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GPS applications such as Precise Point Positioning (PPP) require the availability of precise
ephemeris at high rate. To support these applications, several institutions such as the

International GNSS Service (IGS) have developed precise orbital service. Unfortunately,
however, the data rate of such precise orbits is usually limited to 15 minutes. To overcome
this problem, a number of orbital interpolation methods are proposed. This paper examines
the performance of four interpolation methods for IGS precise GPS orbits, namely

Lagrange, Newton Divided Difference, Cubic Spline and Trigonometric interpolation.
In addition, the paper discusses a new approach, which utilizes the residuals between the
broadcast and precise ephemeris to generate a high density precise ephemeris. It is shown

that the new approach produces better results than previously reported orbital interpolation
accuracy.
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1. INTRODUCTION. Some applications, such as studies of the crustal
dynamics of the Earth, require more precise ephemeris data than the broadcast
ephemeris. The Precise Point Positioning (PPP) technique has recently evolved,
which also requires the availability of precise ephemeris (as well as satellite clock
corrections). To support these applications, several institutions (e.g., the Inter-
national GNSS Service (IGS), formerly International GPS Service) have developed
post-mission precise orbital services. Precise ephemeris data is based on GPS data
collected at a global GPS network coordinated by the IGS. At present, IGS precise
ephemeris data is available to users with some delay, which varies from 3 hours for
the observed half of the IGS ultra-rapid orbit, to 17 hours for the rapid orbit, to
about 13 days for the most precise IGS final orbit (http://igscb.jpl.nasa.gov/igscb/
resource/igssheet.pdf). The three types of precise orbits are referred to the ITRF
reference system and have accuracies better than 5 cm. However, they differ in the
accuracy of the satellite clock corrections. Users requiring real-time precise orbit
data can use the predicted half of the IGS ultra-rapid orbit data, which are accurate
to about 10 cm.

IGS precise orbits are available at a typical rate of 15 min. Unfortunately,
many GPS applications require precise orbits at higher rates. Several methods of
interpolation have been widely used to generate GPS positions and velocities at
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intermediate points. Previous studies based on the Lagrange method were used by the
US National Geodetic Survey (NGS) (Remondi, 1991; Schueler, 1998). Polynomial
and trigonometric interpolation were conducted by Schenewerk (2003). Lagrange,
Chebyshev and trigonometric were used by Feng and Zheng (2005). In this paper, the
24-hour GPS precise orbit is used to generate a higher density orbit using four
interpolation methods, namely Lagrange, Newton Divided Difference, Cubic Spline
and Trigonometric Methods. Tests to determine the optimal number of terms that
can achieve the best accuracy were conducted. In view of these tests, algorithms were
designed and implemented. This paper also devises a new approach to obtain a high
density precise ephemeris by means of the broadcast ephemeris. Unlike previous work,
which interpolates the actual GPS orbit, the new approach interpolates the residuals
between the broadcast and precise orbits using a Lagrange interpolation method.
It is shown that the new approach produces better results within the two-hour
broadcast ephemeris record than previously reported orbital interpolation accuracy.

2. PROPOSED INTERPOLATION METHODS.
2.1. Lagrange Interpolation Method. The Lagrange formula is an algebraic ex-

pression that can be used to fit a particular data set to a certain polynomial (whose
degree is equal to the number of data points) such that it returns the exact value of the
function at each data point. Let f0, f1, f2, …, fn be the values of a given data at times
t0, t1, t2, …, tn, respectively. The approximated value of f, denoted by p(t), at any time
t is given by (Spiegel, 1999):

p(t)=a0f0+a1f1,+a2f2,+ � � �+anfn=
Xn
i=0

aifi (1)

where:

ai=
(txt0)(txt1) � � � (txtix1)(txti+1) � � � (txtn)

(tixt0)(tixt1) � � � (tixtix1)(tixti+1) � � � (tixtn)
(2)

Since ai coefficient is a function of t, it can also be referred to as Li(t) which is the
Lagrange operator. Now, substituting t by t0, t1, t2, …. tn in equation (2) we get :

ai=Li(t)=
1 for t=ti
0 otherwise

� �
(3)

Going back to equation (1) and substituting again t by t0, t1, t2, …. tn we get :

p(t0)=f0, p(t1)=f1, p(t2)=f2, � � � , p(tn)=fn (4)

2.2. Newton Divided Difference. The Newton Divided Difference formula is
another polynomial expression of a given data set. Similar to Lagrange, Newton
Divided Difference returns the exact value of the function at every data point. This
formula is termed divided difference because its coefficients involve division of differ-
ences. The Newton Divided Difference formula is given, for a given data set (ti,fi), by
(Spiegel, 1999) :

p(t)=a0+a1(txt0)+a2(txt0)(txt1)+a3(txt0)(txt1)(txt2)

+an(txt0 )(txt1) � � � (txtnx1)
(5)

444 HAMAD YOUSIF AND AHMED EL-RABBANY VOL. 60

https://doi.org/10.1017/S0373463307004250 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463307004250


where: a0, a1, a2, …, an are coefficients ; and p(t) is the approximated value at any time
t. The coefficients a0, a1, a2, …, an can be determined recursively by substituting
t0, t1, t2, …, tn as follows:

a0=p(t0) (6)

a1=
p(t1)xa0
(t1xt0)

(7)

a2=
p(t2)xa0xa1(t2xt0)

(t2xt0)(t2xt1)
(8)

..

.

an=
p(tn)xa0xa1(tnxt0)xa2(tnxt0)(tnxt1)x � � �

(tnxt0)(tnxt1)(tnxt2) � � � (tnxtnx1)
(9)

2.3. Cubic Spline Interpolation. In this method the data set is represented with a
3rd degree polynomial piecewisely (i.e. the data is divided into sections and each
section is represented by a cubic polynomial). For example if we have a data set (ti,fi),
then the Cubic Spline can be defined as follows (Press et al., 2002) :

S(t)=

s0(t) t0<t<t1
s1(t) t1<t<t2
s2(t) t2<t<t3

..

.

si(t) ti<t<ti+1

..

.

snx1(t) tnx1<t<tn

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

(10)

where:

si(t)=ait
3+bit

2+cit+di (11)

Each section of data has different coefficients ai, bi, ci and di. These four coefficients
can be determined as follows:

Substitute t=ti and t=ti+1

si(ti)=aiti
3+biti

2+citi+di (12)

si(ti+1)=ait
3
i+1+bit

2
i+1+citi+1+di (13)

Differentiating si(t) and substituting t=ti and t=ti+1

ski(ti)=3aiti
2+2biti+ci (14)

ski(ti+1)=3ait
2
i+1+2biti+1+ci (15)

Now using the numerical differentiation formula:

ski(ti)=
fi+1xfi
ti+1xti

(16)
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and ski(ti+1)=
fi+2xfi+1

ti+2xti+1
(17)

Equations (12) to (17) can be solved simultaneously to determine the coefficients
ai, bi, ci and di of each section.

2.4. Trigonometric Interpolation. The trigonometric formula is a harmonic rep-
resentation of a given data set. This representation is mainly convenient for the
data that has a periodic nature, which is the case for precise data in the inertial frame.
The trigonometric formula for a given data set (ti,fi), is given by (Spiegel, 1999) :

p(t)=
a0
2
+

XM
n=1

an cos
2pn

T
t

� �
+bn sin

2pn

T
t

� �� �
(18)

where:
p(t) is the approximated value at time t
an, bn are coefficients
T is the period of f
N is the number of colocation points
M is the number of truncated terms (ideally M=‘)

To determine an multiply both sides by cos 2pm
T

� �
t and take the integration over one

period:

Z T

0
p(t) cos

2pm

T

� �
t dt=

Z T

0

a0
2

cos
2pm

T

� �
tdt

+
XM
n=1

Z T

0
an cos

2pn

T
t

� �
cos

2pm

T

� �
tdt

+
XM
n=1

Z T

0
an sin

2pn

T
t

� �
cos

2pm

T

� �
tdt

(19)

The first integration on the right hand side is equal to 0. Moreover according to the
orthogonality theorem:

Z T

0
sin

2pn

T
t

� �
cos

2pm

T

� �
tdt=0 (20)

Z T

0
cos

2pn

T
t

� �
cos

2pm

T

� �
tdt=

0 mln
T
2 m=n

� �
(21)

making use of equations (19) and (20) we get :

an=
2

T

Z T

0
p(t) cos

2pn

T

� �
dt (22)

similarly:

bn=
2

T

Z T

0
p(t) sin

2pn

T

� �
dt (23)
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Equations (22) and (23) can be reformulated into the following numerical form:

an=
2

N

XN
k=1

fk cos
2pk

T
tk

� �
(24)

bn=
2

N

XN
k=1

fk sin
2pk

T
tk

� �
(25)

3. RESULTS AND DISCUSSION. To assess the performance of the vari-
ous interpolation methods, a test data set was acquired from the US National
Geodetic Survey (NGS), which is available at http://www.ngs.noaa.gov/gps-
toolbox/sp3intrp. The data set consists of the following files :

a. IN_15MIN.200 (A 24-hour precise orbit file spaced at 15 min in the inertial
reference frame) ;

b. ECF_15MIN.200 (same as a but the orbital coordinates refer to the ECEF
reference frame) ;

c. IN_5MIN.200 (same as a but the data interval is 5 minutes) ;
d. ECF_5MIN.200 (same as b but the data interval is 5 minutes).

The four files (a to d) were generated from the IGS sp3 rapid ephemeris (igr11472.sp3)
for January 1, 2002 [http://igscb.jpl.nasa.gov]. The first two files (a and b) were used
as input for each interpolation function, while the third and fourth files (c and d) were
used as sources to which the interpolation results were compared.

Upon examination of the interpolation results, it was found that the following
properties are shared by all interpolation methods :

& Having too few colocation points produces an unreliable interpolation output.
On the other hand, having relatively many points is expected to improve the
result, but to some limit.

& The accuracy degrades noticeably near the end points and tends to improve as
the interpolator moves towards the centre.

3.1. Lagrange Interpolation Results. As mentioned previously the interpolation
accuracy enhances as the number of points increases. The accuracy also assumes its
maximum at a specific number of terms after which it continues to degrade and
eventually become unstable beyond a certain limit. Trying to investigate the optimum
number of terms that gives the best accuracy, we started interpolation by taking the
whole number of points for the 24-hour trajectory of 96 points spaced at 15 minutes
intervals. We found that 96 points are too many to give an acceptable result as shown
in Figure 1.

Taking smaller portions of data with different number of colocation points (8, 9, 10
and 11 points) we found that the best accuracy was achieved when n=9, as shown in
Figures 2 and 3 (notice the difference in vertical scales of both figures). We also
noticed that the accuracy degrades slightly near the boundaries for all figures.
To overcome this problem, we segmented the 24-hour orbit into 23 overlapping
portions; each has 9 terms as shown in Figure 4.
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The segmentation scheme is designed in such a manner that each segment starts at
the midpoint of the previous segment. The last segment however starts at point 88
(instead of point 89) to end at point 96 in order to complete the desired 9 terms.
Otherwise we would have been left with only 8 terms for the last segment which would
lead to a relatively lower accuracy. The idea behind having overlapped segments is
to avoid producing spikes near the endpoints, as shown in Figures 2 and 3. Since
the accuracy of interpolation assumes it is best at the middle, values near the end
points are replaced by those of the mid adjacent segments. A comparison between

Figure 1. Resulting error when taking the whole 24-hour data (i.e., 96 points) to build

96 Lagrange interpolating terms.

Figure 2. Resulting error when taking 11 Lagrange terms.

448 HAMAD YOUSIF AND AHMED EL-RABBANY VOL. 60

https://doi.org/10.1017/S0373463307004250 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463307004250


partitioned and overlapped segments is illustrated in Table 1 and Figures 5 and 6.
From these table and figures the accuracy enhancement in the overlapping case is
easily observed.

Applying Lagrange interpolation using the previous scheme for both inertial and
ECEF coordinates, Figures 7 and 8 show the interpolation error obtained for PRN01
(notice the difference in vertical scales of both figures). The interpolation accuracy of
inertial orbit is better than that of ECEF, the statistics in Table 2 also depicts this fact
numerically.

3.2. Newton Divided Difference Interpolation Results. Using the previously dis-
cussed algorithm, which can be applied to any other interpolation function, we found
that the Newton interpolation result is completely identical to that of Lagrange for
both inertial and ECEF orbits as shown in Figures 9 and 10.

3.3. Cubic Spline Interpolation Results. The Cubic Spline interpolation resulted
in a very low accuracy as seen from Figure 11. Perhaps, the reason is that the cubic
spline is a polynomial of order 3 which is not suitable to represent the periodic nature
of the GPS orbit.

3.4. Trigonometric Interpolation Results. The periodic nature of the GPS orbit in
the inertial reference frame makes it reasonable to employ the periodic trigonometric

Figure 3. Resulting error when taking 9 Lagrange terms.

Figure 4. Segmentation scheme – the 24-hour data is segmented into 23 overlapping segments of

9 terms each.

NO. 3 ASSESSMENT OF SEVERAL INTERPOLATION METHODS 449

https://doi.org/10.1017/S0373463307004250 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463307004250


interpolation. The algorithm of applying trigonometric interpolation method for
GPS orbit was designed by Mark Schenewerk (2003). Using different values of M in
Equation 18 to determine the number of terms that can give the best accuracy, it is

Figure 5. Interpolation error when the GPS orbit is partitioned into smaller segments without

overlapping.

Figure 6. Interpolation error when the GPS orbit is segmented into overlapping segments.

Table 1. Comparison between interpolation errors generated by partitioned vs. overlapping segmentation.

Partitioned vs.

Overlapped

MEAN (cm) Standard Deviation (STD) (cm)

dx dy dz dx dy dz

Partitioned Segments 0.0030 0.0139 0.0051 0.1064 0.1720 0.1366

Overlapped Segments 0.0025 0.0067 0.0037 0.0451 0.0756 0.0405
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found that M=9 terms is the one that satisfies this objective. The statistics shown in
Table 3 justify the choice of M=9.

The results of interpolating inertial and ECEF orbits using 9 terms are shown
in Figures 12 and 13, respectively. Again the transformation error adds up to the
interpolation error in case of ECEF orbit.

4. INTERPOLATION USING THE BROADCAST EPHEMERIS.
Previous discussion focused on the interpolation of the actual precise orbit using

Figure 7. Lagrange interpolation error for inertial GPS orbit.

Figure 8. Lagrange interpolation error for ECEF GPS orbit.
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Figure 9. Newton Divided Difference interpolation error for inertial GPS orbit.

Figure 10. Newton Divided Difference interpolation error for ECEF GPS orbit.

Table 2. Comparison between inertial vs. ECEF Lagrange interpolation error.

INERTIAL

vs. ECEF

MEAN (cm) STD (cm) MAX (cm)

dx dy dz dx dy dz dx dy dz

INERTIAL 0.0025 0.0067 0.0037 0.0451 0.0756 0.0405 0.4127 0.6374 0.2233

ECEF 0.0016 0.0120 0.0034 0.1548 0.2501 0.0623 1.5216 3.3753 0.4276
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four different interpolation methods. However, as a result of the high GPS altitude,
interpolating the actual orbit is expected to produce a relatively large interpolation
error. To overcome this problem, the residuals between the broadcast and precise
orbits are formed and interpolated.

The broadcast navigation file, which corresponds to the test data set for January 1,
2002, was downloaded from the Crustal Dynamics Data Information System server
(ftp://cddis.gsfc.nasa.gov/pub/gps/gpsdata/brdc/). The orbital parameters of PRN01
were extracted and used to calculate the broadcast ephemeris at 15 minutes intervals.
The residuals between the broadcast ephemeris and the precise rapid ephemeris of

Figure 11. Cubic Spline interpolation error for GPS inertial orbit.

Figure 12. Trigonometric interpolation error for GPS inertial orbit.
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Figure 13. Trigonometric interpolation error for GPS ECEF orbit.

Figure 14. Interpolation error using the broadcast ephemeris.

Table 3. Statistics of trigonometric interpolation using different number of terms.

Number

of Terms

MEAN (cm) STD (cm) MAX (cm)

dx dy dz dx dy dz dx dy dz

5 0.0024 0.0210 0.0115 0.2083 0.4020 0.4018 1.0 1.3 1.7

7 0.0017 0.0028 0.0024 0.046 0.0794 0.0606 0.4 0.3 0.4

9 0.0010 0.0035 0.0007 0.0499 0.0841 0.0654 0.3 0.5 0.4

11 0.00 0.0050 0.0030 0.0621 0.0973 0.0827 0.6 0.9 0.7

13 0.0017 0.0084 0.0038 0.1186 0.1465 0.1016 1.3 1.9 1.3
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January 1, 2002 were computed, and then interpolated at 5 minutes intervals using
Lagrange interpolation method. The orbital parameters were used again to calculate
the broadcast ephemeris but this time at 5 minutes intervals. The broadcast ephemeris
at 5 minutes intervals were then added to their respective interpolated residuals to
give the ECEF coordinates at 5 minutes intervals. The output was then compared to
the reference ECEF coordinates and the errors for the first 2 hours were plotted in
Figure 14. As can be seen from Figure 14, the maximum interpolation error is about
x1.6 mm, which shows that this approach produces better results than the previous
approaches. With the improvement in the GPS broadcast ephemeris as part of the
modernization programme, it is expected that the use of more recent navigation files
would further reduce the interpolation error. It should be mentioned, however, that
as the ephemeris record is valid for two hours only, a larger interpolation error would
be expected whenever a new ephemeris record is used.

5. CONCLUSIONS. This paper examined the performance of four different
interpolation methods, namely Lagrange, Newton Divided Difference, Cubic Spline
and Trigonometric. Apart from Cubic Spline, the other three methods produce a
relatively good accuracy. The structure of the Cubic Spline, which is essentially a
third degree polynomial, has made it incapable of representing the GPS orbit.
Lagrange and Newton Divided Difference demonstrate completely identical results
in terms of interpolation error. Due to the periodic nature of the GPS orbit, the
trigonometric has yielded the best accuracy of all four interpolation methods.
One more reason that enhances the accuracy of the trigonometric method is that
the 24-hour orbit was well centred among sufficient data by taking several hours
from the previous and subsequent days. The interpolation via the new approach,
which uses the residuals between the broadcast and precise ephemeris, produced
the best results within the two-hour ephemeris record. The maximum interpolation
error with the new approach was about 1.6 mm.
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