
Combinatorics, Probability and Computing (2019), 28, pp. 675–695
doi:10.1017/S096354831800055X

ARTICLE

Restricted completion of sparse partial Latin squares
Lina J. Andrén1,†, Carl Johan Casselgren2,∗,‡ and Klas Markström3,§

1University Library,MälardalenUniversity, SE-721 23 Västerås, Sweden, 2Department ofMathematics, LinköpingUniversity,
SE-581 83 Linköping, Sweden and 3Department of Mathematics and Mathematical Statistics, Umeå University, SE-901 87
Umeå, Sweden
∗Corresponding author. Email: carl.johan.casselgren@liu.se

(Received 7 September 2016; revised 29 October 2018; first published online 20 February 2019)

Abstract
An n× n partial Latin square P is called α-dense if each row and column has at most αn non-empty cells
and each symbol occurs at most αn times in P. An n× n array A where each cell contains a subset of
{1, . . . , n} is a (βn, βn, βn)-array if each symbol occurs at most βn times in each row and column and
each cell contains a set of size at most βn. Combining the notions of completing partial Latin squares and
avoiding arrays, we prove that there are constants α, β > 0 such that, for every positive integer n, if P is an
α-dense n× n partial Latin square, A is an n× n (βn, βn, βn)-array, and no cell of P contains a symbol
that appears in the corresponding cell of A, then there is a completion of P that avoids A; that is, there is a
Latin square L that agrees with P on every non-empty cell of P, and, for each i, j satisfying 1� i, j� n, the
symbol in position (i, j) in L does not appear in the corresponding cell of A.

2010 MSC Codes: Primary 05B15; Secondary 05C15

1. Introduction
Consider an n× n array A where each cell contains a subset of the symbols in [n]= {1, . . . , n}.
If no cell in A contains a set of size larger than m1, and if no symbol occurs more than m2 times
in any row or more than m3 times in any column, then A is an (m1,m2,m3)-array (of order n).
A (1, 1, 1)-array is usually called a partial Latin square (or PLS), and such an array with no empty
cell is a Latin square. The cell in position (i, j) of A is denoted by (i, j)A, and the set of symbols
in cell (i, j)A is denoted by A(i, j). By slight abuse of notation, if L is a (partial) Latin square, then
L(i, j) usually denotes the symbol in cell (i, j)L, that is, L(i, j)= k. Moreover, the symbol L(i, j) is
called an entry of cell (i, j)L.

An n× n partial Latin square P is called α-dense if each row and column contains at most αn
non-empty cells and each symbol appears at most αn times in P. An n× n partial Latin square
P is completable if there is an n× n Latin square L such that L(i, j)= P(i, j) for each non-empty

†Part of the work done while the author was a postdoctoral researcher at the Mittag-Leffler Institute. Research supported
by a postdoctoral grant from the Mittag-Leffler Institute.

‡Part of the work done while the author was a postdoctoral researcher at the Mittag-Leffler Institute. Research supported
by a postdoctoral grant from the Mittag-Leffler Institute.

§Part of the work done while the author was visiting the Mittag-Leffler Institute. Research supported by the Mittag-Leffler
Institute.
© Cambridge University Press 2019

https://doi.org/10.1017/S096354831800055X Published online by Cambridge University Press

https://doi.org/10.1017/S096354831800055X
mailto:carl.johan.casselgren@liu.se
https://doi.org/10.1017/S096354831800055X

676 L. J. Andrén, C. J. Casselgren and K. Markström

cell (i, j)P of P; L is also called a completion of P. Similarly, an n× n array A is avoidable if there is
an n× n Latin square L such that for each i, j satisfying 1� i, j� n, L(i, j) does not appear in cell
(i, j)A of A; we also say that L avoids A.

The problem of completing partial Latin squares is classical in combinatorics and there is a
wealth of results in the literature. Let us here just mention a few classical and recent results. In gen-
eral, it is an NP-complete problem to determine if a partial Latin square is completable [16]. Thus
it is natural to ask if particular families of partial Latin squares are completable. A classical result
due to Ryser [28] states that if n� r, s, then every n× n partial Latin square whose non-empty cells
form an r × s Latin rectangleQ is completable if and only if each of the symbols 1, . . . , n occurs at
least r + s− n times in Q. Another classical result is Smetaniuk’s proof [29] of Evans’ conjecture
[20] that every n× n partial Latin square with at most n− 1 entries is completable. This was also
independently proved by Andersen and Hilton [2]. Adams, Bryant and Buchanan [1] character-
ized which partial Latin squares with two filled rows and columns are completable and by results
of Casselgren and Häggkvist [10], and Kuhl and Schroeder [24], all partial Latin squares of order
at least 6 with all entries in one fixed column or row, or containing a prescribed symbol, is com-
pletable. Building on techniques by Chetwynd and Häggkvist [12] and Gustavsson [21], Bartlett
[7] proved that every ε-dense partial Latin square is completable, provided that ε < 9.8× 10−5.
This was recently improved upon in [6] where it was proved that the same conclusion holds under
the assumption that ε < 1/25.

The problem of avoiding arrays was first posed by Häggkvist [22]. He also found the first (non-
trivial) family of avoidable arrays: If n= 2k and P is a (1, n, 1)-array of order n with empty last
column, then P is avoidable. In his original paper [22] Häggkvist also conjectured that there is a
constant c> 0 such that for every positive integer n, every (cn, cn, cn)-array is avoidable. Andrén
[3] established that Häggkvist’s conjecture holds for arrays of even order and the case of odd order
arrays was settled by Andrén, Casselgren and Öhman [4] confirming Häggkvist’s conjecture in
the affirmative. Related results appear in [9, 15, 17]; in particular, in [9] it is proved that it is
NP-complete to decide if an array with at most two symbols per cell is avoidable, even if only two
distinct symbols occur in the array.

Much of the research on avoiding arrays has focused on avoiding arrays that contain at most
one symbol in each cell, so-called single entry arrays. Most notably, by results of Chetwynd and
Rhodes [14], Cavenagh [11] and Öhman [26], all partial Latin squares of order at least 4 are
avoidable. In [13], [9] and [25] some families of avoidable and unavoidable arrays are given.

In this paper we combine the notions of completing partial Latin squares and avoiding arrays
and consider the problem of completing a partial Latin square subject to the condition that the
completion should avoid a given array as well. There are some previous results in this direction:
Öhman [27] determined for which pairs P,A, where P is a partial Latin square of order n with
entries only from two distinct symbols, and A is a single entry array of order n with entries only
from the same two distinct symbols, there is a completion of P that avoidsA. Denley and Kuhl [19]
proved that if P is an n× n partial Latin square andQ is an n× n partial Latin square that avoids P,
then there is a completion of P that avoids Q if n= 4t, P contains at most t − 1 non-empty cells
and t� 9.

Note further that the problem of determining if a given partial Latin square P has a completion
L which avoids a given array A is certainly NP-complete in the general case, since it contains both
the problem of completing partial Latin squares and avoiding arrays as special cases.

The main result of this paper is the following proposition, which is proved by combining
techniques developed by Bartlett [7] and Andrén, Casselgren and Öhman [4].

Theorem 1.1. There are constants α > 0 and β > 0, such that for every positive integer n, if P is an
n× n α-dense partial Latin square, A is an n× n (βn, βn, βn)-array, and no cell of P contains a
symbol that occurs in the corresponding cell of A, then there is a completion of P that avoids A.

https://doi.org/10.1017/S096354831800055X Published online by Cambridge University Press

https://doi.org/10.1017/S096354831800055X

Combinatorics, Probability and Computing 677

In this paper we also consider random partial Latin squares and arrays. Let P(n, p) denote
the probability space of all n× n partial Latin squares P where each cell (i, j)P independently is
empty with probability 1− p and contains symbol s with probability p/n, s= 1, . . . , n. Further,
for i= 1, . . . , n, we empty any cell (i, j1)P in row i that contains the same entry as another cell
(i, j2)P in row i, where j2 > j1; similarly for columns.

Using our main result we prove the following proposition on random arrays and random
partial Latin squares.

Corollary 1.2. Let P be a random PLS distributed as P(n, p), and let A be a random n× n array
where each cell (i, j)A of A is assigned a set A(i, j) of size m=m(n) by choosing each set independently
and uniformly at random from all m-subsets of [n], and where any entry of A that occurs in the
corresponding cell of P is removed. There are constants ρ1 and ρ2 such that if p< ρ1 and m� ρ2n,
then with probability tending to 1, as n→ ∞, there is a completion of P that avoids A.

This result is deduced from our Theorem 1.1, and it also holds if we take P to be a
given (deterministic) α-dense PLS and A a random array, or P a random PLS and A a given
(βn, βn, βn)-array.

The rest of the paper is organized as follows. In Section 2 we introduce some terminology
and notation and also outline the proof of Theorem 1.1. Section 3 contains the proof of a slightly
reformulated version of Theorem 1.1. In Section 4 we prove Corollary 1.2, and in Section 5 we give
some concluding remarks; in particular, we give an example indicating what numerical values of
α and β in Theorem 1.1 might be best possible. In the beginning of Section 3 we shall present
numerical values of α and β for which our main theorem holds, provided that n is large enough.

2. Terminology, notation and outline of the proof of Theorem 1.1
If L is a Latin square, A is an array, and L does not avoid A, then the cells (i, j)L such that L(i, j) ∈
A(i, j) are the conflict cells of L with A (or just the conflicts of L). If P is a PLS, then the cells (i, j)L that
correspond to non-empty cells in P are the prescribed cells of L with P (or just the prescribed cells).

An intercalate in an n× n Latin square L is a set

C = {(r1, c1)L, (r1, c2)L, (r2, c1)L, (r2, c2)L}
of cells in L such that L(r1, c1)= L(r2, c2) and L(r1, c2)= L(r2, c1). If in addition

|{L(r1, c1), L(r1, c2)} ∩ {1, . . . , �n/2�}| = 1,

then C is called a strong intercalate.
If

C = {(r1, c1)L, (r1, c2)L, (r2, c1)L, (r2, c2)L}
is an intercalate in Lwith L(r1, c1)= s1 and L(r1, c2)= s2, then a swap on C is the operation L 	→ L′,
where L′ is a Latin square with

L′(r1, c1)= L′(r2, c2)= s2, L′(r1, c2)= L′(r2, c1)= s1,
and L′(i, j)= L(i, j) for all other (i, j). The intercalate C is called allowed with respect to A (or just
allowed) if performing a swap on it yields a Latin square L′ in which none of the cells in

{(r1, c1)L′ , (r1, c2)L′ , (r2, c1)L′ , (r2, c2)L′ }
is a conflict cell of L′ with A.

Let T be some set of cells from a Latin square L. If there is a Latin square L′ satisfying

• L′(i, j)= L(i, j) if (i, j)L /∈ T, and
• L′(i, j) �= L(i, j) for some (i, j)L ∈ T,

https://doi.org/10.1017/S096354831800055X Published online by Cambridge University Press

https://doi.org/10.1017/S096354831800055X

678 L. J. Andrén, C. J. Casselgren and K. Markström

then we say that L′ is obtained from L by performing a trade on T. We will also refer to the set T as
a trade. Note that a swap on an intercalate may be seen as performing a trade on the intercalate.

A generalized diagonal D, or simply a diagonal, in an array A of order n is a set of n cells in A,
such that no two cells of D are in the same row or column of A. The main diagonal in A is the
diagonal {(i, i)A : i ∈ [n]}. A transversal of a Latin square L of order n is a diagonalD in L such that
that {L(r, c) : (r, c)L ∈D} = [n].

For the proof of Theorem 1.1, we need some previous results. The following is due to Brègman
[8] (see also [5], p. 22).

Theorem 2.1. If A= [A(i, j)] is an n× n (0, 1)-matrix with row sum ri on the ith row, then the
permanent per(A) of A satisfies

per(A)=
∑
σ∈Sn

n∏
i=1

A(i, σ (i))�
∏

1�i�n
(ri!)1/ri ,

where Sn is the symmetric group of order n.

By a simple correspondence between (0, 1)-matrices and bipartite graphs, we get the following
corollary.

Corollary 2.2. If B is a balanced bipartite graph on 2n vertices and d1, . . . , dn are the degrees of the
vertices in one part of B, then the number of perfect matchings in B is at most

∏
1�i�n (di!)1/di .

We also need some definitions on list edge colouring. Given a graph G, assign to each edge e of
G a set L(e) of colours (positive integers). Such an assignment L is called a list assignment for G
and the sets L(e) are referred to as lists or colour lists. If all lists have equal size k, then L is called
a k-list assignment. Usually, we seek a proper edge colouring ϕ of G, such that ϕ(e) ∈L(e) for
all e ∈ E(G). If such a colouring ϕ exists then G is L-colourable and ϕ is called an L-colouring. Let
χ ′
L(G) denote theminimum integer t such thatG isL-colourable wheneverL is a t-list assignment.

We let χ ′(G) denote the chromatic index ofG, i.e. the minimum integer t such thatG has a proper
t-edge colouring.

Note further that the main result of this paper can be formulated as a theorem on list edge
colouring of balanced complete bipartite graphs.

Instead of proving Theorem 1.1 we will prove the following theorem, which is easily seen to
imply Theorem 1.1.

Theorem 2.3. There are constants α > 0, β > 0 and n0, such that, for every positive integer n� n0,
if P is an α-dense partial Latin square of order n, A is a (βn, βn, βn)-array of order n, and no entry
of P appears in the corresponding cell of A, then there is a completion L of P that avoids A.

The proof of Theorem 2.3 combines techniques from [4] and [7]. In particular, the last part of
the proof is an extension of the technique developed by Bartlett for completing α-dense PLS.

Below we outline the proof of Theorem 2.3.

Step I. Find a ‘starting Latin square’ L0 of order n, such that each cell in L0 except at most 3n+ 7
is in �n/2� strong intercalates.

Step II. Given A and P, find a pair of permutations (ρ, θ) so that if A′ and P′ denote the arrays
obtained from A and P, respectively, by applying ρ to the rows of A and P and θ to the
columns of A and P, then P′ and A′ satisfy certain ‘sparsity’ conditions with respect to
L0. These conditions will be articulated more precisely below.

https://doi.org/10.1017/S096354831800055X Published online by Cambridge University Press

https://doi.org/10.1017/S096354831800055X

Combinatorics, Probability and Computing 679

Step III. Define an n× n PLS R such that a cell of R is non-empty if and only if the corresponding
cell of L0 is a conflict cell with A′ and the corresponding cell of P′ is empty. We shall also
require that P and R together form a PLS, and that each symbol in R does not appear in
too many cells in R. Let P̂ be the PLS obtained by putting P′ and R together.

Step IV. Apply our modified variant of the technique by Bartlett [7] to construct from L0 a Latin
square Lq that is a completion of P̂ (and thus P′) and which avoids A′.

The above construction yields a Latin square Lq that is a completion of P′ and which avoids A′.
However, in order to obtain a Latin square Sq from Lq that is a completion of P and which avoids
A, we can just apply the inverses of the permutations ρ and θ to the rows and columns of Lq,
respectively. Hence, it suffices to prove that there is a Latin square Lq as above.

3. Proof of Theorem 2.3
In the proof of Theorem 2.3 we shall verify that it is possible to perform Steps I–IV described
in Section 2 to obtain the Latin square Lq. We will not specify the value of n0 in the proof, but
rather assume that n is large enough whenever necessary. Since the proof of the theorem will
contain a finite number of inequalities that are valid if n is large enough, this suffices for proving
Theorem 2.3.

The proof of Theorem 2.3 involves a number of other functions and parameters,

α, β , c(n), f (n), d, k, ε,

and a number of inequalities that they must satisfy. For the reader’s convenience, explicit choices
for which the proof holds are presented here:

α = 1
100000

, β = 1
100000

, k= 1
500

, ε = 1
10000

,

d = 1
20

, c(n)=
⌊

n
35000

⌋
, f (n)=

⌊
n

17500

⌋
.

We remark that since the numerical values of α and β are nowhere near what we expect to be
optimal, we have not put any effort into choosing optimal values for these parameters.

Proof of Theorem 2.3. Let P be an n× n α-dense PLS and A an n× n (βn, βn, βn)-array such
that no cell of A contains a symbol that occurs in the corresponding cell of P.

Step I. Below we shall define the starting Latin square L0. This Latin square was used in [4] and
[7] and also appears in the original paper by Chetwynd and Häggkvist [12] on completing sparse
partial Latin squares.

We shall give the explicit construction assuming that n is even. For the case when n is odd,
one can modify the construction in the even case by swapping on some intercalates and using a
transversal; the details are given in Lemma 2.1 in [7].

So suppose that n= 2r.

Definition. Let M11 be the cyclic Latin square of order r (i.e. the Latin square corresponding to
the addition table of the cyclic group of order r). Note that M11(i, j)= j− i+ 1, taking j− i+ 1
modulo r. The r × r arrayM12 is defined fromM11 by settingM12(i, j)=M11(i, j)+ r, 1� i, j� r.
LetM21 =MT

12 andM22 =MT
11, whereMT is the transpose ofM, defined in the obvious way:

https://doi.org/10.1017/S096354831800055X Published online by Cambridge University Press

https://doi.org/10.1017/S096354831800055X

680 L. J. Andrén, C. J. Casselgren and K. Markström

M11 =

1 2 3 · · · r − 1 r
r 1 2 · · · r − 2 r − 1

r − 1 r 1 · · · r − 3 r − 2
...

...
...

. . .
...

...
3 4 5 · · · 1 2
2 3 4 · · · r 1

.

Now we define the 2r × 2r Latin squareM by letting

• M11 be the r × r subarray in its upper left corner,
• M12 be the r × r subarray in its upper right corner,
• M21 be the r × r subarray in its lower left corner, and
• M22 be the r × r subarray in its lower right corner:

M = M11 M12

M21 M22
.

Every cell inM belongs to a large number of strong intercalates.

Lemma 3.1. Each cell (i, j)M in M belongs to exactly r distinct strong intercalates.

Proof. Without loss of generality, we assume that 1� i, j� r. It is easy to verify that for every
l ∈ {1, . . . , r},

{(i, j)M , (i, r + l)M , (r + l+ j− i, j)M , (r + l+ j− i, r + l)M}
is a strong intercalate in M. Hence each cell (i, j)M is in at least r strong intercalates, and since a
strong intercalate is uniquely determined by two cells, it follows from the definition ofM that each
cell is in at most r strong intercalates.

The case when n= 2r + 1 is not as elegant; as mentioned above, using the Latin squareM one
can construct a Latin squareM′ of order 2r + 1 such that all but at most 3n+ 7 cells are in �n/2�
strong intercalates. In particular, there is a row and column inM′ where no cell belong to at least
�n/2� strong intercalates. The full proof appears in [7] and therefore we omit the details here.

We define L0:=M when n is even, and L0:=M′ when n is odd.

Step II. LetA′ be an n× n (βn, βn, βn)-array, P′ an n× n α-dense PLS and L a Latin square. If the
following conditions hold, then L is well-behaved with respect to A′ and P′ (or just well-behaved
when A′ and P′ are clear from the context):

(a) all cells in L, except for 3n+ 7, belong to at least �n/2� − εn allowed strong intercalates;
(b) each row of L contains at most c(n) conflicts with A′;
(c) each column of L contains at most c(n) conflicts with A′;
(d) for each symbol s ∈ [n] there are at most c(n) cells in L that contain s and that are conflicts

with A′;
https://doi.org/10.1017/S096354831800055X Published online by Cambridge University Press

https://doi.org/10.1017/S096354831800055X

Combinatorics, Probability and Computing 681

(e) for each symbol s ∈ [n] there are at most c(n) cells in L that contain s and satisfy that the
corresponding cell in P′ is non-empty;

(f) for each pair of symbols s1, s2 ∈ [n] there are at most c(n) cells in L with entry s1 such that
s2 belongs to the corresponding cell in A′.

We shall prove that there is a pair of permutations (ρ, θ) such that if ρ is applied to the rows of
the given arrays A and P, and θ is applied to the columns of A and P, then the resulting arrays
A′ and P′, respectively, satisfy that the starting Latin square L0 is well-behaved with respect to A′
and P′.

If J is a subset of cells of an array S, and S′ is the array obtained from S by applying ρ to the
rows of S and θ to the columns of S, then ρ(θ(J)) denotes the set of cells in S′ that J are mapped to
under ρ and θ .

Following [4], we shall for convenience in fact prove that there are permutations σ , τ such that
if S is the Latin square obtained from L0 by applying σ to the rows and τ to the columns of L0,
then L0, S, A and P satisfy the following:

(a′) all cells in S except for 3n+ 7 are in at least �n/2� − εn allowed strong intercalates;
(b′) for a collection J1, . . . , J3n of 3n given n-sets of cells in L0, each Ji satisfies that the

corresponding n-set σ (τ (Ji)) of cells in S has at most c(n) conflicts with A;
(c′) for a collection J1, . . . , Jn of n given n-sets of cells in L0, each Ji satisfies that the

corresponding n-set σ (τ (Ji)) of cells in S contains at most c(n) prescribed cells;
(d′) for a collection J1, . . . , Jn of n given n-sets of cells in L0 and each symbol s ∈ {1, . . . , n},

each Ji satisfies that the corresponding n-set σ (τ (Ji)) of cells in S contains at most c(n) cells
such that s is in the corresponding cell of A.

It is straightforward to deduce that if the above conditions hold, then if we let P′ and A′ denote the
arrays obtained from P and A, respectively, by applying the inverses of σ and τ to the rows and
columns, respectively, of P and A, then L0 is well-behaved with respect to P′ and A′; if (a′) holds,
then clearly (a) is true for L0, P′ and A′ as well; and if (b′) is true, then by taking the 3n n-sets in
(b′) to be the sets of the cells in a particular row or column, or containing a particular symbol, we
deduce that (b), (c) (d) hold for L0,A′ and P′. That (e) and (f) are true is deduced similarly from
the fact that (c′) and (d′) hold.

Now, let L0 be the starting Latin square defined above, and let σ and τ be two permutations
chosen independently and uniformly at random from all n! permutations of {1, . . . , n}. Let S
denote a random Latin square obtained from L0 by applying σ to the rows of L0 and τ to the
columns of L0.

Lemma 3.2. If (
2β

ε − 2β

)ε−2β(
1

1− 2ε + 4β

)1/2−ε+2β
< 1,

and ε > 2β, then the probability that S fails condition (a′) tends to 0 as n→ ∞.

Proof. We bound the number of pairs (σ , τ) such that there is at least one cell, except the 3n+ 7
excluded, which does not belong to at least �n/2� − εn allowed strong intercalates.

There are at most n2 cells that can belong to too few allowed strong intercalates in S; choose
such a cell (r′, c′)S. Next, we fix τ by choosing one out of n! possible permutations for τ . Assume
that c′ = τ (c).

With τ fixed, we now count how many ways σ can be chosen so that the cell (r′, c′)S belongs to
less than �n/2� − εn allowed strong intercalates.

https://doi.org/10.1017/S096354831800055X Published online by Cambridge University Press

https://doi.org/10.1017/S096354831800055X

682 L. J. Andrén, C. J. Casselgren and K. Markström

There are n choices for a row r in L0 so that σ (r)= r′. This choice partitions the rows of L0 into
two sets: the set Q of rows r∗ for which {(r, c)L0 , (r, c∗)L0 , (r∗, c)L0 , (r∗, c∗)L0} is a strong intercalate
in L0 for some c∗ �= c, and its complement Q̄. Note that |Q| = �n/2�.

Note further that choosing the row r in L0 so that σ (r)= r′, determines the value of s= L0(r, c).
When row r and thus S(r′, c′) is fixed, there are at most βn columns c1 such that S(r′, c′) ∈A(r′, c1).
Furthermore, at most βn columns c2 satisfy S(r′, c2) ∈A(r′, c′). Consequently, if there are less
than �n/2� − εn allowed strong intercalates containing (r′, c′)S in S, then there have to be at least
εn− 2βn strong intercalates in S containing (r′, c′)S that are not allowed because swapping on
them would cause a conflict in another row than r′. (Note that (ε − 2β)> 0 by assumption.) The
number of ways of choosing σ so that in S at least (ε − 2β)n of the strong intercalates containing
(r′, c′)S satisfy this condition can be estimated in the following way. LetW be the set of rows in S
to which σ maps Q. There are

(
n−1
�n/2�

)
ways of choosingW. After choosingW we can now choose

how σ acts on Q̄ \ {r} in any of the at most (�n/2)! possible ways. Next, we choose a subsetV ⊆Q
of size �(ε − 2β)n. If we set p(n)= �(ε − 2β)n, then this can be done in at most

(�n/2�
p(n)

)
ways.

Now we define a bipartite graph G1 with parts Q= {r1, . . . , r�n/2�} and W = {r′1, . . . , r′�n/2�}.
Include an edge between ri and r′j in G1 if and only if

• ri /∈V , or
• ri ∈V and σ (ri)= r′j implies that the strong intercalate

{(r′, c′)S, (r′, τ (cq))S, (r′j , c′)S, (r′j , τ (cq))S}
is not allowed in S because swapping on it yields a conflict in row r′j , where cq is the unique
column such that

{(r, c)L0 , (r, cq)L0 , (ri, c)L0 , (ri, cq)L0}
is a strong intercalate in L0.

A perfect matching in G1 corresponds to choosing σ so that at least (ε − 2β)n strong intercalates
in S containing (r′, c′)S are not allowed because swapping on them yields conflicts on other rows
than r′.

The degree of a vertex in V is at most 2βn, because the symbols L(r, c) and L(r, cq) each occur
at most βn times in columns τ (cq) and τ (c)= c′ in A, respectively. The degree of a vertex inQ \V
is �n/2�. Hence, by Corollary 2.2, there are at most

(�2βn�!)p(n)/�2βn� (�n/2�!)(�n/2�−p(n))/�n/2�

perfect matchings in G1.
So the probability that S fails condition (a′) is at most

n2n!n
(

n−1
�n/2�

)
�n/2!

(�n/2�
p(n)

)
(�2βn�!)p(n)/�2βn� (�n/2�!)(�n/2�−p(n))/�n/2�

(n!)2

� n3 (�2βn�!)p(n)/�2βn� (�n/2�!)(�n/2�−p(n))/�n/2�

p(n)!(�n/2� − p(n))! .

By applying Stirling’s formula, this expression tends to zero as n→ ∞, if(
2β

ε − 2β

)ε−2β(
1

1− 2ε + 4β

)1/2−ε+2β
< 1,

which holds by assumption.

https://doi.org/10.1017/S096354831800055X Published online by Cambridge University Press

https://doi.org/10.1017/S096354831800055X

Combinatorics, Probability and Computing 683

Lemma 3.3. Let
J = {(r1, c1)L0 , . . . , (rn, cn)L0}

be a set of n cells in L0 and denote
J′ = {(r′1, c′1)S, . . . , (r′n, c′n)S},

where σ (ri)= r′i and τ (ci)= c′i, i= 1, . . . , n. Then the following hold for some positive constants
C and a:

(i) the probability that J′ has at least c(n) conflicts with A is at most

Cna
(

β(n− c(n))
c(n)

)c(n)(n
n− c(n)

)n
,

(ii) the probability that J′ contains at least c(n) prescribed cells is at most

Cna
(

α(n− c(n))
c(n)

)c(n)(n
n− c(n)

)n
,

(iii) for a given symbol s, the probability that J′ contains at least c(n) cells such that the
corresponding cell in A contains s is at most

Cna
(

β(n− c(n))
c(n)

)c(n)(n
n− c(n)

)n
.

Proof. We first prove (i). We estimate the number of pairs (σ , τ) such that at least c(n) cells
from J′ are conflict cells with A. There are n! ways of choosing the permutation σ . Fix such a
permutation σ and suppose that σ (ri)= r′i , i= 1, . . . , n.

LetK be a subset of J such that |K| = c(n) and all cells inK aremapped to conflict cells by (σ , τ).
Such a set K can be chosen in

(n
c(n)

)
ways. The number of ways of choosing τ so that (r′i , c′i)S is a

conflict cell whenever (ri, ci)L0 ∈K can be estimated by considering a bipartite graphG2 as follows:
the parts of G2 are J and {1, . . . , n} and there is an edge between (ri, ci)L0 ∈ J and j ∈ {1, . . . , n} if

• (ri, ci)L0 /∈K, or
• (ri, ci)L0 ∈K and L0(ri, ci) ∈A(r′i , j).

Note that if (ri, ci)L0 ∈K then the degree of (ri, ci)L0 in G2 is at most βn, because the symbol
L0(ri, ci) occurs at most βn times in row r′i in A. If (ri, ci)L0 /∈K, then the degree of (ri, ci)L0 is n.

A perfect matching in G2 corresponds to a choice of τ so that all cells in K are mapped to
conflict cells of S. By Corollary 2.2, the number of perfect matchings in G2 is at most

(�βn�!)c(n)/�βn�(n!)(n−c(n))/n.
So the probability that J′ has at least c(n) conflicts with A is at most

n!(n
c(n)

)
(�βn�!)c(n)/�βn� (n!)(n−c(n))/n

(n!)2

= (�βn�!)c(n)/�βn�(n!)(n−c(n))/n

c(n)!(n− c(n))!
� Cna

(
β(n− c(n))

c(n)

)c(n)(n
n− c(n)

)n
,

where C and a are some positive constants.

https://doi.org/10.1017/S096354831800055X Published online by Cambridge University Press

https://doi.org/10.1017/S096354831800055X

684 L. J. Andrén, C. J. Casselgren and K. Markström

The proof of (ii) is almost identical to the proof of (i), the only difference being that one uses
the property that each row in P has at most αn non-empty cells, instead of the property that each
symbol occurs at most βn in each row of A. The details are omitted.

The proof of (iii) is also almost identical to the proof of (i) above except that one uses the
property that a fixed symbol s occurs at most βn times in each row of A. Here as well the details
are omitted.

Lemma 3.4. If

α <
c(n)

n− c(n)

(
n− c(n)

n

)n/c(n)
, β <

c(n)
n− c(n)

(
n− c(n)

n

)n/c(n)
,

then the probability that S fails condition (b′), (c′) or (d′) tends to 0 as n→ ∞.

Proof. Let J1, . . . , J3n be 3n given n sets of cells in L0. By part (i) of Lemma 3.3, the probability
that Ji has at least c(n) conflicts with A is at most

p1 = Cna
(

β(n− c(n))
c(n)

)c(n)(n
n− c(n)

)n
,

where C and a are some positive constants. Since 3np1 → 0 as n→ ∞, it follows that the proba-
bility that S fails condition (b′) tends to zero as n→ ∞. That the probability that S fails condition
(c′) or (d′) tends to zero can be proved similarly using parts (ii) and (iii) of Lemma 3.3.

We conclude from the preceding lemmas that there are permutations (σ , τ) such that if S is
obtained from L0 by applying σ to the rows of L0, and τ to the columns of L0, then S satisfies (a′),
(b′), (c′) and (d′). Hence, if we let A′ and P′ denote the arrays obtained from A and P, respectively,
by applying σ−1 to the rows and τ−1 to the columns, then L0 is well-behaved with respect to A′
and P′.

Step III. By the preceding step, we may assume that the starting Latin square L0 is well-behaved
with respect to the array A′ and the PLS P′ defined above. We shall define a PLS R such that a
cell in R is non-empty if and only if the corresponding cell of L0 is a conflict cell with A′ and the
corresponding cell of P′ is empty. We shall also require that R and P′ together form a PLS.

Consider a bipartite graph G3, where the rows and columns of L0 are the vertices of the partite
sets of G3, and the conflict cells of L0 defines the edge set of G3, that is, there is an edge between
two vertices in G3 if the corresponding cell of L0 is a conflict with A′.

We want to find a proper n-colouring of E(G3) satisfying that if R is the PLS corresponding to
this edge colouring of G3 (by taking the partite sets of G3 to be the rows and columns of R, and the
coloured edges ofG3 as the non-empty cells of R), then R contains at most c(n) entries in each row
and column and each symbol in R is used at most f (n) times. If, in addition, P and R together form
a PLS, then each row and column in this PLS is used at most αn+ c(n) times, and each symbol is
used at most αn+ f (n) times.

We may assume that there is no conflict cell in L0 such that the corresponding cell in P′ is
non-empty, because then we just remove this cell from the set of conflict cells. We define a list
assignment L for G3 for every symbol (colour) c ∈ {1, . . . , n} and every edge e= ij including c in
L(e) if and only if c /∈A′(i, j) and c does not appear in row i or column j in P′. Clearly,

L(e)� n− βn− 2αn,
for every edge e of G3. Our goal is to find an L-colouring φ of E(G3) such that each colour appears
on at most f (n) edges. Such a colouring of G3 corresponds to a PLS R satisfying the conditions
stipulated above.

https://doi.org/10.1017/S096354831800055X Published online by Cambridge University Press

https://doi.org/10.1017/S096354831800055X

Combinatorics, Probability and Computing 685

The maximum degree in G3 is c(n), because each row and column in L0 contains at most c(n)
conflict cells (by conditions (b) and (c) above). Now, the required colouring φ of E(G3) can be
obtained greedily: suppose that we have constructed a partial colouring of the edges of G3 and let
e be some hitherto uncoloured edge of G3. The number of colours that have been used at least
f (n) times in the hitherto constructed colouring is at most nc(n)/f (n). Moreover, there are at most
2c(n) distinct colours that are used on edges which are adjacent to e. Hence, we can select a colour
for e from its list so that the resulting colouring is proper if

n− βn− 2αn− 2c(n)− nc(n)
f (n)

� 1,

which holds by assumption. We conclude that the required colouring φ exists and thus also the
required PLS R.

Let P̂ be the PLS obtained by putting P′ and R together. The PLS P̂ satisfies the following:

(a′′) P̂ contains at most αn+ c(n) entries in each row or column;
(b′′) each symbol is used at most αn+ f (n) times in P̂.

Furthermore, since L0 is well-behaved with respect toA′ and P′, it satisfies the following conditions
with respect to A′ and P̂:

(c′′) each cell in L0 (except for 3n+ 7) belongs to at least �n/2� − εn allowed strong intercalates;
(d′′) each row and column of L0 contains at most αn+ c(n) prescribed cells;
(e′′) for each symbol s, there are at most 2c(n) prescribed cells in L0 with entry s;
(f′′) for each pair of symbols s1, s2, there are at most c(n) cells in L0 with entry s1 such that s2

appears in the corresponding cell in A′.

Step IV. Let P̂ be the PLS obtained in the previous step, and A′, P′ and L0 as above. In this section,
all prescribed cells of a Latin square are taken with respect to P̂.

Let L be a Latin square obtained from the starting Latin square L0 by performing a sequence
of trades. We say that a cell (i, j)L in L is L-disturbed if (i, j)L appears in a trade which is used for
obtaining L from L0, or if (i, j)L0 is one of the original at most 3n+ 7 cells in L0 that do not belong
to at least �n/2� − εn allowed strong intercalates in L0. Moreover, for a constant d > 0, we say that
a row or column r or symbol s is d-overloaded if more than dn entries in row or column r or with
symbol s has been involved in the trades that have transformed L0 into L.

In this step we describe a modified variant of the machinery developed in [7] for completing
sparse partial Latin squares. The main difference is that we have to make sure that no trades
will cause any ‘new’ conflict cells with A′. In particular, the intercalates that we will swap on will
be allowed with respect to A′. Another difference is that all symbols used in the trade created
by Lemma 3.5 below (our version of Lemma 2.2 in [7]) are not d-overloaded. Apart from these
differences, the proofs in this section are almost identical to the ones in [7], so in general, proofs
are sketched, rather than given in full detail. Also, we omit many verifications which can be done
exactly as in [7] (or [4] in some cases).

We will define a sequence of Latin squares L0, . . . , Lq, where Li is obtained from Li−1,
i= 1, . . . , q− 1, by performing some trade Ti. The trade Ti will contain (at least) one prescribed
cell (r, c)Li−1 such that Li−1(r, c) �= P̂(r, c), Li(r, c)= P̂(r, c), and, furthermore, all conflict cells of Li
will be prescribed cells (r′, c′) such that P̂(r′, c′) �= Li−1(r′, c′), that is, the trade T does not create
any ‘new’ conflict cells.

In the following we shall refer to the ‘lower half ’ and ‘upper half ’ of an array L; by these expres-
sions we mean the subarray of L consisting of the first �n/2� rows of L and the subarray consisting

https://doi.org/10.1017/S096354831800055X Published online by Cambridge University Press

https://doi.org/10.1017/S096354831800055X

686 L. J. Andrén, C. J. Casselgren and K. Markström

of the last �n/2 rows of L, respectively. We also assume that if n is odd, then the row and column
of L0 where no cells are in at least �n/2� strong intercalates are the last row and column of L0,
respectively.

The following lemma is essentially a strengthened variant of Lemma 2.2. in [7].

Lemma 3.5. Let L0, P̂ and A′ be as above. Suppose that L is an n× n Latin square obtained from
L0 by performing some sequence of trades on L0, and that at most kn2 cells in L are L-disturbed, for
some constant k> 0.

Let {t1, . . . , ta} be a set of a symbols from L.
If ⌊

n
2

⌋
− 2εn− 6dn− 5

k
d
n− 4αn− 8c(n)− 3a− 3βn> 6,

then for any row r1 of L and all but at most

• 2(k/d)n+ αn+ c(n)+ a choices of c1, and
• a+ 1+ 4c(n)+ 2βn+ 4(k/d)n+ 2αn+ 2dn choices of c2,

there is a trade on a set of cells T such that, if we let L′ denote the Latin square obtained from L by
performing this trade on T, then L′ satisfies the following:

• the trade T uses only symbols that are not d-overloaded;
• no prescribed cells of L are in T;
• L and L′ differ on at most 16 cells (i.e. T uses at most 16 cells);
• no cell with entry {t1, . . . , ta} in L is in T;
• L′(r1, c1)= L(r1, c2) and L′(r1, c2)= L(r1, c1);
• if there is a conflict of L′ with A′, then the corresponding cell of L is also a conflict with A′.

Proof. Consider a given row r1. We choose a column c1 in L, such that the following properties
hold.

• Column c1 is not d-overloaded, and the symbol s1 = L(r1, c1) is not overloaded. This
eliminates at most 2(k/d)n choices.

• The cell (r1, c1)L is not a prescribed cell. This eliminates at most αn+ c(n) choices.
• The symbol s1 is not one of {t1, . . . , ta}. This eliminates at most a choices.

Summing up, we have at least

n− 2
k
d
n− αn− c(n)− a

choices for c1; by assumption this expression is greater than zero, so we fix such a column c1.
Next, we choose a column c2 in L so that the following properties hold.

• c2 �= c1 and s2 = L(r1, c2) /∈A′(r1, c1) and s1 /∈A′(r1, c2). This excludes at most 1+ 2βn
choices for c2.

• Column c2 is not d-overloaded, and the symbol s2 = L(r1, c2) is not d-overloaded. This
eliminates at most 2(k/d)n choices.

• The cell (r1, c2)L is not a prescribed cell. This eliminates at most αn+ c(n) choices.

https://doi.org/10.1017/S096354831800055X Published online by Cambridge University Press

https://doi.org/10.1017/S096354831800055X

Combinatorics, Probability and Computing 687

• The cell (r3, c1)L in column c1 in L containing s2 is not L-disturbed, and the cell (r4, c2)L in
column c2 in L containing s1 is not L-disturbed. Since neither the column c1 nor the symbol
s1 is d-overloaded, this excludes at most 2dn choices. We also require that the cells (r3, c1)L
and (r4, c2)L are not prescribed, which excludes an additional at most 3c(n)+ αn choices.

• The rows r3, r4 are not d-overloaded. This eliminates at most 2(k/d)n choices.
• s2 /∈ {t1, . . . , ta}. This excludes at most a choices.

Summing up, we have at least

n− 4c(n)− 2βn− 4
k
d
n− 2αn− 2dn− a− 1

choices for c2; by our assumptions this expression is greater than zero, and so we fix such a column
c2 in L.

Case 1. Both of the rows r3 and r4 lie either in the upper half or in the lower half of the Latin square L
(and thus in L0).

We may assume that r3 �= r4, since otherwise we may swap on the intercalate consisting of all
hitherto considered cells, and we are done. Assuming r3 �= r4, we now proceed as follows.

For the trade in Case 1, we shall construct two disjoint allowed strong intercalates

C1 = {(r3, c1)L, (r3, c4)L, (r2, c1)L, (r2, c4)L}
and

C2 = {(r4, c2)L, (r4, c3)L, (r2, c2)L, (r2, c3)L},
containing the cells (r3, c1)L and (r4, c2)L, respectively. Since these two cells are not L-disturbed,
they agree with L0, and the corresponding cells in L0 are both in at least �n/2� − εn allowed strong
intercalates in L0, and since they lie in ‘the same half ’ of L0, there are at least �n/2� − 2εn such
pairs of allowed strong intercalates in L0 containing a common row r2. We further require the
following.

• None of the cells (r2, c1)L, (r2, c2)L, (r2, c3)L, (r2, c4)L, (r3, c4)L, or (r4, c3)L are L-disturbed.
Because none of the rows r3, r4, the columns c1, c2 or the symbols s1, s2 are overloaded, this
excludes at most 6dn choices. Note that this condition ensures that all cells of C1 and C2 have
the same entry in L as the corresponding cells of L0.

• None of the cells above are prescribed. This excludes at most 4(αn+ c(n)) + 4c(n) choices.
• Neither s3 = L(r2, c1) or s4 = L(r2, c2) is in {t1, . . . , ta}. This eliminates at most 2a choices.
• The symbols s3 and s4 are not d-overloaded. This excludes at most 2(k/d)n choices.
• s1 /∈A′(r2, c1) and s2 /∈A′(r2, c2). This eliminates at most 2βn choices.

Summing up, we have at least⌊
n
2

⌋
− 2εn− 6dn− 4αn− 8c(n)− 2a− 2

k
d
n− 2βn

choices for the required intercalates C1 and C2. Since this expression is greater than zero, we
choose two such disjoint intercalates, C1 and C2.

By swapping on C1 and C2 we obtain a Latin square L(1). Note that the set

{(r1, c1)L(1) , (r1, c2)L(1) , (r2, c1)L(1) , (r2, c2)L(1)}

https://doi.org/10.1017/S096354831800055X Published online by Cambridge University Press

https://doi.org/10.1017/S096354831800055X

688 L. J. Andrén, C. J. Casselgren and K. Markström

is an allowed intercalate in L(1) and by swapping on this intercalate we obtain the required Latin
square L′. This completes the proof of the lemma in Case 1.

Case 2. One of rows r3 and r4 occur in the upper half and the other one in the lower half of the Latin
square L.

Suppose without loss of generality that r3 lies in the lower half of L and that r4 lies in the upper
half of L. We will construct several intercalates for the trade in Case 2. To begin with we construct
an allowed strong intercalate

C3 = {(r4, c2)L, (r4, c3)L, (r2, c2)L, (r2, c3)L},
containing the cell (r4, c2)L such that the following holds.

• None of the cells (r2, c1)L, (r2, c2)L, (r2, c3)L, (r4, c3)L are L-disturbed. Because neither row r4,
nor columns c1, c2, nor symbols s1, are d-overloaded, this eliminates at most 4dn choices.

• If we let (r2, c4)L denote the cell in row r2 containing s2, then (r2, c4)L and (r3, c4)L are not
L-disturbed. This excludes at most 2dn choices.

• The symbols s3 = L(r2, c1), s4 = L(r2, c2) and s5 = L(r3, c4) are not d-overloaded, nor are row
r2 or column c4, and these new cells are disjoint from the ones previously included in our
trade. This eliminates at most 5(k/d)n+ 2 choices.

• None of the cells above are prescribed. This eliminates at most 4(αn+ c(n))+ 4c(n) choices.
• None of the symbols s3, s4, s5 is in {t1, . . . ta}. This eliminates at most 3a choices.
• s1 /∈A′(r2, c1), s2 /∈A′(r2, c2)∪A′(r3, c4). This eliminates at most 3βn choices.

Since there are at least �n/2� − εn strong intercalates in L0 containing (r4, c2)L0 , we have at least⌊
n
2

⌋
− εn− 6dn− 5

k
d
n− 2− 4αn− 8c(n)− 3a− 3βn

choices for the required intercalate C3. By assumption this expression is greater than zero, and we
choose such an intercalate C3.

Now, note that since r4 lies in the upper half of L, r2 lies in the lower half of L. Since r3 also lies in
the lower half of L, and none of the cells (r3, c4)L, (r2, c4)L, (r3, c1)L and (r2, c1)L are L-disturbed,
and L(r3, c1)= L(r2, c4)= s2, it follows that in L0 there are at least �n/2� − 2εn pair of allowed
disjoint strong intercalates

CL0
4 = {

(r2, c1)L0 , (r2, c6)L0 , (r6, c1)L0 , (r6, c6)L0
}

and
CL0
5 = {

(r3, c4)L0 , (r3, c5)L0 , (r5, c4)L0 , (r5, c5)L0
}

containing (r2, c1)L0 and (r3, c4)L0 , respectively, and such that L0(r6, c1)= L0(r3, c5).
We choose such a pair

C4 = {(r2, c1)L, (r2, c6)L, (r6, c1)L, (r6, c6)L}
and

C5 = {(r3, c4)L, (r3, c5)L, (r5, c4)L, (r5, c5)L}
of intercalates in L such that the following holds.

• None of the cells in these intercalates are L-disturbed. Because the columns c1, c4, rows r2, r3
and symbols s3, s5 are not d-overloaded, this eliminates at most 6dn choices.

https://doi.org/10.1017/S096354831800055X Published online by Cambridge University Press

https://doi.org/10.1017/S096354831800055X

Combinatorics, Probability and Computing 689

• None of the cells in these intercalates are prescribed. This eliminates at most 4(αn+ c(n))+
4c(n) choices.

• The symbol s6 = L(r6, c1) /∈ {t1, . . . , ta}, and it is not overloaded. This eliminates at most
a+ (k/d)n choices.

• s6 /∈A′(r3, c1)∪A′(r2, c4) and s6 /∈ {s1, s2, s3, s4}. This eliminates at most 2βn+ 6 choices.

Thus we have at least⌊
n
2

⌋
− 2εn− 6dn− 4αn− 8c(n)− a− k

d
n− 6− 2βn

choices for the required intercalates C4 and C5 in L, and by assumption this expression is greater
than zero.

By swapping on the disjoint intercalates C3, C4 and C5 we obtain a Latin square L(1). Note that
the set

{(r2, c1)L(1) , (r2, c4)L(1) , (r3, c1)L(1) , (r3, c4)L(1)}
is an intercalate in L(1) and by swapping on this intercalate we obtain a Latin square L(2), in which
the set

{(r1, c1)L(2) , (r1, c2)L(2) , (r2, c1)L(2) , (r2, c2)L(2)}
is an intercalate; by swapping on this intercalate we finally obtain the required Latin square L′.
Moreover, it can be verified that L′ contains no conflicts with A′ that were not present in L. This
completes the proof in Case 2.

Of course the analogous statement for columns is true as well.

Lemma 3.6. Let L0, P̂ and A′ be as above. Suppose that L is an n× n Latin square obtained from
L0 by performing some sequence of trades on L0, and that at most kn2 cells of L are L-disturbed, for
some k> 0.

Let {t1, . . . , ta} be a set of a symbols from L.
If

⌊
n
2

⌋
− 2εn− 6dn− 5

k
d
n− 4αn− 8c(n)− 3a− 3βn> 6,

then for any column c1 of L and all but at most

• 2(k/d)n+ αn+ c(n)+ a choices of r1, and
• a+ 1+ 4c(n)+ 2βn+ 4(k/d)n+ 2αn+ 2dn choices of r2,

there is a trade on a set of cells T such that if we let L′ denote the Latin square obtained from L by
performing this trade, then L′ satisfies the following:

• the trade T uses only symbols that are not d-overloaded;
• no prescribed cells of L are in T;
• L and L′ differs on at most 16 cells (i.e. T uses at most 16 cells);
• no cell with entry {t1, . . . , ta} in L is in T;

https://doi.org/10.1017/S096354831800055X Published online by Cambridge University Press

https://doi.org/10.1017/S096354831800055X

690 L. J. Andrén, C. J. Casselgren and K. Markström

• L′(r1, c1)= L(r2, c1) and L′(r2, c1)= L(r1, c1);
• if there is a conflict of L′ with A′, then the corresponding cell of L is also a conflict with A′.

The two above lemmas are used for exchanging the content of two cells in a Latin square; in
the case of Lemma 3.5, the cells are in positions (r1, c1) and (r1, c2), respectively. When using this
lemma below, we shall refer to the cell in position (r1, c1) as the ‘first cell’ and the cell in position
(r1, c2) as the ‘second cell’, and similarly for Lemma 3.6.

The two above lemmas can be used for proving the following, which essentially is a variant of
Lemma 2.3 in [7].

Lemma 3.7. Let L0, P̂ and A′ be as above, and L be a Latin square obtained from L0 by performing
some sequence of trades on L0. Assume that at most kn2 cells of L are L-disturbed, where k> 0.
Suppose that L has some prescribed cells where L and P̂ do not agree. In particular, for each symbol
si, assume that at most 2c(n)+ 2d(n) cells with symbol si are prescribed in L, and assume further
that at most 4(c(n)+ d(n)+ αn+ f (n)) cells in L with symbol si are L-disturbed. Let (r1, c1)L be a
cell of L such that

L(r1, c1)= s1 and P̂(r1, c1)= s2, s1 �= s2.

If

n− 2
(
4
k+ 64/n2

d
n+ 3+ 6c(n)+ 2βn+ 4

k
d
n+ 2αn+ 2f (n)+ 4dn

)
> 1,

then there is a trade on a set of cells T in L, such that if we let L′ denote the Latin square obtained
from L by performing this trade on T, then the following holds:

• L′(r1, c1)= s2;
• L′ and L disagree on at most 69 cells;
• besides (r1, c1)L, L and L′ disagree on at most two prescribed cells;
• if L and L′ disagree on a prescribed cell (r, c)L (where r �= r1 or c1 �= c), then L′(r, c) is not
d-overloaded and L(r, c) �= P̂(r, c);

• the trade T contains exactly two cells with entry s1 in L, and at most four cells with entry s2;
• except s1 and s2 the trade T contains only cells with symbols that are not d-overloaded;
• if there is a conflict of L′ with A′, then the corresponding cell of L is also a conflict with A′.

Proof. We shall construct a trade from which we obtain L′ from L, where L′ and P̂ agree on the
cell in position (r1, c1). We will accomplish this by four successive applications of Lemmas 3.5 and
3.6, similarly to how Lemma 2.2 in [7] is applied in that paper. In our application of Lemmas 3.5
and 3.6 we will avoid the symbols {s1, s2}; so a= 2 in the application of these lemmas.

Let (r1, c3)L and (r3, c1)L be the cells in row r1 and column c1, respectively, that contains s2. We
want to choose a cell (r4, c4)L such that L(r4, c4)= s1, and if r2 and c2 are the row and column,
respectively, satisfying that L(r4, c2)= s2 and L(r2, c4)= s2, then the following holds.

• The cells (r4, c4)L, (r4, c2)L, (r2, c4)L are not prescribed cells. This eliminates at most 4c(n)+
4dn choices.

• The cell (r4, c4)L is not L-disturbed and s2 /∈A′(r4, c4). This eliminates at most 4(c(n)+
d(n)+ αn+ f (n))+ c(n) choices.

• s2 /∈A′(r3, c2)∪A′(r2, c3) and s1 /∈A′(r4, c1)∪A′(r1, c4). This excludes at most 4βn choices.

https://doi.org/10.1017/S096354831800055X Published online by Cambridge University Press

https://doi.org/10.1017/S096354831800055X

Combinatorics, Probability and Computing 691

• The cells (r4, c1)L, (r2, c3)L, (r3, c2)L, (r1, c4)L are all valid choices for the first cell to be
changed in an application of Lemma 3.5 or 3.6. Since these lemmas are applied four
consecutive times this excludes at most

4
(
2
k+ 64/n2

d
n+ αn+ c(n)+ 2

)

choices. In particular, this implies that none of these cells are prescribed or contain a
d-overloaded symbol.

Thus we have at least

n− 12c(n)− 8d(n)− 4αn− 4f (n)− 4βn− 4
(
2
k+ 64/n2

d
n+ 2

)

choices for such a cell (r4, c4)L containing symbol s1. We note that this expression is greater than
zero by assumption, so we can indeed make the choice.

Next, we want to choose a symbol s3 in row r1 and column c3, such that the following holds.

• The cells with symbol s3 in row r1 and column c3 are both valid choices for the second cell to
be exchanged in an application of Lemma 3.5 or 3.6; this eliminates at most

2
(
3+ 4c(n)+ 2βn+ 4

k+ 64/n2

d
n+ 2αn+ 2dn

)

choices.
• s3 /∈A′(r1, c3)∪A′(r2, c4). This eliminates at most 2βn choices.

Thus we have at least

n− 2
(
3+ 4c(n)+ 2βn+ 4

k+ 64/n2

d
n+ 2αn+ 2dn

)
− 2βn

choices for the symbol s3. By assumption, this expression is greater than zero, so we can indeed
choose such a symbol s3.

Similarly, we want to choose a symbol s4 in row r3 and column c1 such that the following holds.

• The cells with symbol s4 in row r3 and column c1 are both valid choices for the second cell to
be exchanged in an application of Lemma 3.5 or 3.6; this eliminates at most

2
(
3+ 4c(n)+ 2βn+ 4

k+ 64/n2

d
n+ 2αn+ 2dn

)

choices.
• s4 /∈A′(r4, c2)∪A′(r3, c1). This eliminates at most 2βn choices.

Hence, we have precisely the same number of choices for the symbol s4 as for s3.
Now, by applying Lemmas 3.5 and 3.6 to the cells (r1, c4)L, and (r2, c3)L, and the cells in column

c3 and row r1 containing symbol s3, we may exchange the content of cells (r1, c4)L, and (r2, c3)L;
and similarly for the cells (r4, c1)L, (r3, c2)L, and symbol s4.

Hence, by four successive applications of Lemmas 3.5 and 3.6 we obtain a Latin square L(1),
such that the sets {

(r3, c1)L(1) , (r4, c1)L(1) , (r3, c2)L(1) , (r4, c2)L(1)
}

and {
(r1, c3)L(1) , (r1, c4)L(1) , (r2, c3)L(1) , (r2, c4)L(1)

}

https://doi.org/10.1017/S096354831800055X Published online by Cambridge University Press

https://doi.org/10.1017/S096354831800055X

692 L. J. Andrén, C. J. Casselgren and K. Markström

are disjoint intercalates. By swapping on these intercalates we obtain a Latin square L(2), where
the set

{(r1, c1)L(2) , (r1, c4)L(2) , (r4, c1)L(2) , (r4, c4)L(2)}
is an intercalate. By swapping on this intercalate we obtain the required Latin square L′.

We will take care of all the prescribed cells of L0 by successively applying Lemma 3.7; using this
lemma one can construct the Latin squares L0, L1, . . . , Lq, where Li is constructed from Li−1 by
an application of Lemma 3.7, and Lq is an completion of P̂, where q� n(αn+ c(n)). Thus, in Li
one more prescribed cell has the same entry as the corresponding cell in P̂, compared to Li−1.

Except for the cell (r1, c1)L in Lemma 3.7, an application of Lemma 3.7 will possibly change
the content of two other prescribed cells. However, it follows that if this is the case, then in L′
each such prescribed cell contains a symbol that is not d-overloaded. Moreover, for each symbol
s, L0 has at most 2c(n) prescribed cells containing s. Thus for each i= 1, . . . , q, any symbol s in
Li occurs in at most 2c(n)+ 2dn prescribed cells. Furthermore, each application of Lemma 3.7 to
a prescribed cell (r1, c1)L with L(r1, c1)= s constructs a trade T with exactly two cells containing
symbol s. Hence, a symbol s is used at most 2(2c(n)+ 2dn) times in a trade where a prescribed cell
has entry s.

Note further that at most αn+ f (n) cells (r′, c′)P̂ in P̂ have entry s, and a trade T constructed by
an application of Lemma 3.7 for obtaining a Latin square L′ such that L′(r′, c′)= s uses four cells
with entry s.

Except for the cells mentioned in the preceding two paragraphs, any other cells involved in a
trade created by an application of Lemma 3.7 contain symbols that are not d-overloaded. Hence,
at most

4(c(n)+ dn+ αn+ f (n))
distinct cells with a given symbol s are used in trades for constructing Lq from L0.

Thus as long as (3.1), kn2 � 69n(αn+ c(n)), and all the other conditions in the proof of
Theorem 2.3 hold, it follows that we can apply the last lemma iteratively for constructing the
sequence L0, . . . , Lq of Latin squares, where Lq is a completion of P̂ that avoids A′. This completes
the proof of Theorem 2.3.

4. Random partial Latin squares and arrays
In this section we prove Corollary 1.2. So let P be a random PLS from the probability spaceP(n, p)
defined in the Introduction, and let A be a random array where each cell (i, j)A of A is a set A(i, j)
of size m=m(n) obtained by choosing each set uniformly at random from all m-subsets of [n].
Assume further that no entry of A occurs in the corresponding cell of P. We need to prove that
there are constants ρ1 and ρ2 such that, if p< ρ1 and m� ρ2n and where, for any cell of A con-
taining an entry that occurs in the corresponding cell of P, we remove that entry fromA, then with
probability tending to 1, there is a completion of P that avoids A. We will use simple first moment
calculations as in [4].

Let Xij be the indicator random variable for the event that symbol i occurs at least βn times in
row j of A, and set

X =
∑

1�i,j�n
Xij.

Similarly, let Yij be the indicator random variable for the event that symbol i occurs at least βn
times in column j of A, and set

Y =
∑

1�i,j�n
Yij.

https://doi.org/10.1017/S096354831800055X Published online by Cambridge University Press

https://doi.org/10.1017/S096354831800055X

Combinatorics, Probability and Computing 693

Then we have

P[X > 0]�E[X]� n2
(n
�βn

)(n−1
m−1

)�βn(n
m
)n2−�βn

(n
m
)n2 � n2

(n)�βn
(�βn)!ρ

�βn
2 (4.1)

where (n)k is the usual falling factorial. By applying Stirling’s formula, we see that the right-hand
side of (4.1) tends to 0 as n→ ∞, provided that ρ2 < β/e, where e is the base of the natural log-
arithm. Proceeding similarly, if ρ2 < β/e, then P[Y > 0]→ 0 as n→ ∞. Thus it follows that if
ρ2 < β/e, then the probability that A is a (βn, βn, βn)-array tends to 1 as n→ ∞.

Using calculations as above, it is straightforward to verify that if ρ1 � α/e, then with probability
tending to 1 as n→ ∞, P is α-dense.

Hence, by Theorem 1.1, the probability that there is a completion of P that avoids A tends to 1
as n→ ∞. This concludes the proof of Corollary 1.2.

Remark.Note that the proof of Corollary 1.2 is valid if we take P to be a random PLS and A to be
a given (deterministic) (βn, βn, βn)-array which the completion of P should avoid; or, if we take P
to be a given α-dense PLS and A a random array. Furthermore, the proof of Corollary 1.2 is valid
if ρ1 < α/e and ρ2 < β/e. Thus if we can get better bounds on α and β for which Theorem 1.1
holds, then we also get a better bound on ρ1 and ρ2.

5. Concluding remarks
We have proved that there are constants α and β such that every α-dense PLS can be completed
to a Latin square L that avoids a given (βn, βn, βn)-array, provided that the PLS avoids the array.
Let us now briefly indicate what the best possible values of α and β might be.

In [18] it is conjectured that if α � 1/4, then any α-dense PLS is completable, and in [22] it
is conjectured that if β � 1/3, then any (βn, βn, βn)-array is avoidable. In [30], for any γ > 0,
examples of (1/4+ γ)-dense partial Latin squares that are not completable are given; from the
perspective of avoiding arrays, an example by Pebody shows for any γ > 0, there are unavoidable
(βn, βn, βn)-arrays with β � 1/3+ γ (see e.g. [17]).

We say that a point (α, β) is feasible if, for every pair (P,A), where P is an n× n α-dense PLS
and A an n× n (βn, βn, βn)-array such that no entry of P occurs in the corresponding cell of A, it
is possible to complete P into a Latin square that avoids A. A point that is not feasible is infeasible.
So the above examples show that the points (0, 1/4+ γ) and (1/3+ γ , 0) are infeasible. Hence,
the points outside the lines (1/3, t) and (t, 1/4) are infeasible.

Using a combination of the mentioned constructions we can generate arbitrarily large exam-
ples of α-dense partial Latin squares that cannot be completed to avoid a given (β , β , β)-array,
provided that α + β = 1/3+ γ , as follows.

For simplicity, assume that n= 3r + 2. Let A be an (r + 1)× (r + 1) array in which each
cell contains the set {1, . . . , r + 1}, let B be an (r + 1)× (r + 1) array in which each entry
is {r + 2, . . . , 2r + 2}, and let C be an r × r array in which each cell contains the set {2r +
2, . . . , 3r + 2}. Define E1 to be the n× n array containing A in the upper left (r + 1)× (r + 1)
corner, B in the intersection of rows r + 2, . . . , 2r + 2 and columns r + 2, . . . , 2r + 2, and C in
the lower right r × r corner:

E1 =
A

B
C

.

https://doi.org/10.1017/S096354831800055X Published online by Cambridge University Press

https://doi.org/10.1017/S096354831800055X

694 L. J. Andrén, C. J. Casselgren and K. Markström

The array E1 is an unavoidable (βn, βn, βn)-array for, asymptotically, β = 1/3; see e.g. [17].

(1) We define three sets S1, S2, S3 by setting
S1 = {r + 2} ∪ {2r + 3, . . . , 3r + 2}, S2 = {1, . . . , r + 1}, S3 = {r + 3, . . . , 2r + 2}.

(2) Following [30], for each set Si we construct an |Si| × |Si| single entry array Li with symbols
from Si such that each symbol occurs precisely once in each row and column, and with the
property that the cells of Li are the union of |Si| disjoint Si-transversals Ti,j, 1� j� |Si|,
where an Si-transversal is a generalized diagonal in Li where each symbol in Si occurs
exactly once. For convenience, define T3,r+1 = ∅.

We now define an n× n PLS E2 with L1 in the position held byA in E1, L2 in the position
held by B in E1, and L3 in the position held by C in E1.

(3) Next, for each integer t satisfying 1� t� r + 1, define an n× n array E1t from E1 by setting
E1t(p, c)= ∅ for each position (p, c) of E1 which corresponds to a non-empty cell (p, c)E2 of
E2 such that (p, c)E2 ∈ ⋃

i
⋃t

j=1 Ti,j. We retain the content of any other cell of E1.
(4) We now define a PLS E1t from E2 by retaining the entry of each cell in

⋃
i
⋃t

j=1 Ti,j, and
removing the entry of each cell in E2 which does not belong to this set.

(5) It follows that E1t is a t/n-dense PLS, and E1t is a (βn− t, βn− t, βn− t)-array.

Now, the PLS E1t cannot be completed to a Latin square which avoids E1t . This follows from the
fact that each cell in E1t contains a symbol which does not occur in the corresponding cell of E1,
and outside the support of E1t (i.e. the non-empty cells of E1t), the array E1t agrees with E1, so any
Latin square which is a completion of E1t that avoids E1t would also avoid E1.

Consider a line in the αβ-plane from (1/3, 0) to (0, 1/3). The pairs (E1t , E1t) imply that each
point outside the region bounded by and the α- and β-axes is infeasible. In fact, combined with
the examples by Wanless, we know that the set of feasible points is a subset of the region bounded
by , the line (1/4, t) and the α- and β-axes.

It would be interesting to obtain more information on the structure of set of feasible points, but
we expect that methods other than those used in this paper will be needed for this. Specifically, we
would like to pose the following.

Problem 5.1. Is the set of feasible points (α, β) a convex set?

Both of the conjectured boundary points (0, 1/4) and (1/3, 0) are also boundary points for
certain linear programming relaxations of the completion and avoidance problems [23]. So, it
might be possible to use a relaxation of the combined problem to provide a convex domain which
gives a tighter bound for the set of feasible points than that given by our construction.

Further, given that the constructions which give our bounds for the set of feasible points are
highly structured and that our proof for Corollary 1.2 relies on our main result Theorem 1.1, it is
not unreasonable to expect that the best possible parameters in Corollary 1.2 are larger than those
which even an optimal version of Theorem 1.1 would give. Here it would be interesting both to
see if Corollary 1.2 can be improved and if some upper bounds on the possible values of ρ1 and ρ2
can be proved.

Conflict of interest. None.

References
[1] Adams, P., Bryant, D. and Buchanan, M. (2008) Completing partial Latin squares with two filled rows and two filled

columns. Electron. J. Combin. 15 #R56.
[2] Andersen, L. D. and Hilton, A. J. W. (1983) Thank Evans! Proc. London Math. Soc. 47 507–522.

https://doi.org/10.1017/S096354831800055X Published online by Cambridge University Press

https://doi.org/10.1017/S096354831800055X

Combinatorics, Probability and Computing 695

[3] Andrén, L. J. (2010) On Latin squares and avoidable arrays. Doctoral thesis, Umeå University.
[4] Andrén, L. J., Casselgren, C. J. and Öhman, L.-D. (2013) Avoiding arrays of odd order by Latin squares. Combin. Probab.

Comput. 22 184–212.
[5] Asratian, A. S., Denley, T. M. J. and Häggkvist, R. (1998) Bipartite Graphs and Their Applications, Cambridge University

Press.
[6] Barber, B., Kühn, D., Lo, A., Osthus, D. and Taylor, A. (2017) Clique decompositions of multipartite graphs and

completion of Latin squares. J. Combin. Theory Ser. A 151 146–201.
[7] Bartlett, P. (2013) Completions of ε-dense partial Latin squares. J. Combin. Designs 21 447–463.
[8] Brègman, L. M. (1973) Certain properties of nonnegative matrices and their permanents. Dokl. Akad. Nauk SSSR 211

27–30.
[9] Casselgren, C. J. (2012) On avoiding some families of arrays. Discrete Math. 312 963–972.
[10] Casselgren, C. J. and Häggkvist, R. (2013) Completing partial Latin squares with one filled row, column and symbol.

Discrete Math. 313 1011–1017.
[11] Cavenagh, N. (2010) Avoidable partial Latin squares of order 4m+ 1. Ars Combinatoria 95 257–275.
[12] Chetwynd, A. G. and Häggkvist, R. (1984) Completing partial n× n Latin squares where each row, column and symbol

is used at most cn times. Research report, Department of Mathematics, Stockholm University.
[13] Chetwynd, A. G. and Rhodes, S. J. (1995) Chessboard squares. Discrete Math. 141 47–59.
[14] Chetwynd, A. G. and Rhodes, S. J. (1997) Avoiding partial Latin squares and intricacy. Discrete Math. 177 17–32.
[15] Chetwynd, A. G. and Rhodes, S. J. (1997) Avoiding multiple entry arrays. J. Graph Theory 25 257–266.
[16] Colbourn, C. J. (1984) The complexity of completing partial Latin squares. Discrete Appl. Math. 8 25–30.
[17] Cutler, J. and Öhman, L.-D. (2006) Latin squares with forbidden entries. Electron. J. Combin. 13 #R47.
[18] Daykin, D. E. and Häggkvist, R. (1984) Completion of sparse partial Latin squares. In Graph Theory and Combinatorics:

Proceedings of the Cambridge Combinatorial Conference in Honour of Paul Erdős, Academic Press, pp. 127–132.
[19] Denley, T. and Kuhl, J. (2012) Constrained completion of partial Latin squares. Discrete Math. 312 1251–1256.
[20] Evans, T. (1960) Embedding incomplete Latin squares. Amer. Math. Monthly 67 958–961.
[21] Gustavsson, T. (1991) Decompositions of large graphs and digraphs with high minimum degree. Doctoral thesis,

Stockholm University.
[22] Häggkvist, R. (1989) A note on Latin squares with restricted support. Discrete Math. 75 253–254.
[23] Häggkvist, R. Personal communication.
[24] Kuhl, J. S. and Schroeder, M. (2016) Completing partial Latin squares with one nonempty row, column, and symbol.

Electron. J. Combin. 23 #P2.23.
[25] Markström, K. and Öhman, L.-D. (2009) Unavoidable arrays. Contrib. Discrete Math. 5 90–106.
[26] Öhman, L.-D. (2011) Partial Latin squares are avoidable. Ann. Combin. 15 485–497.
[27] Öhman, L.-D. (2011) Latin squares with prescriptions and restrictions. Austral. J. Combin. 51 77–87.
[28] Ryser, H. J. (1951) A combinatorial theorem with an application to Latin rectangles. Proc. Amer. Math. Soc. 2 550–552.
[29] Smetaniuk, B. (1981) A new construction for Latin squares, I: Proof of the Evans conjecture. Ars Combinatoria 11

155–172.
[30] Wanless, I. (2002) A generalization of transversals for Latin squares. Electron. J. Combin. 2 #R12.

Cite this article: Andrén LJ, Casselgren CJ and Markström K (2019). Restricted completion of sparse partial latin squares.
Combinatorics, Probability and Computing 28, 675–695. https://doi.org/10.1017/S096354831800055X

https://doi.org/10.1017/S096354831800055X Published online by Cambridge University Press

https://doi.org/10.1017/S096354831800055X
https://doi.org/10.1017/S096354831800055X

	Restricted completion of sparse partial Latin squares
	Introduction
	Terminology, notation and outline of the proof of Theorem 1.1
	Proof of Theorem 2.3
	Random partial Latin squares and arrays
	Concluding remarks

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

