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Abstract. In this paper we study a Fermi–Ulam model where a pingpong ball bounces
elastically against a periodically oscillating platform in a gravity field. We assume that the
platform motion f (t) is 1-periodic and piecewise C3 with a singularity, ḟ (0+) �= ḟ (1−).
If the second derivative f̈ (t) of the platform motion is either always positive or always less
than −g, where g is the gravitational constant, then the escaping orbits constitute a null
set and the system is recurrent. However, under these assumptions, escaping orbits co-exist
with bounded orbits at arbitrarily high energy levels.
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1. Introduction
There has been an extensive study of Fermi–Ulam pingpong models since Fermi [15] and
Ulam [28] proposed the bouncing ball mechanism as an explanation for the existence of
high-energy particles in cosmic rays. The original Fermi–Ulam model describes a point
particle bouncing elastically between two infinitely heavy walls, one fixed and the other
oscillating periodically [28]. Ulam conjectured [28], based on his numerical experiment
with a piecewise linearly oscillating wall, the existence of escaping orbits, that is, orbits
whose energy grows to infinity in time. In addition, bounded orbits (that is, those whose
energy always stays bounded) and oscillatory orbits (that is, those whose energy has a finite
liminf but infinite limsup) might also exist in Fermi–Ulam models and various attempts
have been made to examine the existence and prevalence of each of these three types of
orbits (we refer to [12, 16, 19] for surveys).

Later, Kolmogorov–Arnold–Moser (KAM) theory has negated the existence of accel-
erating orbits with sufficiently smooth wall motions as the prevalence of invariant curves
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FIGURE 1. Bouncing pingpong in gravity field.

prevents energy diffusion [17, 25, 26]. In non-smooth cases, Zharnitsky [29] found linearly
escaping orbits in a piecewise linear model. In a piecewise smooth model with one
singularity, de Simoi and Dolgopyat [8] showed that there exists a parameter determining
whether the linear part of the limiting system at infinity is elliptic or hyperbolic (that is,
whether the absolute value of the trace is less or greater than two) and that bounded orbits
co-exist with escaping ones in elliptic regimes while escaping orbits have zero measure
but full Hausdorff dimension in hyperbolic regimes.

When background potential is introduced, Arnold and Zharnitsky [2] found unbounded
orbits in a pinball system with switching potentials. If the fixed wall is removed and
gravity is present, Pustylnikov [24] showed that there exists an open set of wall motions
in the space of analytic periodic functions admitting analytic extension to a fixed strip
|�t | < ε which produce infinite measure of escaping orbits. In a Duffing equation with a
time-dependent polynomial potential with one discontinuity, Levi and You [18] proved the
existence of oscillatory orbits. Ortega provided conditions for the existence of escaping
orbits in piecewise linear oscillators [21, 22]. For intermediate cases where the potential
takes the form U = xα and the wall motion is sinusoidal, Dolgopyat [11] proved that the
escaping orbits do not exist for α > 1, α �= 2 and constitute a null set for α < 1/3, while
de Simoi [7] showed in the same setting that the escaping orbits possess full Hausdorff
dimension for α < 1.

In this paper we study a Fermi–Ulam pingpong model with a potential. The model
describes a point mass bouncing elastically against an infinitely heavy moving wall in a
gravity field. The motion (height) of the wall is a piecewise smooth periodic function f (t)
and the gravitational constant is given by g (cf. Figure 1).

We are interested in the case when the motion f (t) of the wall is continuous, 1-periodic
and piecewise C3, that is, f ∈ C3(0, 1) and ḟ (0+) �= ḟ (1−). We record the time t of
each collision and the velocity v immediately after each collision. We exclude from our
discussion the singular collisions at integer times, which form a null set in the (t , v)-phase
cylinder. We investigate the dynamics of the model by looking at the collision map F ,
which sends one collision (t , v) to the next one (t̄ , v̄). Our main result is that if the second
derivative of the wall motion behaves, that is, the second derivative is either always positive
(f̈ (t) > 0) or always less than the negative of the gravitational constant (f̈ (t) < −g),
then the escaping orbits have zero measure and F is recurrent. We also show that under
these assumptions, escaping and bounded orbits exist at arbitrarily high energy levels.
The argument in our proof requires piecewise C2 regularity of F and thus piecewise C3

https://doi.org/10.1017/etds.2021.6 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.6


A piecewise smooth Fermi–Ulam pingpong with potential 1849

regularity of f . Systems of lower regularities might exhibit similar or other behaviors, but
they require other machinery and are beyond the scope of discussion in this paper.

2. Main results
In this section we state the main results of the paper.

We denote the second derivative of the wall motion as k(t) = f̈ (t). The collision map F
preserves an absolutely continuous measureμ = w dt dv, wherew = v − ḟ is the relative
velocity after collision (cf. §3.1).

For large velocities, the dynamics can be approximated by

F(t , v) = F∞(t , v)+ O
(

1
v

)
,

where

F∞(t , v) =
(
t + 2v

g
, v + 2ḟ

(
t + 2v

g

))
.

It is easy to verify that the limit map F∞ is area preserving and it covers a map F̃∞ on
the torus R/Z × R/gZ:

F̃∞ :

⎧⎨
⎩t̃1 = t̃0 + 2ṽ0

g
,

ṽ1 = ṽ0 + 2ḟ (t̃1),

where t̃ = t (mod 1), ṽ = v (mod g).
If the second derivative f̈ of the wall motion is either always positive or always less

than −g, then the limit map F̃∞ is ergodic.

THEOREM 1. Suppose that f̈ (t) > 0 for any t > 0. Then the map F̃∞ is ergodic.

THEOREM 2. Suppose that for any t > 0, f̈ (t) < −g, where g is the gravitational
constant. Then the map F̃∞ is ergodic.

We shall call a wall motion f (t) admissible if either for all t , f̈ > 0 or for all t , f̈ < −g.

Remark 2.1. The map F̃∞ might not be ergodic if the assumptions in Theorems 1 and 2
fail. For example, when the wall motion is analytic, Pustylnikov [24] found a KAM island
for the limit map for an open set of analytic periodic wall motions which admit analytic
extension to a strip |�t | < ε. Note that for analytic motions

∫ 1
0 f̈ (t) dt = 0, so analytic

motions are not admissible.

Besides the above ergodic properties, we also obtain stronger statistical properties of
F̃∞ under the same assumptions.

For every x, y ∈ T, we define their forward separation time s+(x, y) to be the smallest
non-negative integer n such that x, y belongs to distinct continuity components of F̃ n∞.
We can define similarly their backward separation time s−(x, y) for the inverse iterates.
A function ϕ : T → R is said to be dynamically Hölder continuous if there exists ϑ =
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ϑ(F̃∞) ∈ (0, 1] such that

|ϕ|+ϑ := sup
{ |ϕ(x)− ϕ(y)|

ϑs+(x,y) : x �= y on the same unstable manifold
}
< ∞

and that

|ϕ|−ϑ := sup
{
ϕ(x)− ϕ(y)|
ϑs−(x,y) : x �= y on the same stable manifold

}
< ∞.

THEOREM 3. Exponential decay of correlations Suppose that the wall motion is admis-
sible. Then the map F̃∞ enjoys exponential decay of correlations for dynamically Hölder
continuous observables: there exists b > 0 such that for any pair of dynamically Hölder
continuous observables ϕ, φ, there exists Cϕ,φ such that∣∣∣∣

∫
T

(ϕ ◦ F̃ n∞)φ dμ̃−
∫
T

ϕ dμ̃

∫
T

φ dμ̃

∣∣∣∣ ≤ Cϕ,φe
−bn, n ∈ N.

We observe that for any dynamically Hölder observable ϕ, the following quantity is
finite due to Theorem 3:

σ 2
ϕ :=

∞∑
n=−∞

∫
T

ϕ · (ϕ ◦ F̃ n∞) dμ̃ < ∞.

THEOREM 4. (CLT) Suppose that the wall motion is admissible. Then the map F̃∞
satisfies the central limit theorem (CLT) for dynamically Hölder observables, that is,

1√
n

n−1∑
i=0

ϕ ◦ F̃ i∞
dist
⇀ N (0, σ 2

ϕ ),

where ϕ is dynamically Hölder with zero average,
∫
T
ϕ dμ̃ = 0.

As for the original system, under the admissible assumption the escaping orbit of the
collision map F constitutes a null set.

THEOREM 5. (Null escaping set) Suppose that the wall motion is admissible. Then the set
E of escaping orbits of F has zero measure.

It turns out that the escaping set is exactly the dissipative part of the system and
consequently under the admissible assumption the system is recurrent.

COROLLARY 6. (Recurrence) Suppose that the wall motion is admissible. Then F is
recurrent, that is, almost every orbit comes arbitrarily close to its initial point.

However, under the admissible assumption, escaping and bounded orbits still exist.

THEOREM 7. Suppose that f (t) is admissible. Then F possesses escaping and bounded
orbits with arbitrarily high energy.

Moreover, F satisfies the following global global mixing property for global functions.
We say that a function 	 is global if it is bounded, uniformly continuous and has a finite
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average 	̄ in the following sense: for any ε, there exists N so large that for any rectangle
V = [0, 1)× [a, b] with b − a > N , we have∣∣∣∣ 1

μ(V )

∫
V

	 dμ− 	̄

∣∣∣∣ ≤ ε.

We denote by GU the space of all such global functions.

THEOREM 8. (Global global mixing) Suppose that the wall motion is admissible. Then F
is global global mixing with respect to GU , that is, for any 	1, 	2 ∈ GU , the following
holds:

lim
n→∞ lim sup

μ(V )→∞
1

μ(V )

∫
V

	1 · (	2 ◦ Fn) dμ

= lim
n→∞ lim inf

μ(V )→∞
1

μ(V )

∫
V

	1 · (	2 ◦ Fn) dμ = 	̄1	̄2,

where V = [0, 1)× [a, b] and μ(V ) = b − a is the area of the rectangle V .

3. Preliminaries
In this section we discuss the collision map. The study of the collision map relies
substantially on the behavior of its limiting map, that is, the approximated collision map
for large velocities. We also discuss the singularity lines/curves of the limit map as they
will play a very important role in the proofs later.

3.1. The collision map. We denote by sn = tn+1 − tn the flight time between two
consecutive collisions.

Two consecutive collisions satisfy the following equations:{ − (vn − gsn − ḟ (tn+1)) = vn+1 − ḟ (tn+1),

f (tn)+ vnsn − 1
2gs

2
n = f (tn+1).

(1)

We compute the derivative of the collision map F by differentiating these equations:

dF =

⎛
⎜⎜⎝

1 + ḟ (tn)− ḟ (tn+1)

wn+1

sn

wn+1

2f̈ (tn+1)+ (2f̈ (tn+1)+ g)
ḟ (tn)− ḟ (tn+1)

wn+1
(2f̈ (tn+1)+ g)

sn

wn+1
− 1

⎞
⎟⎟⎠ .

We observe that det dF = wn/(wn+1) and hence F preserves the measure μ = w dtdv

on the phase cylinder.

3.2. The limit map. If we only consider collisions with large velocities, the dynamics
can be approximated by

F(t , v) = F∞(t , v)+ O
(

1
v

)
,

where

F∞(t , v) =
(
t + 2v

g
, v + 2ḟ

(
t + 2v

g

))
.
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With an abuse of notation we denote (t1, v1) = F∞(t0, v0); then

t1 = t0 +
(

2v0

g

)
, v1 = v0 + 2ḟ (t1).

As mentioned in §2, the limit map F∞ covers a map F̃∞ on the torus T = R/Z × R/gZ:

t̃1 = t̃0 + 2ṽ0

g
, ṽ1 = ṽ0 + 2ḟ (t̃1),

where t̃ = t (mod 1), ṽ = v (mod g).
Denote k(t) = f̈ (t). The dynamics of F̃∞ can be decomposed as

t̃1 = t̃0 + 2ṽ0

g
(mod 1), ṽ0 = ṽ0

and

t̃1 = t̃1, ṽ1 = ṽ0 + 2ḟ (t̃1).

Hence, the derivative of F̃∞ at (t̃0, ṽ0) is

d(t̃0,ṽ0)
F̃∞ =

⎛
⎜⎝ 1

2
g

2k1
4k1

g
+ 1

⎞
⎟⎠ ,

where k1 = k(t1).
We observe that det dF̃∞ = 1, so F̃∞ preserves the Lebesgue measure μ̃ = dt̃dṽ on

the torus.

3.3. The singularity lines of the limit map. A singularity occurs when the ball collides
with the wall at the singularities of the wall motion, that is, t ∈ N; hence, the singularity
line S+ of F̃∞ consists of the points whose next collisions happen at integer times, that is,

S+ = {t̃1 = 0} =
{
t̃0 + 2ṽ0

g
= 0 (mod 1)

}
.

Similarly, the singularity line S− of F̃−1∞ consists of the points whose preimages land on
integer times, that is,

S− = {t̃−1 = 0} =
{
t̃0 + 4

g
ḟ (t̃0)− 2ṽ0

g
= 0 (mod 1)

}
.

We observe that S± consists of finitely many line/curve segments.

4. Ergodicity of the limit map
In this section we establish the ergodicity of the limit map F̃∞ under the assumptions
in Theorems 1 and 2. We use the result by Liverani and Wojtkowski in [20], where they
proved ergodicity for a large class of Hamiltonian systems with invariant cones. We first
describe the class of symplectic maps (X, T ) considered in [20] and then show that F̃∞
satisfies the conditions of [20].

https://doi.org/10.1017/etds.2021.6 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.6


A piecewise smooth Fermi–Ulam pingpong with potential 1853

Those conditions involve strictly invariant cones and the least coefficient of expansion,
which are defined as follows.

Suppose that (X, ω) is a compact symplectic manifold and (T , μ) : X is a symplectic
map preserving the measure μ. For a point p ∈ X, let V p1 and V p2 be two transverse
Lagrangian subspaces of TpX; then each vector v ∈ TpX has a unique decomposition
v = v1 + v2 with vi ∈ V pi . For any p ∈ X, we define the following quadratic form
Qp(v) = ω(v1, v2), where v = v1 + v2 ∈ TpX is the decomposition mentioned before.
For any p ∈ X, we consider the two complementary cones

C(p) = {v ∈ TpX : Qp(v) ≥ 0}, C′(p) = {v ∈ TpX : Qp(v) ≤ 0}.
We say that p possesses strictly monotone cones if dpT strictly preserves C(p) and dpT −1

strictly preserves C′(p).
For p ∈ X with strictly monotone cones C(p), C′(p), the coefficient β of expansion at

v ∈ TpX is defined as

β(v, dpT ) =
√
Qp(dpT v)

Qp(v)

and the least coefficient σ of expansion is defined as

σ(dpT ) = inf
v∈int C(p)

β(v, dpT ).

Now we list here the six conditions of [20] in the two-dimensional case.
(1) The phase spaceX is a finite disjoint union of compact subsets of a linear symplectic

space R
2 with dense and connected interior and regular boundaries, that is, they are

finite unions of curves which intersect each other at at most finitely many points.
(2) For every n ≥ 1, the singularity sets S+

n and S−
n of T n and T −n respectively are

regular.
(3) Almost every point p ∈ X possesses strictly monotone cones C(p) and their

complementary cones C′(p).
(4) The singularity sets S+ and S− are properly aligned, that is, the tangent line of S−

at any p ∈ S− is contained strictly in the cone C(p) and the tangent line of S+ at any
p ∈ S+ is contained strictly in the complementary cone C′(p). In fact, it is sufficient
to assume that there exists N such that T NS− and T −NS+ are properly aligned.

(5) Non-contraction: There is a constant a ∈ (0, 1] such that for every n ≥ 1 and for
every p ∈ X\S+

n ,

‖dpT nv‖ ≥ a‖v‖
for every vector v ∈ C(p).

(6) Sinai–Chernov ansatz: For almost every p ∈ S− with respect to the measure μS (the
measure μ restricted to S), its least coefficient of expansion satisfies

lim
n→∞ σ(dpT

n) = ∞.

We note from [20] that σ is supermultiplicative, that is, σ(dTpT dpT ) ≥
σ(dTpT )σ (dpT ), and that if the coordinates are such that the cone C(p) is the positive
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cone (that is, C(p) = {δxδy ≥ 0}) and dpT takes the form

dpT =
(
Ap Bp

Cp Dp

)
,

then σ can be computed as σ(dpT ) = √
1 + tp + √

tp, where tp = BpCp.
Liverani and Wojtkowski have proved local ergodicity for symplectic maps satisfying

the above six conditions.

THEOREM 9. [20] Suppose that (X, T ) satisfies the above conditions. For any n ≥ 1
and for any p ∈ X\S+

n such that σ(dpT n) > 3, there is a neighborhood of p which is
contained in one ergodic component of T .

Now we prove Theorem 1.

Proof of Theorem 1. Suppose that f̈ > 0.
First we prove local ergodicity by verifying the above six conditions for F̃∞.
The singularity lines S± are finite unions of short lines/curves and they cut our phase

space X, which is a torus, into finitely many pieces.
The strict monotonicity follows easily from the fact that dF̃∞ is positive when f̈ > 0

and hence dpF̃∞ preserves strictly the positive cone C+(p) = {δt̃δṽ ≥ 0} and dpF̃−1∞
preserves strictly the complementary negative cone C−(p) = {δt̃δṽ ≤ 0}.

It is straightforward from the previous discussion that S± are properly aligned since the
slope of the tangent line to {t̃1 = 0} at (t̃0, ṽ0) is −(g/2) < 0, and the slope of the tangent
line to {t̃−1 = 0} is (g/2)(1 + (4k0/g)) > 0.

Next, we verify the non-contraction property. For any non-singular point p = (t̃ , ṽ) and
any vector v = (δt̃ , δṽ) ∈ C+(p) with δt̃δṽ ≥ 0,

‖dpF̃∞v‖2 = (1 + 4k2
1)δt̃

2 +
(

4
g2 +

(
4k1

g
+ 1

)2)
δṽ2 +

(
4
g

+ 4k1

(
4k1

g
+ 1

))
δt̃δṽ

(2)

≥ δt̃2 + δṽ2 = ‖v‖2;

thus, the non-contraction property follows for a = 1.
Now we verify the Sinai–Chernov ansatz.
We denote S0 = {t̃0 = 0}. For any point p ∈ S−\ ∪n≥0 Sn, which excludes a μ̃S -null

set, where μ̃S is the measure μ̃ restricted to S, since S− intersects each Sn at at most
finitely many points,

σ(dpF̃∞) =
√

1 + 4k1

g
+

√
4k1

g
≥

√
1 + 4kmin

g
+

√
4kmin

g
> 1,

where kmin = min
t∈(0,1)

f̈ (t) > 0 by our assumption; then the supermultiplicativity of σ

implies that lim
n→∞ σ(dpF̃

n∞) = ∞.

Finally, it remains to check that the singularity sets S−
n and S+

n of F̃ n∞ and F̃−n∞
respectively are regular. We claim that for every n > 0, S−

n (S+
n ) is a finite union of
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increasing (decreasing) curves, that is, curves with bounded positive (negative) slope.
This can be proved by an inductive argument. Firstly the claim holds for n = 1 as already
shown before. Now suppose that S−

n is a finite union of increasing curves. Since S−
n+1 =

S−
n ∪ F̃∞S−

n and dF̃∞ is a positive matrix and the second derivative f̈ is bounded, S−
n+1

is a finite union of increasing curves. The claim for S+
n can be proved similarly.

Observe that k(t) = f̈ (t) > 0 is uniformly bounded and hence there exists N > 0 such
that σ(dpF̃N∞) > 3 for any p /∈ S+

N . Therefore, we have obtained local ergodicity for F̃∞
by Theorem 9.

Now we argue for global ergodicity by contradiction.
Suppose that there exists some non-trivial ergodic component M of F̃∞; then its

boundary ∂M lies on S+
N . But

S+
N =

N−1⋃
n=0

F̃−n∞ S+

and hence there exists a smallest integer N0 ≥ 1 such that ∂M ∈ S+
N0

.
Observe that F̃∞(∂M) = ∂M by the invariance of M . However, F̃∞(S+

N0
) = S+

N0−1 ∪
S0, which contradicts the minimality of N0. Note that although F̃∞ is multivalued at S+,
we have F̃∞S+ = S0 anyway.

Therefore, we conclude that there cannot be any non-trivial ergodic component and
hence F̃∞ is ergodic.

The proof of Theorem 2 follows a similar strategy. The main difficulty arises from
finding invariant cones as the derivative matrix is no longer positive. However, we still
manage to construct invariant cones out of the ‘eigenvectors’ of the derivative matrix.

Proof of Theorem 2. Suppose that f̈ < −g.
First of all, we recall that the derivative of F̃∞ at (t̃0, ṽ0) is

d(t̃0,ṽ0)
F̃∞ =

⎛
⎜⎝ 1

2
g

2k1
4k1

g
+ 1

⎞
⎟⎠ .

Now we consider the following two cones:

Cu(t̃0, ṽ0) =
{
δv

δt
≤ k0

}
, Cs(t̃0, ṽ0) =

{
δv

δt
≥ k0

}
.

We verify that they are invariant under d(t̃0,ṽ0)
F̃∞ and d(t̃0,ṽ0)

F̃−1∞ , respectively. For any
(δt , δv) ∈ Cu(t̃0, ṽ0),

(
δ̄t

δ̄v

)
=

⎛
⎜⎝ 1

2
g

2k1
4k1

g
+ 1

⎞
⎟⎠ (

δt

δv

)
=

⎛
⎜⎜⎝

δt + 2
g
δv

2k1
(
δt + 2

g
δv

) + δv

⎞
⎟⎟⎠ ;
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thus,

δ̄v

δ̄t
= 2k1 + δv/δt

1 + (2/g)δv/δt

≤ 2k1 + k0

1 + (2k0/g)

< 2k1 + g < k1,

(3)

where the first inequality follows from (δv/δt) ≤ k0 and the last two inequalities from
f̈ < −g. Thus, (δ̄t , δ̄v) ∈ Cu(t̃1, ṽ1).

For any (δt , δv) ∈ Cs(t̃0, ṽ0),

(
δ̃t

δ̃v

)
=

⎛
⎝4k0

g
+ 1 − 2

g
−2k0 1

⎞
⎠ (

δt

δv

)
=

⎛
⎝δt − 2

g
(−2k0δt + δv)

−2k0δt + δv

⎞
⎠;

thus,

δ̃v

δ̃t
= −g

2
+ g

2
1

1 + (2/g)(2k0 − (δv/δt))

> −g
2

+ g

2
1

1 + (2k0/g)

> −g > k−1,

(4)

where the first inequality follows from (δv/δt) ≥ k0 and the last two inequalities from
f̈ < −g. Thus, (δ̃t , δ̃v) ∈ Cu(t̃−1, ṽ−1).

If we can verify that S± are properly aligned, then the regularity of the singularity
curves S±

n follows automatically from the strict invariance of the cones Cu/s since S±
n

consist of finitely many transverse short curves.
We claim that S± are properly aligned. Indeed, the slope of the tangent line to {t̃1 = 0}

at (t̃0, ṽ0) is −(g/2) > k0, which is properly contained in Cs . Also, the slope of the tangent
line to {t̃−1 = 0} is 2k0 + (g/2) < k0, which is properly contained in Cu.

The non-contraction property still holds with a = 1.
The unstable cone Cu is not canonical, that is, it is not the positive cone; hence, we need

to switch to the new basis ((0, 1), (1, k0)) and dpF̃∞ takes the form⎛
⎜⎝

2k1

g
+ 1 k0 + k1 + 2k0k1

g

2/g 1 + 2k0

g

⎞
⎟⎠ .

Then the Sinai–Chernov ansatz holds since

σ(dpF̃∞) =
√

1 + 2
g

(
2k0k1

g
+ k0 + k1

)
+

√
2
g

(
2k0k1

g
+ k0 + k1

)

≥
√

1 + 2
g

(
2k2

min
g

+ 2kmin

)
+

√
2
g

(
2k2

min
g

+ 2kmin

)
> 1.
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By Theorem 9, the local ergodicity of F̃∞ follows for the case when f̈ < −g. Finally, the
global ergodicity can be obtained by a similar argument as in the proof of Theorem 1.

5. Recurrence of the collision map
In this section we prove Theorem 5 and Corollary 6 as they are direct consequences of the
ergodicity of the limit map F̃∞ on the torus.

The proof of Theorem 5 uses a result from [8], which shows that for an asymptotically
periodic map with an ergodic limiting map, if the energy change in the limiting map has
zero average, then the escaping orbits of the original dynamics have zero measure.

We state this result for our case specifically. First we decompose the velocity v into an
integer part and a fractional part, that is, there exists some m ∈ Z such that

v = ṽ +mg where ṽ ∈ [0, g).

Then we decompose the limit map F∞ on the cylinder into its projection F̃∞ on the torus
and a map γ on integers Z, that is,

(t̃1, ṽ1, m1) = F∞(t̃0, ṽ0, m0) = (F̃∞(t̃0, ṽ0), m0 + γ (t̃0, ṽ0)).

LEMMA 5.1. [8] Suppose that F̃∞ is ergodic with respect to the measure μ̃ = dt̃dṽ on the
torus. If the energy change of F∞ has zero average, that is,

∫
T
γ (t̃0, ṽ0)dμ̃ = 0, then the

escaping set of F has zero measure.

Now we prove Theorem 5.

Proof of Theorem 5. If f (t) is admissible, then, by Theorems 1 and 2, F̃∞ is ergodic.
Thus, by Lemma 5.1, it suffices to check that the energy change γ of F∞ has zero average.
With an abuse of notation, let us denote (t1, v1) = F∞(t0, v0) and (t̃1, ṽ1) = F̃∞(t̃0, ṽ0),
respectively. Observe that ∫

ṽ0 dμ̃ =
∫
ṽ1 dμ̃

since F̃∞ preserves the measure μ̃. Thus,∫
γ dμ̃ = 1

g

∫
(v1 − v0) dμ̃.

But v1 − v0 = 2ḟ (t̃1) and hence∫
(v1 − v0) dμ̃ =

∫
2ḟ (t̃1) dμ̃ =

∫
2ḟ (t̃0) dμ̃ = 0,

where the last two equalities follow from the facts that F̃∞ preserves μ̃ and that f is
1-periodic. Therefore, by Lemma 5.1, the escaping orbits of F have zero measure.

The set E of escaping orbits is in fact the transient part of F and hence Theorem 5
implies that F is recurrent, in the spirit of [10].

Proof of Corollary 6. We claim that the setE of escaping orbits is the transient component
of the system and hence Theorem 5 implies Corollary 6.
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Indeed, the complement of E is ∪NEN , where

EN = {(t0, v0) : lim inf vn ≤ N}.
For any N ∈ N, EN is invariant and all points in EN will visit the set VN = {v ≤ N + 1}.
Now we prove that EN is recurrent, that is, for any subset A of EN with finite measure,
almost every point in A returns to A.

Now suppose that A is a subset of EN with finite measure. For any x ∈ A, we denote
the first hitting time into VN as

r(x) = min{k ≥ 0 : Fkx ∈ VN }.
Now, for any K ∈ N, we define

AK :=
⋃

x∈A:r(x)≤K
F r(x)x.

To show recurrence in A, it suffices to show recurrence in AK for all K ∈ N, that is,
almost every point in AK visits itself infinitely often. Indeed, for any x ∈ A, r(x) = K

for some K ∈ N, so FKx ∈ AK . If FKx is a recurrent point of AK , FK+nx ∈ AK for
some large n > K; then there exists some x′ ∈ A such that FK+nx = F r(x

′)x′ and thus
FK+n−r(x′)x = x′ ∈ A. Now we show recurrence in AK for any K ∈ N. We note that
AK ⊆ EN ∩ VN by definition of AK and the invariance of EN . All points in EN visit VN ;
thus, the first return map PN on EN ∩ VN is well defined. Now our goal is achieved by
applying the Poincaré recurrence theorem to (EN ∩ VN , PN).

6. Statistical properties of the limit map
In this section we prove Theorems 3, 4 and 8. Throughout this section we assume that the
wall motion is admissible.

6.1. Background. The proof of Theorem 3 uses a result of Chernov and Zhang in [6]
and the proof of Theorem 4 uses a result of Chernov in [4]. We first describe the class of
hyperbolic symplectic maps considered in [4, 6] and then show that our map F̃∞ belongs
to this class.

Let T : M → M be a C2 diffeomorphism of a two-dimensional Riemannian manifold
M with singularities S. Suppose that T satisfies the following conditions.
(1) Uniform hyperbolicity of T . There exist two continuous families of unstable cones

Cux and stable cones Csx in the tangent spaces TxM for all x ∈ M , and there exists a
constant � > 1 such that:
(a) DT (Cux ) ⊂ CuT x , and DT (Csx) ⊃ CsT x whenever DT exists;
(b) ‖DxT v‖ ≥ �‖v‖ for all v ∈ Cu

x , and ‖DxT −1v‖ ≥ �‖v‖ for all v ∈ Cs
x;

(c) the angle between Cux and Csx is uniformly bounded away from zero.
(2) Singularities S± of T and T −1. The singularities S± have the following properties:

(a) T : M\S+ → M\S− is a C2 diffeomorphism;
(b) S0 ∪ S+ is a finite or countable union of smooth compact curves in M;
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(c) curves in S0 are transverse to the stable and unstable cones. Every smooth curve
in S+ (S−) is a stable (unstable) curve. Every curve in S+ terminates either
inside another curve of S+ or on S0;

(d) there exist β ∈ (0, 1) and c > 0 such that for any x ∈ M\S+, ‖DxT ‖ ≤
cd(x, S+)−β .

(3) Regularity of smooth unstable curves. We assume that there exists a T -invariant class
of unstable curves W such that:
(a) bounded curvature. The curvature of W is uniformly bounded from above;
(b) distortion control. There exist γ ∈ (0, 1) and C such that for any regular

unstable curve W and any x, y ∈ W ,

|log JW(x)− log JW(y)| ≤ Cd(x, y)γ ,

where JW(x) = |DxT |W | denotes the Jacobian of T at x ∈ W ;
(c) absolute continuity of the holonomy map. Let W , W̄ be two regular unstable

curves that are close to each other. We denote

W ′ = {x ∈ W : Ws(x) ∩ W̄ �= ∅},
W̄ ′ = {x ∈ W̄ : W̄ s(x) ∩W �= ∅}.

The holonomy map h : W ′ → W̄ ′ is defined by sliding along the stable manifold.
We assume that h�μW ′ � μW̄ ′ , where μW ′/W̄ ′ is the measure μ restricted to
W ′/W̄ ′, and that for some constants C and ϑ < 1,

|log J h(x)− log J h(y)| ≤ Cϑs+(x,y), x, y ∈ W ′,

where J h is the Jacobian of h and s+(x, y) is the forward separation time of x, y
(cf. the definition of forward separation time in §2).

(4) SRB measure. The measure μ̃ is an Sinai–Ruelle–Bowen (SRB) measure, that is, the
induced measure μ̃Wu (the measure μ̃ restricted toWu) on any unstable manifoldWu

is absolutely continuous with respect to LebWu . We also assume that μ̃ is mixing.
(5) One-step expansion. Let ξn denote the partition of M into connected components of

M\S+
n . Denote by Vα the connected component of TW with index α ∈ M/ξ1 and

Wα = T −1Vα . there exists q ∈ (0, 1] such that

lim inf
δ→0

sup
W :|W |<δ

∑
α∈M/ξ1

( |W |
|Vα|

)q |Wα|
|W | < 1,

where the supremum is taken over all unstable curves W .

THEOREM 10. [4, 6] Under the assumptions 1–5 above, the system (T , M) above enjoys
exponential decay of correlations and the central limit theorem for dynamically Hölder
continuous observables.

The verifications of the assumptions 1–5 are rather long. Moreover, their validity is of
independent importance itself. So, we first state intermediary lemmas in §6.2 and then
we prove, based on these lemmas, Theorems 3, 4 and 8 in §6.3. Finally, we prove all the
lemmas in §6.4.
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6.2. Intermediary lemmas. In this section we list the intermediate lemmas. Their proofs
are presented in §6.4.

Suppose that W is an unstable curve, that is, the tangent line of W lies in the unstable
cone Cu, with bounded curvature. We assume without loss of generality that W ∩ S+ =
∅. Let JW(x) = |DxT |W | denote the Jacobian of F̃∞ at x ∈ W . We have the following
enhanced distortion control.

LEMMA 6.1. (Distortion control) Suppose that W is an unstable curve with bounded
curvature. Then, for any x, y ∈ W , there exists a constant C which depends only on F̃∞
and the curvature bound such that

|log JW(x)− log JW(y)| ≤ Cd(x, y).

Furthermore, for any N ∈ N, if W ∩ S−
N = ∅, then, for any 1 ≤ n ≤ N , there exists a

constant C′ which depends only on F̃∞ and the curvature bound such that

|log JW F̃−n∞ (x)− log JWF̃−n∞ (y)| ≤ C′|W |.
In order to establish the N0-step expansion, we need the following estimate of the speed

of fragmentation of unstable curves.

LEMMA 6.2. (Complexity bound) Suppose that z is a branching point of S+
n . Pick a small

neighborhood of z and denote by kn(z) the number of sectors in the small neighborhood
cut out by S+

n . Then kn(z) ≤ 6n+ 4.

The linear complexity bound guarantees that a sufficiently short unstable curve W can
break into at most 6n+ 4 connected components under F̃ n∞. Thus, there exists δ0 so small
that any unstable curve shorter than δ0 satisfies the following expansion estimate.

LEMMA 6.3. (N0-step expansion) Suppose thatW is an unstable curve with length |W | ≤
δ0 and that {Wn

i }i are the connected components of the image F̃ n∞W . Denote by �i,n the
minimum rate of expansion on each preimage F̃−n∞ Wn

i . Then

∑
i

1
�i,N0

< 1,

whereN0 is the smallest integer such that (6N0 + 4/�N0) < 1 and� is the expansion rate
of F̃∞.

Next, we suppose that W and W̄ are two unstable curves with bounded curvature. We
define the following holonomy map h on

W ′ = {x ∈ W : Ws(x) ∩ W̄ �= ∅}
by sliding along the stable manifold from x ∈ W to x̄ ∈ W̄ . Then h : W ′ → W̄ ′ is
absolutely continuous with well-behaving density.

LEMMA 6.4. (Absolute continuity) Suppose that W and W̄ are two unstable curves with
uniform bounded curvature. Then h�μW � μW̄ and, for some constants C and � < 1,
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which depend only on F̃∞ and the curvature bound,

|log J h(x)− log J h(y)| ≤ C�s+(x,y), x, y ∈ W ′,

where J h is the Jacobian of h.

Finally, we provide an estimate of the measure of small unstable curves, which follows
from Lemma 7 in [6].

Suppose that W is an unstable curve with length |W | < δ0. For any x ∈ W , we denote
by rn(x) the distance from x to the nearest boundary of the connected component of F̃ n∞W
containing F̃ n∞x.

LEMMA 6.5. (Growth lemma) Suppose thatW is an unstable curve with length |W | < δ0.
Then, for any ε > 0,

mesW {rnN0(x) < ε} ≤ (ϑ1�
N0)nmesW

{
r0(x) <

ε

�nN0

}
+ Cε|W |,

where ϑ1 = eC
′δ0

∑
i (1/�i,N0), C

′ is the constant from Lemma 6.1, N0 is the constant
from Lemma 6.3 and � is the expansion rate of F̃∞.

Remark 6.1. We note that ϑ1 can be made less than one by choosing δ0 sufficiently small.

6.3. Exponential decay of correlations, CLT and global global mixing. In this section
we present the proofs of Theorems 3, 4 and 8, based on the lemmas from §6.2.

We start with the proof for exponential decay of correlations and CLT.

Proofs of Theorems 3 and 4. Firstly we establish the exponential decay and CLT for F̃ N0∞
by checking the conditions in Theorem 10 for F̃ N0∞ , where N0 is the number from Lemma
6.3. Note that we gain from Theorem 10 the exponential decay and CLT for F̃ N0∞ rather
than for F̃∞ because we can only obtain N0-step expansion on F̃∞.

The proof for the case f̈ > 0 is very similar to that for f̈ < −g and hence we omit the
latter. Although the positive/negative cones in the proof of Theorem 1 are strictly invariant,
we cannot use them here since we require a positive angle between the unstable and stable
cones. Instead, we consider their images, that is,

Qu(t̃0, ṽ0) =
{

2k0 ≤ δv

δt
≤ 2k0 + g

2

}
,

Qs(t̃0, ṽ0) =
{
− g

2
≤ δv

δt
≤ − 2k0

(4k0/g)+ 1

}
.

It is easy to see that the angles between Qu and Qs are uniformly bounded away from zero
since k0 > 0 is bounded, and that these cones are strictly invariant.

We now compute the expansion rate �. With the same notation as above, for (δt , δv) ∈
Qu(t̃0, ṽ0), it follows from (2) that

δ̄t2 + δ̄v2 ≥ �2
1(δt

2 + δv2),

where �2
1 = min{1 + 4kmin, (4/g2)+ (1 + (4kmin/g))

2} > 1.
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Similarly, for (δt , δv) ∈ Qs(t̃0, ṽ0),

δ̃t2 + δ̃v2 =
(

4k2
1 +

(
1 + 4k1

g

)2)
δt2 +

(
4
g2 + 1

)
δv2 − 2

(
2k1 + 2

g

(
1 + 4k1

g

))
δtδv

≥ �2
2(δt

2 + δv2),

where �2
2 = min{4k2

min + (1 + (4kmin/g))
2, (4/g2)+ 1} > 1.

Take � = min{�1, �2}; this gives our expansion rate.
Next, we examine the singularity curves S±.
Observe that F̃∞ is a C2 diffeomorphism away from singularities if f is piecewise C3.

And S0 ∪ S+ is a finite union of smooth compact curves on the torus T; S0 is transverse
to Qu/Qs . Moreover, the singularity curves are regular and properly aligned as shown in
the proof of Theorem 1.

Assumption 2(d) is trivially satisfied since the norm of the derivative dF̃∞ is bounded
and our phase space is compact.

As for the assumption 3, we have already obtained distortion control in Lemma 6.1 and
absolute continuity of the holonomy map in Lemma 6.4. We note that by (6) the curvature
of an unstable curve remains bounded after iterations.

Next, the invariant measure μ̃ = dt̃dṽ is apparently an SRB measure.
Note that F̃ n∞ is ergodic with respect to μ̃ for any n > 0 since F̃ n∞ also satisfies the

conditions of Theorem 9. Now the results of [23] imply that μ̃ is mixing (even Bernoulli).
Finally, since we already established N0-step expansion from Lemma 6.3, we conclude

from Theorem 10 that F̃ N0∞ enjoys exponential decay of correlations and CLT for
dynamically Hölder continuous observables.

The CLT for F̃∞ follows easily from that of F̃ N0∞ . Now we show that exponential mixing
for F̃ N0∞ implies exponential mixing for F̃∞.

Suppose that ϕ, φ are two dynamically Hölder continuous observables. For any integer
n ∈ N, n = pN0 + q for some integers p > 0 and 0 ≤ q < N0. We denote ϕ̃q = ϕ ◦ F̃ q∞.
For any x, y on the same unstable manifold Wu,

|ϕ̃q(x)− ϕ̃q(y)| = |ϕ(F̃ q∞x)− ϕ(F̃
q∞y)| ≤ Cϑ−q+ϑs+(x,y),

where q+ = min{q, s+(x, y)}.
On the other hand, for any x, y on the same stable manifold Ws ,

|ϕ̃q(x)− ϕ̃q(y)| = |ϕ(F̃ q∞x)− ϕ(F̃
q∞y)| ≤ Cϑqϑs−(x,y).

Therefore, ϕ̃q is also dynamically Hölder.
By applying the previous exponential decay result on F̃ N0∞ with the observables ϕ̃q , φ,

we know that there exist Cϕ̃q ,φ and b such that

∣∣∣∣
∫
T

(ϕ ◦ F̃ n∞)φ dμ̃−
∫
T

ϕ dμ̃

∫
T

φ dμ̃

∣∣∣∣ =
∣∣∣∣
∫
T

(ϕ̃q ◦ F̃ pN0∞ )φ dμ̃−
∫
T

ϕ̃q dμ̃

∫
T

φ dμ̃

∣∣∣∣
≤ Cϕ̃q ,φe

−bp = Cϕ̃q ,φe
bq/N0(e−b/N0)n.
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If we take Cϕ,φ = max
q

{Cϕ̃q ,φe
bq/N0} and replace b with b/N0, then we have proved

exponential decay of correlations in the case f̈ > 0.

Next, we prove the global global mixing property for the original collision map F .

Proof of Theorem 8. Under the assumptions 1–5, the limit map F̃∞ satisfies the conditions
of [3] and thus it admits a Young tower with exponential tail. We recall from §3.2 that F̃∞
well approximates the original collision map F at infinity. Therefore, by Theorems 2.4 and
2.9 in [14], F is global global mixing.

6.4. Proof of intermediary lemmas. In this section we prove the lemmas stated in §6.2.
We start with the distortion control.

Proof of Lemma 6.1. We parametrize the unstable curve W as v = ψ(t) for some smooth
function ψ such that ψ ′(t) ∈ [2k, 2k + g/2] and ψ ′′ is bounded.

For x, y ∈ W , |log JW(x)− log JW(y)| ≤ max
z∈W |(d/dz) log JW(z)||x − y|.

For z ∈ W , we take w = (1, ψ ′(t)) ∈ TzW. Then

JW(z) = ‖dzF̃∞w‖
‖w‖ = 1√

1 + ψ ′(t)2

(
1 + 4k2

1 + ψ ′(t)2
(

4
g2 +

(
1 + 4k1

g

)2)

+ 2ψ ′(t)
(

2
g

+ 2k1

(
1 + 4k1

g

)))1/2

,

where k1 = f̈ (F̃∞z). Hence,

log JW(z) = 1
2

log
(

1 + 4k2
1 + ψ ′(t)2

(
4
g2 +

(
1 + 4k1

g

)2)

+ 2ψ ′(t)
(

2
g

+ 2k1

(
1 + 4k1

g

)))
− 1

2
log(1 + ψ ′(t)2). (5)

We note that each term inside the logarithms in (5) is greater than one and has bounded
derivatives. Thus, |(d/dz) log JW(z)| ≤ C for some constant C depending only on F̃∞
and the curvature bound.

Besides the above distortion bound, we have the following enhanced estimate. Now we
assume further that W ∩ S−

n = ∅.
We denote xn = F̃−n∞ x, yn = F̃−n∞ y and Wn = F̃−n∞ W . Then

|log JWF̃−n∞ (x)− log JWF̃−n∞ (y)| ≤
n−1∑
m=0

|log JWmF̃−1∞ (xm)− log JWmF̃−1∞ (ym)|

≤
n−1∑
m=0

|Wm| max
zm∈Wm

∣∣∣∣ d

dzm
log JWmF̃−1∞ (zm)

∣∣∣∣.
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But
d

dzm
log JWmF̃−1∞ (zm) = dzm+1

dzm

d

dzm+1
log

1

JWm+1 F̃∞(zm+1)

= − 1

JWm+1 F̃∞(zm+1)

d

dzm+1
log JWm+1 F̃∞(zm+1).

Observe that JWm+1 F̃∞(zm+1) is bounded. Next,

dvm

dtm
= 2kmdtm−1 + (4km/g + 1) dvm−1

dtm−1 + 2
g
dvm−1

= 2km + (4km/g + 1)(dvm−1/dtm−1)

1 + (2/g)(dvm−1dtm−1)
= 2km + g/2 − g/2

1 + (2/g)(dvm−1/dtm−1)
.

Therefore,

ψ ′′
m = 2

...
f (tm)− ψ ′′

m−1

(1 + (2/g)ψ ′
m−1)

3 ,

which implies that

|ψ ′′
m| ≤ 2

...
fmax + θ |ψ ′′

m−1|,
where θ := 1/(1 + 4kmin/g)

3 < 1. Iterating, we obtain

|ψ ′′
m| ≤ 2

...
fmax

1 − θ
+ θm|ψ ′′

0 |. (6)

Hence, the curvature of the images Wm remains bounded and |(d/dzm+1) log JWm+1

F̃∞(zm+1)| is bounded. Thus,

|log JWF̃−n∞ (x)− log JW F̃−n∞ (y)| ≤ C′′
n−1∑
m=0

|Wm| ≤ C′′
n−1∑
m=0

|W |
�m

≤ C′|W |,

where C′ depends only on F̃∞ and the curvature bound.

Next, we prove the complexity bound following an approach of [9].

Proof of Lemma 6.2. Suppose that z is a branching point of S+
n (cf. Figure 2). We take a

small neighborhood of z and cut it into four quadrants Q by vertical and horizontal lines
through z. Denote by kn(z)|Q the number of sectors cut out by S+

n intersecting non-trivially
with Q.

We are only interested in the active quadrants, that is, the quadrants in the northwest
and southeast, because the tangent lines to the singularity curves S+

n have negative slopes
and the inactive quadrants (in the northeast and southwest) remain untouched by them and
thus do not contribute to the complexity growth.

Denote by {Vi} the sectors cut out by S+. Note that S+ = {t̃1 = 0} and hence there
are at most two sectors cut out by S+ in a quadrant. By further cutting horizontally and
vertically, we might assume that each Vi ⊆ Q.
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S+n

z

Q

FIGURE 2. A branching point and its sectors.

t̃1 = 0

z

QNW

V2

V1
F̃�

t̃

ṽ

z�

w�w

FIGURE 3. Northwest quadrant for z ∈ {t̃1 = 0}.

We denote V ′
i = F̃∞(Vi), z′i = F̃∞(zi) (this is defined by continuity, that is, the limit

of F̃∞w as Vi � w → z) and kn(z)|Q = ∑
i kn−1(z

′
i )|V ′

i (cf. Figure 3).
If z /∈ S+, then i = 1 and kn(z)|Q = kn−1(z

′)|V ′.
If z ∈ S+, then i = 2 and we claim that at most one image V ′

i of the sectors Vi remains
active, so that in both cases we have

kn(z)|Q =
∑
i

kn−1(z
′
i )|V ′

i

≤ 1 + kn−1(z
′
i )|V ′

i (V ′
i is the only active image)

≤ 3 + kn−1(z
′
i )|Q′

i (by further cutting V ′
i horizontally and vertically).

Thus, kn(z)|Q ≤ 3n+ 2 implies that kn(z) ≤ 6n+ 4, which is our desired complexity
bound.

Now we prove our claim. Suppose that z ∈ {t̃1 = 0}.
Recall that t̃1 = t̃0 + (2ṽ0/g) (mod 1), ṽ1 = ṽ0 + 2ḟ (t̃1) (mod g).
Since z ∈ {t̃1 = 0}, the t̃-coordinate of its images z′ is zero, that is, t̃ (z′i ) = 0 (i = 1, 2).

We pick w ∈ V1 sufficiently close to z; then the t̃-coordinate of its image w′ is positive
since w is at the right-hand side of the singularity line {t̃1 = 0}. Also, since we assume
that f̈ > 0, ḟ is increasing and hence the ṽ-coordinate of its image w′ is larger than that
of z′. This means that the image V ′

1 = F̃∞(V1) is inactive.
Similarly, we can show that the lower one to the left of the singularity line S+ in the

southeast quadrant becomes inactive after being mapped by F̃∞.

Finally, we estimate the Jacobian of the holonomy map.
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Proof of Lemma 6.4. It follows from classical results in [1, 27] that the holonomy map is
absolutely continuous and its Jacobian is given by

J h(x) =
∞∏
j=0

JWj (xj )
JW̄j (x̄j )

,

where Wj/W̄j = F̃
j∞W/F̃ j∞W̄ and xj /x̄j = F̃

j∞x/F̃ j∞x̄, respectively. As a result,

log J h(x) =
∞∑
j=0

log JWj (xj )− log JW̄j (x̄j ).

For i = 1, 2, we parametrize the unstable curveWi as v = ψi(t) for some smooth function
ψi such that ψ ′

i ∈ [2k, 2k + (g/2)]. We obtain by (5) that

2|log JWj (xj )− log JW̄j (x̄j )| ≤
∣∣∣∣ log

(
1 + 4k2

j+1 + ψ ′2
j

(
4
g2 +

(
1 + 4kj+1

g

)2)

+ 2ψ ′
j

(
2
g

+ 2kj+1

(
1 + 4kj+1

g

)))
− log

(
1 + 4k̄2

j+1 + ψ̄ ′2
j

(
4
g2 +

(
1 + 4k̄j+1

g

)2)

+ 2ψ̄ ′
j

(
2
g

+ 2k̄j+1

(
1 + 4k̄j+1

g

)))∣∣∣∣
+ |log(1 + ψ ′2

j )+ log(1 + ψ̄ ′2
j )|

≤ Cθ1(|kj+1 − k̄j+1| + |ψ ′
j − ψ̄ ′

j |)+ Cθ2|ψ ′
j − ψ̄ ′

j |
≤ Cθ1(|tj+1 − t̄j+1| + |ψ ′

j − ψ̄ ′
j |)+ Cθ2|ψ ′

j − ψ̄ ′
j |,

where

θ
−1/2
1 =1 + 4k2

min + 4k2
min

(
4
g2 +

(
1 + 4kmin

g

)2)
+ 4kmin

(
2
g

+2kmin

(
1 + 4kmin

g

))
>1,

θ
−1/2
2 = 1 + 4k2

min > 1.

It also follows from (3) that

|ψ ′
j − ψ̄ ′

j | ≤ C|tj − t̄j | + Cθ3|ψ ′
j−1 − ψ̄ ′

j−1|
≤ C|tj − t̄j | + Cθ3|tj−1 − t̄j−1| + Cθ2

3 |ψ ′
j−2 − ψ̄ ′

j−2|
· · ·
≤ C|tj − t̄j | + Cθ3|tj−1 − t̄j−1| + · · · + Cθ

j−1
3 |t1 − t̄1| + Cθ

j

3 |ψ ′
0 − ψ̄ ′

0|
≤ C

|t0 − t̄0|
�n

+ Cθ3
|t0 − t̄0|
�j−1 + · · · + Cθ

j−1
3

|t0 − t̄0|
�

+ Cθ
j

3 |ψ ′
0 − ψ̄ ′

0|
≤ Cjθ

j

4 |t0 − t̄0| + Cθ
j

3 |ψ ′
0 − ψ̄ ′

0|,
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where θ−1/2
3 = 1 + 4kmin/g > 1, θ4 = max{θ3, �−1} < 1 and� is the minimal expansion

rate of unstable curves. Consequently,

|log JWj (xj )− log JW̄j (x̄j )| ≤ Cj�j |t0 − t̄0| + C�j |ψ ′
0 − ψ̄ ′

0|, (7)

where � = max{θ1, θ2, θ3, θ4} < 1.
Finally, we are ready to estimate the Jacobian. Observe that s+(x, y) = s+(x̄, ȳ) since

each pair (x, x̄), (y, ȳ) is connected by its corresponding stable manifold. Then

|log J h(x)− log J h(y)|

≤
∞∑
j=0

|log JWj (xj )− log JW̄j (x̄j )− log JWj (yj )+ log JW̄j (ȳj )|

≤
∑

j<s+(x,y)

(|log JWj (xj )− log JWj (yj )| + |log JW̄j (x̄j )− log JW̄j (ȳj )|)

+
∑

j≥s+(x,y)

(|log JWj (xj )− log JW̄j (x̄j )| + |log JWj (yj )− log JW̄j (ȳj )|)

≤ C
∑

j<s+(x,y)

(|xj − yj | + |x̄j − ȳj |)+ C
∑

j≥s+(x,y)

j�j (|x0 − x̄0| + |y0 − ȳ0|)

+�j(|ψ ′(x0)− ψ̄ ′(x̄0)| + |ψ ′(y0)− ψ̄ ′(ȳ0)|)
≤ C

∑
j<s+(x,y)

�−j (|xs+(x,y) − ys+(x,y)| + |x̄s+(x,y) − ȳs+(x,y)|)

≤ C�−s+(x,y)(|xs+(x,y) − ys+(x,y)| + |x̄s+(x,y) − ȳs+(x,y)|)
+ C�s+(x,y)(|x0 − x̄0| + |y0 − ȳ0| + |ψ ′(x0)− ψ̄ ′(x̄0)| + |ψ ′(y0)− ψ̄ ′(ȳ0)|)

≤ C�s+(x,y),

where the sum of small indices j < s+(x, y) is controlled by the distortion estimate from
Lemma 6.1 and the sum of large indices j ≥ s+(x, y) is controlled by (7).

7. Escaping and bounded orbits
Theorem 5 shows that the escaping orbits take up a null set. However, in this section we
show that the escaping orbits do exist and so do the bounded orbits.

We introduce the notion of proper standard pair. A standard pair (W , μW) consists of
an unstable curve W and a regular probability measure μW supported on W , that is, μW
is absolutely continuous and has a dynamically Hölder density. We say that a standard pair
is proper if there exists a large constant Cp bounding the following quantity:

ZW := sup
ε

μW {r0 < ε}
ε

.

It is easy to see that in our case μW is the normalized Lebesgue measure on the unstable
curve and that ZW = 2/|W |, so any unstable curve W longer than δ2 = 2/Cp endowed
with Lebesgue measure is a proper standard pair. We also observe that δ2 can be made
arbitrarily small by choosing Cp large. Therefore, by Theorem 3 and Lemmas 2.2 and 2.3
in [13], we have the following central limit theorem for all proper standard pairs.
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PROPOSITION 7.1. There exists δ2 � 1 such that on any unstable curve W with |W | > δ2

we have the following central limit theorem for dynamically Hölder observables, that is,

1√
n

n−1∑
i=0

ϕ ◦ F̃ i∞
dist
⇀ N (0, σ 2

ϕ ),

where ϕ is dynamically Hölder with zero average,
∫
T
ϕ dμ̃ = 0.

Now we prove Theorem 7.

Proof of Theorem 7. Let us denote (t∞n , v∞
n ) = Fn∞(t0, v0) and (tn, vn) = Fn(t0, v0).

First we recall from §5 that the energy change γ in the limit map F∞ on the cylinder
has zero average. Moreover, γ is dynamically Hölder as it is piecewise C1 and its
discontinuities are located exactly on S+. Therefore, by Proposition 7.1, there exist n1, A
such that for every unstable curve W longer than δ2 and any n ≥ n1,

PW(v
∞
nN0

> v0 + A
√
nN0) >

1
3 ,

where N0 is the constant from Lemma 6.3.
By Lemma 6.5, if δ2 is sufficiently small, then there exists n2 such that for any n ≥ n2,

PW(rnN0 < 4δ2) <
1
15 .

We take n0 = max{n1, n2}.
We know from §3.2 that the limit map F∞ well approximates the original collision

map F for large velocity with an error of order O(v−1
0 ) on each continuity component of

F
n0N0∞ W ; thus, we can choose v∗ � 1 so large that if v0 > v∗ everywhere on W , then we

have

PW(vn0N0 > v0 + A
√
n0N0, rn0N0 > 4δ2) >

1
4 .

By the estimate above, at least one component W1 ⊂ F
n0N0∞ W contains a segment W̄1

longer than δ2 and vn0N0 > v0 + A
√
n0N0 holds everywhere on W̄1. By repeating the

argument on W̄1, we get another component W2 ⊂ F
n0N0∞ W̄1 containing a segment W̄2

longer than δ2 and the velocity increases by another A
√
n0N0. Inductively, we construct

an escaping orbit.
Similarly, we can find B, n′

0, v′∗, δ′2 such that if we start with an unstable curve W with
|W | > δ′2 and initial velocity v0 > v′∗ everywhere onW , then at least one componentW1 ⊂
F
n′

0N0∞ W contains a segment W̄1 longer than 2δ′2 and v0 < vn′
0N0 < v0 + B

√
n′

0N0 holds

everywhere on W̄1. Repeating the argument in the energy-decreasing direction, we can

show that at least one component W2 ⊂ F
n′

0N0∞ W̄2 contains a segment W̄2 longer than

2δ′2 and vn′
0N0 − B

√
n′

0N0 < v2n′
0N0 < vn′

0N0 holds everywhere on W̄2. We note that v0 −
B

√
n′

0N0 < v2n′
0N0 < v0 + B

√
n′

0N0 holds everywhere on W̄2. One of the events

{v0 − B

√
n′

0N0 < v2n′
0N0 < v0}, {v0 < v2n′

0N0 < v0 + B

√
n′

0N0}
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has probability greater than or equal to 1/2; we might assume without loss of generality
that the former is true. Then there exists a segment W̄ ′

2 ⊂ W̄2 longer than δ′2 such that

v0 − B

√
n′

0N0 < v2n′
0N0 < v0 holds everywhere on W̄ ′

2. By repeating the argument with

W̄ ′
2 in the place of W , we construct a bounded orbit whose velocity remains in [v0 −

B

√
n′

0N0, v0 + B

√
n′

0N0].

8. Conclusions
In this paper, we have studied a piecewise C3-smooth Fermi–Ulam model in a constant
potential field. The collision map F is well approximated by the limit map F∞ for large
velocities; F∞ covers a map F̃∞ on a torus. For admissible wall motions we proved
ergodicity, exponential decay of correlations and a central limit theorem for dynamically
Hölder observables. When our assumptions fail, there are counterexamples in the class of
analytic periodic platform motions by Pustylnikov [24] where KAM islands exist for the
limit map and the original system possesses a positive-measure set of escaping orbits. The
ergodic and statistical properties of the limit map F̃∞ established here in turn imply that the
escaping set has zero measure and the typical behavior of the original collision dynamics
F is recurrent, but escaping and bounded orbits still exist at arbitrarily high energy level.

It is also interesting to study long-time evolution of the energy distribution for typical
high-velocity trajectories (cf. [5, 8] for similar results for other systems). Besides, we
note that our results do not fully address the behavior of low-energy orbits. The problem
becomes subtle when we come to the low-energy region as two consecutive collisions
can happen in an arbitrarily short time interval, causing the system to be non-uniformly
hyperbolic. In the future, we hope to establish ergodicity for the collision map F . This
would imply in particular that almost every orbit is oscillatory, so that the energy eventually
comes close to any given value.
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