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A powerful, easy-to-use analytic technique for nonlinear problems, the homotopy
analysis method, is employed to give analytic solutions of magnetohydrodynamic
viscous flows of non-Newtonian fluids over a stretching sheet. For the so-called
second-order and third-order power-law fluids, the explicit analytic solutions are given
by recursive formulas with constant coefficients. Also, for real power-law index and
magnetic field parameter in a quite large range, an analytic approach is proposed. All
of our analytic results agree well with numerical ones. In particular, a simple analytic
formula of the dimensionless velocity gradient at the wall is found, which is accurate
for all real power-law indices and magnetic field parameters. This analytic formula
can give sufficiently accurate results for the skin friction on the moving sheet that it
would find wide application in industries. Physically, they indicate that the magnetic
field tends to increase the skin friction, and that this effect is more pronounced for
shear-thinning than for shear-thickening fluids.

1. Introduction
Investigations of boundary layer flows of viscous fluid due to a stretching sheet

have important practical applications in chemical and metallurgy industries. To
the best of the author’s knowledge, it was first studied by Sakiadis (1961) and then
followed by many other researchers such as Erickson, Fan & Fox (1966), Crane (1970),
McCormack & Crane (1973), McLeod & Rajagopal (1987). The boundary-layer flows
of non-Newtonian fluids due to a stretching plane were investigated by Rajagopal, Na
& Gupta (1984, 1987), Troy et al. (1987), Dandapat & Gupta (1989), Andersson &
Dandapat (1991). Viscous flows due to a moving sheet in electronic-magnetic fields, i.e.
magnetodhydrodynamic (MHD) flows, are relevant to many practical applications in
the metallurgy industry, such as the cooling of continuous strips and filaments drawn
through a quiescent fluid and the purification of molten metals from non-metallic
inclusions. MHD flows of Newtonian fluids were investigated by Pavlov (1974),
Chakrabarti & Gupta (1979), Vajravelu (1986), Takhar, Raptis & Perdikis (1987),
Andersson (1992, 1995). To the author’s knowledge, MHD flows of non-Newtonian
fluids were first studied by Sarpkaya (1961) and then followed by Djukic (1973, 1974),
Andersson, Bech & Dandapat (1992), etc.

Consider the flow of an electrically conducting fluid, obeying the power-law model
in the presence of a transverse magnetic field, past a flat sheet lying on the plane
y = 0, the flow being confined to y > 0. Two equal and opposite forces are applied
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190 S.-J. Liao

along the x-axis so that the wall is stretched keeping the origin fixed. The boundary
layer flow is governed by

∂u

∂x
+

∂v

∂y
= 0, (1)

u
∂u

∂x
+ v

∂u

∂y
=

1

ρ

∂τxy

∂y
−

(
σB2

0

ρ

)
u, (2)

where u and v are velocity components in the x- and y-directions, ρ, σ, B0 and τx,y

are the density, electrical conductivity, magnetic field and shear stress, respectively.
The shear stress tensor is defined by the Ostwald–de-Wäle model

τij = 2K(2DklDkl)
(κ−1)/2Di,j , (3)

where

Dij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
denotes the stretching tensor, K is the consistency coefficient and κ is the power-law
index. The boundary conditions are

u = Cx, v = 0 at y = 0 (4)

and

u → 0 as y → +∞, (5)

where C is a positive constant. Under the transformation

ψ =

(
K/ρ

C1−2κ

)1/(κ+1)

x2κ/(κ+1)F (ξ ) (6)

and

ξ = y

(
C2−κ

K/ρ

)1/(κ+1)

x(1−κ)/(1+κ), (7)

where

u =
∂ψ

∂y
, v = −∂ψ

∂x

define the stream function ψ , the governing equation becomes

κ [−F ′′(ξ )]κ−1 F ′′′(ξ ) +

(
2κ

κ + 1

)
F (ξ ) F ′′(ξ ) − F ′2(ξ ) − M F ′(ξ ) = 0, (8)

subject to the boundary conditions

F (0) = 0, F ′(0) = 1, F ′(+∞) = 0, (9)

where the prime denotes differentiation with respect to ξ and M = σB2
0/(ρC) is the

magnetic parameter. The skin friction coefficient Cf at the wall is given by

Cf =
τw

1
2
ρ(Cx)2

= 2[−F ′′(0)]κ
[
(Cx)2−κxκ

K/ρ

]−1/(1+κ)

, (10)

where (Cx)2−κxκ/(K/ρ) is the local Reynolds number based on the sheet velocity Cx.
For details refer to Andersson et al. (1992).

Andersson et al. (1992) numerically solved the nonlinear differential equations (8)
and (9) for seven values of the power-law index in the range 0.4 � κ � 2 and
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Analytic solution of MHD flows of non-Newtonian fluids 191

for five different values of the magnetic field 0 � M � 2. However, to the best
of the author’s knowledge, no analytic results have been reported for κ and M in
general cases. In this paper, an analytic tool for nonlinear problems, namely the
homotopy analysis method (HAM) (Liao 1992), is employed to solve the nonlinear
differential equations (8) and (9). The homotopy analysis method is based on a basic
concept in topology, i.e. homotopy (Hilton 1953) that is widely applied in numerical
techniques (Alexander & Yorke 1978; Chan & Keller 1982; Dinar & Keller 1985;
Grigolyuk & Shalashilin 1991). Unlike perturbation techniques (Cole 1958; Van Dyke
1975; Hinch 1991; Murdock 1991; Nayfeh 2000), the homotopy analysis method is
independent of small/large parameters. Unlike all other reported perturbation and
non-perturbation techniques such as the artificial small parameter method (Lyapunov
1892), the δ-expansion method (Karmishin, Zhukov & Kolosov 1990; Awrejcewicz,
Andrianov & Manevitch 1998) and Adomian’s (1976, 1994) decomposition method,
the homotopy analysis method provides us with a simple way to adjust and control the
convergence region and rate of approximation series. The homotopy analysis method
has been successfully applied to many nonlinear problems such as viscous flows
(Liao 1999a, b), heat transfer (Liao & Campo 2002; Wang et al. 2003), nonlinear
oscillations (Liao & Chwang 1998), nonlinear water waves (Liao & Cheung 2003),
Thomas-Fermi’s atom model (Liao 2003), etc. In particular, by means of the homotopy
analysis method, the author (Liao 2002) gave a drag formula for a sphere in a
uniform stream, which agrees well with experimental results in a considerably larger
region of Reynolds number than those of all reported analytic drag formulas. All of
these successful applications of the homotopy analysis method verify its validity for
nonlinear problems in science and engineering.

In this paper we now employ the homotopy analysis method to solve the MHD
viscous flows of non-Newtonian fluids and propose analytic solutions of (8) and (9)
for κ > 0 and 0 � M � 1000.

2. Analytic solutions for integer power-law index
Physically, the power-law index κ is a positive real number. First, let us consider

the case that κ is a positive integer. When κ = 1, equation (8) becomes

F ′′′(ξ ) + F (ξ ) F ′′(ξ ) − F ′2(ξ ) − M F ′(ξ ) = 0. (11)

This equation has an exact analytic solution (see Pavlov 1974)

F (ξ ) =
1 − exp(−

√
1 + M ξ )√

1 + M
, (12)

which gives

F ′(ξ ) = exp(−
√

M + 1 ξ ) (13)

and

F ′′(0) = −
√

1 + M. (14)

When κ = 2, equation (8) is

−2 F ′′(ξ ) F ′′′(ξ ) +
(

4
3

)
F (ξ ) F ′′(ξ ) − F ′2(ξ ) − M F ′(ξ ) = 0, (15)

and when κ = 3,

3[F ′′(ξ )]2 F ′′′(ξ ) +
(

3
2

)
F (ξ ) F ′′(ξ ) − F ′2(ξ ) − M F ′(ξ ) = 0. (16)
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192 S.-J. Liao

The zero-order deformation equation

Let λ denote a positive constant. Due to the boundary conditions (9) and the known
exact solution (12) for κ = 1, F (ξ ) for any a positive integer κ can be expressed by a
set of base functions

{exp(−n λ ξ ) | n � 0} (17)

in the following form:

F (ξ ) = a0 +

+∞∑
n=1

an exp(−n λ ξ ), (18)

where an is a coefficient. Then, from the above expression and the boundary conditions
(9), it is straightforward to choose

F0(ξ ) =
[1 − exp(−λ ξ )]

λ
(19)

as the initial guess of F (ξ ). Also, due to (18) and the governing equation (8), we
choose

L[Φ(ξ ; q)] =
∂3Φ(ξ ; q)

∂ξ 3
− λ2 ∂Φ(ξ ; q)

∂ξ
, (20)

as our auxiliary linear operator, where q is an embedding parameter. Note that the
auxiliary linear operator L has the property

L [C1 + C2 exp(−λ ξ ) + C3 exp(λ ξ )] = 0. (21)

Furthermore, we define using (8) the nonlinear operator

N [Φ(ξ ; q)] = κ

[
−∂2Φ(ξ ; q)

∂ξ 2

]κ−1
∂3Φ(ξ ; q)

∂ξ 3
+

(
2κ

κ + 1

)
Φ(ξ ; q)

∂2Φ(ξ ; q)

∂ξ 2

−
[
∂Φ(ξ ; q)

∂ξ

]2

− M
∂Φ(ξ ; q)

∂ξ
, (22)

where κ is a positive integer. Then, we construct the zero-order deformation equation

(1 − q) L [Φ(ξ ; q) − F0(ξ )] = � q exp(−lλ ξ ) N [Φ(ξ ; q)] , q ∈ [0, 1], (23)

subject to the boundary conditions

Φ(0; q) = 0,
∂Φ(ξ ; q)

∂ξ

∣∣∣∣
ξ=0

= 1,
∂Φ(ξ ; q)

∂ξ

∣∣∣∣
ξ=+∞

= 0. (24)

When q = 0, it is straightforward to show that the solution of (23) and (24) is

Φ(ξ ; 0) = F0(ξ ). (25)

When q = 1, equations (23) and (24) are respectively the same as (8) and (9), provided

Φ(ξ ; 1) = F (ξ ). (26)

Thus, as q increases from 0 to 1, Φ(ξ ; q) varies from the initial guess F0(ξ ), defined
by (19), to the exact solution F (ξ ) governed by (8) and (9). This kind of continuous
variation is called deformation in topology.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

03
00

48
65

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112003004865


Analytic solution of MHD flows of non-Newtonian fluids 193

Using (25), it is straightforward to expand Φ(ξ ; q) in a power series of the embedding
parameter q as follows:

Φ(ξ ; q) = F0(ξ ) +

+∞∑
m=1

Fm(ξ ) qm, (27)

where

Fm(ξ ) =
1

m!

∂mΦ(ξ ; q)

∂qm

∣∣∣∣
q=0

. (28)

Note that the zero-order deformation equation (23) contains a non-zero auxiliary
parameter �. Thus, Φ(ξ ; q) and Fm(ξ ) are dependent upon this parameter. Obviously,
� also affects the convergence rate and region of the series (27). Assume that � is
chosen so that the series (27) is convergent at q = 1. Then, due to (26) and (27), we
have the relationship

F (ξ ) = F0(ξ ) +

+∞∑
m=1

Fm(ξ ). (29)

The high-order deformation equation

Differentiating the zero-order deformation equations (23) and (24) m times with
respect to q and then dividing them by m! and finally setting q = 0, we have, due to
the definition (28), the mth-order deformation equation

L [Fm(ξ ) − χm Fm−1(ξ )] = � exp(−lλ ξ ) Rm(ξ ), (30)

subject to the boundary conditions

Fm(0) = 0, F ′
m(0) = 0, F ′

m(+∞) = 0, (31)

where

Rm(ξ ) =
1

(m − 1)!

∂m−1N[Φ(ξ ; q)]

∂qm−1

∣∣∣∣
q=0

(32)

and

χm =

{
0 when m � 1,

1 when m � 2.
(33)

Note that Rm(ξ ) is dependent upon the integer power-law index κ . When κ = 1, we
have

Rm(ξ ) = F ′′′
m−1(ξ ) +

m−1∑
n=0

[
Fn(ξ ) F ′′

m−1−n(ξ ) − F ′
n(ξ ) F ′

m−1−n(ξ )
]

− M F ′
m−1(ξ ). (34)

When κ = 2,

Rm(ξ ) =

m−1∑
n=0

[
4Fn(ξ ) F ′′

m−1−n(ξ )/3 − F ′
n(ξ ) F ′

m−1−n(ξ )
]

− MF ′
m−1(ξ ) − 2

m−1∑
n=0

F ′′
n (ξ ) F ′′′

m−1−n(ξ ). (35)
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194 S.-J. Liao

When κ = 3,

Rm(ξ ) =

m−1∑
n=0

[
3Fn(ξ ) F ′′

m−1−n(ξ )/2 − F ′
n(ξ ) F ′

m−1−n(ξ )
]

− M F ′
m−1(ξ )

+ 3

m−1∑
n=0

n∑
j=0

F ′′
j (ξ ) F ′′

n−j (ξ ) F ′′′
m−1−n(ξ ). (36)

Note also that Rm(ξ ) contains the term exp(−λ ξ ). It is found that, when l = 0, the
right-hand side of equation (30) contains the term exp(−λ ξ ). Then, due to (21), the
solution of equation (30) has the term

ξ exp(−λ ξ ),

which disobeys expression (18) however. So, in order to obey (18), we have to choose
l � 1. On the other hand, it is found that, when l � 2, the solution of (30) does not
contain the term

exp(−2λ ξ ),

so that the coefficient of the term exp(−2λ ξ ) cannot be further improved even if
m → +∞. To avoid both these difficulties, we must have

l = 1. (37)

It should be emphasized that we still have freedom to choose a positive value for
λ and a negative value for the auxiliary parameter �. For simplicity we choose λ = 1
in this section for the integer power-law index κ . We will show that the auxiliary
parameter � plays an important role in the homotopy analysis method.

2.1. Solutions when κ = 1

The exact solution (12) can be employed to verify the validity of the foregoing analytic
approach. It is straightforward to solve the linear equations (30) and (31). It is found
that, when κ = 1, Fm(ξ ) governed by (30) and (31) can be expressed by

Fm(ξ ) =

2m+1∑
n=0

am,n exp(−n λ ξ ), (38)

where am,n is a coefficient. Substituting (38) into the mth-order deformation
equations (30) and (31), we have the recursive formulas

am,n = χm χ2m+1−n am−1,n +
� χ2m+2−n (n − 1) [λ2 (n − 1)2 − M] am−1,n−1

λ2n (n2 − 1)

− � (Am,n−1 − χn−1 Bm,n−1)

λ n ( n2 − 1)
(39)

for 2 � n � 2m + 1 and

am,1 = −
2m+1∑
n=2

n am,n, (40)

am,0 = −
2m+1∑
n=1

am,n (41)
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under the definitions

Am,j =

m−1∑
n=0

min{2n+1,j−1}∑
i=max{0,j−2m+2n+1}

(j − i)2 an,i am−n−1,j−i , 1 � j � 2m (42)

and

Bm,j =

m−1∑
n=0

min{2n+1,j−1}∑
i=max{1,j−2m+2n+1}

i(j − i) an,i am−n−1,j−i , 2 � j � 2m. (43)

Due to the initial guess (19), we have the first two coefficients:

a0,0 = 1/λ, a0,1 = −1/λ. (44)

Thus, starting from these two coefficients, we can calculate the coefficients am,n for
m = 1, 2, 3, . . . , 0 � n � 2m + 1 by means of the above recursive formulas. So, we
have the explicit analytic solution

F (ξ ) =

+∞∑
k=0

2k+1∑
n=0

ak,n exp(−n λ ξ ) (45)

for the Newtonian fluid. At the mth-order of approximation we have

F (ξ ) ≈
m∑

k=0

2k+1∑
n=0

ak,n exp(−n λ ξ ), (46)

which gives

F ′(ξ ) ≈ −λ

m∑
k=0

2k+1∑
n=1

n ak,n exp(−n λ ξ ), (47)

F ′′(0) ≈ λ2

m∑
k=0

2k+1∑
n=1

n2 ak,n. (48)

It is found that when κ = 1 the mth-order approximation of F ′′(0) can be expressed
by

F ′′(0) ≈
m∑

n=0

αm,n
1 Mn, (49)

where αm,n
1 is coefficient dependent upon �. Thus, our results contain an auxiliary

parameter �, which plays an important role in the homotopy analysis method. As
verified in the author’s previous publications (Liao & Chwang 1998; Liao 1999 a, b,
2003; Liao & Campo 2002; Liao & Cheung 2003), it is the value of the auxiliary
parameter � which can adjust and control the convergence region and rate of the
series given by the homotopy analysis method. It is found that the convergence region
of above series increases as � tends to zero from below, as shown in figure 1.

A power series of F ′′(0) can be obtained by expanding the exact solution (14) as
follows:

F ′′(0) ≈ 1 +
M

2
− M2

8
+

M3

16
− 5M4

128
+ · · · , (50)

which is convergent in a rather restricted region 0 � M < 2 however, as shown in
figure 1. Employing the traditional Padé technique to the above power series of the
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0 10 20 30 40 50

M

1

2

3

4

5

6

7

8

–F ��(0)

Figure 1. Comparison of F ′′(0) at the 20th-order of approximation given by the homotopy
analysis method with the exact solution (14) and perturbation result (50) when κ = 1.
Symbols: exact solution (14); solid line: perturbation result (50); dashed line: homotopy
analysis approximation when � = −1; dash-dotted line: homotopy analysis approximation
when � = −1/2; dash-dot-dotted line: homotopy analysis approximation when � = −1/4.

physical parameter M , one has the [m, m] Padé approximant

F ′′(0) ≈ −
1 +

m∑
n=1

δm,n Mn

1 +
m∑

n=1

δm,m+n Mn

, (51)

where δm,n is constant. Recently, Liao & Cheung (2003) proposed a so-
called homotopy-Padé method, which is more efficient than the traditional Padé
approximant. From (27), we have the (2m)th-order approximation

∂2Φ(ξ ; q)

∂ξ 2

∣∣∣∣
ξ=0

≈
2m∑
n=0

F ′′
n (0) qn. (52)

Employing the traditional Padé technique to the power series of the embedding
parameter q , we have the [m, m] Padé approximant

∂2Φ(ξ ; q)

∂ξ 2

∣∣∣∣
ξ=0

≈ −
1 +

m∑
n=1

γm,n qn

1 +
m∑

n=1

γm,m+n qn

, (53)
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0 25

M

1

–F ��(0)

50 75 100

2

3

4

5

6

7

8

9

10

11

Figure 2. Comparison of F ′′(0) given by the homotopy-Padé method with the exact solution
(14) and the traditional Padé technique when κ = 1. Filled circles: exact solution (14);
open circles: traditional [10,10] Padé approximation; dashed line: [4,4] homotopy-Padé
approximation; solid line: [6,6] homotopy-Padé approximation.

where γm,n is a coefficient. Setting q = 1 in above series, we obtain using (29) that

F ′′(0) ≈ −
1 +

m∑
n=1

γm,n

1 +
m∑

n=1

γm,m+n

. (54)

It is found that the above [m, m] homotopy-Padé expression can be rewritten as

F ′′(0) ≈ −
1 +

m2∑
n=1


m,n
1 Mn

1 +
m2∑
n=1


m,m2+n
1 Mn

, (55)

where 
m,n
1 (1 � n � 2m2) is constant, which is found to be independent of the

auxiliary parameter �. Note that the traditional Padé approximant analyses results
expressed by physical parameters, which have been obtained by setting q = 1.
However, in the homotopy-Padé method, one first analyses the power series in the em-
bedding parameter q and then sets q = 1. This is the distinction between the tra-
ditional Padé approximant and the homotopy-Padé ones. It is interesting that the
above [m, m] homotopy-Padé approximant contains the term Mm2

while the traditional
[m, m] Padé approximant (51) has only the term Mm. As shown in figure 2, even
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198 S.-J. Liao

n Padé approximant Homotopy-Padé approximant

1 2.42857 3.08333
2 3.03390 3.30134
3 3.23265 3.31605
4 3.92217 3.31661
5 3.30958 3.31662
6 3.31459 3.31662
8 3.31646 3.31662

10 3.31661 3.31662

Table 1. Comparison of the [n, n] homotopy-Padé approximant of −F ′′(0) with the
traditional [n, n] Padé approximant when κ = 1 and M = 10.

0 0.5 1.0 1.5 2.0

0.2

0.4

0.6

0.8

1.0

�

F (�)

F �(�)

Figure 3. Comparison of F (ξ ) and F ′(ξ ) given by the homotopy-Padé technique with the
exact solution (12) and (13) when κ = 1 and M = 10. Filled circles: exact solution (12); open
circles: exact solution (13); solid line: [5,5] homotopy-Padé approximation of F (ξ ); dashed
line: [5,5] homotopy-Padé approximation of F ′(ξ ).

the [4,4] homotopy-Padé approximant gives as accurate an approximation as the
traditional [10, 10] Padé approximant and the [6,6] homotopy-Padé approximant
agrees well with the exact result. Clearly, the homotopy-Padé approximant of −F ′′(0)
converges much faster to the exact result

√
1 + M than the traditional Padé technique,

as shown in table 1 and figures 1 and 2. Similarly, one can employ the homotopy-
Padé technique to obtain more accurate results of F (ξ ) and F ′(ξ ). For example, when
M = 10, the [5,5] homotopy-Padé approximants of F (ξ ) and F ′(ξ ) agree well with the
exact solutions (12) and (13), respectively, as shown in figure 3. It is interesting that
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the numerator and denominator of the homotopy-Padé approximants of F (ξ ) and
F ′(ξ ) are sums of exponential functions of ξ . All of these clearly verify the validity of
the proposed analytic approach and the homotopy-Padé method, although the exact
solution is known when κ = 1.

2.2. Solutions when κ = 2

For the second-order power-law fluid (κ = 2), it is found that Fm(ξ ) governed by (30)
and (31) can be expressed by

Fm(ξ ) =

2m+1∑
n=0

am,n exp(−n λ ξ ). (56)

Substituting this into the mth-order deformation equations (30) and (31), we have the
recursive formula

am,n = χm χ2m+1−n am−1,n − � χ2m+2−n M am−1,n−1

λ2n (n + 1)

− � (4Am,n−1/3 − χn−1 Bm,n−1)

λ n (n2 − 1)
− 2 � λ2 χn−1 Cm,n−1

n (n2 − 1)
(57)

for 2 � n � 2m + 1, and

am,1 = −
2m+1∑
n=2

n am,n, (58)

am,0 = −
2m+1∑
n=1

am,n, (59)

where

Cm,j =

m−1∑
n=0

min{2n+1,j−1}∑
i=max{1,j−2m+2n+1}

i2(j − i)3 an,i am−n−1,j−i , 2 � j � 2m (60)

and Am,n, Bm,n are defined by (42) and (43), respectively. So, we have the explicit
analytic solution

F (ξ ) =

+∞∑
k=0

2k+1∑
n=0

ak,n exp(−n λ ξ ) (61)

for the second-order power-law fluid. The mth-order approximations of F (ξ ) and
F ′(ξ ) are the same as (46) and (47), respectively. The first two coefficients are given
by (44).

It is found that when κ = 2 the mth-order approximation of F ′′(0) can be expressed
by

F ′′(0) ≈
m∑

n=0

αm,n
2 Mn, (62)

where αm,n
2 is a coefficient dependent upon �. Similarly, as � tends to zero from below,

the convergence region of F ′′(0) enlarges. The analytic approximations of F ′′(0) for
M = 1/2, 1, 3/2 and 2 when � = −1/2 are given in table 2, and they agree well with
the numerical results 1.093, 1.187, 1.269 and 1.342 given by Andersson et al. (1992),
respectively. It is found that when � = −1/(2 + M/10) the series of our analytic
solutions converge for any a magnetic field parameter M � 0.
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m M = 1/2 M = 1 M = 3/2 M = 2

5 1.054 1.157 1.247 1.325
10 1.070 1.173 1.260 1.336
20 1.082 1.182 1.266 1.340
30 1.087 1.185 1.268 1.341
40 1.090 1.186 1.269 1.341
50 1.091 1.187 1.269 1.342
60 1.092 1.187 1.269 1.342
70 1.093 1.187 1.269 1.342
80 1.093 1.187 1.269 1.342

Table 2. The mth-order homotopy analysis solution for −F ′′(0) when κ = 2 and � = −1/2.

n M = 1/2 M = 1 M = 3/2 M = 2

5 1.090 1.185 1.266 1.339
10 1.094 1.187 1.269 1.342
20 1.092 1.187 1.269 1.342
30 1.093 1.187 1.269 1.342
40 1.093 1.187 1.269 1.342

Table 3. The [n, n] homotopy-Padé approximant of −F ′′(0) when κ = 2.

It is straightforward to employ the traditional Padé technique to the series of F ′′(0).
It is found that this cannot enlarge convergence regions of the series (62), which are
mainly determined by �. Thus, the traditional Padé technique seems of no use when
κ = 2.

Unlike the traditional Padé technique, the homotopy-Padé method can greatly
increase the convergence rate and region of the series of F ′′(0). It is found that
when κ = 2 the corresponding [m, m] homotopy-Padé approximant of F ′′(0) can be
expressed by

F ′′(0) ≈

m,0

2 +
m2+m∑
n=1


m,n
2 Mn

1 +
m2+m∑
n=1


m,m2+m+n
2 Mn

, (63)

where the constant 
m,n
2 (0 � n � 2m2 + 2m) is also independent of �. Note that,

unlike (55), the above expression contains the term Mm2+m. By comparing table 2
with table 3, it is clear that the convergence rate can be considerably increased by the
homotopy-Padé method. Also, the convergence region can be greatly enlarged. The
[5,5] and [6,6] homotopy-Padé approximations of F ′′(0) agree well with numerical
results in the region 0 � M � 1000, respectively, as shown in figure 4. The convergent
analytic results of F ′′(0) agree well with numerical results, as shown in table 4. This
further verifies the validity of our analytic approach.

2.3. Solutions when κ = 3

For the third-order power-law fluid (κ = 3), it is found that Fm(ξ ) governed by (30)
and (31) can be expressed by

Fm(ξ ) =

3m+1∑
n=0

bm,n exp(−n λ ξ ). (64)
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M Analytic result Numerical result Results given by (81)

0 0.980 0.980 0.969
0.5 1.093 1.093 1.087
1 1.187 1.187 1.184

1.5 1.269 1.269 1.267
2 1.342 1.342 1.340
3 1.467 1.468 1.467
4 1.575 1.575 1.575
5 1.670 1.670 1.670
6 1.755 1.755 1.755
8 1.904 1.904 1.905
10 2.033 2.033 2.033
20 2.514 2.515 2.515
40 3.138 3.138 3.138
60 3.580 3.581 3.580
80 3.934 3.935 3.934
100 4.234 4.234 4.234
200 5.324 5.325 5.324
400 6.701 6.702 6.701
600 7.668 7.670 7.668
800 8.439 8.441 8.439
1000 9.089 9.091 9.089

Table 4. Comparison of the numerical results with the analytic results of −F ′′(0) given by
the homotopy-Padé technique when κ = 2.

100

M

1

2

3

4

5

6

7

8

–F ��(0)

101 102 103

9

10

Figure 4. Comparison of F ′′(0) given by the homotopy-Padé method with the numerical
results when κ = 2. Solid line: numerical solution; open circle: [5,5] homotopy-Padé
approximation; filled circle: [6,6] homotopy-Padé approximation.
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Substituting this into the mth-order deformation equations (30) and (31), we have the
recursive formula

bm,n = χm χ3m−n bm−1,n − � χ3m+1−n M bm−1,n−1

λ2n ( n + 1)

− � χ3m+2−n (3Dm,n−1/2 − χn−1 Sm,n−1)

λ n (n2 − 1)
+

3 � λ4 χn−2 Qm,n−1

n (n2 − 1)
(65)

for 2 � n � 3m + 1, where

Dm,j =

m−1∑
n=0

min{3n+1,j−1}∑
i=max{0,j−3m+3n+2}

(j − i)2 bn,i bm−n−1,j−i , 1 � j � 3m − 1, (66)

Sm,j =

m−1∑
n=0

min{3n+1,j−1}∑
i=max{1,j−3m+3n+2}

i (j − i) bn,i bm−n−1,j−i , 2 � j � 3m − 1, (67)

Qm,j =

m−1∑
n=0

min{3n+2,j−1}∑
i=max{2,j−3m+3n+2}

(j − i)3 bm−n−1,j−i Tn,i , 3 � j � 3m (68)

and

Tk,j =

k∑
n=0

min{3n+1,j−1}∑
i=max{1,j−3k+3n−1}

i2 (j − i)2 bn,i bk−n,j−i , 2 � j � 3k + 2. (69)

Also, from the boundary conditions (31), we have

bm,1 = −
3m+1∑
n=2

n bm,n, (70)

bm,0 = −
3m+1∑
n=1

bm,n. (71)

The initial guess (19) gives the first two coefficients as

b0,0 = 1/λ, b0,1 = −1/λ. (72)

Starting from these two coefficients, we can calculate the coefficients bm,n for m =
1, 2, 3, · · · , 0 � n � 3m + 1 by means of the above recursive formulas. So, we have
the explicit analytic solution

F (ξ ) =

+∞∑
k=0

3k+1∑
n=0

bk,n exp(−n λ ξ ) (73)

for the third-order power-law fluid. At the mth-order of approximation we have

F (ξ ) ≈
m∑

k=0

3k+1∑
n=0

bk,n exp(−n λ ξ ), (74)

which gives

F ′(ξ ) ≈ −λ

m∑
k=0

3k+1∑
n=1

n bk,n exp(−n λ ξ ) (75)
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and

F ′′(0) ≈ λ2

m∑
k=0

3k+1∑
n=1

n2 bk,n. (76)

It is found that when κ = 3 the mth-order approximation of F ′′(0) can be expressed
by

F ′′(0) ≈
m∑

n=0

αm,n
3 Mn, (77)

where αm,n
3 is a coefficient dependent upon �. Similarly, as � tends to zero from below,

the convergence region of F ′′(0) enlarges. It is found that the series converges for
any M � 0 when � = −1/(3 + M) and that the convergence region of (77) cannot
be enlarged by the traditional Padé technique. When κ = 3, the corresponding [m, m]
homotopy-Padé approximant of F ′′(0) can be expressed by

F ′′(0) ≈

m,0

3 +
m2+m∑
n=1


m,n
3 Mn

1 +
m2+m∑
n=1


m,m2+m+n
3 Mn

, (78)

where the constant 
m,n
3 (0 � n � 2m2 + 2m) is independent of �. The convergence

region of F ′′(0) can be greatly enlarged by the homotopy-Padé method, as shown in
figure 5. Note that the [10,10] homotopy-Padé approximant of F ′′(0) agrees well with
the numerical results in a larger region than the [5,5] homotopy-Padé approximant. It
is found that the [25,25] homotopy-Padé approximants of F ′′(0) converge in the region
0 � M � 1000. The convergent analytic results of F ′′(0) in the range 0 � M � 1000
agree well with numerical results, as shown in table 5.

2.4. A simple approximate formula for skin friction

From the definition (10), the skin friction coefficient Cf is determined by the
dimensionless velocity gradient F ′′(0) at the wall. When κ = 1, we have the exact
formula (14) for F ′′(0), which indicates that, for large M , ln[−F ′′(0)] is positively
proportional to ln M . Our analytic results indicate that, when κ = 2 and κ = 3,
ln[−F ′′(0)] is also positively proportional to lnM , if M is large enough. This implies
that

F ′′(0) ≈ − (α + β M)γ (79)

might be a good approximation of F ′′(0) for any a positive integer κ � 1. Using the
exact solution (14), we have

α = 1, β = 1, γ = 1/2, when κ = 1.

To ensure that (79) is consistent with the exact formula (14) for κ = 1, we first simply
set α = 1 for all κ . Keeping this in mind and plotting curves defined by (79), and
comparing them with analytic results listed in tables 4 and 5, we find, some what
surprisingly, that, if

α = 1, β =
κ + 1

2κ
, γ =

1

κ + 1
, (80)

the formula (79) is a very good approximation for F ′′(0) when κ = 2 and κ = 3,
especially for large M . Furthermore, it is found that even better results for F ′′(0) are
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M Analytic result Numerical result Result given by (81)

0 0.985 0.985 0.975
0.5 1.060 1.060 1.055
1 1.123 1.123 1.119

1.5 1.177 1.177 1.175
2 1.224 1.224 1.223
3 1.306 1.306 1.305
4 1.374 1.375 1.375
5 1.434 1.435 1.435
6 1.488 1.488 1.488
8 1.579 1.580 1.580
10 1.658 1.658 1.659
20 1.942 1.942 1.942
40 2.291 2.291 2.291
60 2.529 2.529 2.529
80 2.713 2.714 2.714
100 2.867 2.867 2.867
200 3.404 3.404 3.404
400 4.044 4.045 4.044
600 4.475 4.475 4.475
800 4.807 4.808 4.808
1000 5.083 5.084 5.083

Table 5. Comparison of the numerical results with the analytic results for −F ′′(0) given by
the homotopy-Padé technique when κ = 3.

100

M

1.0

–F ��(0)

101 102

1.5

2.0

2.5

3.0

Figure 5. Comparison of F ′′(0) given by the homotopy-Padé method with the numerical
results when κ = 3. Solid line: numerical solution; open circle: [5,5] homotopy-Padé
approximation; filled circle: [10,10] homotopy-Padé approximation.
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100

M

1

–F ��(0)

101 102 103

2

3

4

5

6

7

8

9

10

� = 2

� = 3

Figure 6. Comparison of F ′′(0) from the approximate expression (81) with the numerical
results. Dashed line: result given by (81) when κ = 2; solid line: result given by (81) when κ = 3;
open circle: the numerical results when κ = 2; square: the numerical results when κ =3.

given by choosing

α =

(
κ + 1

2κ

)1/(1+κ)

,

i.e.

F ′′(0) ≈ −
[(

κ + 1

2κ

)1/(1+κ)

+

(
κ + 1

2κ

)
M

]1/(κ+1)

, (81)

as shown in table 4, table 5 and figure 6. When κ = 2 and κ = 3, the relative error of
the above simple expression is less than 0.2% for M � 2. When M � 2, the series of
approximations converge in most case, provided

λ =

[(
κ + 1

2κ

)1/(1+κ)

+

(
κ + 1

2κ

)
M

]1/(1+κ)

(82)

and

� = −
[(

κ + 1

2κ

)1/(1+κ)

+

(
κ + 1

2κ

)
M

]−1

. (83)

In the next section we will show that the simple analytic expression (81) is valid even
for real power-law index κ > 0.
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3. Analytic solutions for real power-law index
The zero-order deformation equation

For real power-law index κ > 0, F (ξ ) can be expressed by a set of base functions

{ξm exp(−n λ ξ ) | m � 0, n � 0} (84)

in the following form:

F (ξ ) = a0 +

+∞∑
n=1

+∞∑
m=0

cn,m ξm exp(−n λ ξ ), (85)

where cn is a coefficient. From this expression and the boundary conditions (9), it is
straightforward to choose the same initial guess F0(ξ ) as (19) and the same auxiliary
linear operator as (20) with the same property (21).

Define

κ − 1 = µ + ε, (86)

where µ � 0 is an integer and |ε| < 1 is a real number. Unlike in § 2, the nonlinear
operator Ñ is now defined by

Ñ [Φ(ξ ; q)] = κ

[
−∂2Φ(ξ ; q)

∂ξ 2

]µ+ε q
∂3Φ(ξ ; q)

∂ξ 3
+

(
2κ

κ + 1

)
Φ(ξ ; q)

∂2Φ(ξ ; q)

∂ξ 2

−
[
∂Φ(ξ ; q)

∂ξ

]2

− M
∂Φ(ξ ; q)

∂ξ
, (87)

where κ is a positive real number. Then, we construct the zero-order deformation
equations

(1 − q) L [Φ(ξ ; q) − F0(ξ )] = � q exp(−lλ ξ ) Ñ [Φ(ξ ; q)] , q ∈ [0, 1], (88)

subject to the boundary conditions (24).

The high-order deformation equation

Similarly, the solution F (ξ ) is given by

F (ξ ) = F0(ξ ) +

+∞∑
m=1

Fm(ξ ), (89)

where Fm(ξ ) is governed by the mth-order deformation equation

L [Fm(ξ ) − χm Fm−1(ξ )] = � exp(−lλ ξ ) R̃m(ξ ), (90)

subject to the boundary conditions (31), where

R̃m(ξ ) =
1

(m − 1)!

∂m−1Ñ[Φ(ξ ; q)]

∂qm−1

∣∣∣∣
q=0

= (−1)µ κ

m−1∑
n=0

Hµ,m−1−n(ξ ) Wn(ξ ) − M F ′
m−1(ξ )

+

m−1∑
n=0

[(
2κ

κ + 1

)
Fn(ξ ) F ′′

m−1−n(ξ ) − F ′
n(ξ ) F ′

m−1−n(ξ )

]
(91)
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using the definitions

Hµ,n(ξ ) =
1

n!

{
∂n

∂qn

(
∂3Φ(ξ ; q)

∂ξ 3

[
∂2Φ(ξ ; q)

∂ξ 2

]µ)}∣∣∣∣
q=0

(92)

and

Wn(ξ ) =
1

n!

{
∂n

∂qn

[
−∂2Φ(ξ ; q)

∂ξ 2

]ε q}∣∣∣∣
q=0

. (93)

From the definition (92), we have

H0,n(ξ ) = F ′′′
n (ξ ), (94)

H1,n(ξ ) =

n∑
i=0

F ′′′
i (ξ ) F ′′

n−i(ξ ) =

n∑
i=0

H0,i(ξ ) F ′′
n−i(ξ ), (95)

H2,n(ξ ) =

n∑
i=0

H1,i(ξ ) F ′′
n−i(ξ ), (96)

...

which gives the recursive formula

Hµ,n(ξ ) =

n∑
i=0

Hµ−1,i(ξ ) F ′′
n−i(ξ ), µ � 1. (97)

From the definition (93), we have

W0(ξ ) = 1,

W1(ξ ) = ε ln[−F ′′
0 (ξ )],

W2(ξ ) =
ε F ′′

1 (ξ )

F ′′
0 (ξ )

+

(
ε2

2

)
ln2[−F ′′

0 (ξ )],

...

Note that Wn(ξ ) for n > 0 can be given by

Wn(ξ ) =

n−1∑
i=0

(
1 − i

n

)
Wi(ξ ) Zn−i(ξ ), (98)

where

Zn(ξ ) =
1

n!

{
∂n

∂qn

[
ε q ln

(
−∂2Φ(ξ ; q)

∂ξ 2

)]}∣∣∣∣
q=0

(99)

is easier to calculate than Wn(ξ ) defined by (93). Note that, from the definition (19)
of F0(ξ ), we have

ln[−F ′′
0 (ξ )] = ln λ − λ ξ.

This is the reason why we choose (84) as the base functions of F (ξ ) for real power-law
index κ . Note that when κ � 1 we can always find integer µ � 0 and a real number
|ε| � 1/2 such that the expression (86) holds.
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n Homotopy-Padé approximant of −F ′′(0)

1 1.5428
2 1.5454
3 1.5447
4 1.5442
6 1.5441
8 1.5441

10 1.5441

Table 6. The [n, n] homotopy-Padé approximant of −F ′′(0) when κ = 4/5 and M = 1 with
λ = 3/2.

0

0.25

�

F �(�)

1 2 3 4

0.50

0.75

1.00

Figure 7. Comparison of the numerical solution with the analytic approximation of F ′(ξ )
given by the homotopy analysis method for real κ when κ = 4/5,M = 1 with λ = 3/2 and
� = −8/17. Solid line: numerical solution; open circle: 10th-order analytic approximations;
filled circle: 20th-order analytic approximations.

Similarly, to ensure that F (ξ ) can be expressed by (85) and that each coefficient
cm,n can be modified as the order of approximation tends to infinity, we set

l = 0

in (88) and (90).
To verify the validity of the above approach for any real power-law index κ , let

us first consider the case κ = 1 and M = 1, corresponding to µ = ε = 0. When
� = −1/2 and λ = 2, the corresponding homotopy-Padé approximant of F ′′(0)
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κ = 4/5 κ = 3/2 κ = 4

M HAM formula (81) HAM formula (81) HAM formula (81)

0 1.028 1.037 0.982 0.971 0.989 0.981
1/2 1.308 1.312 1.131 1.126 1.046 1.041
1 1.544 1.547 1.257 1.255 1.093 1.090

3/2 1.754 1.756 1.367 1.366 1.133 1.131
2 1.945 1.947 1.466 1.465 1.167 1.167
3 2.289 2.290 1.638 1.637 1.228 1.227
5 2.874 2.875 1.918 1.918 1.322 1.322
10 4.035 4.035 2.436 2.436 1.482 1.482
25 6.517 6.517 3.428 3.428 1.752 1.752
50 9.480 9.480 4.485 4.485 2.002 2.002
75 11.835 11.835 5.259 5.259 2.167 2.167
100 13.861 13.861 5.892 5.892 2.293 2.293
250 22.989 22.989 8.478 8.478 2.750 2.750
500 33.752 33.752 11.176 11.176 3.157 3.157
750 42.265 42.265 13.140 13.140 3.423 3.423
1000 49.581 49.581 14.741 14.741 3.625 3.625

Table 7. The comparison of the analytic results for −F ′′(0) given by the proposed homotopy
analysis method (HAM) when κ = 4/5, κ = 3/2 and κ = 4 with those given by the analytic
formula (81).

converges quickly to the exact analytic result F ′′(0) = −
√

2. The corresponding 10th-
order approximation of F ′(ξ ) agrees well with the exact analytic solution F ′(ξ ) =
exp(−

√
2 ξ ). Then, we reconsider the case of κ = 2 and M = 1 and it is found that

the analytic approach proposed in this section gives a convergent result (with λ = 5/4
and � = −4/7), and the homotopy-Padé approximant of F ′′(0) converges quickly to
the numerical result −1.187 given by Andersson et al. (1992). Finally, we consider
the case of M = 1 and κ = 4/5, a real power-law index. The convergent results are
obtained when λ = 3/2 and � = −8/17, and the homotopy-Padé approximant of
F ′′(0) converges quickly to the numerical result −1.544 given by the Andersson et al.
(1992), as shown in table 6. The corresponding 10th- and 20th-order approximations
of F ′(ξ ) agree well with the numerical result given by the Runge–Kutta method with
F ′′(0) = −1.5441, as shown in figure 7. All of these verify the validity of the analytic
approach for any real power-law index κ proposed in this section.

In most cases, convergent results can be obtained by choosing λ and � as defined
by (82) and (83), although, for M less or a little more than 2, a negative value of �
had to be chosen closer to zero. All of our computations verify that

(a) the convergence regions can be enlarged as the auxiliary parameter � tends to
zero from below;

(b) the convergence rate and region of F ′′(0) are greatly increased by the homotopy-
Padé technique.
The analytic results for F ′′(0) given by the proposed approach in a large range
0 � M � 1000 for the integer power-law index κ = 4 and the real power-law index
κ = 4/5 and κ = 3/2 are listed in table 7, compared with those given by the formula
(81). It is interesting that the analytic formula (81) gives good approximations of
F ′′(0) even for real power-law index κ , as shown in figure 8. So, we are quite sure that
(81) is an accurate approximation of the dimensionless velocity gradient F ′′(0) for
real power-law index κ > 0 and magnetic field parameter 0 < M < +∞. Thus, using
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Figure 8. Comparison of F ′′(0) given by (81) with the numerical results. Solid line: result
given by (81) when κ = 4/5; dashed line: result given by (81) when κ = 3/2; dash-dotted line:
result given by (81) when κ = 4; open circle: the numerical solution when κ = 4/5; square:
the numerical solution when κ = 3/2; triangle: the numerical solution when κ = 4.

(81) and the definition (10), we can calculate the skin friction on the sheet accurately
enough for practical applications in engineering.

Based on numerical results for 0.4 � κ � 2 and 0 � M � 2, Andersson et al.
(1992) found that −F ′′(0) increases monotonically with M for a given fluid but
decreases monotonically with κ for a given magnetic field. The analytic expression
(81) indicates that this finding can be expanded to include non-Newtonian fluids with
any real power-law index κ > 0 and any magnetic field parameter 0 < M < +∞, as
shown by figures 6 and 8. Physically, it indicates that the effect of the non-Newtonian
nature of the fluid is to reduce the skin friction, and that the effect of the magnetic
field is to increase the skin friction.

4. Discussion and conclusion
In this paper the homotopy analysis method is employed to give analytic solutions

of the magnetohydrodynamic viscous flows of non-Newtonian fluids over a stretching
sheet. For the so-called second-order (κ = 2) and third-order (κ = 3) power-law
fluids the explicit analytic solutions are expressed by recursive formulas of constant
coefficients, which can be regarded as the definition of the solution of the nonlinear
differential equations (8) and (9) when κ = 2 and κ = 3. Also, for real power-law
index κ > 0 and magnetic field parameter M in a quite large range we propose an
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analytic approach. All of our analytic results agree well with the numerical ones. In
particular, a rather simple analytic formula for the dimensionless velocity gradient at
the wall is found, which is quite accurate for real power-law index κ > 0 and magnetic
field parameter 0 < M < +∞. This analytic formula (81) can give an accurate enough
skin friction result on the moving sheet to find wide applications in the metallurgy
industry. Physically, it indicates that the magnetic field tends to increase the wall
friction, and that this effect is more pronounced for shear-thinning (κ < 1) than for
shear-thickening (κ > 1) fluids.

This paper also verifies that the homotopy analysis method is valid for complicated,
strongly nonlinear problems in fluid mechanics.

Thanks to the editor and anonymous reviewers for their valuable suggestions. This
work is supported by National Science Fund for Distinguished Young Scholars of
China (Approval No. 50125923).
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