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Abstract

A paraxial ray formalism is developed to study the evolution of an on axis intensity spike on a Gaussian laser beam in a
plasma dominated by relativistic and ponderomotive non-linearities. Ion motion is taken to be frozen. A single beam width
parameter characterizes the evolution of the spike. The spike introduces two competing influences: diffraction divergence
and self-convergence. The former grows with the reduction in spot size of the spike, while the latter depends on the
gradient in non-linear permittivity. Parameter δ= (ωpr00/c) a00/(3.5 r00/r01) characterizes the relative importance of
the two, where r01 and r00 are the spike and main beam radii, ωp is the plasma frequency, and a00 is the normalized
laser amplitude. For δ> 1, the intensity ripple causes faster self-focusing of the beam; higher the ripple amplitude
stronger the focusing. In the opposite limit, diffraction divergence increases more rapidly, slowing down the self-
focusing of the beam. As the beam intensity rises due to self-focusing, it causes stronger generation of the third harmonic.
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1. INTRODUCTION

The propagation of laser beams of finite size is affected by
diffraction divergence. In a non-linear medium, this effect
is countered by non-linear refraction and the beam may be
self-focused. In plasmas, non-linearity arises due to variety
of sources, for example, Ohmic heating, ponderomotive
force, relativistic mass modification, and tunnel ionization;
hence, self-focusing and filamentation (Sodha et al., 1976;
Leemans et al., 1992; Esarey et al., 1996; Borghesi et al.,
1998; Hafizi et al., 2000; Liu & Tripathi, 2001; Lushnikov
& Rose, 2006) offer a fascinating study. These phenomena
manifest in modifying a host of non-linear phenomena,
such as parametric instabilities, harmonic generation (Spran-
gle & Esarey, 1991; Zhou et al., 1996; Ganeev et al., 2009;
Singhal et al., 2009), super continuum generation, self-
generated magnetic fields, THz generation, and charged
particle acceleration (Fuchs et al., 2006; Wang et al., 2013;
Arefiev et al., 2014). While most studies on self-focusing
deal with Gaussian beams, some have explored non-
Gaussian beams (Misra & Mishra, 2009; Gill et al., 2010;
Patil et al., 2012). Sodha et al. (2009b) have studied self-

focusing/defocusing of dark hollow Gaussian beams in
plasma considering collisional, ponderomotive, and relativis-
tic non-linearities.

The growth of filamentation instability in plasmas has re-
ceived considerable interest in the field of laser-driven
fusion. Kaw et al. (1973) studied the growth of a small am-
plitude ripple on a plane uniform wave front. The ripple mod-
ulates the refractive index of the plasma and it acquires a
maximum value where amplitude is the maximum. As the
beam propagates the amplitude maxima propagate with
smaller phase velocity than the neighboring rays. As a conse-
quence the wave front acquires a curvature and the beam gets
focused around intensity maxima by pulling energy from its
neighborhood. Thus the perturbation grows with time.

Experimental evidences (Loy & Shen, 1969; Chiligarian,
1968; Abbi & Mahr, 1971) suggest that the filamentation
in non-linear media is caused by the presence of intensity
spikes on a smooth looking irradiance distribution in the
plane, transverse to the direction of propagation. Thus, the
growth of a Gaussian ripple on a plane uniform beam has
been extensively studied (Pandey et al., 1990; Sharma
et al., 2004; Sodha et al., 2006; Sodha & Faisal, 2008;
Singh et al., 2009). The growth of the ring ripple on a
Gaussian beam has also been investigated (Sodha et al.,
1992, 1981, 2004; Asthana et al., 1999) in a paraxial
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approximation. The approach is based on the formulation of
Akhmanov et al. (1968) and its development by Sodha et al.
(1974, 1976). Recently, Purohit et al. (2015) have used
higher-order paraxial theory to investigate the growth of
the ring ripple and its effect on the propagation of a ring
ripple in a plasma when both relativistic and ponderomotive
non-linearities are simultaneously operative. However, two
different beam width parameters f0 and f1 are required for
the main beam and the ripple, respectively. We have em-
ployed a much transparent paraxial theory that employs
only one beam width parameter f, which characterizes both
the main laser beam and the ripple. It brings out with clarity
effects of diffraction and non-linear refraction how they are
affected by the ripple. Sun et al. (1987) have brought out
an interesting feature of self-focusing where short pulse
laser creates complete electron evacuation on the axis due
to ponderomotive force-driven expulsion of electrons.
Generation of harmonics of electromagnetic waves in plas-

mas is an important issue in high-power laser–plasma inter-
action. Since most of the electromagnetic beams have
Gaussian distribution of irradiance along the wave front, so
there is need to take into account this non-uniformity in the
theory of harmonic generation. The magnitude of the gener-
ated harmonics is higher in case of non-uniform irradiance.
Sodha et al. (2009a, b) studied the third-harmonic generation
caused by the self-focusing of a Gaussian beam in a colli-
sional plasma. Kaur et al. (2010) have analyzed the effect
of self-focusing on resonant third-harmonic generation of
laser in a rippled density plasma in which the self-focusing
of the laser enhances the third-harmonic power. Liu and Tri-
pathi (2008) have studied resonant third-harmonic generation
of a Gaussian laser pulse in a rippled density plasma created
by machining beam.
In this paper, we examine the growth of a Gaussian pertur-

bation of small radius on a high-power Gaussian laser beam
in a plasma properly accounting for the transfer of energy
from the main beam to the spike. The motivation for this
study arose from a recent experiment on proton–boron
nuclear fusion by Picciotto et al. (2014). They employed hy-
drogen enriched silicon targets with a layer of boron dopant
of thickness 100 nm at a depth of 190 nm. A linearly polar-
ized long pulse laser of temporal width 0.3 ns, wavelength
1.315 μm, spot size 80 μm, and moderate intensity 3 ×
1016 W/cm2 was obliquely impinged on the target at 30°
angle of incidence. The experiment reported high-yield
production of alpha particles, 109 particles per steradian via
proton–boron fusion. The fusion requires protons of energy
0.6 MeV. Such proton energies, according to mechanism of
hot electron sheath acceleration discussed by Gitomer et al.
(1986) would require hot electron temperature Th∼100 KeV.
The given intensity is just about the border line for this tem-
perature. Thus it appears enhancement in laser amplitude is
taking-place in the large expanding plasma. One probable
scenario is filamentation.
We invoke twin non-linearities, arising due to relativistic

increase in electron mass and ponderomotive force-induced

electron density cavitation, to cause spatial growth of a Gauss-
ian spike on a Gaussian laser beam. In Section 2, we discuss
the plasma equilibrium in the presence of a laser beam and
deduce the non-linear plasma permittivity treating ions to be
immobile. In Section 3, the wave equation in Wentzel-
Kramers-Brillouin (WKB) and paraxial ray approximations
has been solved. A function f is introduced that characterizes
the spot size of the perturbation and also the amplitude of
the laser on the axis of Gaussian perturbation. The equation
governing f is solved numerically. In Section 4, the third-
harmonic generation of a relativistic Gaussian laser beam in
a plasma have been studied in the limit of normalized laser
amplitude a< 1. We obtained the third-harmonic non-linear
current density and solved the wave equation for the third-
harmonic amplitude under paraxial ray approximation. The
results are discussed in Section 5.

2. NON-LINEAR DIEECTRIC CONSTANT

Consider a singly ionized plasma of electron density n00. A
linearly polarized Gaussian laser beam with a small coaxial
ripple superimposed on the main beam propagates along
the z-axis through it with electric field

�E = x̂ A (r, z) e−i(ωt−kz), (1)

A|2z=0= A2
00(1+ α e−r2/r201 ) e−r2/r200 ,

where r00 and r01 are the initial beam radius (spot size) of the
main Gaussian laser beam and the ripple and α is the fraction-
al intensity of the spike. For z> 0, following Akhmanov
et al. (1968) and Sodha et al. (1974) one may write in the
paraxial ray approximation

A2
0 = (A2

00/f
2)(1+ αe−r2/r201f

2 ) e−r2/r200f
2
, (2)

where f (z) is the beam width parameter to be determined
later.
The laser imparts oscillatory velocity to electrons

�v = e�E/miωγ and exerts a ponderomotive force on them
(primarily in the transverse direction), following Liu and
Tripathi (1995)

�Fp = e∇φp,

φp = −mc2

e
(γ− 1), (3)

where γ= (1+ a2/2)1/2, a= e|A|/mωc, c is the speed of
light in vacuum, and −e and m are the charge and rest
mass of an electron. As the electrons are displaced, a space
charge field �Es = e∇φs is created in the ripple region. In
the quasi-steady state, the space charge force on electrons
balances the ponderomotive force, that is, φs=−φp. Using
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this in the Poisson’s equation, ∇2φs = (e/ε0)(ne − n00), the
modified electron density can be written as

ne = n00 1+ mε0c2

n00e
2
∇2γ

( )
, (4)

where ε0 is the permittivity of free space.
The effective relative permittivity of the plasma can be

written as

ε = 1− ω2
p

ω2γ

ne
n00

= ε00 +Φ(E.E∗),

ε00 = 1− ω2
p

ω2
,

Φ = ω2
p

ω2
1− ne

n00γ

( )
. (5)

The relativistic factor γ can be expanded in powers of r as

γ = γ00 − γ02
r2

f 2
+ γ04

r4

f 4
, (6)

where

γ00 = 1+ a200
2f 2

1+ α( )
[ ]1/2

,

γ02 =
a200

4f 2γ00

α

r201
+ 1+ α

r200

( )
,

γ04 =
a200

4f 2γ00

α

2r401
+ 1+ α

2r400
+ α

r201r
2
00

( )

− a400
32f 4γ300

α

r201
+ 1+ α

r200

( )2

.

(7)

Using Eq. (6), ∇2γ can be written as

∇2γ = −4
γ02
f 2

+ 16γ04
r2

f 4
, (8)

From Eq. (4) one may recall that since ne cannot be negative,
one must have for the validity of the treatment (c2/ω2

p)∇2

γ+ 1> 0, that is, 4c2γ02/ω
2
pf

2 < 1 or

a200
f 4γ00

( )
1+ α+ α

r200
r201

( )
<

r200ω
2
p

c2
. (9)

This inequality guarantees ne≥ 0 at r= 0. Of course when
ne> 0 at r= 0, it is so all over for all values of r.

The non-linear permittivity of the plasma can be written as

ε = ε0 − ε2
r2

f 2
, (10)

where

ε0 = 1− ω2
p

ω2γ00
1− 4

γ02c
2

ω2
pf

2

( )
,

ε2 =
ω2
p

ω2γ00

γ02
γ00

1− 4
γ02c

2

ω2
pf

2

( )
+ 16

γ04c
2

ω2
pf

2

[ ]
.

3. EVOLUTION OF THE SPIKE

The wave equation governing the propagation of the laser
beam in a low-density plasma is

∇2�E + ω2

c2
ε�E = 0. (11)

Substituting for �E from Eq. (1) and using WKB approxima-
tion, Eq. (11) takes the form

2ik
∂A
∂z

+∇2
⊥A+ ω2

c2
ΦA = 0, (12)

where k = (ω/c)(1− ω2
p/ω

2)1/2, ωp = (n00e2/ε0m)1/2 and we
have ignored the ∇(∇.�E) term.

We write A= A0 exp (ikS), where A0 and S are real func-
tions of r and z, and separate out the real and imaginary
parts of Eq. (12),

∂A2
0

∂z
+∇2

⊥SA
2
0 +

∂S
∂r

∂A2
0

∂r
= 0, (13)

2
∂S
∂z

+ ∂S
∂r

( )2

−Φ

ε0
= 1

k2A0
∇2

⊥A0. (14)

In the paraxial ray approximation, we expand the eikonal S as

S = S0(z) + S2(z) r
2

2
, (15)

and introduce a function f (z) such that

S2 = 1
f

df

dz
, (16)

where f is the beam width parameter for slowly converging/
diverging fields. Using these in Eq. (13), one obtains the sol-
ution for A2

0 given by Eq. (2) exactly. Using Eqs (2), (15), and
(16) in Eq. (14) and collecting the coefficients of r2 on both
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sides, we get the equation governing f

d2f

dξ2
= 1

f 3
1+ α

(1+ α)
2r200
r201

+ r400
r401

(3+ α)
(1+ α)

{ }[ ]

− ω2

c2
ε2
f
r400,

(17)

where ξ= z/Rd, Rd = kr200. Equation (17) is a non-linear or-
dinary differential equation governing the behavior of dimen-
sionless beam width parameter f as a function of normalized
distance of propagation. The first term on the right-hand-side
represents diffraction of the ripple imposed on the laser
beam, while the second term represents non-linear self-
focusing, arising due to relativistic and ponderomotive
non-linearities. The focusing/defocusing of the beam is de-
termined by the relative magnitudes of these terms. For an
initially plane wave front f= 1 and df/dz= 0 at ξ= 0.
For α≤ 0.2, r01/r00≤ 0.3, Eq. (17) takes the form

d2f

dξ2
= 1

f 3
1+ 3α

r400
r401

( )
− Ω2

pa
2
00

4γ300f
3

1+ α
r200
r201

+ ψ

( )
, (18)

ψ = 1

2Ω2
p

1+ a200/4f
2

γ00
+ αγ00

r400
r401

− 2a200
f 4γ00

1+ α
r400
r401

( )2
[ ]

,

where Ωp = r00ωp/c. Further, for beams of large spot size
Ω2

p ≫ 1, Ψ≪ 1. At low beam intensities a200/2f
2 < 1, Eq.

(18) simplifies to

d2f

dξ2
= 1

f 3
1+ 3α

r400
r401

( )
−Ω2

pa
2
00

4f 3
1+ α

r200
r201

( )
, (19)

giving

f 2 = 1− βξ2, (20)

where

β = Ω2
pa

2
00

4
− 1+ α r200

4r201
Ω2

pa
2
00 − 12

r200
r201

( )
.

For self-focusing β must be positive. Ripple aids self-
focusing when Ω2

pa
2
00 > 12r200/r

2
01. In the opposite limit,

ripple suppresses self-focusing due to enhanced diffraction
divergence of the axial portion of the laser beam.
We have solved Eq. (20) numerically for typical parame-

ters. Figure 1 shows the variation of beam width parameter,
f, as a function of normalized distance of propagation, ξ,
for α= 0, 0.05, 0.1, a00= 0.5, r01/r00= 0.2, (r00ωp/c)=
100. One observes that self-focusing starts earlier and is
stronger when the spike intensity is increased from zero to
0.1, that is, the spike aids self-focusing of the laser beam;

higher the value of the spike amplitude, stronger the self-
focusing. For 1 μm wavelength laser of spot size 100 μm,
the laser travels a distance of 1256 μm as a self-focused
beam.
Figure 2 shows the variation of f with ξ for α= 0.1, r01/

r00= 0.1, (r00ωp/c)= 100, and different values of normal-
ized main beam amplitude, a00= 0.4, 0.5, 0.6. The
self-focusing starts earlier when the value of the normalized
amplitude of the main laser is increased due to the

Fig. 2. Beam width parameter f plotted against the normalized distance
of propagation ξ in relativistic plasma for main laser intensities a00=
0.4, 0.5, 0.6 and for the following parameters α= 0.1, r01/r00= 0.1,
r00ωp/c= 100.

Fig. 1. Beam width parameter f plotted against the normalized distance of
propagation ξ in relativistic plasma for different spike intensities α= 0, 0.05,
0.1 and for the following parameters a00= 0.5, r01/r00= 0.2, r00ωp/c= 100.

N. Ahmad et al.140

https://doi.org/10.1017/S0263034616000902 Published online by Cambridge University Press

https://doi.org/10.1017/S0263034616000902


predominance of the non-linear term over the diffraction
term. One may also note that the distance of self-focusing de-
creases with the increase in the intensity of the main beam.
This is similar to the pinching effect of self-generated
quasi-stationary magnetic field at relativistic intensity,
which adds to self-focusing (Pukhov & Meyer-ter-Vehn,
1996).
Figure 3 shows the variation of f with ξ for different values

of normalized plasma density(r00ωp/c)= 50, 75, 100 when
the other parameters are: α= 0.1, a00= 0.5, r01/r00= 0.2.
The self-focusing is stronger at higher plasma density due
to the enhancement in the non-linear term. Figure 4 shows
the variation of f with ξ for different values of the ratio of
the size of the spike to main beam radius r01/r00= 0.1,
0.15, 0.2, when α= 0.1, a00= 0.5, (r00ωp/c)= 100. The
self-focusing starts earlier when the value of r01/r00 is
decreased.
We have also plotted the normalized radial laser intensity

profile as a function of r/r00 using Eq. (2) in Figure 5a and
5b, for α= 0.1, a00= 0.5, r01/r00= 0.2, (r00ωp/c)= 100,
at (z= 0, 0.02Rd). The axial intensity increases while the
radial width shrinks. The ripple becomes even narrower.

4. THIRD-HARMONIC GENERATION

So far we have considered only the time average pon-
deromotive force on electrons. The laser also exerts a
second-harmonic ponderomotive force and gives rise to
third-harmonic generation. Here we study this phenomenon
in the limit of a< 1.
The laser field, given by Eq. (1), imparts oscillatory

velocity to electrons, �vω = e�Eω/miωγ, and exerts a

Fig. 3. Beam width parameter f plotted against the normalized distance of
propagation ξ in relativistic plasma for the following parameters r00ωp/c=
50, 75, 100, α= 0.1, r01/r00= 0.2, a00= 0.5.

Fig. 4. Beam width parameter f plotted against the normalized distance of
propagation ξ in relativistic plasma for the following parameters r01/r00=
0.1, 0.15, 0.2, α= 0.1, a00= 0.5, r00ωp/c= 100.

Fig. 5. (a). Plot of the normalized radial laser intensity profiles as a function
of r/r00, for α= 0.1, a00= 0.5, r01/r00= 0.2, (r00ωp/c)= 100, at z= 0.
(b) Plot of the normalized radial laser intensity profiles as a function of
r/r00, for α= 0.1, a00= 0.5, r01/r00= 0.2, (r00ωp/c)= 100, at z= 0.02Rd.
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ponderomotive force on them at the second harmonic

�F2ω = − e

2c
�vω × �Bω = −ẑ

e2E2
x

2miω c
η, (21)

where we have employed �Bω = c�k × �E/ω for the magnetic
field of the wave and η= kc/ω is the refractive index. The
relativistic factor γ can be written as

γ = 1− v2

c2

( )−1/2

= γ0 + γ2ωe
−2i ωt−kz( ), (22)

where γ0= (1+ |vω|
2/4c2)≈ 1, and γ2ω = v2ω/4c

2γ0.
Using �F2ω in the equation of motion one obtains the

second-harmonic oscillatory velocity

�v NL
2ω = −

�F2ω

2imω
= − a2c

4γ0
η e−2i ωt−kz( ). (23)

This velocity produces second-harmonic density perturba-
tion through the equation of continuity

nNL2ω = n00
�k.�v NL

2ω

ω
= − n00a

2

4
η e−2i ωt−kz( ). (24)

The density perturbation gives rise to second-harmonic space
charge field �E2ω = −∇Φ2. The field in turn produces linear
perturbations in electron velocity and density

�v L
2ω = e�E2ω

miω
,

nL2ω = 4k2χ2ε0
e

Φ2, (25)

where χ2 = −ω2
p/4ω

2γ0. Using density perturbations in the
Poisson’s equation ∇2Φ2 = e(nL2ω + nNL2ω )/ε0 and replacing
∇2 by − 4k2, we obtain

n2ω = nL2ω + nNL2ω = − n00a
2

4ε2
.

where ε2= 1+ χ2.
The response of electrons at the third harmonic is governed

by the equation of motion,

m
∂
∂t

γ0 �v3ω + 1
2
γ2ω �vω

( )
= −e�E3ω − e

2
�v2ω × �Bω, (26)

Assuming γ0≈ 1, we obtain

�v3ω = a3c

8i
1+ k2c2

3ω2

( )
e−3i ωt−kz( ) ≅

a3c

6i
e−3i ωt−kz( ), (27)

where η≈ 1 in a low-density plasma. The third-harmonic ve-
locity gives rise to third-harmonic current density. Besides

this, the density perturbation at 2ω frequency beats with �vω
to produce non-linear current density at the third harmonic,

.�J NL
3ω = − 1

2
n2ωe �vω − 1

2
n00e �v3ω = −x̂ i

n00e a
3c

48
e−3i ωt−kz( ). (28)

The linear current density due to the self-consistent third-
harmonic field �E3ω is

�J L
3ω = − n00e

2 �E3ω

3m iω
. (29)

The wave equation governing the generation of third-
harmonic field is

∇2�E3ω + k23 �E3ω = − 3iω
ε0c2

�J NL
3ω . (30)

Wemaywrite �E3ω = x̂ A3ω(r, z) e−3i ωt−kz( ), where k3 = (3ω/c)
(1− ω2

p/9ω
2)1/2.

Using Eq. (28) for �J NL
3ω , Eq. (30) gives

A3

A
= iβ1e

−i β1z

128

∫z
0

a200
f 3

1+ α( )ei β1zdz, (31)

where

β1 = − 4
3

ω2
p

ωc(1− ω2
p/ω

2)1/2 , f = (1− β ξ2)1/2.

The third-harmonic power conversion efficiency is related to
the amplitude ratio as

ηp = A2
3/3A

2.

Fig. 6. Ratio of third-harmonic amplitude to main laser amplitude plotted
against the normalized distance of propagation ξ for the following parameters
a00= 0.4, 0.5, r01/r00= 0.2, α= 0.1, r00ωp/c= 100.
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The factor of 1/3 arises due to the reduced spot size of the
third harmonic.
We have solved Eq. (31) numerically, in conjunction with

Eq. (20) governing the beam width parameter, for the follow-
ing parameters: a00= 0.4, 0.5 α= 0.1, (r00ωp/c)= 100, r01/
r00= 0.2. Figure 6 shows the variation of normalized third-
harmonic amplitude with the normalized distance of propa-
gation when self-focusing effect is taken into account. The
harmonic amplitude rises with distance rather rapidly due
to the self-focusing of the laser beam. At higher laser ampli-
tude, third-harmonic generation is stronger.

5. CONCLUSIONS

The presence of an axial spike in a Gaussian laser beam has
significant effect on the self-focusing of the beam due to rel-
ativistic and ponderomotive non-linearities. When the spike
amplitude is increased, there is stronger self-focusing de-
pending on the ratio of the size of the spike to main beam
radius r01/r00, normalized laser amplitude a00, and normal-
ized plasma frequency ωpr00/c. It is observed that self-
focusing starts earlier and is stronger when the spike intensity
is increased from zero to 0.1. It is also found that the self-
focusing of the main beam starts earlier when the value of
the normalized amplitude of the main laser beam a00, as
well as normalized plasma frequency ωpr00/c are increased.
The focusing length z= ξ Rd decreases with increasing a00.
For a00> 1, the electrons are completely evacuated from
the channel and present paraxial theory does not hold. It is
also noted that self-focusing is stronger when the spike
radius to main beam radius ratio r01/r00 is decreased. The
problem is relevant in the context of proton–boron fusion ex-
periment by Picciotto et al. (2014), as one gets intensity en-
hancement of the ripple by 1/f2≈ 4. Thus, the effective
intensity of the laser is enhanced to 1.2 × 1017 W/cm2

from 3 × 1016 W/cm2. At this intensity electron temperature
is also enhanced by a similar factor; hence, 600 KeV are
likely to produced that can cause proton–boron fusion.
The enhanced self-focusing of the laser beam manifests in

the rise of third-harmonic generation efficiency. Third-
harmonic generation could be a valuable diagnostic for fila-
mentation. The results of the present analysis are useful in
understanding the physics of intense laser plasma interaction
and find the application in the high-power laser-driven fusion
and particle acceleration process.
For long pulses the present treatment may be extended to

study thermal self-focusing where ion motion becomes im-
portant. Thermal nonlinearity arises due to Ohmic heating
and can be ignored for pulses shorter than collisional heating
time.
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