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Level-Dependent Annuities: Defaults of
Multiple Degrees

Aksel Mjøs and Svein-Arne Persson∗

Abstract

Motivated by the effect on valuation of stopped or reduced debt coupon payments from a
company in financial distress, we value a level-dependent annuity contract where the annu-
ity rate depends on the value of an underlying asset process. The range of possible values of
this asset is divided into a finite number of regions, with constant annuity rates within each
region. We present closed-form formulas for the market value of level-dependent annuities
contracts when the market value of the underlying asset is assumed to follow a geomet-
ric Brownian motion. Such annuities occur naturally in models of debt with credit risk
in financial economics. Our results are applied for valuing both corporate debt with sus-
pended interest payments under the U.S. Chapter 11 provisions and loans with contractual
level-dependent interest rates.

I. Introduction

A number of financial contracts have payments contingent upon the market
value of a financial asset. Whereas a standard annuity contract is characterized
by repeated constant payments, we analyze annuities where the payment rate is
constant for a given “financial health” of the obligor. Financial health is in our
model proxied by the total market value of financial assets, that is, we assume
a prespecified number of financial health categories where the annuity payment
rate is fixed within each category, but may vary between categories. We denote
this contract a level-dependent annuity (see Figure 1 for an illustration).

This paper is motivated by corporate debt, where we may observe stopped
or reduced coupon payments for an issuer in financial distress. Financial dis-
tress occurs before, but does not necessarily lead to, liquidation of the company.
Irrespective of the specific causes of reduced payments, they represent a chal-
lenge for the valuation of corporate debt. Chapter 11 of the U.S. bankruptcy code
is an important example of regulations that allow a company to default without
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FIGURE 1

A Level-Dependent Annuity with 2 Barriers and Liquidation

Figure 1 shows an illustration of a level-dependent annuity, where n = 2. The graph contains an example of a path of At
and indicates in which regions the annuity rates are c1, c2, and c3, respectively. Also, A, B1, B2, C, T, and τ are depicted.

necessarily being liquidated. Strategic debt service (see, e.g., Anderson and
Sundaresan (1996), Mella-Barral and Perraudin (1997)) is an example of a dif-
ferent situation with rationally reduced coupon payments.

We value level-dependent annuity contracts. Both the level-dependent con-
tinuous payment rates and the financial asset levels are assumed to be exogenous.1

We derive closed-form solutions for the market values of level-dependent annuity
contracts both in the cases of finite and infinite horizons. In order to interpret the
financial asset levels as various degrees of financial distress, the natural assump-
tion is that the initial asset value is above these levels. Our approach is general,
and our formulas can be extended to other assumptions regarding the initial asset
level as well.

Mathematically, we solve a boundary value problem (see, e.g., Øksendal
(2005), chap. 9), where the underlying asset is assumed to be a geometric
Brownian motion. First, we find the market value of the level-dependent annu-
ity contract in the case of an infinite horizon using the standard assumption of
smooth pasting (see, e.g., Dixit and Pindyck (1994)). The level-dependent an-
nuity contract can be considered as a portfolio of simple annuities. The market
value of the level-dependent annuity is calculated as the sum of the market values
of these annuities. In the case of a finite horizon, we apply the standard argu-
ment that a finite-horizon annuity may be considered as an immediate-starting
infinite-horizon (ISIH) annuity from which another infinite-horizon annuity start-
ing at a future fixed time T , a forward-starting infinite-horizon (FSIH) annuity, is
subtracted.

We apply our results to a model of corporate debt and for pricing 2 dif-
ferent loans. Our corporate debt model includes optimal default and liquidation
levels. This application is motivated by the recent paper by Broadie, Chernov, and
Sundaresan (BCS) (2007). Our model has closed-form solutions, and we find en-
dogenous default and liquidation levels by maximizing the value of equity. For
analytical tractability, we model the cash flows in default differently from BCS.

1We apply our results in a corporate debt model with endogenous asset levels in Section VIII.
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Their model closely captures actual default procedures in the U.S. Our model,
while not including all the specifics of U.S. legislation, still produces similar re-
sults in closed form.

Our second application is a valuation model of loans with contractual level-
dependent interest rates (i.e., increasing interest rates for decreasing credit quality).
Lenders’ 2 primary concerns are whether borrowers are able to service and repay
a loan and the recovery of the loan in case of default. Both of these concerns
may be reflected in the contractual interest rates of the debt. Corporate debt with
performance pricing (see, e.g., Asquith, Beatty, and Weber (2005)) is an example
where the interest rates depend on the company cash flow, a measure of payment
ability. Residential mortgage is another example where interest rates depend on
the value of the collateral, a measure of recovery if the loan is defaulted. Our re-
sults show that lenders of residential mortgages may have incentives to prefer the
more volatile segments of the real estate market. To the best of our knowledge,
our valuation approach is novel, although these loans are common.

In the applications we assume that the exogenous stochastic process repre-
sents the market price process of a financial asset rather than a common financial
market factor (e.g., an interest rate). This choice implies that contract-specific
risk, and not general market risk as such, is viewed as more important for default
and/or liquidation.

To illustrate some aspects of our results we include a simple, initial example.
A standard infinite-horizon continuous annuity rate of 5 (without liquidation risk)
has time 0 value of 100, given a continuous risk-free interest rate of 0.05. Consider
an issuing company with current market value of 100, which is liquidated if its
asset value decreases to 30. Our example illustrated in Table 1 divides the value
of this annuity into components related to the loss connected to liquidation, the
value above and below an additional barrier of 60, and a possible finite maturity.

TABLE 1

Decomposition of an Annuity

Table 1 presents the annuity value decomposition based on the parameter values μ= 0.02, σ= 0.20, r= 0.05, A= 100,
B = 60, C = 30, c = 5, and T = 10.

Finite Forward Infinite
Horizon Starting Horizon

Annuity [0, T ] [T,∞) [0,∞)

(1) Above annuity with liquidation 35.25 39.97 75.22
(2) Below annuity with liquidation 3.59 6.29 9.88

(3) Above + below annuity 38.84 46.26 85.10
(4) Value of liquidation loss 0.51 14.39 14.90

(5) Value of risk-free annuity 39.35 60.65 100.00

The values of ISIH above and below annuities with liquidation risk (rows
(1) and (2) of Table 1) are calculated using equations (12) and (13) in this pa-
per, respectively. The values of FSIH above and below annuities are calculated
using equations (15) and (16), respectively. The values of finite-horizon annuities
maturing at time T are found by deducting the value of an FSIH annuity start-
ing at time T from an ISIH annuity, or calculated directly from expressions (17)
and (18).

https://doi.org/10.1017/S0022109010000475  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0022109010000475


1314 Journal of Financial and Quantitative Analysis

The values in row (3) of Table 1 are found by adding the values in rows (1)
and (2). The value of the infinite-horizon annuity in row (3) is calculated as

(c
r

)(
1−
(

A
C

)−β)
,

where β is given in expression (5), using results from Black and Cox (1976). The
value of the forward-starting annuity in row (3) is calculated as

(c
r

)(
e−rTQg −

(
A
C

)−β
Qβg

)
,

where Qg and Qβg are given in expressions (B-2) and (B-10) in Appendix B. The
1st term is interpreted as the time 0 value of a time T FSIH annuity. The 2nd term
is the time 0 market value of an FSIH annuity, starting at the time of liquidation
given that liquidation occurs after time T . The time 0 value of the finite-horizon
annuity in row (3) is then calculated as the difference between the infinite-horizon
annuity and the forward-starting annuity using these formulas.

The values of the loss due to liquidation (row (4) of Table 1) are calculated
as the differences between the values of the respective annuities with (row (3))
and without (row (5)) risk of liquidation. In row (5), the infinite-horizon case,
the value of an immediate-starting risk-free annuity is simply (c/r), while the
value of a forward-starting risk-free annuity is the same value discounted (i.e.,
e−rT(c/r)). The finite-horizon annuity in row (5) is then calculated as the usual
difference, (c/r)(1− e−rT).

This paper is organized as follows. Section II contains the setup and main
result. Section III treats the case of ISIH annuities. Section IV develops the re-
sults for the case of FSIH annuities. In Section V the results from Sections III
and IV are combined into finite-horizon annuities. Whereas Sections III and IV
treat simpler annuities, Section VI extends these results to infinite-horizon level-
dependent annuities. Finite versions of level-dependent annuities are developed
in Section VII. Section VIII contains 2 applications. Conclusions and areas for
further research are found in Section IX. Some technical results are collected in
Appendices A–C.

II. Setup and Main Result

A filtered probability space (Ω,F , {Ft},Q) is given. In particular, Q repre-
sents a fixed equivalent martingale measure. We furthermore impose the standard
frictionless, continuous time market assumptions of financial economics (see,
e.g., Duffie (2001)).

We assume that the underlying asset process is given by a geometric
Brownian motion

dAt = μAtdt + σAtdWt,(1)

where the initial value A0=A is a constant. Here the drift parameter μ and volatil-
ity parameter σ are constants, and Wt represents a standard Brownian motion.
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Let T be the finite time horizon, let the constant C be an absorbing barrier,
and define the stopping time τ as

τ = inf{t ≥ 0,At = C}.(2)

We interpret C as the liquidation barrier, and τ as the time of liquidation.
There are n additional constant levels or nonabsorbing barriers B1, . . . ,Bn

so that B1 > · · · > Bn > C. For notational convenience we let B0 =∞ and,
in the case with liquidation risk, Bn+1 = C, or, in the case without liquidation
risk, Bn+1 = 0, respectively. The constant annuity rate is c1 when At > B1, ci+1

when Bi > At > Bi+1, i = 1, . . . , n − 1, and cn+1 when Bn > At > Bn+1. All cis
are constants. The initial value of the asset process is by assumption above the
highest barrier (i.e., A > B1).

Let r be the constant risk-free interest rate. Note that we restrict μ ≤ r.
The most general contract we consider is a finite-horizon, level-dependent

annuity with liquidation risk. The time 0 market value of this contract is

MT(A) = E

[∫ τ∧T

0

n∑
i=0

ci+1e−rs1{Bi > As > Bi+1}ds

]
,

where 1{·} denotes the standard indicator function, and E[·] denotes the expecta-
tion under the equivalent martingale measure. Furthermore, Bn+1 = C.

Our main valuation result is that

MT(A) =
(c1

r

)
−
(cn+1

r

)[(A
C

)−β
Qβl + e−rTQg

]
(3)

+
n∑

i=1

(
ci − ci+1

r

)(
ψi − Qgg(Bi)e

−rT
)
,

where

ψi =

α

(
A
Bi

)−β(
Qβgg(Bi)− 1

)− β( A
Bi

)α
Qαlg(Bi)− β

(
A
C

)−β ( C
Bi

)α
Qβl

α + β
,

α =

1
2
σ2 − μ +

√(
1
2
σ2 − μ

)2

+ 2σ2r

σ2
(> 1) and(4)

β =

μ− 1
2
σ2 +

√(
1
2
σ2 − μ

)2

+ 2σ2r

σ2

(
>

(
2μ
σ2

)
> 0

)
.(5)

The probability Qβl = Qβ(τ ≤ T) = 1− Qβg , where Qβg = Qβ(τ > T) is given in
expression (B-10) in Appendix B. Furthermore, the probabilities Qg=Q(τ > T),
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Qβgg(Bi) = Qβ(AT > Bi, τ > T), Qαlg(Bi) = Qα(AT ≤ Bi, τ > T), and Qgg(Bi) =
Q(AT > Bi, τ > T) are given in expressions (B-2), (B-11), (B-8), and (B-3) in
Appendix B, respectively. Here Qα and Qβ represent probability measures equiv-
alent to Q; see Appendix A for details.

The 1st term of expression (3) represents the time 0 value of an infinite-
horizon annuity rate c1 without liquidation risk. The negative of the 2nd term
represents the time 0 value of an FSIH annuity rate cn+1 without liquidation risk,
starting either at the time of liquidation τ or time T , whichever comes first.
Roughly interpreted, the remaining terms represent correction terms of the total
time 0 value due to the multiple annuity rate levels between c1 and cn+1.

III. ISIH Claims

In this section we consider ISIH claims, assuming that T =∞. Let f be the
time 0 market value of an arbitrary infinite-horizon claim on At, and denote the
1st- and 2nd-order partial derivatives by fA = ∂f/∂A and fAA = ∂

2f/∂A2, respec-
tively. Then the partial differential equation (see, e.g., Merton (1974)),

1
2
σ2A2fAA + μAfA − rf + c(A) = 0(6)

holds, subject to appropriate boundary conditions. Here c(A) represents the an-
nuity payment rate (to be interpreted as dividends or coupons, depending on the
nature of the claim) to the owner of the claim f . The general solution to the ho-
mogeneous part, obtained by letting c(A) = 0, of equation (6) is

f ∗(A) = K1Aα + K2A−β ,(7)

where α and β are given in expressions (4) and (5), respectively, and the con-
stants K1 and K2 are determined by boundary conditions. The general solution
to equation (6) is f (A) = f ∗(A) + f s(A), where f s(A) is any special solution of
equation (6).

We denote initial market values by capital letters, possibly with subscripts,
for example, U, or U(A,B) to emphasize the dependence on the initial value of
the process and on the barrier B.

A. The Value of 1 at the Initial Hit of a Barrier

Let U denote the time 0 market price of a claim that pays 1 when At = B for
the first time. Here

U(A,B) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ua =

(
A
B

)−β
, when A ≥ B,

Ub =

(
A
B

)α
, when A ≤ B.

(8)

The superscripts a and b signify that At hits the barrier from above or below, re-
spectively. These results are standard, but we include a proof for the completeness
of the exposition.
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Proof. U does not pay any coupon, so c(A)=0 in expression (6). Ua is calculated
from equation (7) using the boundary conditions limA→∞ Ua = 0 ⇒ K1 = 0 and
Ua(B)=1. Ub is calculated from the boundary conditions limA→0 Ub=0⇒ K2=0
and Ub(B) = 1.

We remark that U(·,B) is continuous at B, but does not satisfy the smooth
pasting condition at B.

B. Infinite-Horizon Annuities Without Liquidation Risk

1. The Value of an Infinite-Horizon Above Annuity Without Liquidation Risk

Let VA denote the time 0 market price of an annuity that pays the rate c when
At > B (above annuity):

VA(A,B) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Va
A =
(c

r

)(
1−
(
α

α + β

)(
A
B

)−β)
, when A ≥ B,

Vb
A =
(c

r

)( β

α + β

)(
A
B

)α
, when A ≤ B.

(9)

Observe that Vb
A = 0 when B=∞.

Proof. VA pays c only when At > B, so in expression (6), c(A) = c when At >
B, and c = 0 otherwise. Observe that f s(A) = (c/r) solves equation (6) when
A > B. The relevant boundary conditions are limA→∞ Va

A = (c/r)⇒ K1 = 0 and
limA→0 Vb

A = 0 ⇒ K2 = 0. To determine K2 for Va
A and K1 for Vb

A, we require
continuity and smooth pasting at B (i.e., Va

A(B) = Vb
A(B) and (∂/∂A)Va

A(B) =
(∂/∂A)Vb

A(B)).

2. The Value of an Infinite-Horizon Below Annuity Without Liquidation Risk

Let VB denote the time 0 market price of an annuity that pays c when At < B
(below annuity):

VB(A,B) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Va
B =
(c

r

)( α

α + β

)(
A
B

)−β
, when A ≥ B,

Vb
B =
(c

r

)(
1−
(
β

α + β

)(
A
B

)α)
, when A ≤ B.

(10)

Observe that Vb
B = (c/r) when B =∞. Also observe that Vb

B = (c/r) − Vb
A, if

A < B, an infinite-horizon annuity with payments below B equals an infinite-
horizon annuity from which an infinite-horizon annuity with payments only above
B is subtracted. Also observe that Va

A = (c/r)− Va
B, if A > B, an infinite-horizon

annuity with payments above B equals an infinite-horizon annuity from which an
infinite-horizon annuity with payments only below B is subtracted.

Proof. VB pays c only when At < B, so in expression (6), c(A) = c when
At < B, and c = 0 otherwise. Observe that f s(A) = (c/r) solves equation (6)
when A < B. The relevant boundary conditions are limA→∞ Va

B=0⇒ K1=0 and
limA→0 Vb

B = 0⇒ K2 = 0. To determine K2 for Va
B and K1 for Vb

B we also here re-
quire continuity and smooth pasting at B (i.e., Va

B(B)=Vb
B(B) and (∂/∂A)Va

B(B)=
(∂/∂A)Vb

B(B)).
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C. Infinite-Horizon Annuities With Liquidation Risk

Let Dj denote the value of a claim Vj where j ∈ {A,B}, including liquidation
risk. Using economic arguments we show in the proof that

Dj(A,B) = Vj(A,B)− Vb
j (C,B)U

a(A,C).(11)

Proof. Upon liquidation (i.e., at time τ ), the value of the claim Vj is Vb
j (C,Bi).

Because C < Bi for all i ≤ n, Vj = Vb
j . Therefore Vb

j (C,Bi) represents the re-
duction in value of the claim Vj due to liquidation at the time of liquidation. The
initial value of this claim is found by discounting by U = Ua because A > C.

1. The Value of an Infinite-Horizon Above Annuity in the Case With Liquidation
Risk

DA(A,B)(12)

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Da
A =
( c

r

)[
1−
((

α

α + β

)(
C
B

)−β
+
(
β

α + β

)(
C
B

)α)(A
C

)−β]
,

when A ≥ B,

Db
A =
( c

r

)( β

α + β

)[(
A
B

)α
−
(

C
B

)α (A
C

)−β]
,

when C ≤ A ≤ B.

The first 2 terms in the case where A ≥ B, and the 1st term in the case where
C ≤ A ≤ B, are identical to the corresponding annuities without liquidation risk.
The final terms in both cases are identical and equal (the negative of ) the value of
an above annuity below the barrier when A=C multiplied by Ua(A,C ), the value
of 1 upon liquidation. In the case where B=C, the results collapse to the standard
Black and Cox (1976) result for infinite-horizon debt with liquidation risk.

2. The Value of an Infinite-Horizon Below Annuity in the Case With Liquidation
Risk

DB(A,B)(13)

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Da
B =
( c

r

)[( α

α + β

)(
C
B

)−β
+
(
β

α + β

)(
C
B

)α
− 1

](
A
C

)−β
,

when A ≥ B,

Db
B =
( c

r

)[
1−
(
β

α + β

)(
A
B

)α
−
(

1−
(
β

α + β

)(
C
B

)α)(A
C

)−β]
,

when C ≤ A ≤ B.

As for the previous annuity, the last term in both these expressions can be in-
terpreted as the value of an infinite horizon below annuity below the barrier
when A = C multiplied by the value of 1 upon liquidation. Both of these results
can alternatively be derived by solving equation (6) with appropriate boundary
conditions.
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IV. FSIH Annuities

In this section we calculate the time 0 market values of infinite-horizon an-
nuities that start at a future time T > 0. For a general forward-starting claim
νj(AT ,B), the time 0 value ξj(A,B) is calculated as

ξj(A,B) = E[e−rTνj(AT ,B)].

A. FSIH Annuities Without Liquidation Risk

1. FSIH Above Annuity Without Liquidation Risk

Denote the time 0 market value of an FSIH above annuity by WA. Then

WA(A,B) =
(c

r

)(
e−rTQg(B)−

(
α

α + β

)(
A
B

)−β
Qβg (B)(14)

+

(
β

α + β

)(
A
B

)α
Qαl (B)

)
,

where Qg(B) = Q(AT > B) = 1 − Ql(B), Qβg (B) = Qβ(AT > B) = 1 − Qβl (B).

Here Ql(B), Qβl (B), and Qαl (B) = Qα(AT ≤ B) are defined in expressions (B-1),
(B-5), and (B-9) in Appendix B, respectively.

Proof.

WA = E[e−rTVA(AT ,B)]

= E
[
e−rT

(
Va

A(AT ,B)1{AT > B} + Vb
A(AT ,B)1{AT < B})] ,

= E

[
e−rT

(c
r

)((
1−
(
α

α + β

)
Ua(AT ,B)

)
1{AT > B}

)]

+ E

[
e−rT

(c
r

)(( β

α + β

)
Ub(AT ,B)1{AT < B}

)]
,

=
(c

r

)(
e−rTQ(AT > B)−

(
α

α + β

)
P1(A,B) +

(
β

α + β

)
P2(A,B)

)
,

where P1(A,B) and P2(A,B) are defined in Appendix A, and the event Z is spe-
cialized to {AT > B} for P1(A,B) and {AT ≤ B} for P2(A,B). The result follows
from expressions (A-1) and (A-2) in Appendix A.

2. FSIH Below Annuity Without Liquidation Risk

Denote the time 0 market value of an FSIH below annuity by WB. Then

WB(A,B) =
(c

r

)(
e−rTQl(B) +

(
α

α + β

)(
A
B

)−β
Qβg (B)

−
(
β

α + β

)(
A
B

)α
Qαl (B)

)
.
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Proof.

WB = E[e−rTVB(AT ,B)]

= E
[
e−rT

(
Va

B(AT ,B)1{AT > B} + Vb
B(AT ,B)1{AT < B})] ,

= E

[
e−rT

(c
r

)(( α

α + β

)
Ua(AT ,B)1{AT > B}

)]

+ E

[
e−rT

(c
r

)((
1−
(
β

α + β

)
Ub(AT ,B)

)
1{AT < B}

)]
,

using similar definitions of Z as in the previous proof. The result follows from
expressions (A-1) and (A-2) in Appendix A.

B. FSIH Annuities With Liquidation Risk

Denote by ξ(A,B) the time 0 market value of a general FSIH annuity ν(AT ,B)
delivered at time T upon no prior liquidation. Then

ξ(A,B) = E[e−rTν(AT ,B)1{τ > T}].

1. FSIH Above Annuity With Liquidation Risk

Denote the time 0 market value of an FSIH above annuity with liquidation
risk by YA. Then

YA(A,B)(15)

=
(c

r

)(
e−rTQgg(B)−

(
α

α + β

)(
A
B

)−β
Qβgg(B)

)

+
(c

r

)(( β

α + β

)[(
A
B

)α
Qαlg(B)−

(
C
B

)α(A
C

)−β
Qβg

])
,

where Qgg(B) = Q(AT > B, τ > T), Qβgg(B) = Qβ(AT > B, τ > T), Qαlg(B) =
Qα(AT ≤ B, τ > T), and Qβg =Qβ(τ > T) are given in expressions (B-3), (B-11),
(B-8), and (B-10) in Appendix B, respectively.

Proof.

YA = E[e−rTDA(AT)1{τ > T}]
= E

[
e−rT

(
Da

A(AT ,B)1{AT > B} + Db
A(AT ,B)1{AT < B}) 1{τ > T}] .

2. FSIH Below Annuity With Liquidation Risk

Denote the time 0 market value of an FSIH below annuity with liquidation
risk by YB. Then

YB(A,B)(16)

=
(c

r

)(
e−rTQlg(B) +

(
α

α + β

)(
A
B

)−β
Qβgg(B)

)
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+
(c

r

)(( β

α + β

)[(
C
B

)α(A
C

)−β
Qβg −

(
A
B

)α
Qαlg(B)

]

− Qβg

(
A
C

)−β)
,

where Qlg(B) = Q(AT ≤ B, τ > T) is given in expression (B-4) in Appendix B.

Proof.

YB = E
[
e−rTDB(AT)1{τ > T}]

= E
[
e−rT

(
Da

B(AT ,B)1{AT > B} + Db
B(AT ,B)1{AT < B}) 1{τ > T}] .

As in the example in the Introduction, we calculate the time 0 market value
of an FSIH annuity with liquidation risk as

YA(A,B) + YB(A,B) =
(c

r

)(
e−rTQg −

(
A
C

)−β
Qβg

)
.

The 1st term is interpreted as the time 0 value of a time T FSIH annuity. The
2nd term is the time 0 market value of an FSIH annuity, starting at the time of
liquidation given that liquidation occurs after time T . From Appendix A we know
that P3(A,C) = (A/C)−βQβg can be interpreted as the value of 1 unit account
payable at liquidation, only if liquidation occurs after time T .

V. Finite-Horizon Above and Below Annuities

In this section we show how the previous infinite-horizon annuities can be
combined into annuities with a finite horizon. We assume in this section that
A > B.

A. Finite-Horizon Annuities Without Liquidation Risk

1. Finite-Horizon Above Annuity Without Liquidation Risk

The time 0 market price of a finite-horizon above annuity without liquidation
risk is calculated as

VT
A (A,B) = VA(A,B)−WA(A,B)

=
(c

r

)
−
(c

r

)(
e−rTQg(B) +

(
α

α + β

)(
A
B

)−β
Qβl (B)

+

(
β

α + β

)(
A
B

)α
Qαl (B)

)
.

2. Finite-Horizon Below Annuity Without Liquidation Risk

The time 0 market price of a finite-horizon below annuity without liquidation
risk is calculated as

VT
B (A,B) = VB(A,B)−WB(A,B)
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=
(c

r

)(
−e−rTQl(B) +

(
α

α + β

)(
A
B

)−β
Qβl (B)

+

(
β

α + β

)(
A
B

)α
Qαl (B)

)
.

Observe that the time 0 value of a finite-horizon annuity that pays the rate c both
above and below B is VT

A (A,B) + VT
B (A,B) = (c/r)(1− e−rT), a familiar result.

B. Finite-Horizon Annuities With Liquidation Risk

1. Finite-Horizon Above Annuity With Liquidation Risk

The time 0 market price of a finite-horizon above annuity with liquidation
risk is calculated as

DT
A(A,B) = DA(A,B)− YA(A,B) =

(c
r

)
γ,(17)

where

γ = 1−
(
α

α + β

)(
A
B

)−β
(1− Qβgg(B))

−
(
β

α + β

)((
A
B

)α
Qαlg(B) +

(
C
B

)α(A
C

)−β
Qβl

)
− e−rTQgg(B).

2. Finite-Horizon Below Annuity With Liquidation Risk

The time 0 market price of a finite-horizon below annuity with liquidation
risk is calculated as

DT
B(A,B) = DB(A,B)− YB(A,B) =

(c
r

)
η,(18)

where

η =

(
α

α + β

)(
A
B

)−β
(1− Qβgg(B))

+

(
β

α + β

)((
A
B

)α
Qαlg(B) +

(
C
B

)α(A
C

)−β
Qβl

)

− e−rTQlg(B)−
(

A
C

)−β
Qβl .

As indicated in the Introduction, we calculate the time 0 market value of an
ISFH annuity with liquidation risk as

DT
A(A,B) + DT

B(A,B) =
(c

r

)(
1− e−rTQg −

(
A
C

)−β
Qβl

)
.

The 1st term represents the time 0 market value of an ISIH annuity without liq-
uidation risk. The 2nd term represents (the negative of) the time 0 market value
of a time T FSIH annuity without liquidation risk. The final term represents (the
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negative of) the time 0 market value of an FSIH annuity, starting at the time of
liquidation, but only if liquidation occurs before time T .

VI. Infinite-Horizon Level-Dependent Annuities

In this section we consider annuities with multiple barriers and possibly dif-
ferent coupon rates in each of the regions defined by these barriers, as explained
in Section II. We use the results from Sections III and IV as our building blocks.
To incorporate level-dependent annuities, we formally assume that the parameter
c in the previous formulas equals 1 and multiply by the region-specific coupon
rate ci. This approach is without any loss of generality. For simplicity we only
treat the case where A > B1.

A. ISIH Level-Dependent Annuities

1. ISIH Level-Dependent Annuity Without Liquidation Risk

The time 0 market value M̂∞(A) of an infinite-horizon level-dependent an-
nuity in the case of no liquidation risk is

M̂∞(A) =
(c1

r

)
−
(
α

α + β

) n∑
i=1

(
ci − ci+1

r

)(
A
Bi

)−β
.(19)

Proof. The time 0 market value of an annuity ci+1 that is paid only when Bi ≤
At ≤ Bi+1, for i = 0, . . . , n, is (VA(A,Bi+1) − VA(A,Bi))ci+1. The time 0 market
value of a level-dependent annuity is found by simply adding such annuities, that
is,

M̂∞(A) =
n∑

i=0

(VA(A,Bi+1)− VA(A,Bi)) ci+1.

Observe that VA(A,B0) = 0 and that VA(A,Bn+1) = (cn+1/r). The formula follows
by direct calculations using expression (9) with c= 1.

2. ISIH Level-Dependent Annuity With Liquidation Risk

Denote the time 0 value of the infinite-horizon version of the level-dependent
annuity in the case of liquidation risk by M∞(A).

The time 0 market value of an infinite-horizon level-dependent annuity in the
case of liquidation risk is

M∞(A) =
(c1

r

)
−
(cn+1

r

)(A
C

)−β
(20)

−
n∑

i=1

(
ci − ci+1

r(α + β)

)(
α

(
C
Bi

)−β
+ β

(
C
Bi

)α)(A
C

)−β
.

Observe that expression (20) is reduced to expression (19) for C = 0.
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Proof. As in the previous proof, we may write

M∞(A) =
n∑

i=0

(DA(A,Bi+1)− DA(A,Bi)) ci+1,

where DA(A,Bi) is given in expression (12) and Bn+1 = C. Observe that
DA(A,B0) = 0 and that DA(A,Bn+1) = DA(A,C) = (cn+1/r)(1 − (A/C)−β). The
formula follows by direct calculations with c= 1.

B. FSIH Level-Dependent Annuities

1. FSIH Level-Dependent Annuity Without Liquidation Risk

The time 0 market value M̂∞T (A) of an infinite, time T FSIH level-dependent
annuity in the case of no liquidation risk is

M̂∞T (A) =
(cn+1

r

)
e−rT −

n∑
i=1

(
ci − ci+1

r

)(
λi − Qg(Bi)e

−rT
)
,(21)

where

λi =

α

(
A
Bi

)−β
Qβg (Bi)− β

(
A
Bi

)α
Qαl (Bi)

α + β
.

Proof. Similarly to the previous proofs,

M̂∞T (A) =
n∑

i=0

(WA(A,Bi+1)−WA(A,Bi)) ci+1,

where WA(A,Bi) is given in expression (14) and Bn+1 = 0. Observe that
WA(A,B0) = 0 and that WA(A,Bn+1) = WA(A, 0) = (cn+1/r)e−rT . The formula
follows by direct calculations with c= 1.

2. FSIH Level-Dependent Annuity With Liquidation Risk

The time 0 market value M∞T (A) of a time T FSIH level-dependent annuity
in the case of liquidation risk is

M∞T (A) =
(cn+1

r

)[
e−rTQg −

(
A
C

)−β
Qβg

]
(22)

−
n∑

i=1

(
ci − ci+1

r

)(
κi − Qgg(Bi)e

−rT
)
,

where

κi =

α

(
A
Bi

)−β
Qβgg(Bi)− β

(
A
Bi

)α
Qαlg(Bi) + β

(
A
C

)−β
Qβg

(
C
Bi

)α
α + β

.
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Proof. Similarly to the previous proofs,

D∞0,T(A) =
n∑

i=0

(YA(A,Bi+1)− YA(A,Bi)) ci+1,

where YA(A,Bi) is given in expression (15) and Bn+1=C. Observe that YA(A,B0)=
0 and that YA(A,Bn+1) = YA(A,C) = (cn+1/r)[e−rTQ(τ > T)− (A/C)−βQβ(τ >
T)]. The formula follows by direct calculations with c= 1.

Also here observe that expression (22) is reduced to expression (21) for C=0.

VII. Finite-Horizon Level-Dependent Annuities

A. Finite-Horizon Level-Dependent Annuity Without Liquidation Risk

The time 0 market value M̂T(A) of a finite-horizon level-dependent annuity
in the case of no liquidation risk is

M̂T(A) = M̂∞(A)− M̂∞T (A),

=
(c1

r

)
−
(cn+1

r

)
e−rT +

n∑
i=1

(
ci − ci+1

r

)(
φi − Qg(Bi)e

−rT
)
,

where

φi = −

(
α

(
A
Bi

)−β
Qβl (Bi) + β

(
A
Bi

)α
Qαl (Bi)

)

α + β
.

B. Finite-Horizon Level-Dependent Annuity With Liquidation Risk

The time 0 market value MT(A) of a finite-horizon level-dependent annuity
in the case of liquidation risk is

MT(A) = M∞(A)−M∞T (A)

=
(c1

r

)
−
(cn+1

r

)[(A
C

)−β
Qβl + e−rTQg

]

+
n∑

i=1

(
ci − ci+1

r

)(
ψi − Qgg(Bi)e

−rT
)
,

where

ψi =

α

(
A
Bi

)−β
(Qβgg(Bi)− 1)− β

(
A
Bi

)α
Qαlg(Bi)− β

(
A
C

)−β( C
Bi

)α
Qβl

α + β
.
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This result is already presented in expression (3) in Section II but is included here
for completeness.

VIII. Selected Applications

A. Optimal Debt and Equity Valuation in a Model With Chapters 7
and 11

1. Introduction

U.S. bankruptcy legislation distinguishes between a company’s default on its
obligations; that is, bankruptcy, and its final liquidation, referred to as Chapter 11
and Chapter 7, respectively. In theoretical models, default and liquidation often
correspond to specific levels (barriers) of a company’s asset value.

The results from our model are qualitatively similar to the results of the re-
cent BCS (2007) model, which includes separate default and liquidation barriers,
and both the BCS model and our model are based on the seminal Leland (1994)
paper. Compared to the Leland model, we add a default region defined by the de-
fault and the liquidation barriers. When the asset value of the company is within
the default region, the company is said to be in Chapter 11. In Chapter 11 we
assume that the continuous coupon payment rate is reduced from c to θc, where
0 ≤ θ ≤ 1, and a distress cost ω, 0 ≤ ω ≤ 1, proportional to the value of
the company. The optimal asset default level is endogenized by maximizing the
equity value of the company. The reduced coupon payment is traded off against
the distress cost. This maximization also determines the liquidation level, as in
Leland.

In comparison, in the BCS (2007) model a company in Chapter 11 accumu-
lates unpaid coupons and dividends as arrears. If the asset value of the company
subsequently increases above the default level, the arrears are distributed subject
to a prespecified level of forgiveness from debtholders to equityholders. Liquida-
tion occurs either when the asset value of the company hits the liquidation barrier
or after some maximum time spent in default.

The reduced coupon payment rate in our model may be seen as a stylized
result of debt renegotiations. Observe that the coupon reduction θ is a parameter
of the model, hence interpreting the model literally implies that the debt
renegotiating is prewired at time 0. By comparison, the BCS (2007) model
assumes a fixed level of forgiveness after the default period. Both models
therefore exclude the possibility of dynamic debt renegotiations. The BCS
model includes key features of the well-regulated default procedures of the
U.S. market including, for example, maximum time spent in default. Bankruptcy
procedures vary between jurisdictions and our model, excluding some of the
U.S.-specific features, may better reflect practice outside the U.S. As mentioned,
the results of our model are, perhaps surprisingly, similar to the results of the
BCS model, suggesting that the differences between the models have limited
economic importance.

In our model both the default and the liquidation levels are found by maxi-
mizing the value of equity. This approach acknowledges the equityholders’ control
rights in a solvent company. Finally, we solve our model in closed form,
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whereas the BCS (2007) model is solved numerically, using the binomial ap-
proach of Broadie and Kaya (2007).

2. The Model

Recall that in models with a lognormal state variable, the time t EBIT (earn-
ings before interest and taxes) can be calculated from the “unlevered value” of the
company as At(r − μ).

The time 0 market value of equity, assuming A > B, is

E(A) = E

[∫ τ
0

e−rs (As(r − μ)− c) 1{As≥B}ds

]

+ E

[∫ τ
0

e−rs ((1− ω)(r − μ)As − θc) 1{B>As>C}ds

]
,

where τ represents the liquidation time, formally defined in expression (2). Here
As(r− μ)− c is the cash flow to equity at time s, payable as long as the company
is not in default. Also, (1 − ω)(r − μ)As − θc represents the cash flow to equity
in default. The parameter ω, expressed as a fraction of the EBIT cash flow, can
be interpreted as a proportional distress cost carried in full by equity when the
company is in default. The parameter θ represents the fraction of the contractual
coupon payment debtholders receive in default. The remaining parameters are
given in Table 2. Note that to facilitate comparison we disregard taxes.

TABLE 2

Parameter Values Used in Example

Table 2 presents the parameter values used in the comparison of our model with the BCS (2007) model. All numerical
parameter values are chosen to be economically equivalent to the corresponding BCS parameter values.

Parameters Values Explanations

μ 0.01 Drift of asset process
σ 0.20 Volatility of asset process
r 0.05 Risk-free interest rate
A 100.00 Total asset value at time 0
c 3.00 Coupon payment for At > B
k 0.50 Liquidation cost parameter
θ 0.50 Coupon fraction paid in default
ω 0.50 Distress cost parameter

In our model the time 0 market value of equity is calculated as

E(A) = Aπ1 −
(c

r

)
π2 + (1− ω)Aπ3 −

(
θc
r

)
π4,(23)

where

π1 =

(
r − μ

A

)
E

[∫ τ
0

Ase
−rs1{As≥B}ds

]

= 1−
(
α− 1
α + β

)(
A
B

)−β−1

−
(
β + 1
α + β

)(
C
B

)α−1(A
C

)−β−1

,
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and where α and β are defined in expressions (4) and (5), respectively. We rec-
ognize Aπ1 as the time 0 market value of the company EBIT when the company
is not in default. This is a version of an above annuity with liquidation risk. The
result is proved in Appendix C.

π2 =
( r

c

)
E

[∫ τ
0

ce−rs1{As≥B}ds

]

= 1−
(
α

α + β

)(
A
B

)−β
−
(
β

α + β

)(
C
B

)α(A
C

)−β
.

Here (c/r)π2 is the time 0 market value of the coupon payments when the com-
pany is not in default and is given in expression (12). This is an above annuity
with liquidation risk.

π3 =

(
r − μ
(1− ω)A

)
E

[∫ τ
0

Ase
−rs1{B>As>C}ds

]

= 1− π1 −
(

A
C

)−β−1

.

The expression (1 − ω)Aπ3 represents the time 0 market value of the distressed
EBIT cash flow when the company is in default. This is a version of a below
annuity with liquidation risk. The result is also proved in Appendix C.

π4 =
( r
θc

)
E

[∫ τ
0

ce−rs1{B>As>C}ds

]
= 1− π2 −

(
A
C

)−β
.

Finally, we recognize (θc/r)π4 as the time 0 market value of the reduced coupon
payments when the company is in default, given in expression (13). This is a
below annuity with liquidation risk.

The time 0 market value of debt, assuming A > B, is

D(A) = E

[∫ τ
0

e−rs(c1{As≥B} + θc1{B>As>C})ds

]
+ (1− k)E[e−τrC].

The 1st term represents the time 0 market value of the coupons received when
the company is not in default plus the fraction of the coupons received when the
company is in default. The last term represents the time 0 market value of the pay-
off to debtholders upon liquidation, where k represents a proportional deadweight
liquidation loss. We also assume absolute priority upon liquidation (i.e., no payoff
to equityholders).

The previous expectation can be calculated as

D(A) =
(c

r

)
π2 +

(
θc
r

)
π4 + (1− k)C

(
A
C

)−β
.

The total time 0 market value of the company is thus

v(A) = E(A) + D(A) = A[π1 + (1− ω)π3] + (1− k)C

(
A
C

)−β
.

The parameters ω and k, reflecting losses in default and liquidation, explain why
v(A) is less than A. By letting ω = k = 0, v(A) = A.
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3. Numerical Example Including Endogenous Chapters 7 and 11 Asset Levels

In this subsection we use the parameter values given in Table 2. To facilitate
comparison with the results of the BCS (2007) model, the parameter values are
either identical to or a logical equivalent to the base case parameters used in BCS.

In Figure 2 we calculate the time 0 market value of equity as a function
of default and liquidation asset levels. We see that there exists a unique, global
maximum point (i.e., a unique combination of default and liquidation levels that
maximizes the time 0 market value of equity).

FIGURE 2

The Time 0 Market Value of Equity as a Function of Default
and Liquidation Asset Levels

Figure 2 shows a plot of expression (23). Parameter values are given in Table 2.

A natural question is how sensitive the optimal default and liquidation levels
in Figure 2 are to the choice of the Chapter 11 parameters θ, fraction of coupon
paid, and ω, distress cost. This question is addressed in Figure 3, where the upper
surface is the optimal default level (B) and the lower surface is the optimal liq-
uidation level (C). The graph shows that for a large θ (i.e., a small reduction in
coupon rate) and a large value of ω (i.e., a large distress cost), the optimal values
of B and C are identical. In these cases there is no default region, and our model
gives the same results as the Leland (1994) model. For a large reduction in coupon
rate and a small distress cost, it is optimal to enter Chapter 11 immediately. Our
model gives the same result in these situations as the Leland model with a reduced
coupon θc. However, it is clear from the figure that there exist optimal values of
B, strictly larger than the optimal values of C and, thus, not resulting in immediate
default, for a number of combinations of θ and ω.

In Table 3 we compare the results from our model with the BCS (2007)
model, presented relative to the similar quantity from the Leland (1994) model.
Both models produce similar values for equity and total capital. The default level
and the coupon spread are somewhat higher in our model. Although both models
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FIGURE 3

Optimal Default (B ) and Liquidation (C ) Asset Levels

Figure 3 displays the optimal values of default B and liquidation C levels maximizing the time 0 value of equity in expression
(23) as a function of the Chapter 11 parameters θ, fraction of coupon paid in default, and ω, distress cost in default. The
upper surface represents the optimal B, the lower surface represents the optimal C. Parameter values are given in Table 2.

optimize the value of equity, our equity value is marginally higher, at the expense
of a lower total company value, compared to the BCS model. The higher optimal
default level in our model naturally corresponds to a higher coupon spread.

TABLE 3

A Comparison with the BCS Model

Table 3 presents a comparison of some of the results from the BCS (2007) model with our model. The numbers in the
BCS column are picked as the right-most values of the graphs in BCS (Fig. 4, p. 1359) . This figure is based on equity
maximization, where the right-most values of the graphs correspond to the longest maximum period in Chapter 11, a
property that is not built into our model. Table 3 shows the results expressed relative to the corresponding results from the
Leland (1994) model, using the liquidation level as the reference for B. Parameter values are given in Table 2.

Our Model BCS

B 2.18 1.75
E(A) 1.03 1.02
V(A) 0.96 0.98
Spread 1.64 1.35

B. Debt With Contractual Level-Dependent Interest Rates

We present 2 examples of loans where the contractual interest rates vary by
the borrower’s credit quality. Lenders’ 2 primary concerns are whether borrowers
are able to service and repay a loan and the amount of recovery of the loan in case
of liquidation. The contractual interest rates of the debt reflect both these con-
cerns. Our example of corporate debt with performance pricing has interest rates
depending on the company cash flow (earnings before interest, taxes, deprecia-
tions, and amortizations (EBITDA)), a measure of payment ability. Our example
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of residential mortgage has interest rates depending on the value of the collateral,
a measure of recovery if the loan is liquidated.

In our valuation application we assume that the loans have fixed principals
and no installments before maturity. The total time 0 value of a loan consists of the
time 0 market value of the level-dependent interest payments, the time 0 market
value of the repayment of the principal at time T (in case of no liquidation), and
the time 0 market value of the realized recovery (in case of liquidation):

L(A) = MT(A) + De−rTQg + (1− k)DV0,(24)

where MT(A) (with n equal to the number of barriers) is given in expression (3),
Qg is given in equation (B-2), and

V0 = EQ[e−rτ1{τ ≤ T}] = eb(z−w)N

(
b− wT√

T

)
+ eb(z+w)N

(
b + wT√

T

)
,

where z=(μ−(1/2)σ2)/σ, w=
√

z2 + 2r, and b= ln(C/A)/σ (see Lando (2004),
App. B). Here N(·) denotes the cumulative standard normal distribution function,
k can be interpreted as the proportional deadweight loss in case of liquidation, and
D is the principal of the loan.

In this application the barrier C is interpreted as the liquidation criteria of
the loan but is not necessarily connected to the overall liquidation of the borrower
(as in the previous application), and we do not distinguish between default and
liquidation; that is, we analyze contractually level-dependent market interest rates
as opposed to an assumed effect of financial distress (Chapter 11) exemplified in
the previous application. In principle our 2 applications could be combined into 1
application, incorporating level dependency due to both contractual interest rates
and financial distress.

1. Performance Pricing in Bank Debt Contracts

Performance pricing is a relatively new provision in bank debt contracts (see,
e.g., Asquith et al. (2005)). Performance pricing establishes ex ante how changes
in indicators of credit quality impact the interest rates of a loan. In this example
we value a loan with interest-increasing performance pricing, that is, interest rates
increase as the company’s credit quality, measured by the debt/EBITDA ratio,
deteriorates. This contract is described in Table 4.

TABLE 4

Example of Performance Pricing Contract

Table 4 presents the performance pricing grid from Appendix B in Asquith et al. (2005). The numbers in the LIBOR Plus
column are denoted as basis points.

Level Debt /EBITDA Ratio EBITDA /Debt Ratio LIBOR Plus

(1) < 1.00 > 1.00 75
(2) [1.00, 1.25) (0.80, 1.00] 100
(3) [1.25, 1.75) (0.57, 0.80] 125
(4) [1.75, 2.20) (0.45, 0.57] 150

In this application we assume that the EBITDA/debt ratio is the under-
lying process in expression (1). A covenant in this contract requires that the
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EBITDA/debt ratio2 should be maintained above 0.45. This corresponds to a liq-
uidation level of C = 0.45 in our model. We apply the terms given in Table 4 and
assume the same parameter values for μ, σ, r, and k as in Table 2. Furthermore,
we assume that T = 5, D= 100, and the initial EBITDA-to-loan ratio is A= 1.25
(implying a loan-to-EBITDA ratio of 0.80). For simplicity we assume that the
coupon rates in each region equal the sum of the risk-free rate and the “London
Interbank Offered Rate (LIBOR) plus”-interest margin.

From expression (24), using n= 3, we calculate the time 0 value of the loan
as L(1.25) = 106.36. This result implies a gross time 0 value of the loan of 6.36,
while to estimate the net time 0 value of the loan to the lender one also needs to
deduct items like administrative costs and capital charges.

In order to quantify the value of default risk and of increased interest rates
for decreasing EBITDA-to-loan ratios, a relevant benchmark is the value of a 5-
year fixed default-free loan with constant coupon rate of 5.75. Using the previous
parameters, the present value of this loan is 103.32, lower than the 106.36 value
of the loan including both default risk and increasing coupons. Maintaining the
coupon rate of 5.75, but introducing default risk as above, the value of the loan
is 102.12. Thus, in this example the added value of increasing, level-dependent
interest rates is 4.24.

2. Residential Mortgages With Level-Dependent Interest Rates

The loan-to-collateral value of a residential mortgage impacts its interest
rates. A lower loan-to-collateral value implies a lower interest rate, reflecting the
lender’s reduced loss in case of default and subsequent recovery of the collateral.
Potential borrowers are typically offered a menu with interest rates increasing in
the loan-to-collateral ratio;3 an example is given in Table 5.

TABLE 5

Example of Residential Mortgage Contract

Table 5 presents the collateral dependent interest rates for private client residential mortgages at www.postbanken.no
(July 2008).

Loan-to- Collateral-to- Interest Rate
i Collateral Ratio Loan Ratio ci

(1) < 60% > 1.67 (B1) 6.95%
(2) 60%− 80% 1.25− 1.67 7.43%
(3) > 80% < 1.25 (B2) 8.24%

In this application we assume that the collateral-to-loan ratio is the underly-
ing process in expression (1). We assume that C= 1 (i.e., the bank terminates the
contract the first time the value of the collateral hits the value of the mortgage).

2For simplicity we assume that the company’s debt consists of only this loan.
3Our model assumes a constant risk-free interest rate. In most markets observed floating mortgage

rates and (short) risk-free interest rates tend to move in a correlated manner. For consistency, the rates
included in Table 5 are valid for adjustable interest rate (floating) mortgages. In our opinion, treating
both the current short-term risk-free and the current floating mortgage rates as constant at time 0
for the duration of the mortgage is preferable compared to, for example, using the market terms for
mortgages with fixed rates for a fixed number of years.
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We assume4 that μ = 0.04 and σ = 0.08. Furthermore, we apply the terms given
in Table 5 and assume that r = 0.05, k = 0, T = 10, D = 100, and the initial
collateral-to-loan ratio is A = 1.75 (implying a loan-to-collateral ratio of 57%).
From expression (24), using n = 2, we calculate the total time 0 value of the
mortgage as L(1.75) = 115.73.

In order to quantify the value of default risk and of increased interest rates
for decreasing collateral-to-loan ratios, a relevant benchmark is the value of a
10-year fixed default-free mortgage with coupon rate of 6.95. Using the previous
parameters, the present value of this mortgage is 115.35, marginally lower than
the 115.73 value of the mortgage including both default risk and increasing
coupons.

In Figure 4 we plot the values of

i) a fixed interest default-free mortgage,
ii) a fixed interest mortgage including default risk, and

iii) a level-dependent interest mortgage including default risk

FIGURE 4

Mortgage Values as Functions of Volatility

The black horizontal line represents the value of a fixed coupon risk-free mortgage. The dotted line represents the value
of a fixed coupon mortgage with liquidation risk, calculated from the extended Black and Cox (1976) formulas presented
in Section I. The dashed line represents the value of a level-dependent interest mortgage for increasing volatility using
expression (24) with n= 2. All values are presented as functions of the volatility. The other parameter values are A= 1.75,
μ= 0.04, C= 1, r= 0.05, k= 0, T= 10, and D= 100. Furthermore, B1, B2, c1, c2, and c3 are from Table 5. The vertical
dotted line represents the estimated volatility at 0.08 of the Norwegian residential market.

for increasing volatility. For volatilities larger than approximately 0.10, the value
of the fixed interest mortgage including default risk ii) is naturally well below
the value of the risk-free benchmark i). However, the value of the multiple level
interest mortgage iii) is higher than the risk-free benchmark i) for all volatilities

4These values are estimated from data on Norwegian residential real estate prices from the period
1850–2005 from Norges Bank, most kindly provided to us by Anders Øksendal. Some additional,
casual testing using more recent sets of data indicates that these parameter values seem to be in a
reasonable range.
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up to approximately 0.17. This illustrates, first, that the increasing coupons for
lower collateral-to-loan ratios more than compensate the lender for the default
risk, and second, that the level-dependent interest mortgage has a higher value
than the risk-free mortgage for all realistic values of volatility (< 0.17).

As a final point, observe that the value of the level-dependent interest mort-
gage is maximized for a volatility of approximately 0.125. This observation pro-
vides the lender with incentives to target the riskier segment of the mortgage
market, given that the Norwegian housing market volatility is approximately 0.08.
A moderately higher volatility increases the probability of receiving the higher
coupon rates, whereas for a larger increase in volatility (> 0.17) the increased
default risk dominates the increased interest.

IX. Conclusions and Areas of Further Research

We present closed-form solutions in a continuous time no-arbitrage model
for the market value of level-dependent annuities motivated by debt contracts with
separate default and liquidation risk.

We believe that our results have relevance for valuing a number of different
financial contracts. This paper includes applications to standard corporate debt
and to loans with contractual level-dependent interest rates. Our model of corpo-
rate debt includes endogenous default and liquidation levels found by maximizing
the value of equity. We apply our results for valuing both performance-priced cor-
porate loans and residential mortgages with interest rates depending on the value
of the collateral.

Preferred stock, issued by banks and insurance companies as part of their
risk capital, is another example of possible applications. The issuer of such claims
is entitled to drop coupon payments in financial distress, potentially conditional
upon no dividend payments on common stock (see, e.g., Emanuel (1983), Mjøs
and Persson (2010)). Novel structured financial products and special purpose ve-
hicles are other likely areas of application.

An area of further research may be optimal capital structure, including taxes
and level-dependent claims. Another area is the valuation of equity-type claims
with some form of level dependency (e.g., performance-based compensation con-
tracts).

Our main contributions are general valuation results for level-dependent an-
nuities and some preliminary results for areas where our results may be applied.

Appendix A. Some Standard Valuation Results

In Appendix A, we apply the change of measure technique introduced in finance by
Jamshidian (1989) and Geman, El Karoui, and Rochet (1995).

Let Z be any FT -measurable event. Denote its associated indicator function by 1Z .
First, the time 0 market value of a claim with time T market value Ua(AT ,B), given

in expression (8), receivable at time T only if the event Z occurs, is

P1(A,B) = E[e−rT Ua(AT ,B)1Z ](A-1)

= Ua(A,B)E
[
1Ze−(1/2)σ2β2T−σβWT

]
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= Ua(A,B)Qβ(Z)

=

(
A
B

)−β
Qβ(Z),

where the probability measure Qβ is defined by ∂Qβ/∂Q = exp(−1/2σ2β2T − σβT), and
the dynamics of At under Qβ are dAt=(μ−σ2β)Atdt+σAtdWt (abusing notation by letting
Wt also denote a standard Brownian motion under Qβ).

Similarly, the time 0 market value of a claim with time T market value Ub(AT ,B),
given in expression (8), receivable at time T only if the event Z occurs, is

P2(A,B) = E[e−rT Ub(AT ,B)1Z ](A-2)

= Ub(A,B)E
[
1Ze−(1/2)σ2α2T+σαWT

]
= Ub(A,B)Qα(Z)

=

(
A
B

)α
Qα(Z),

where the probability measure Qα is defined by ∂Qα/∂Q = exp(−1/2σ2α2T + σαT) and
the dynamics of At under Qα is dAt=(μ+σ2α)Atdt +σAtdWt (repeatedly abusing notation
by letting Wt also denote a standard Brownian motion under Qα).

The time 0 market value of a claim that pays 1 upon liquidation (when At hits C) if
liquidation occurs after time T is

P3(A,C) = E[e−rT Ua(AT ,C)1{τ > T}]
= Ua(A,C)E

[
e−(1/2)σ2β2T−σβWT 1{τ > T}

]
= Ua(A,C)Qβ(τ > T)

=

(
A
C

)−β
Qβ(τ > T).

Finally, the time 0 market value of a claim that pays 1 upon liquidation (when At hits
C) if liquidation occurs before time T is

P4(A,C) = Ua(A,C)Qβ(τ ≤ T) =

(
A
C

)−β
Qβ(τ ≤ T).

Appendix B. Some Standard Probability Results

In Appendix B, we consider the following process under different probability mea-
sures. Consider

Xt = ln(At) = ln(A) + μ̂t + σWt,

where Wt is defined under a fixed probability measure P, and ln(A), μ̂, and σ are constants.
The process Xt represents the logarithmic version of the process At used in this paper.
Define the stopping time

τ = inf{t : At = C)}.
The following results are standard:

Pg = P(τ > T) = N

⎛
⎜⎜⎝

ln

(
A
C

)
+ μ̂T

σ
√

T

⎞
⎟⎟⎠−

(
A
C

)(− 2μ̂
σ2

)

N

⎛
⎜⎜⎝−

ln

(
A
C

)
− μ̂T

σ
√

T

⎞
⎟⎟⎠ ,
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Pgg(B) = P(AT > B, τ > T)

= N

⎛
⎜⎜⎝

ln

(
A
B

)
+ μ̂T

σ
√

T

⎞
⎟⎟⎠−

(
A
C

)(− 2μ̂
σ2

)

N

⎛
⎜⎜⎝−

ln

(
A
C

)
+ ln

(
B
C

)
− μ̂T

σ
√

T

⎞
⎟⎟⎠ .

Observe that limB↓C P(Xt > ln(B), τ > T) = P(τ > T). Trivially,

Plg(B) = P(AT < B, τ > T) = N

⎛
⎜⎜⎝

ln

(
A
C

)
+ μ̂T

σ
√

T

⎞
⎟⎟⎠− N

⎛
⎜⎜⎝

ln

(
A
B

)
+ μ̂T

σ
√

T

⎞
⎟⎟⎠

+

(
A
C

)(− 2μ̂
σ2

)
⎛
⎜⎜⎝N

⎛
⎜⎜⎝−

ln

(
A
C

)
+ ln

(
B
C

)
− μ̂T

σ
√

T

⎞
⎟⎟⎠

− N

⎛
⎜⎜⎝−

ln

(
A
C

)
− μ̂T

σ
√

T

⎞
⎟⎟⎠
⎞
⎟⎟⎠ .

Here N(·) denotes the cumulative standard normal distribution function. The notation Pg

is used for the univariate distribution of the stopping time τ , the g signifies that τ is
greater than T . The notation Pgg(B) is used for the joint distribution between AT and τ ,
and footscript gg indicates that AT is greater than the value in the parenthesis B and that τ
is greater than T . Similarly, an occurrence of l in the footscript signifies that the relevant
variable is lower than some value. For example the notation Pl(B) is used for the univariate
distribution of AT , and the l signifies that the probability of the event AT is lower than B. A
similar notation is used throughout.

1. Probability Measure Q

Under the probability measure Q,

μ̂ = μ− 1
2
σ2.

Ql(B) = Q(AT ≤ B) = N(−d3),(B-1)

where

d3 =

ln

(
A
B

)
+

(
μ− 1

2
σ2

)
T

σ
√

T
,

Qg = Q(τ > T) = N(d1)−
(

A
C

)α−β
N(−d2),(B-2)

where

d1 =

ln

(
A
C

)
+

(
μ− 1

2
σ2

)
T

σ
√

T
and d2 =

ln

(
A
C

)
−
(
μ− 1

2
σ2

)
T

σ
√

T
.
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Also,

Qgg(B) = Q(AT > B, τ > T) = N(d3)−
(

A
C

)α−β
N(−d4),(B-3)

d4 =

ln

(
A
C

)
+ ln

(
B
C

)
−
(
μ− 1

2
σ2

)
T

σ
√

T
, and

Qlg(B) = Q(AT < B, τ > T)(B-4)

= N(d1)− N(d3) +

(
A
C

)α−β
(N(−d4)− N(−d2)).

2. Probability Measure Qα

Under the probability measure Qα,

μ̂ = μ + σ2α− 1
2
σ2.

Qαl (B) = Qα(AT ≤ B) = N(−dα3 ),(B-5)

where

dα3 =

ln

(
A
B

)
+

(
μ + σ2α− 1

2
σ2

)
T

σ
√

T
.

Qαg = Qα(τ > T) = N(dα1 )−
(

A
C

)−(α+β)

N(−dα2 ),(B-6)

where

dα1 =

ln

(
A
C

)
+

(
μ + σ2α− 1

2
σ2

)
T

σ
√

T
and

dα2 =

ln

(
A
C

)
−
(
μ + σ2α− 1

2
σ2

)
T

σ
√

T
.

Also,

Qαgg(B) = Qα(AT > B, τ > T) = N(dα3 )−
(

A
C

)−(α+β)

N(−dα4 ),(B-7)

where

dα4 =

ln

(
A
C

)
+ ln

(
B
C

)
−
(
μ + σ2α− 1

2
σ2

)
T

σ
√

T
and

Qαlg(B) = Qα(AT < B, τ > T)(B-8)

= N(dα1 )− N(dα3 ) +

(
A
C

)−(α+β)

(N(−dα4 )− N(−dα2 )).
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3. Probability Measure Q β

Under the probability measure Qβ ,

μ̂ = μ− σ2β − 1
2
σ2.

Qβl (B) = Qβ(AT ≤ B) = N
(
−dβ3

)
,(B-9)

where

dβ3 =

ln

(
A
B

)
+

(
μ− σ2β − 1

2
σ2

)
T

σ
√

T
.

Qβg = Qβ(τ > T) = N
(

dβ1

)
−
(

A
C

)(α+β)

N
(
−dβ2

)
,(B-10)

where

dβ1 =

ln

(
A
C

)
+

(
μ− σ2β − 1

2
σ2

)
T

σ
√

T
and

dβ2 =

ln

(
A
C

)
−
(
μ− σ2β − 1

2
σ2

)
T

σ
√

T
.

Also,

Qβgg(B) = Qβ(AT > B, τ > T) = N
(

dβ3

)
−
(

A
C

)(α+β)

N
(
−dβ4

)
,(B-11)

where

dβ4 =

ln

(
A
C

)
+ ln

(
B
C

)
−
(
μ− σ2β − 1

2
σ2

)
T

σ
√

T
and

Qβlg(B) = Qβ(AT < B, τ > T)(B-12)

= N
(

dβ1

)
− N
(

dβ3

)
+

(
A
C

)(α+β) (
N
(
−dβ4

)
− N
(
−dβ2

))
.

Appendix C. Valuation of Claims With Stochastic Dividend
Rates

We calculate the value of above and below claims with stochastic dividend rates. In
the main body of this paper we have treated deterministic dividend rates, interpretable as
coupon rates. As opposed to these coupon rates, the dividend rates in this case are functions
of At in expression (1) and, thus, random. With c(A)=A we solve the differential equation
(6) and obtain the time 0 value of ISIH above and below claims with stochastic dividend
rates as

V̂A(A,B) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

V̂a
A =

(
A

r − μ
)(

1−
(
α− 1
α + β

)(
A
B

)−β−1
)
, when A ≥ B,

V̂b
A =

(
A

r − μ
)(
β + 1
α + β

)(
A
B

)α−1

, when A ≤ B,

(C-1)
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and

V̂B(A,B) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

V̂a
B =

(
A

r − μ
)(
α− 1
α + β

)(
A
B

)−β−1

, when A ≥ B,

V̂b
B =

(
A

r − μ
)(

1−
(
β + 1
α + β

)(
A
B

)α−1
)
, when A ≤ B.

(C-2)

Expressions (C-1) and (C-2) are reduced to expressions (9) and (10) by letting μ = 0,
replacing A by c, replacing (α−1) byα, and replacing (β+1) by β. The first 2 replacements
are logical; μ represents the drift of the dividend, which is 0 for a fixed coupon, and
A is the initial value of the dividend rates in this case (comparable with c in the case
with a deterministic coupon). The 2 latter replacements do not have any immediate logical
interpretations but are due to the more general dividend rate in this case.

The expressions for π1 and π3 in Section VIII.A.3 are easily calculated from equation
(11), using the V̂s from expressions (C-1) and (C-2).
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