x_1, x_2, x_3),$$

where $g(x_1, x_2, x_3) = 4 + 3x_1 + 2x_2 + x_3$ and

$$H = \{(x_1, x_2, x_3): x_1 \le 1, x_2 \le 1 - x_1^2, x_3 \le 1 - x_1^2 - x_2^2\}.$$

It is clear that the maximum over H occurs on the boundary ∂H which we now consider. If $x_3 = 1 - x_1^2 - x_2^2$ and $x_2 = 1 - x_1^2$, then

$$g(x_1, x_2, x_3) = 6 + 3x_1 - x_1^2 - x_1^4, \quad 0 \le x_1 \le 1.$$

Solving this equation (using Wolfram Alpha),

$$\max\{6 + 3x_1 - x_1^2 - x_1^4 : 0 \le x_1 \le 1\} = 7.3731... \text{ at } x_1 = 0.72808...,$$

where

$$7.3731\ldots = \frac{1}{24} \left\{ 148 - \frac{968}{\sqrt[3]{54181 + 2259\sqrt{753}}} + \sqrt[3]{54181 + 2259\sqrt{753}} \right\},\$$
$$0.72808\ldots = \frac{\sqrt[3]{27 + \sqrt{753}}}{2\sqrt{39}} - \frac{1}{\sqrt[3]{3(27 + \sqrt{753})}}.$$

Hence $|a_4| \le \frac{1}{4} \cdot 7.3731... = 1.8443...$ Applying the same method for a_5 gives

$$5|a_5| \le 8 + \frac{3}{\sqrt[3]{4}} = 9.889..., \text{ that is, } |a_5| \le 1.97...$$

The inequalities for a_2 and a_3 are sharp when

$$f(z) = \frac{2z}{1-z} + \log(1-z) = z + \sum_{n=2}^{\infty} \frac{2n-1}{n} z^n.$$

Close-to-convex functions

Nonsharp bounds for $|a_n|$ when $n \ge 5$ can be obtained by the techniques used in the proof of Theorem 4.1. However, the analysis becomes more involved as *n* increases, and requires computer-aided numerical methods.

Inequalities for the coefficients of close-to-convex functions can exhibit unpredictable behaviour (compare the solution to the Fekete–Szegö problem [3]). On the basis of the extremal function for the coefficients a_2 and a_3 above, the obvious conjecture is the following, but this may prove not to be correct.

Conjecture 4.2. Let $f \in \mathcal{K}_u$ be given by (1.1). Then for $n \ge 2$,

$$|a_n| \le \frac{2n-1}{n}.$$

A simple consequence of Corollary 3.3 shows that the coefficients a_n of functions f in \mathcal{K}_u are bounded. To see this, let $f \in \mathcal{K}_u$ be given by (1.1). From Corollary 3.3, with $z = re^{i\theta} \in \mathbb{D}$,

$$n|a_n| \le \frac{1}{2\pi r^n} \int_0^{2\pi} |zf'(z)| \, d\theta \le \frac{1}{r^{n-1}(1-r)}.$$

Choosing r = 1 - 1/n gives $n|a_n| \le n(1 - 1/n)^{-n}$ and, since $(1 - 1/n)^{-n}$ decreases for $n \ge 2$, we obtain $|a_n| \le 4$.

5. Fekete–Szegö theorems

THEOREM 5.1. Let $f \in \mathcal{K}_u$ be given by (1.1) and let $\mu \in \mathbb{R}$.

(1) If $\mu \leq 0$, then

$$|a_3 - \mu a_2^2| \le \frac{5}{3} - \frac{9}{4}\mu. \tag{5.1}$$

(2) If $0 \le \mu \le 2/3$, then

(3) If $2/3 \le \mu \le 1$, then

(4) If $1 \le \mu \le 10/9$, then

$$|a_3 - \mu a_2^2| \le \frac{2(10 - 18\mu + 9\mu^2)}{3(4 - 3\mu)}.$$

$$|a_3 - \mu a_2^2| \le \frac{2}{3}.\tag{5.2}$$

$$|a_3 - \mu a_2^2| \le \frac{3\mu - 5}{3(3\mu - 4)}.$$
(5.3)

(5) If $\mu \ge 10/9$, then

$$|a_3 - \mu a_2^2| \le \frac{9}{4}\mu - \frac{5}{3}.$$
 (5.4)

Inequalities (5.1), (5.2) and (5.4) are sharp.

PROOF. Since $f \in \mathcal{K}_u$, we can write

$$zf'(z) = g(z) \left[\frac{2p(z)}{1+p(z)} \right],$$
(5.5)

where $p \in \mathcal{P}$ and $g \in S^*$. Equating coefficients in (5.5), using (1.2) and (2.4) gives

$$a_3 - \mu a_2^2 = \frac{1}{3} \left(b_3 - \frac{3b_2^2 \mu}{4} \right) + \frac{b_2 p_1}{12} (2 - 3\mu) + \frac{1}{6} \left(p_2 - \frac{p_1^2}{2} \right) - \frac{1}{16} p_1^2 \mu, \quad (5.6)$$

$$= \frac{1}{3} \left(b_3 - \frac{3b_2^2 \mu}{4} \right) + \frac{b_2 p_1}{12} (2 - 3\mu) + \frac{1}{6} \left(p_2 - \frac{4 + 3\mu}{8} p_1^2 \right).$$
(5.7)

We now treat the five cases in the theorem.

Case 1: $\mu \le 0$. We use (5.6) with $|p_1| = x$. From Lemmas 2.4 and 2.5, since $|b_2| \le 2$,

$$|a_{3} - \mu a_{2}^{2}| = \left|\frac{1}{3}\left(b_{3} - \frac{3b_{2}^{2}\mu}{4}\right) + \frac{b_{2}p_{1}}{12}(2 - 3\mu) + \frac{1}{6}\left(p_{2} - \frac{p_{1}^{2}}{2}\right) - \frac{1}{16}p_{1}^{2}\mu\right|$$

$$\leq \frac{1}{3}|3\mu - 3| + \frac{1}{6}|2 - 3\mu|x + \frac{1}{6}\left|2 - \frac{x^{2}}{2}\right| - \frac{1}{16}x^{2}\mu$$

$$= \frac{1}{3}(3 - 3\mu) + \frac{1}{6}(2 - 3\mu)x + \frac{1}{6}\left(2 - \frac{x^{2}}{2}\right) - \frac{1}{16}x^{2}\mu, \qquad (5.8)$$

where $x \in [0, 2]$. Since the right-hand side of (5.8) increases with respect to $x \in [0, 2]$,

$$|a_3 - \mu a_2^2| \le \left[\frac{1}{3}(3 - 3\mu) + \frac{1}{6}(2 - 3\mu)x + \frac{1}{6}\left(2 - \frac{x^2}{2}\right) - \frac{1}{16}x^2\mu\right]_{x=2} = \frac{5}{3} - \frac{9\mu}{4}.$$

The result is sharp for $b_3 = 3$, $b_2 = p_1 = p_2 = 2$ in (5.6), that is, $g(z) = z/(1-z)^2$, p(z) = (1+z)/(1-z).

Case 2: $0 \le \mu \le 2/3$. We again use (5.6) with $x = |p_1|$, which gives

$$|a_3 - \mu a_2^2| \le \frac{1}{3}(3 - 3\mu) + \frac{1}{6}(2 - 3\mu)x + \frac{1}{6}\left(2 - \frac{x^2}{2}\right) + \frac{1}{16}x^2\mu.$$

This expression has a maximum value at $x = 4(3\mu - 2)/(3\mu - 4)$ in [0, 2], so the bound for $0 \le \mu \le 2/3$ follows.

Case 3: $2/3 \le \mu \le 1$. Applying (2.5) and (2.6) in (5.7),

$$\begin{aligned} |a_{3} - \mu a_{2}^{2}| &\leq \frac{1}{3} \left(1 + (|3\mu - 3| - 1) \frac{|b_{2}|^{2}}{4} \right) + \frac{|b_{2}p_{1}|}{12} |2 - 3\mu| \\ &+ \frac{1}{6} \left(2 + \left(\left| \frac{4 + 3\mu}{4} - 1 \right| - 1 \right) \frac{|p_{1}|^{2}}{2} \right) \right) \\ &\leq \frac{1}{3} \left(1 - \frac{3\mu - 2}{4} |b_{2}|^{2} \right) + \frac{3\mu - 2}{12} |p_{1}||b_{2}| + \frac{1}{6} \left(2 - \frac{4 - 3\mu}{4} \frac{|p_{1}|^{2}}{2} \right) \\ &= -\frac{3\mu - 2}{12} |b_{2}|^{2} + \frac{3\mu - 2}{12} |p_{1}||b_{2}| - \frac{4 - 3\mu}{48} |p_{1}|^{2} + \frac{2}{3} \\ &= \frac{3\mu - 2}{12} \left(-y^{2} + xy - \frac{4 - 3\mu}{4(3\mu - 2)} x^{2} \right) + \frac{2}{3}, \end{aligned}$$
(5.9)

where $y = |b_2| \in [0, 2]$, $x = |p_1| \in [0, 2]$. If $\mu = 2/3$, (5.2) follows at once from (5.9). If $\mu \neq 2/3$, we divide by $3\mu - 2$, so that it suffices to show that

$$F(x, y) = -y^2 + xy - \frac{4 - 3\mu}{4(3\mu - 2)}x^2 \le 0 \quad \text{for } 2/3 < \mu \le 1, y \in [0, 2], x \in [0, 2].$$

Since F(x, y) has no critical points in $(0, 2) \times (0, 2)$, we only need to check that $F(x, y) \le 0$ when x = 0 or y = 0, which is trivial, and when x = 2 or y = 2. If x = 2,

$$F(2, y) = -y^2 + 2y - \frac{4 - 3\mu}{3\mu - 2} = -(y - 1)^2 - \frac{6(1 - \mu)}{3\mu - 2} \le 0 \quad \text{when } 2/3 < \mu \le 1,$$

and if y = 2,

$$F(x,2) = -2(2-x) - \frac{4-3\mu}{4(3\mu-2)}x^2 \le 0 \quad \text{when } 2/3 < \mu \le 1,$$

which establishes (5.2). To show the result is sharp we choose $b_2 = 0$, $b_3 = 1$, $p_1 = 0$ and $p_2 = 2$ in (5.7), that is, $g(z) = z/(1 - z^2)$, $p(z) = (1 + z^2)/(1 - z^2)$.

Case 4: $1 \le \mu \le 10/9$. Applying (2.5) and (2.6) in (5.7) gives, for all $\mu \ge 1$,

$$\begin{split} |a_{3} - \mu a_{2}^{2}| &\leq \frac{1}{3} \Big(1 + (|3\mu - 3| - 1) \frac{|b_{2}|^{2}}{4} \Big) + \frac{|b_{2}p_{1}|}{12} |2 - 3\mu| \\ &+ \frac{1}{6} \Big(2 + \Big(\Big| \frac{4 + 3\mu}{4} - 1 \Big| - 1 \Big) \frac{|p_{1}|^{2}}{2} \Big) \\ &\leq \frac{1}{3} \Big(1 - \frac{4 - 3\mu}{4} |b_{2}|^{2} \Big) + \frac{3\mu - 2}{12} |p_{1}||b_{2}| + \frac{1}{6} \Big(2 - \frac{4 - 3}{4} \frac{|p_{1}|^{2}}{2} \Big) \\ &= -\frac{4 - 3\mu}{12} |b_{2}|^{2} + \frac{3\mu - 2}{12} |p_{1}||b_{2}| - \frac{4 - 3\mu}{48} |p_{1}|^{2} + \frac{2}{3} \\ &= \frac{4 - 3\mu}{48} \Big(-4y^{2} + \frac{4(3\mu - 2)}{4 - 3\mu} xy - x^{2} \Big) + \frac{2}{3} := F(x, y), \end{split}$$

where $y = |b_2| \in [0, 2]$, $x = |p_1| \in [0, 2]$. Thus to prove (5.3) it suffices to establish that

$$F(x,y) = \frac{2}{3} + \frac{4-3\mu}{48} \left(-4y^2 + \frac{4(3\mu-2)}{4-3\mu}xy - x^2 \right) \le \frac{2}{3} + \frac{\mu-1}{4-3\mu}$$
(5.10)

for $1 \le \mu \le 10/9$, $y \in [0, 2]$ and $x \in [0, 2]$.

Again F(x, y) has no critical points in $(0, 2) \times (0, 2)$, so we only need to check that $F(x, y) \le 0$ when x = 0 or y = 0, and when x = 2 or y = 2. It is clear from (5.10) that in these four cases F(x, y) attains the greatest value when x = 2, and

$$\max_{0 \le y \le 2} F(2, y) = \frac{2}{3} + \left[\frac{4 - 3\mu}{48} \left(-4y^2 + \frac{8(3\mu - 2)}{4 - 3\mu}y - 4\right)\right]_{y = (3\mu - 2)/(4 - 3\mu)}$$
$$= \frac{2}{3} + \frac{\mu - 1}{4 - 3\mu} = \frac{3\mu - 5}{3(3\mu - 4)}.$$

This gives (5.3).

[10]

Case 5: $\mu \ge 10/9$. From (5.7) with $x = |p_1|$ and $y = |b_2|$,

$$|a_3 - \mu a_2^2| \le \frac{1}{3} \left(1 + (3\mu - 4)\frac{y^2}{4} \right) + \frac{xy}{12}(3\mu - 2) + \frac{1}{6} \left(2 - \frac{x^2}{2} \right) + \frac{\mu x^2}{16} := H(x, y).$$

Since the only critical point of H(x, y) is at x = y = 0 and H(0, 0) = 2/3, we only need to check the boundary values of H(x, y) on $[0, 2] \times [0, 2]$. Observe that:

(i) $H(0, y) = \frac{1}{3} + \frac{1}{3}(1 + \frac{1}{4}(3\mu - 4)y^2) \le \frac{1}{3}(3\mu - 2) \le \frac{9}{4}\mu - \frac{5}{3}$ when $\mu \ge \frac{10}{9}$ and $0 \le y \le 2$; (ii) $H(2, y) = \frac{1}{4}\mu + \frac{1}{6}(3\mu - 2)y + \frac{1}{3}(1 + \frac{1}{4}(3\mu - 4)y^2)$, which increases on $y \in [0, 2]$ and so again $H(2, y) \le \frac{9}{4}\mu - \frac{5}{3}$;

(iii) $H(x, 0) = \frac{2}{3} + \frac{1}{48}(3m - 4)x^2$ and H'(x, 0) = 0 when either x = 0 or $\mu = \frac{4}{3}$, but $H(\frac{4}{3}, 0) = \frac{2}{3} \le \frac{1}{4}\mu - \frac{5}{3}$ so we only need to consider x = 0 and x = 2, where $H(0, 0) = \frac{2}{3}$ and $H(2, 0) = \frac{1}{3} + \frac{1}{4}\mu \le \frac{9}{4}\mu - \frac{5}{3}$, giving the result in this case;

(iv) $H(x, 2) = \frac{1}{3}(3\mu - 3) + \frac{1}{6}(3\mu - 2)x + \frac{1}{16}\mu x^2 + \frac{1}{6}(2 - \frac{1}{2}x^2)$ is increasing for $x \in [0, 2]$ when $\mu \ge \frac{10}{9}$ and $H(2, 2) = \frac{9}{4}\mu - \frac{5}{3}$, which completes the proof.

The result is sharp on choosing $b_3 = 3$, $b_2 = p_1 = p_2 = 2$ in (5.8), that is, $g(z) = z/(1-z)^2$, p(z) = (1+z)/(1-z).

The following Fekete–Szegö theorem for complex μ is probably not sharp.

THEOREM 5.2. Let $f \in \mathcal{K}_u$ be given by (1.1). For $\mu \in \mathbb{C}$,

$$|a_3 - \mu a_2^2| \le \frac{1}{3} [\max\{1, |4\mu_1 - 3|\} + \max\{1, |2\mu_2 - 1|\} + |2 - 3\mu|],$$
(5.11)

where $\mu_1 = 3\mu/4$ and $\mu_2 = (4 + 3\mu)/8$.

PROOF. From (5.7),

$$\begin{aligned} |a_3 - \mu a_2^2| &\leq \frac{1}{3} \left| b_3 - \frac{3\mu}{4} b_2^2 \right| + \frac{1}{12} |b_2 p_1| |2 - 3\mu| + \frac{1}{6} \left| p_2 - \frac{4 + 3\mu}{8} p_1^2 \right| \\ &\leq \frac{1}{3} \left| b_3 - \frac{3\mu}{4} b_2^2 \right| + \frac{1}{3} |2 - 3\mu| + \frac{1}{6} \left| p_2 - \frac{4 + 3\mu}{8} p_1^2 \right|. \end{aligned}$$

Applying Lemmas 2.3 and 2.5 gives (5.11).

6. The radius of convexity and starlikeness

A number $r_0 \in [0, 1]$ is called the radius of convexity of a particular subclass of \mathcal{A} if r_0 is the largest number such that $\Re(1 + zf''(z)/f'(z)) > 0$ for all f in the subclass and $|z| < r_0$. It was shown in [9] that the radius of convexity for functions in \mathcal{S}_u^* is $(\sqrt{13} - 3)/2$. We now show that when $f \in \mathcal{K}_u$, the radius of convexity is 1/3.

THEOREM 6.1. The radius of convexity of \mathcal{K}_u is 1/3.

Close-to-convex functions

PROOF. For $f \in \mathcal{K}_u$, we write $zf'(z) = g(z)[1 + \omega(z)]$, for some $g \in S^*$ and some $\omega \in \Omega$. Thus

$$1 + \frac{zf''(z)}{f'(z)} = \frac{zg'(z)}{g(z)} + \frac{z\omega'(z)}{1+\omega(z)}.$$
(6.1)

It is well known (see [10]), that for $g \in S^*$, with $z = re^{i\theta}$ and $0 \le r < 1$,

$$\Re e\left\{\frac{zg'(z)}{g(z)}\right\} \ge \frac{1-r}{1+r}$$

Also from the Schwarz lemma, $|\omega(z)| \le |z| = r$ and from [2, page 77],

$$|\omega'(z)| \le \frac{1 - |\omega(z)|^2}{1 - |z|^2} = \frac{1 - |\omega(z)|^2}{1 - r^2}.$$
(6.2)

Thus from (6.1), for $z = re^{i\theta}$ and $0 \le r < 1$,

$$\begin{split} \Re e \bigg\{ 1 + \frac{zf''(z)}{f'(z)} \bigg\} &\geq \Re e \bigg\{ \frac{zg'(z)}{g(z)} \bigg\} - \bigg| \frac{z\omega'(z)}{1 + \omega(z)} \bigg| \\ &\geq \frac{1 - r}{1 + r} - \frac{r}{1 - |\omega(z)|} |\omega'(z)| \\ &\geq \frac{1 - r}{1 + r} - \frac{r}{1 - |\omega(z)|} \frac{1 - |\omega(z)|^2}{1 - r^2} \\ &= \frac{1 - r}{1 + r} - \frac{r(1 + |\omega(z)|)}{1 - r^2} \\ &\geq \frac{1 - r}{1 + r} - \frac{r(1 + r)}{1 - r^2} = \frac{1 - 3r}{1 - r^2} > 0, \end{split}$$

when $r \in [0, 1/3)$. Thus the radius of convexity for the class \mathcal{K}_u is at least 1/3.

To see that this is the largest such radius, consider $f_0 \in \mathcal{K}_u$ at the point z = -r where f_0 is defined by $f'_0(z) = (1 + z)/((1 - z)^2$.

A number $r_0 \in [0, 1]$ is called the radius of starlikeness of a particular subclass of functions in \mathcal{A} if r_0 is the largest number such that $\Re(zf'(z)/f(z)) > 0$ for all f in that subclass and $|z| < r_0$.

THEOREM 6.2. The radius of starlikeness of \mathcal{K}_u is not smaller than $\sqrt{2} - 1$.

PROOF. For $f \in \mathcal{K}_u$,

$$\frac{f'(z)}{g'(z)} < 1 + z =: h(z), \tag{6.3}$$

for some $g \in C$ and where *h* is convex and univalent. Write p(z) = f(z)/g(z) and P(z) = g(z)/zg'(z). Since $g \in C$, (6.3) becomes $p(z) + P(z) \cdot zp'(z) < h(z)$, where $\Re(P(z)) > 0$ for $z \in \mathbb{D}$. Thus from Lemma 2.10,

$$\frac{f(z)}{g(z)} = 1 + \omega(z),$$

[12]

for some $g \in C$ and some $\omega \in \Omega$. This gives

$$\frac{zf'(z)}{f(z)} = \frac{zg'(z)}{g(z)} + \frac{z\omega'(z)}{1+\omega}.$$

It is well known that if $g \in C$, with $z = re^{i\theta}$, $0 \le r < 1$, then

$$\Re e\left\{\frac{zg'(z)}{g(z)}\right\} \ge \frac{1}{1+r}.$$

Again using the Schwarz lemma and (6.2), we obtain

$$\Re e\left\{\frac{zf'(z)}{f(z)}\right\} \ge \Re e\left\{\frac{zg'(z)}{g(z)}\right\} - \left|\frac{z\omega'(z)}{1+\omega(z)}\right| \ge \frac{1}{1+r} - \frac{r}{1-|\omega(z)|}|\omega'(z)|$$
$$\ge \frac{1}{1+r} - \frac{r}{1-|\omega(z)|}\frac{1-|\omega(z)|^2}{1-r^2} = \frac{1}{1+r} - \frac{r(1+|\omega(z)|)}{1-r^2}$$
$$\ge \frac{1}{1+r} - \frac{r(1+r)}{1-r^2} = \frac{1-2r-r^2}{1-r^2} > 0$$

when $r \in [0, \sqrt{2} - 1)$. Thus the radius of starlikeness of \mathcal{K}_u is at least $\sqrt{2} - 1$.

References

- [1] A. W. Goodman, Univalent Functions, Vol. I (Mariner Publishing Co., Tampa, FL, 1983).
- [2] A. W. Goodman, Univalent Functions, Vol. II (Mariner Publishing Co., Tampa, FL, 1983).
- [3] F. R. Keogh and E. P. Merkes, 'A coefficient inequality for certain classes of analytic functions', *Proc. Amer. Math. Soc.* 20(1) (1969), 8–12.
- [4] J. E. Littlewood, *Lectures on the Theory of Functions* (Oxford University Press, Oxford, 1944).
- [5] W. C. Ma and D. Minda, 'A unified treatment of some special classes of unvalent functions', in: *Proceedings of the Conference on Complex Analysis, Tianjin, 1992*, Lecture Notes Anal. I (International Press, Cambridge, MA, 1994), 157–169.
- [6] S. S. Miller and P. T. Mocanu, *Differential Subordinations, Theory and Applications*, Series of Monographs and Textbooks in Pure and Applied Mathematics, 225 (Marcel Dekker, New York, 2000).
- [7] Ch. Pommerenke, Boundary Behaviour of Conformal Maps (Springer, Berlin, 1992).
- [8] I. I. Privalov, 'Sur les fonctions qui donnent la représentation conforme biunivoque', *Rec. Math. D. I. Soc. D. Moscou* 31(3–4) (1924), 350–365.
- [9] R. Singh, 'On a class of star-like functions', *Compos. Math.* **19**(1) (1968), 78–82.
- [10] D. K. Thomas, N. Tuneski and A. Vasudevarao, Univalent Functions: A Primer, De Gruyter Studies in Mathematics, 69 (De Gruyter, Berlin, 2018).

VASUDEVARAO ALLU, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Bhubaneswar, PIN-752050, Odisha, India e-mail: avrao@iitbbs.ac.in

JANUSZ SOKÓŁ, Faculty of Mathematics and Natural Sciences, University of Rzeszów, ul. Prof. Pigonia 1, 35-310 Rzeszów, Poland e-mail: jsokol@ur.edu.pl

280

[13]

DEREK K. THOMAS, Department of Mathematics, Swansea University, Singleton Park, Swansea SA2 8PP, UK e-mail: d.k.thomas@swansea.ac.uk

[14]