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The rise of a single bubble confined between two vertical plates is investigated over a
wide range of Reynolds numbers. In particular, we focus on the evolution of the bubble
speed, aspect ratio and drag coefficient during the transition from the viscous to the inertial
regime. For sufficiently large bubbles, a simple model based on power balance captures
the transition for the bubble velocity and matches all the experimental data despite strong
time variations of bubble aspect ratio at large Reynolds numbers. Surprisingly, bubbles in
the viscous regime systematically exhibit an ellipse elongated along its direction of motion
while bubbles in the inertia-dominated regime are always flattened perpendicularly to it.
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1. Introduction

Main characteristics such as the rise speed vb and shape for isolated bubbles in a liquid
of infinite extent are now well-established (Davies & Taylor 1950; Harper 1972; Clift,
Grace & Weber 1978; Maxworthy et al. 1996; Tripathi, Sahu & Govindarajan 2015). In a
confined environment, the question of the transition between the viscous and the inertial
regime is still open and will be tackled in this paper. Conventionally, such cases are studied
by considering bubbles in a liquid contained in a Hele-Shaw cell, consisting of two plates
separated by a very small distance, h (Maxworthy 1986; Filella, Ern & Roig 2015; Gaillard
et al. 2021) or cylindrical tubes (Danov, Lyutskanova-Zhekova & Smoukov 2021). In the
case of a bubble confined in a Hele-Shaw cell, the appropriate Reynolds number that
compares the inertial and viscous effects is Re2h = (ρvbd2/η)(h/d2)

2 (Batchelor 2000)
where ρ is the liquid density, η the liquid dynamical viscosity and d2 = 2(A/π)1/2 the
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equivalent bubble diameter computed from A, the area occupied by the bubble in the plane
of the plates.

As first demonstrated by Taylor & Saffman (1959) and later by Eck & Siekmann (1978),
Maxworthy (1986) and Tanveer (1987), when surface tension effects are neglected, large
elliptical bubbles (d2 � h) in the viscous regime (Re2h � 1) rise at the characteristic
speed

vM = v�
M

a
b
, with v�

M = �ρgh2

12η
, (1.1)

where �ρ = ρ − ρg with ρg the gas density, g the gravity, a and b respectively the bubble
length in the direction (longitudinal) and perpendicular (transverse) to its movement. In
the limit of an almost horizontal cell (g here is the effective gravity), Eck & Siekmann
(1978) and Maxworthy (1986) observed that a � b and vb � v�

M . By including surface
tension effects, Tanveer (1987) demonstrated that the analysis of Taylor & Saffman (1959)
should lead to a wide variety of solutions for the bubble shape which cannot be simply
determined. Much later, using the generalised Onsager’s principle (Doi 2011) along with
the Park & Homsy (1984) boundary condition at an elliptical bubble perimeter, Xu et al.
(2020) emphasised that a single rising bubble is either circular (a = b) or flattened (a < b)
due to viscous Bretherton dissipation at the moving bubble boundary, which accounts for
the energy loss in the lubrication films between the bubble and the walls. While this result
is in accordance with the experimental observations of Eck & Siekmann (1978) for an
inclined Hele-Shaw cell, all bubbles in Maxworthy (1986) are elongated in the longitudinal
direction (a > b). The latter result is also seen in more recent investigations conducted by
Madec et al. (2020) in a vertical Hele-Shaw cell. Therefore, the parameters which govern
the bubble shape, in particular, its aspect ratio and, more generally, its intricate relation to
its proper rise speed (1.1), are still not well-established.

In the inertial regime (Re2h > 1), Roig et al. (2012) found experimentally that, in
distilled water, the time-averaged bubble speed vb follows vb � vi = ξ

√
gd2 where ξ , a

dimensionless prefactor, was later found to depend on the cell gap (Filella et al. 2015) so
that

vi = α(3/2)1/6(h/d2)
1/6

√
gd2 = α

√
gd3. (1.2)

Here, d3 = (6V/π)1/3 is the diameter of an equivalent spherical bubble of same volume
V and the empirical coefficient α = 0.71 is now independent of h (Filella et al. 2015;
Pavlov et al. 2021b). While this result is analogous to isolated spherical cap bubbles in
an unbounded liquid (Davies & Taylor 1950), the physical origin of the constant α = 0.71
is still not clear. By studying air bubbles in various glycerol/water solutions and colloidal
suspensions of fine silica particles in water, respectively, Hashida, Hayashi & Tomiyama
(2019, 2020) proposed that the factor α should depend on liquid characteristics such as ρ, η
and γ (its surface tension). Regarding the bubble shape, Roig et al. (2012) and Filella et al.
(2015) observed that all bubbles are flattened with respect to the longitudinal direction
(χ = a/b < 1). Note that those results concern the time-averaged properties of the bubble
since for high enough Reynolds numbers, the bubble wake undergoes destabilisation
whereby path instabilities and shape oscillations occur during bubble rise in a Hele-Shaw
cell (Kelley & Wu 1997; Roig et al. 2012; Wang et al. 2014).

In this context, we focus on the time-averaged bubble rise speed and shape in a vertical
Hele-Shaw cell of different gaps for a wide variety of liquids (see table 1). First, we
quantify the bubble speed transition from the viscous (1.1) to the inertial (1.2) limit by
systematically varying the bubble Reynolds number Re2h from 10−4 to 102. Then, we
investigate how the bubble shape changes from an elongated ellipse (a > b) to a flattened
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bubble (a < b). Finally, we provide a scaling law for the bubble drag coefficient in both
viscous and inertial regimes.

2. Experimental set-up

We investigate the rising motion of a single bubble in a Newtonian liquid initially
at rest confined between two vertical plates (Hele-Shaw cell Lc = 20 cm large, Hc =
30 cm high, see figure 1a). Experiments are performed using different cell gaps (h =
[2.0, 2.3, 5.2] mm). The recent study of Pavlov et al. (2021b) on the role of lateral
confinement on bubble motion shows that there is very little effect of the width-to-length
ratio in our set-up. A wide variety of liquids are considered with different viscosity, density
and surface tension (table 1). The viscosity is taken from handbooks for water and ethanol
while for the other solutions it is measured by a Malvern Kinexus Ultra+ rheometer at shear
rates close to the experimental conditions and at room temperature (from 20 ◦C to 25 ◦C).
The surface tension and liquid density are quantified using the pendant drop method in
an Attension Theta tensiometer and an Anton Paar DMA 35 densimeter, respectively.
The Morton number Mo = gη4/(ργ 3), which characterises the liquid physical properties,
varies over 15 orders of magnitude.

Bubbles are generated at the centre of the cell’s bottom with the help of a
millimetric-sized pipe attached to a manually controlled 50 ml syringe. The cell is backlit
uniformly with an LED panel while a computer-controlled camera (Basler AC-0.400,
2048 × 2048 pixels) records, for each run, the rising motion of the bubble at 10–60 f.p.s.
(depending on the bubble velocity). Note that although we are able to visualise the whole
cell, the bubble motion is analysed in a region of interest far from the cell boundaries (≈ 4
cm from the top and bottom, and 8 cm from the sides as the bubble roughly rises vertically).
Images are then binarised (the threshold of binarisation induces an error of less than 1 % on
the bubble’s characteristics) and standard techniques in Matlab are performed to identify
the bubble contour, define the equivalent ellipse and compute the bubble speed vb and
aspect ratio χ = a/b. We remind the reader that a and b are the bubble semi-axes parallel
(longitudinal) and perpendicular (transverse) to its motion, respectively. The equivalent
planar bubble diameter is therefore d2 = 2

√
ab. In the following, only bubbles with d2 > h

are considered.

3. Experimental results

3.1. General observations
A chronophotograph of two rising bubbles of almost identical apparent diameter d2 is
displayed in figure 1(b). The bubbles rise in water/Ucon mixtures whose viscosity differs
by an order of magnitude. As expected, the bubble in the more viscous liquid rises
slower. The bubble shape is clearly different: an oval-shaped bubble elongated vertically
is observed in the viscous liquid (WU140) while a oblate, flattened bubble is seen in the
less viscous liquid (WU17). In the former case, the bubble shape resembles very much an
ellipse differing only by a small cusp at the rear (see insert). In the latter case, the bubble
does not display an ideal elliptic shape.

The temporal evolution of the bubble velocity vb and its aspect ratio χ = a/b are
given in figures 1(c) and 1(d), respectively. The vertical velocity (vz, black) is at least
two orders of magnitude larger than the horizontal speed (vx, grey) for both bubbles. No
zigzag motion is reported. Neither vz(t), vx(t) nor the aspect ratio χ(t) vary significantly
during the bubble rise. This is the case for most bubbles under study since the time scale
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Figure 1. (a) Schematic of the experimental set-up. (b) Chronophotography of two individual bubbles [h =
2.3 mm] illustrating a slower, elongated bubble (WU140, solid line, Re2h = 7.2 × 10−2) in contrast to a
faster, flattened bubble (WU17, dashed line, Re2h = 2). Images here are cropped. See supplementary material
available at https://doi.org/10.1017/jfm.2022.361. Inset: zoom on each bubble indicating the scale (black line
1 cm). Temporal evolution of (c) the horizontal (vx, grey) and vertical (vz, black) velocity and (d) the aspect
ratio χ = a/b. The grey area corresponds to χ < 1.

τ = h2ρ/(4η) required to establish a steady rising motion (Filella et al. 2015) is much
smaller than the time required to rise up to the surface (the ratio between these two
characteristic times is given in the last column of table 1, where T is the time required
to rise up to the surface for the fastest bubble). The condition is, however, not attained in
water and ethanol. Unless specified, all quantities, namely, the bubble speed, aspect ratio
and diameter, provided in the following sections are time-averaged (〈·〉) which corresponds
to a rise of 20 cm at most. The error bars indicate the standard deviation from these average
quantities and are present on every graph; they are often smaller than the size of the
symbols.

In summary, for given liquid mixtures that differ only by their viscosity, these
observations clearly indicate that the bubbles are either elongated or flattened as the
associated Hele-Shaw Reynolds number changes from 7 × 10−2 to 2. We therefore further
investigate the bubble speed in WU-mixtures by properly controlling the liquid viscosity
so that Re2h varies while keeping the surface tension approximately constant.

3.2. Bubble rising speed
As proposed by Taylor & Saffman (1959) and Maxworthy (1986), for Re2h � 1, the
time-averaged bubble speed should be given by (1.1) when d2 � h. We compute the
time-averaged normalised bubble velocity ṽb =< vz(t)/vM(t) >, where vM(t) = v�

Mχ(t)
is a function of time as the bubble aspect ratio is free to evolve during bubble rise
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Figure 2. Evolution of ṽb = 〈vz(t)/(v�
Mχ(t))〉 with d2/h (h = 2.0 or 2.3 mm, see table 1) for WU-mixtures

with different liquid viscosity (see panel (b) and table 1). The dark line on the images corresponds to 1 cm.
Images correspond to four typical bubbles of almost the same size along with their respective speed and
Reynolds number.

(see figure 1c). This quantity is displayed in figure 2 as a function of the time-averaged
normalised bubble diameter, d2/h.

For viscous water/UCON mixtures (η � 100 mPa s), the normalised bubble speed ṽb
increases monotonically from zero and plateaus at approximately unity at d2/h > 8. For
less viscous liquids, the trend is similar but the normalised bubble speed is smaller for
comparable d2/h. In addition, the plateau value of ṽb is smaller than unity. Also in
figure 2, typical Reynolds numbers Re2h are given. A very good agreement between the
experimental data and the theoretical viscous bubble speed (1.1) is observed for large
bubbles at Re2h � 1 without any adjustable parameter. Equation (1.1) even provides a
reasonable estimation when Re2h � 1. Nonetheless, as Re2h increases, inertia becomes
important and the bubble speed deviates from the viscous limit, vM . This is due to
secondary flows around the bubble as Re = (d2/h)2Re2h = ρvbd2/η becomes large (Bush
& Eames 1998; Pavlov et al. 2021a).

Typical bubble shapes at different Reynolds numbers Re2h are displayed for a fixed
normalised diameter d2/h � 10. Note that bubbles B and C correspond to the examples
shown in figure 1. As the liquid viscosity is decreased while keeping the surface
tension unchanged, the bubble shape continuously evolves from a longitudinally elongated
quasi-elliptic contour to a flattened oblate bubble. This indicates a decrease in the bubble
aspect ratio as Re2h increases.

These results strongly suggest that inertia modifies not only the maximum bubble speed
but also the bubble aspect ratio. An appropriate model to improve the theoretical result of
Taylor & Saffman (1959) (1.1) should therefore include inertial effects. For large bubbles at
Re2h � 1 at dynamic equilibrium, Maxworthy (1986) derived this expression by balancing
the injected power Pb = �ρ(πabh)vb with the viscous dissipation rate Φ̇v = 12ηv2

bπb2/h
due to the viscous flow generated by the rising bubble. Building upon this analysis, we
propose that in addition to the viscous dissipation, the injected power Pb should also
contribute to overcome inertial effects. The latter, in general, are proportional to the kinetic
energy of an equivalent liquid volume that is set in motion by the bubble, ρv2

b(πabh)/2,
and the characteristic time scale during which the bubble volume exchanges energy with
the liquid, i.e, d3/vb where d3 is the volume-based diameter as in (1.2). Thereby, the
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Figure 3. Experimental velocity ratio vb/
√

gd3 as a function of vM/
√

gd3. Small (large) symbols indicate
bubbles with d2/h < 4 (d2/h > 4). Colours are those defined in table 1. Data with dark and white edges
correspond to h = 2.3 mm and h = 5.2 mm, respectively. Stars at high vM/

√
gd3 are data from Filella et al.

(2015) (∗, green) and Pavlov et al. (2021b) (∗, orange). Insert: zoom on the transition. The dashed line is the
prediction from (3.2) with β = 3.9 ± 0.1.

modified power balance leads to

ρg(πabh)vb = 12πηv2
bb2

h
+ 1

2
ρv2

b(πabh)

(
β

vb

d3

)
, (3.1)

where β is an arbitrary constant. Note that the ratio between the two terms on the
right-hand side is (β/24)χRe3h, where Re3h = (ρvbd3/η)(h/d3)

2 = Re2h(d2/d3) is a
volume-based Hele-Shaw Reynolds number. For Re3h � 1, the last term is negligible so
(3.1) gives vb = vM whereas, for Re3h � 1, the viscous dissipation can be ignored with
respect to inertia-added power, which leads to vb = √

2/β
√

gd3, regardless of the aspect
ratio. Furthermore, rewriting (3.1),

vb = 2vM

1 +
√

1 + 2β

(
vM√
gd3

)2
, (3.2)

where the ratio vM/
√

gd3 is the parameter that distinguishes the viscous and inertial
regimes for bubbles in a Hele-Shaw cell. In (3.2), the only parameter depending on
the aspect ratio is vM = v�

Mχ . In figure 3, this new expression is now compared with
experimental data for all liquids given in table 1 and also for data from Filella et al. (2015)
and Pavlov et al. (2021b) for a different gap (h = 3.1 mm).

The dashed line is the prediction from (3.2) with β = 3.9 ± 0.1 (best fit on large
bubbles). When vM/

√
gd3 � 1 and β = 3.9, (3.2) leads to vb � 0.72

√
gd3, which

corresponds within the error bars to the inertial limit obtained by Filella et al. (2015)
(1.2). All data for the large bubbles (d2 > 4h) are in very good agreement with (3.2).
Smaller bubbles fall below the dashed curve as long as vM/

√
gd3 < 10, indicating that

(3.2) provides probably an upper boundary for the bubble speed at Re3h � 1. This is
probably due to the fact that the viscous dissipation for small bubbles is overestimated
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Figure 4. Bubble aspect ratio χ as a function of Re3h. Small (large) symbols indicate bubbles with d2/h < 4
(d2/h > 4). Data with dark and white edges correspond to h = 2.3 mm and h = 5.2 mm, respectively. The grey
area corresponds to χ < 1. The solid vertical grey line indicates Re3h = 1. Stars are data from Filella et al.
(2015) (∗, green) and Pavlov et al. (2021b) (∗, orange). Inset: χ as a function of d2/h. The dashed line is a
guideline. The solid black segment with −1/4 indicates the slope of the dashed line.

in (3.1). Note that the expression for the bubble volume V = Ah is not exact since,
especially for small bubbles, the rounding of the edges gives a lower volume (for a bubble
with d2 = 2h, this gives an error of 5 % on

√
d3). Also, A = ab is not exact as bubbles are

not perfectly elliptical but this estimation is really satisfactory (less than 2 % of error in
the worst case).

In conclusion, the rise speed of large bubbles (d2 � h) in a Hele-Shaw cell is uniquely
determined by the ratio vM/

√
gd3 for all Morton numbers in our study. This is all the more

surprising that bubbles at very large Reynolds numbers exhibit shape and path oscillations,
as already observed in previous works (Filella et al. 2015; Pavlov et al. 2021b). Finally,
these results suggest that the dissipation in the film between the bubble and the walls does
not significantly influence the bubble speed when d2 � h. This is consistent with previous
works (Keiser et al. 2018; Toupoint, Joubaud & Sutherland 2021) since in our case the
gas/liquid viscosity ratio is very small.

3.3. Bubble aspect ratio
Figure 4 displays the time-averaged bubble aspect ratio χ = a/b as a function of Re3h.
All bubbles in the viscous regime (Re3h < 1) are elongated in the direction of the bubble
motion (χ ≥ 1). In contrast, bubbles in the inertial regime are flattened (χ < 1).

First, for Reynolds numbers Re3h above unity, the aspect ratio of large bubbles seems to
decrease as Re−1/4

3h . As the Reynolds number is further increased (Re3h � 100), significant
variations are reported, in particular for bubbles in ethanol (�, violet) and water (�, red).
Interestingly, no such deviations occur for the corresponding bubble velocity (figure 3)
since at sufficiently large velocity ratio (vM/

√
gd3 > 10), the bubble speed depends

only on its sphere-equivalent diameter d3, irrespective of the aspect ratio. Filella et al.
(2015) accounted for the bubble aspect ratio variations by using the Weber number

942 R3-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

36
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.361


Bubble rise in a Hele-Shaw cell

We = ρv2
bd2/γ , so that χ ≈ We−1/2 for 1 < We < 10. In our experiments, this scaling

holds for water only but failed for all other liquids (not shown here).
Second, figure 4 (inset) presents the data corresponding to the viscosity-dominated

regime (Re3h < 1). As long as d2/h < 15, the aspect ratio χ � 1, while for larger d2/h, it
increases with the normalised bubble diameter d2/h. Finally, since the surface tension of
WU and WT mixtures are not very different, it is not conclusive if this trend in aspect ratio
for the low-Reynolds-number regime is universal. Indeed, the scaling of the aspect ratio for
large bubbles seems not to depend on the surface tension and thus on any dimensionless
number involving it, such as the Bond number, the capillary number or the Weber number.

3.4. Drag coefficient
From a dynamical point of view, the bubble’s motion is characterised by its drag force
FD. It can be computed from the drag coefficient CD = FD/(ρv2

bS/2), where S = πd2
3/4

the equivalent spherical surface and not the true projected area 2bh as often considered
(Filella et al. 2015; Hashida et al. 2019, 2020). At dynamic equilibrium, the drag force FD
equals the driving force due to buoyancy FB = ρg(πabh) and so, the model developed in
(3.1) gives

CD = 2β

3
+ 16

Re3h

1
χ

, (3.3)

where the second term resembles the expression of the drag coefficient for an isolated
spherical bubble in three dimensions, i.e 24/Re3, where Re3 = ρvbd3/η. However, for a
large isolated bubble confined between two plates, CD is inversely proportional not only to
a sphere-equivalent Hele-Shaw Reynolds number Re3h but also to its aspect ratio χ = a/b.
Unlike the classical expression for the drag coefficient, it is necessary to either measure or
model the bubble aspect ratio χ to estimate CD in (3.3). Since a general expression of χ

is beyond the scope of our work, we admit as inferred from § 3.3 that χ ≈ 1 for Re3h < 1
and χ = 0.85Re−1/4

3h for Re3h > 1, so that the drag coefficient becomes

CD =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2β

3
+ 16

Re3h
, Re3h < 1,

2β

3
+ 16

0.85Re3/4
3h

, Re3h > 1,
(3.4)

with β = 3.9 ± 0.1 (see § 3.2). We now compare this expression (dashed line) with the
experimental data (see figure 5). Once again, for sufficiently large bubbles, all data
collapse on the model, regardless of the cell gap h and the liquid surface tension γ .

4. Concluding remarks

In this paper, we investigated the time-averaged bubble speed and bubble aspect ratio for
large single bubbles rising in a vertical Hele-Shaw cell by properly controlling the bubble
Reynolds number (10−4 < Re3h < 300) and the liquid Morton number 10−11 < Mo <

104. For sufficiently large bubbles, we extended the classical power balance argument
of Maxworthy (1986) by accounting for inertial effects to deduce vb = 2vM/(1 +√

1 + 2β(vM/
√

gd3)2), where vM = (�ρgh2/(12η))χ with χ the bubble aspect ratio,
d3 the volume-based bubble diameter. The model fits well the experimental data with
β = 3.9 ± 0.1. When vM/

√
gd3 � 1, the bubble speed is given by the viscous bubble

speed limit vb = vM and conversely, when vM/
√

gd3 � 1, it tends towards the inertial
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Figure 5. Drag coefficient CD as a function of Re3h. Small (large) symbols indicate bubbles with d2/h < 4
(d2/h > 4). Colours are those defined in table 1. Data with dark and white edges correspond to h = 2.3 mm
and h = 5.2 mm, respectively. The dashed line corresponds to (3.4). Stars at high Re3h corresponds to data
from Filella et al. (2015) (∗, green) and Pavlov et al. (2021b) (∗, orange).

limit vb = 0.7
√

gd3, as already inferred by Filella et al. (2015) and Hashida et al. (2019).
The former corresponds to the viscous regime (Re3h � 1) and the latter to the inertial
regime (Re3h � 1) wherein the bubble speed is proportional to V1/6 (Davies & Taylor
1950; Collins 1965). Unlike in 3-D (Maxworthy et al. 1996), the transition between
these two limits is independent of the Morton number in the range given above. Our
experimental data comprising a wide variety of liquids and cell gaps, along with data
from previous studies, agree very well with our model as long as d2/h > 4.

In the viscous regime and also during the transition to the inertial regime, the aspect
ratio is a necessary ingredient to correctly predict the bubble speed. In addition, at low
Reynolds number (Re3h � 1), only longitudinally elongated bubbles are reported in our
experiments using water/UCON and water/Triton solutions. Here, the bubble aspect ratio
χ ≈ 1 for d2 < 15h and then linearly increases with d2/h. No dependence on the liquid
surface tension was observed but more experiments with other liquids should provide a
conclusive answer. On the contrary, in the inertial regime, we reported flattened bubbles
for all liquids, including water/UCON mixtures such that χ ≈ 0.85Re−1/4

3h . These results
strongly suggest that the bubble aspect ratio is Reynolds number dependent and it could be
the signature of liquid inertia as it flows past the bubble (Bush & Eames 1998; Filella et al.
2015). Also, when the Reynolds number is sufficiently large, the time-averaged bubble
aspect ratio shows strong deviations from the above scaling. This is probably related to
the unsteady flow in the bubble wake along with surface tension and confinement effects,
which are left for future investigations. Also, the influence of surface tension on the bubble
speed in the viscous regime needs to be further understood for smaller bubbles (d2 < 4h).

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2022.361.
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