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DECIDABILITY FOR THEORIES OFMODULES OVER VALUATION
DOMAINS

LORNAGREGORY

Abstract. ExtendingworkofPuninski, Puninskaya andToffalori in [5], we show that ifV is an effectively
given valuation domain then the theory of allV -modules is decidable if and only if there exists an algorithm
which, given a, b ∈ V , answers whether a ∈ rad(bV ). This was conjectured in [5] for valuation domains
with dense value group, where it was proved for valuation domains with dense archimedean value group.
The only ingredient missing from [5] to extend the result to valuation domains with dense value group or
infinite residue field is an algorithm which decides inclusion for finite unions of Ziegler open sets. We go
on to give an example of a valuation domain with infinite Krull dimension, which has decidable theory
of modules with respect to one effective presentation and undecidable theory of modules with respect to
another. We show that for this to occur infinite Krull dimension is necessary.

§1. Introduction. Throughout this paper all rings have 1 and all modules are
unital. Unless otherwise indicated modules are right modules.
In [5] Puninski, Puninskaya and Toffalori conjectured that the theory of modules
of an effectively given valuation domain V with dense value group is decidable if
and only if there is an algorithm which, given a, b ∈ V , answers whether there
exists an n ∈ N such that an ∈ bV , that is answers whether a ∈ rad(bV ). We show
that this conjecture is unconditionally true, i.e., without any restriction on the value
group of V (theorem 7.1). This is the main result of our paper.
For valuation domains with nonarchimedean dense value groups or infinite
residue fields, the only ingredient missing from the proof in [5] is an algorithm
which decides whether inclusions hold for finite unions of Ziegler basic open sets.
We explicitly describe such an algorithm in section 4.
On the other hand, when V has nondense value group and finite residue field,
the number of indecomposable pure-injective modules with finite but not equal to
1 Baur-Monk invariants increases significantly. The proof in [5] for a valuation
domain with dense value group and finite residue field uses the fact that for each
Baur-Monk invariant |ϕ/�|, there are only finitely many indecomposable pure-
injective modules (up to isomorphism) with |ϕ/�| finite and not equal to 1. For
valuation domains with nondense value group this is no longer true. Luckily, this
problem is still not too combinatorially difficult (see section 6).
In section 5, we discuss duality for the Ziegler spectrum of a valuation domain.
Prest [6, Chapter 8] defined the dual Dϕ of a pp-formula ϕ. This map induces a
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lattice antiisomorphism between the lattice of right and left pp-formulae of a ring
such thatD2ϕ = ϕ. Herzog in [4] extended this notion to a lattice isomorphism from
the lattice of open sets of the right Ziegler spectrum ZgR of a ringR to the lattice of
open sets of the left Ziegler spectrum RZg of R. It is not known in general whether
thismap is induced by a homeomorphism. If there is such a homeomorphism,we call
it a duality homeomorphism. Note that for a commutative ringR this will in general
be a nontrivial automorphism of ZgR. We give an explicit duality homeomorphism
for the Ziegler spectrum of a valuation domain. We use Herzog’s results to show
that if D : ZgR → RZg is such a duality homeomorphism then for all pairs of
pp-formulae ϕ/� and all N ∈ ZgR, |ϕ(N)/�(N)| = |D�(DN)/Dϕ(DN)|. This is
used in section 6 to reduce the number of indecomposable pure-injective modules
N for which we need to explicitly calculate |ϕ(N)/�(N)|.
In the final section,we give an example of a valuation domainV with infiniteKrull

dimension which has undecidable theory of modules with respect to one effective
presentation and decidable theory of modules with respect to another. We do this
by constructing a recursive totally ordered abelian group in which the relation

α � � if and only if ∀n |α| ≥ n|� |
is not recursive. We note that ifV is an effectively given valuation domain with finite
Krull dimension, then its theory of modules is decidable.
Throughout this paper, for a set X , |X | denotes the number of elements of X if X
is finite, and∞ otherwise. We will use N to denote the set of natural numbers not
including zero, and N0 to denote the set of natural numbers with zero included.

§2. Background. For general background on model theory of modules see [6].
Let R be a ring. Let LR := {0,+, (r)r∈R} be the language of (right) R-modules

and TR be the theory of (right) R-modules. A (right) pp-n-formula is a formula of
the form

∃y (y, x)A = 0,
where l, n,m are natural numbers, A is an (l + n)×m matrix with entries from R,
and y is an l -tuple of variables and x is an n-tuple of variables.
The solution set ϕ(M ) of a pp-n-formula ϕ in an R-module M is a subgroup

ofMn .
Up to TR-equivalence, the set of pp-n-formulae, in LR, is a lattice with respect to

implication with the join of two formulae ϕ,� given by

(ϕ + �)(x) := ∃y, z(x = y + z ∧ ϕ(y) ∧�(z))
and the meet given by ϕ ∧ �. A pp-pair ϕ/� is simply a pair of pp-1-formulae.
Let ϕ,� be pp-1-formulae and n ∈ N. There is a sentence, |ϕ/�| ≥ n in the lan-

guage of (right)R-modules, which expresses in everyR-moduleM that the quotient
ϕ(M )/ϕ∧�(M ) has at least n elements. Such sentences will be referred to as invari-
ant sentences.Wewillwrite |ϕ/�| = n for the sentence |ϕ/�| ≥ n∧¬(|ϕ/�| ≥ n+1).
For an R-moduleM , we will write |ϕ(M )/�(M )| ≥ n instead ofM |= |ϕ/�| ≥ n.
We will also write |ϕ(M )/�(M )| = ∞ to mean that |ϕ(M )/�(M )| ≥ n for all
n ∈ N. This final statement is of course not necessarily expressed by a first order
sentence in the language of R-modules.
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Theorem 2.1 (Baur-Monk Theorem). [6]LetR be a ring. Every sentence � ∈ LR
is equivalent to a boolean combination of invariant sentences.

The above theorem together with the fact that the theory of modules of a recur-
sively given ring R is recursively axiomatized means that, in order to show that the
theory of R-modules is recursive, it is enough to show that there is an algorithm
which, given a boolean combination of invariant sentences � answers whether there
is an R-module in which � is true.
A pp-type is a set of pp-formulae. IfM is an R-module and a ∈ M , then the set
of pp-formulae satisfied by a in M is called the pp-type of a. We say a pp-type is
complete if it is the pp-type of an element of a module or equivalently if it is closed
under implications (with respect to the theory of all R-modules) and conjunctions.
A pure-embedding between two modules is an embedding which preserves and
reflects the solution sets of pp-formulae. We say a module N is pure-injective if for
every pure-embedding g : N →M , the image ofN inM is a direct summand ofM ;
equivalently, it is injective with respect to pure-embeddings. For every R-module
M , there exists a pure-injective module M such that M is a pure-submodule of
M and for all pure-injectives M ′ and all pure-embeddings f : M ↪→ M ′ there
is an extension of f embedding M purely into M ′. Moreover, M is unique up
to isomorphism over M . We denote this module by PE(M ) and call it the pure-
injective hull of M . All modules are elementary equivalent to their pure-injective
hull [6, Theorem 4.21]. Every module is elementary equivalent to a direct sum of
indecomposable pure-injective modules [6, Corollary 4.36]. Combining this fact
with the Baur-Monk theorem and that the solution sets of pp-formulae commute
with direct sums, we get that any sentence � in the language of R-modules is true
in some module if and only if it is true in some finite direct sum of indecomposable
pure-injective modules.
The (right)Ziegler spectrumof a ringR, denotedZgR, is a topological spacewhose
points are isomorphism classes of indecomposable pure-injective (right) modules
and which has a basis of open sets given by:

(ϕ/�) = {M | ϕ(M ) � �(M ) ∩ ϕ(M )},

where ϕ,� range over (right) pp-1-formulae. The left Ziegler spectrum RZg of a
ring is defined analogously.
A commutative integral domain V is called a valuation domain if the lattice of
ideals of V is a chain. This implies that a subset I of V is an ideal of V if and only
if for all r ∈ V and a ∈ I , ar ∈ I . Note that the finitely generated ideals of V are
principal. Throughout we will assume that V is not a field (the theory of K-vector
spaces for a recursively given field K is decidable). Unless otherwise stated, V will
always denote a valuation domain andm will denote its unique maximal ideal. The
field V/m is called the residue field of V . Let Q be the field of fractions of V andU
the multiplicative group of units of V . The (multiplicative) quotient group Q×/U
ordered by aU ≤ bU if and only if b/a ∈ V is called the value group of V .
The reader should note that the value group of V is dense if and only if the
maximal ideal of V is not principal. For more background on valuation domains
see [1, Chapter II].
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§3. Decidability and modules. Let R be a nonfinite ring. The theory of R-
modules, TR, is decidable if there is an algorithm which, given a sentence � in LR,
answers whether � ∈ TR or not. Since algorithms and their formalisms (Tur-
ing machines, partial recursive functions etc) are usually expected to take natural
numbers as input and output natural numbers, in order to talk (formally) about
decidability of TR we must have some way of converting ring elements into natu-
ral numbers. So we assume that our algorithms are implemented with respect to a
surjective function � : N → R. Of course, this means that R must be countable.
We now discuss conditions we must impose on � in order to have any hope of

TR being decidable. For more details see [6, Chapter 17]. Firstly, for all r1, r2 ∈ R,
r1 = r2 if and only if TR |= ∀x(xr1 = xr2). So we must be able to decide equality of
elements and therefore, may as well assume that � is a bijection. For similar reasons,
we must assume that given a, b ∈ R we can compute a + b and a · b. Thus, we
assume that + and · induce recursive functions on N via �. Finally, for all r ∈ R,
r is a unit in R if and only if TR |= ∀x(xr = 0 → x = 0). Thus, we must be able
to compute whether an element is a unit or not. Thus, we assume that the inverse
image of the units of R under � is a recursive subset of N.
Note that for a valuationdomainV the set of units ofV is exactly the complement

of m. Thus, we get the following definition (which is obviously equivalent to the
definition given in [5]).

Definition 3.1. An effectively given valuation domain is a (countable) valuation
domain V together with a bijection � : N → V such that the pre-image of the
maximal ideal of V under � is a recursive set and addition and multiplication
induce recursive functions on N via �. We call the map � an effective presentation
of V .

Note that this implies that there is an algorithm (with respect to �) which given
a, b ∈ V either computes c such that a = bc or decides that such a c does not exist
[5, Remark 3.2] and that there is an algorithm (with respect to �) which given a
unit a ∈ V outputs a−1 [5, Remark 3.1].We will work with an informal notion of
algorithm, in the knowledge that, given the time and inclination, we could rewrite
all proofs in terms of recursive functions.
The following lemma is the easy direction of our main theorem and occurs as

lemma 9.1 of [5] with the restriction that R is a valuation domain. This restriction
is unnecessary, so we include a proof.

Lemma 3.2. Let R be a countable commutative ring together with a bijection
� : R → N with decidable theory of modules (with respect to �). Then there is an
algorithm which, given a, b ∈ V decides whether a ∈ rad(bR).
Proof. Claim:

TR |= ∃x(x �= 0 ∧ xb = 0)→ ∃y(y �= 0 ∧ xa = 0)
if and only if

a ∈ rad(bR).
First suppose that a ∈ rad(bR). There exists an n ∈ N, such that an ∈ bV . Suppose
N is an R-module and x ∈ N is such that x �= 0 and xb = 0. Then xan = 0. Take
m least such that xam = 0, then (xam−1)a = 0 and xam−1 �= 0.
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Now suppose that

TR |= ∃x(x �= 0 ∧ xb = 0)→ ∃y(y �= 0 ∧ xa = 0).
Note that if b is a unit in R then a ∈ rad(bR) = R for all a ∈ R. Let p � R be
a prime ideal such that b ∈ p (throughout, we write I � R to indicate that I is an
ideal of R). Then 1 + p ∈ R/p is annihilated by b and nonzero. Hence there exists
y ∈ R\p such that ya ∈ p. Therefore, a ∈ p. Thus a ∈ p for every prime ideal
p containing b. Hence, a ∈ rad(bR), since rad(bR) is the intersection of all prime
ideals containing b. 


§4. Algorithms and the Ziegler spectrum. In this section, we show that if V is
an effectively given valuation domain with an algorithm which, given a, b ∈ V ,
answers whether a ∈ rad(bV ), then there exists an algorithm which given n ∈ N, a
pp-pair ϕ/� and n pp-pairs ϑi/
i , answers whether

(ϕ/�) ⊆
n⋃
i=1

(ϑi/
i) .

For any n ∈ N, pp-1-formulae ϕ,� and pp-1-formulae ϑi , 
i for 1 ≤ i ≤ n,
TR |= ¬

(∣∣∣ϕ� ∣∣∣ > 1 ∧∧ni=1 ∣∣∣ ϑi
i
∣∣∣ = 1) is equivalent to (ϕ/�) ⊆ ⋃ni=1 (ϑi/
i) . Hence,

decidability of TR implies that we can effectively decide whether (ϕ/�) ⊆⋃n
i=1 (ϑi/
i).
We start by recalling some facts about Ziegler spectra of valuation domains.

Lemma 4.1. [5, Lemma 3.3 and Corollary 3.4] Let V be an effectively given
valuation domain. There exists an algorithm which, given a pp-1-formula ϕ, produces
a formula of the form

∑n
i=1(xai = 0 ∧ bi |x) equivalent to ϕ and produces a formula

of the form
∧m
i=1(xci = 0 + di |x) equivalent to ϕ.

Lemma 4.2. [7] [5, Corollary 4.3] The collection of open sets

Wa,b,g,h :=
(
(xag = 0) ∧ (b|x)/(xa = 0) + (bh|x))

for nonzero a, b ∈ V and g, h ∈ m form a basis for ZgV .
Moreover, if V is effectively given then there exists an algorithm which, given ϕ/�
a pp-pair, returns the symbol ∅ if (ϕ/�) is empty and otherwise returns n ∈ N,
ai , bi ∈ V \{0} and gi , hi ∈ m such that

(ϕ/�) =
n⋃
i=1

Wai ,bi ,gi ,hi .

A pair over a valuation domain is a pair of proper ideals 〈I, J 〉. To each pair
over V , we can associate a pp-type

p〈I, J 〉 = {xb = 0 | b ∈ I } ∪ {a|x | a /∈ J}.
Recall that every complete pp-type is realized in a (unique up to isomorphism)
minimal pure-injective module, denotedN(p) (see [9, Theorem 3.6] or [6, Theorem
4.12]). We say a complete pp-type is indecomposable ifN(p) is indecomposable. We
say that 〈I, J 〉 ∼ 〈K,L〉 if there exists nonzero a ∈ R such that at least one of the
following holds:
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(1) Ia = K and J = La or
(2) I = Ka and Ja = L.

Lemma 4.3 ([7]). Every pp-type p〈I, J 〉 has a unique extension to a complete
indecomposable pp-type and every indecomposable pp-type arises in this way.We write
N(I, J ) for the unique (up to isomorphism) indecomposable pure-injective realizing
p〈I, J 〉. Moreover, for two pairs 〈I, J 〉 and 〈K,L〉 over V , N(I, J ) is isomorphic to
N(K,L) if and only if 〈I, J 〉 ∼ 〈K,L〉.
From now on we will write (I, J ) for both the equivalence class of 〈I, J 〉 with

respect to ∼ and the corresponding isomorphism class of indecomposable pure-
injective modules. We will refer to (I, J ) as a point or a point in ZgV . So, (I, J ) ∈
Wa,b,g,h if and only if there exists a pair 〈K,L〉 such that 〈K,L〉 ∼ 〈I, J 〉 and
a /∈ K, b /∈ L, ag ∈ K and bh ∈ L. We will write N(I, J ) only when we want to
emphasize that points in the Ziegler spectrum are modules.
Let R be a commutative ring, I �R and a /∈ I . Define

(I : a) := {r ∈ V | ar ∈ I }.
It is easy to see that for I, J � V proper ideals of a valuation domain and a /∈ J ,

we have that:
Ia = J if and only if I = (J : a). (1)

We can now reformulate∼ in terms of ideal quotients (this follows directly from
(1)):
Let 〈I, J 〉 and 〈K,L〉 be pairs over V . We have that 〈I, J 〉 ∼ 〈K,L〉 if and only if

at least one of the following holds:

(i) there exists a /∈ K such that I = (K : a) and J = La;
(ii) there exists a /∈ L such that I = Ka and J = (L : a).
Using the above observation, we can now reformulate what it means for a point

in ZgV to be contained in a basic open set:

Lemma 4.4. Let a, b ∈ V \{0} and g, h ∈ m. A point (I, J ) is inWa,b,g,h if and only
if one of the following holds:

(i) there exists r /∈ I such that a /∈ (I : r), b /∈ Jr, ag ∈ (I : r) and bh ∈ Jr;
(ii) there exists s /∈ J such that a /∈ Is, b /∈ (J : s), ag ∈ Is and bh ∈ (J : s).
The lemma below shows that in fact the open sets of the form W1,�,g,h , where

� ∈ V \{0} and g, h ∈ m, are a basis for ZgV .

Lemma 4.5. Let a, b ∈ V \{0}, g, h ∈ m and (I, J ) a point in ZgV . The following
statements are equivalent:

(i) (I, J ) ∈ Wa,b,g,h ,
(ii) (I, J ) ∈ W1,ab,g,h ,
(iii) (I, J ) ∈ Wab,1,g,h .
For a proper ideal I � V , let I # be the prime ideal ∪a /∈I (I : a). Note that for all

proper ideals I, J � V , a ∈ V \{0} and b /∈ I , we have (Ia)# = I #, (I : b)# = I #
and (IJ )# = I # ∩ J# (see [1, Lemma 4.6] for a proof). If p is a prime ideal, then
p# = p.
We will use the following simple remark without comment.
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Remark 4.6. Let I � V be a non-zero proper ideal of V . The following are
equivalent:

(a) r /∈ I, (b) rm ⊇ I, (c) rI # ⊇ I.
Theorem 4.7 ([3, Theorem 4.3]). Let � ∈ V \{0} and g, h ∈ m. Let (I, J ) be a
point in ZgV . The following are equivalent:
(i) (I, J ) ∈ W1,�,g,h ,
(ii) �gh ∈ IJ , g ∈ I #, h ∈ J# and (I, J ) ∈ W1,�,0,0.
The condition g ∈ I # simply means that there is some nonzero element a ∈
N(I, J ) such that ag = 0. Similarly the condition h ∈ J# means that there is some
a ∈ N(I, J ), which is not divisible by h. The condition (I, J ) ∈ W1,�,0,0 = W�,1,0,0
means exactly that � /∈ annVN(I, J ).
Note that (I, J ) ∈ W1,�,0,0 always implies � /∈ IJ [3, Lemma 4.2] but the converse
is not always true. This motivates the following definition.

Definition 4.8. We say a point (I, J ) in ZgV is normal if for all � /∈ IJ , (I, J ) ∈
W1,�,0,0. Otherwise, we say (I, J ) is abnormal.
In terms of modules, N(I, J ) is abnormal if and only if annVN(I, J ) � IJ .

Lemma 4.9 ([3, Lemma 4.5]). Let (I, J ) be a point in ZgV such that I
# �= J#.

Then for all � ∈ V \{0}, (I, J ) ∈ W1,�,0,0 if and only if � /∈ IJ . That is, if I # �= J# ,
then (I, J ) is normal.
Lemma 4.10 ([3, Lemma 4.9]). Let (I, J ) be an abnormal point with I # = J# = p.
Then (I, J ) ∈ W1,�,g,h if and only if �p � IJ , �gh ∈ IJ , g ∈ I # and h ∈ J#.
Thus, up to topological indistinguishability, a point (I, J ) is completely
determined by IJ , I #, J# and whether or not it is abnormal.
The following proposition determines all abnormal points up to topological
indistinguishability.

Proposition 4.11 ([3, Proposition 4.10]). Let p� V be a prime ideal.
(i) If p2 �= p and a ∈ V \{0} then the point (p, ap) is abnormal.
(ii) For all nonzero a ∈ p, there is an abnormal point (I, J ) such that IJ = ap
and I # = J# = p.

(iii) Let (I, J ) be an abnormal point with I # = J# = p. There exists nonzero a ∈ p
such that IJ = ap.

Lemma 4.12. Let p � V be such that p2 = p. Then, for all a ∈ V \{0}, the point
(p, ap) is normal.
Proof. Let � ∈ V \{0}. Then (p, ap) ∈ W1,�,0,0 if and only if there exists t /∈ p
such that � /∈ atp. Since t /∈ p, atp = ap. Thus, (p, ap) ∈ W1,�,0,0 if and only if
� /∈ ap = ap2. So, (p, ap) is normal. 

We are now ready to start to construct an algorithm which, given n ∈ N, �,
�1, . . . , �n ∈ V \{0} and g, h, a1, . . . , an, b1, . . . , bn ∈ m, answers whether

W1,�,g,h ⊆
n⋃
i=1

W1,�i ,ai ,bi .

We start by showing that it is enough to check the inclusion on finitely many
subspaces of the form
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Xp,q := {(I, J ) ∈ ZgV | I # = p and J# = q},
where p, q � V are prime ideals. Moreover, we show that we can compute,
given �, �1, . . . , �n ∈ V \{0} and g, h, a1, . . . , an, b1, . . . , bn, a finite set of elements
c1, . . . , cm ∈ m, such that it is enough to check the inclusion for the subspaces Xp,q,
where p = rad(ciV ) and q = rad(cjV ).

Definition 4.13. Let t ∈ m. Denote by pt the smallest prime ideal containing t.

Note that, for any t ∈ m, the ideal pt exists since the ideals of a valuation domain
are totally ordered and note that pt is exactly the radical of tV .

Definition 4.14. Suppose x, y ∈ V . If x divides y in V , write y/x for the
quotient in V . We define <x, y> as

<x, y> :=

{
y/x if x|y,
x/y otherwise.

If V is effectively given then this function is computable.
We have split the proof of the following proposition into two lemmas. The first

dealing with normal points and the second with abnormal points.

Proposition 4.15. Let n ∈ N, � ∈ V \{0}, g, h ∈ m and for each natural number
1 ≤ i ≤ n let �i ∈ V \{0}, ai , bi ∈ m. The following are equivalent:

(1)

W1,�,g,h ⊆
n⋃
i=1

W1,�i ,ai ,bi .

(2) For all p = rad(tV ) and q = rad(sV )

W1,�,g,h ∩ Xp,q ⊆
n⋃
i=1

W1,�i ,ai ,bi ∩ Xp,q,

where s, t ∈ <T,T> ∩m and

T := {�iaibi , �i | 1 ≤ i ≤ n} ∪ {1 , � , g , h , �gh} .
Lemma 4.16. Let n ∈ N, � ∈ V \{0}, g, h ∈ m and for each natural number 1 ≤

i ≤ n let�i ∈ V \{0}, ai, bi ∈ m. If there exists (I, J ) a normal point such that (I, J ) ∈
W1,�,g,h and (I, J ) /∈

⋃n
i=1W1,�i ,ai ,bi , then there exists a point (K,L) ∈ W1,�,g,h and

(K,L) /∈ ⋃ni=1W1,�i ,ai ,bi such that K# = pr , L# = ps where r = <x, y> ∈ m and
s = <u,w> ∈ m and x, y, u,w are taken from the set

{�iaibi , �i | 1 ≤ i ≤ n} ∪ {1 , � , g , h , �gh} .
Proof. By definition, a normal point (I, J ) is such that (I, J ) /∈ W1,�,a,b if

and only if either � ∈ IJ , �ab /∈ IJ , a /∈ I # or b /∈ J#. Therefore, if (I, J ) /∈⋃n
i=1W1,�i ,ai ,bi , then for each 1 ≤ i ≤ n, either �i ∈ IJ , �iaibi /∈ IJ , ai /∈ I # or
bi /∈ J#.
Suppose (I, J ) ∈ W1,�,g,h is normal and (I, J ) /∈

⋃n
i=1W1,�i ,ai ,bi .

Let p1 ∈ {�, �iaibi | �iaibi /∈ IJ} be such that � divides p1 and if �iaibi /∈ IJ ,
then �iaibi divides p1. Note that, since (I, J ) normal and (I, J ) ∈ W1,�,g,h , � /∈ IJ .
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Thus, p1 /∈ IJ . Moreover, for any ideal K � V , p1 /∈ K implies � /∈ K and if
�iaibi /∈ IJ , then �iaibi /∈ K .
Let p2 ∈ {�gh, �i | �i ∈ IJ} be such that p2 divides �gh and if �i ∈ IJ , then p2
divides �i . Note that, since (I, J ) ∈ W1,�,g,h , �gh ∈ IJ . Thus, p2 ∈ IJ . Moreover,
for any ideal K � V , p2 ∈ K implies �gh ∈ K and if �i ∈ IJ then �i ∈ K .
Since p1 /∈ IJ and p2 ∈ IJ , p2 = p1t for some t ∈ V and t ∈ (IJ )# = I # ∩ J# by
definition of (IJ )#.
Note that if ai /∈ I #, then ai /∈ pg ∪ pt , since pg ∪ pt ⊆ I # and if bi /∈ J#, then
bi /∈ ph ∪ pt , since ph ∪ pt ⊆ J#.
We now split the proof into two cases.

Case 1. pg ∪ pt �= ph ∪ pt , or pg ∪ pt = ph ∪ pt and (pg ∪ pt)2 = pg ∪ pt .

The point (pg ∪ pt , p1(ph ∪ pt)) is a normal point (see lemmas 4.12 and 4.9) and

(pg ∪ pt) · (ph ∪ pt) = (pg ∪ pt) ∩ (ph ∪ pt).

So t ∈ (pg ∪ pt) · (ph ∪ pt).
The point (pg ∪ pt , p1(ph ∪ pt)) ∈ W1,�,g,h since g ∈ pg ∪ pt ; h ∈ ph ∪ pt ;
p1 /∈ p1(pg ∪ pt) · (ph ∪ pt) implies � /∈ p1(pg ∪ pt) · (ph ∪ pt) and p2 = p1t ∈
p1(pg ∪ pt) · (ph ∪ pt) implies �gh ∈ p1(pg ∪ pt) · (ph ∪ pt).
It remains to show (pg ∪ pt , p1(ph ∪ pt)) /∈ W1,�i ,ai ,bi for all 1 ≤ i ≤ n.
As remarked above, if ai /∈ I #, then ai /∈ (pg ∪ pt) and if bi /∈ J#, then bi /∈
(ph ∪ pt). Since p1 /∈ p1(pg ∪ pt) · (ph ∪ pt), if �iaibi /∈ IJ , then �iaibi /∈
p1(pg ∪ pt) · (ph ∪ pt). Since p2 ∈ p1(pg ∪ pt) · (ph ∪ pt), if �i ∈ IJ , then
�i ∈ p1(pg ∪ pt) · (ph ∪ pt). Therefore, since (pg ∪ pt , p1(ph ∪ pt)) is a normal
point, for all 1 ≤ i ≤ n, (pg ∪ pt , p1(ph ∪ pt)) /∈ W1,�i ,ai ,bi .
Case 2. p := pg ∪ pt = ph ∪ pt and p2 �= p.

Since p �= p2, if K � V is such that K# = p, then K = ap for some a ∈ V \{0}.
So, by proposition 4.11 (i), any point (K,L) with K# = L# = p is necessarily
abnormal.
First suppose that �gh ∈ p1p2. Since p1 /∈ p1p, we have � /∈ p1p. So �p ⊇ p1p �
p1p

2. By definition of p, g, h ∈ p. By lemma 4.10, (p, p1p) ∈ W1,�,g,h .
As in the first case, if ai /∈ I #, then ai /∈ p and if bi /∈ J#, then bi /∈ p. If �i ∈ IJ ,
then, since p2 ∈ p1p, �i ∈ p1p and hence p1p2 ⊇ �ip. If �iaibi /∈ IJ , then, since
p1 /∈ p1p, �iaibi /∈ p1p, and hence �iaibi /∈ p1p2. So, for all 1 ≤ i ≤ n, either
ai /∈ p, bi /∈ p, �iaibi /∈ p1p2 or p1p2 ⊇ �ip. Thus, by lemma 4.10, for all 1 ≤ i ≤ n,
(p, p1p) /∈ W1,�i ,ai ,bi .
Now suppose that �gh /∈ p1p2. Since h ∈ p, �g /∈ p1p. Thus p ⊇ �p � p1p.
Therefore p1 ∈ p.
Therefore, by proposition 4.11 (iii), there exists an abnormal point (K,L) with
K# = L# = p and KL = p1p.
Since p2 ∈ p1p, �gh ∈ p1p. We have already noted that �p � p1p. So, since
g, h ∈ p, lemma 4.10 implies that (K,L) ∈ W1,�,g,h .
Since p2 ∈ p1p, if �i ∈ IJ , then �i ∈ p1p. Since p1 /∈ p1p, if �iaibi /∈ IJ , then
�iaibi /∈ KL. So, for all 1 ≤ i ≤ n, either ai /∈ p, bi /∈ p, �iaibi /∈ p1p or �i ∈ p1p.
Thus, by lemma 4.10 for all 1 ≤ i ≤ n, (K,L) /∈ W1,�i ,ai ,bi .
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Finally note that pt ∪ pg = pr and pt ∪ ph = ps for some r = <x, y> and
s = <u, v> where x, y, v, u are taken from the set:

{1 , � , g , h} ∪ {�i , �iaibi | 1 ≤ i ≤ n} . 

Lemma 4.17. Let n ∈ N, � ∈ V \{0} and g, h ∈ m and for each natural number

1 ≤ i ≤ n let �i ∈ V \{0} and ai , bi ∈ m. If there exists (I, J ) an abnormal
point such that (I, J ) ∈ W1,�,g,h and (I, J ) /∈

⋃n
i=1W1,�i ,ai ,bi then there exists a point

(K,L) ∈ W1,�,g,h and (K,L) /∈
⋃n
i=1W1,�i ,ai ,bi such that K# = pr L

# = ps , where
r = <x, y> and s = <u,w> and x, y, u,w are taken from the set

{�iaibi , �i | 1 ≤ i ≤ n} ∪ {1 , � , g , h , �gh} .
Proof. First note that since (I, J ) is abnormal, by lemma 4.9, I # = J#. Let

p = I #.
We now choose �, d ∈ V as follows:
Suppose there exists 1 ≤ i ≤ n such that (I, J ) /∈ W1,�i ,0,0. Let � = �i0 for some

1 ≤ i0 ≤ n such that (I, J ) /∈ W1,�i0 ,0,0 and �i0 divides �i for all 1 ≤ i ≤ n such that
(I, J ) /∈ W1,�i ,0,0.
It is easy to check that if a, b ∈ V \{0} and a|b, then W1,b,0,0 ⊆ W1,a,0,0. So,

for any pair (K,L) /∈ W1,�,0,0, if 1 ≤ i ≤ n is such that (I, J ) /∈ W1,�i ,0,0 then
(K,L) /∈ W1,�i ,0,0. If for all 1 ≤ i ≤ n, (I, J ) ∈ W1,�i ,0,0, let � = 0.
Suppose there exists 1 ≤ i ≤ n such that �iaibi /∈ IJ . Let d = �i0ai0bi0 for some

1 ≤ i0 ≤ n such that �i0ai0bi0 /∈ IJ and �iaibi divides �i0ai0bi0 for all �iaibi /∈ IJ .
Note, this means for any ideal K , if d /∈ K and 1 ≤ i ≤ n is such that �iaibi /∈ IJ ,
then �iaibi /∈ K . If for all 1 ≤ i ≤ n, �iaibi ∈ IJ , let d = 1.
If � ∈ IJ , then set p1 := � if d |� and p1 := d otherwise. Set p2 := �gh if �gh|�

and p2 := � otherwise. Then proceed as in the proof of lemma 4.16. Otherwise,
� /∈ IJ and (I, J ) /∈ W1,�,0,0. Thus �p ⊇ IJ and by lemma 4.10 IJ ⊇ �p. Thus
�p � �p = IJ ⊇ �ghV and � �= 0. Note that � ∈ p, since p ⊇ �p � �p.
We now choose t ∈ V and 
 ∈ V as follows:
Let t ∈ V be such that � = �t and 
 ∈ V such that �gh = �
. Let q :=

pt ∪ p
 ∪ pg ∪ ph . Note that t, 
, g, h ∈ p. So p ⊇ q. By proposition 4.11 and since
� ∈ q, there exists an abnormal point (K,L) such that KL = �q. Since � ∈ �q,
�q � �q. Further �gh ∈ �q, g ∈ q and h ∈ q. Thus, (K,L) ∈ W1,�,g,h .
If ai /∈ p, then ai /∈ q and if bi /∈ p, then bi /∈ q. Since d /∈ IJ = �p, we have

that d /∈ �q. Thus, if �iaibi /∈ IJ , then �iaibi /∈ �q. Finally, (K,L) /∈ W1,�,0,0.
So, if (I, J ) /∈ W1,�i ,0,0, then (K,L) /∈ W1,�i ,0,0. Thus (K,L) /∈ W1,�i ,ai ,bi for all
1 ≤ i ≤ n. 

We now reinterpret the inclusion

W1,�,g,h ∩ Xp,q ⊆
n⋃
i=1

W1,�i ,ai ,bi ∩ Xp,q

in terms of inclusions of intervals in the following order.

Definition 4.18. Let a, b ∈ V and p� V be prime. We write
a <p b if and only if b ∈ ap,
a =p b if and only if ap = bp and

a ≤p b if and only if a <p b or a =p b if and only if bp ⊆ ap.
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Remark 4.19.

(i) If Xp,p contains normal points, then V together with the order <p is dense.
(ii) If I � V and I # = p, then t /∈ I and s ∈ I implies t <p s .
(iii) Let (I, J ) ∈ Xp,p be abnormal. Let a ∈ p be such that IJ = ap. Let g, h ∈ p.

Then (I, J ) ∈ W1,�,g,h if and only if � <p a <p �gh.

Proof.

(i) Since Xp,p contains a normal point p2 = p (see proposition 4.11 (i) and note
that if (I #)2 �= I # then I = aI # for some a ∈ V ). Suppose a <p b. Then
b ∈ ap. Let 
1, 
2 ∈ p such that b = a
1
2. Then b ∈ a
1p and a
1 ∈ ap.
So a <p a
1 <p b.

(ii) Suppose I # = p, t /∈ I and s ∈ I . Let r ∈ V be such that tr = s . By
definition of I #, r ∈ I #. Thus s ∈ tp. So t <p s .

(iii) Suppose (I, J ) ∈ Xp,p is abnormal. Then, by proposition 4.11 (iii) IJ = ap
for some a ∈ p. So by lemma 4.10 (I, J ) ∈ W1,�,g,h means exactly that
�gh ∈ IJ and �p � IJ . Thus, �gh >p a and a >p �. 


Definition 4.20. Let p� V be prime, t ∈ V and s ∈ p. We define

(t, st)p := {r ∈ V | t <p r <p st}, and
[t, st)p := {r ∈ V | t ≤p r <p st}.

Proposition 4.21. LetV be an effectively given valuation domain. Suppose p, q�V
are prime ideals and that p �= q. Suppose �, �1, . . . , �n ∈ V \{0}, g, a1, . . . , an ∈ p
and h, b1, . . . , bn ∈ q. Then

[�, �gh)q∩p ⊆ ∪ni=1[�i , �iaibi)q∩p

if and only if

W1,�,g,h ∩Xp,q ⊆
n⋃
i=1

W1,�i ,ai ,bi ∩ Xp,q.

Proof. Because (I, J ) ∈ W1,�,g,h if and only if (J, I ) ∈ W1,�,h,g , we may assume
without loss of generality that p � q.
Note that, by lemma 4.9 all (I, J ) ∈ Xp,q are abnormal since p �= q.
Suppose

[�, �gh)p ⊆ ∪ni=1[�i , �iaibi)p.
We may assume that ∪ni=1[�i , �iaibi)p is an irredundant union.
By reordering, we may assume,

�iaibi <p �i+1ai+1bi+1

for 1 ≤ i < n.
From the irredundancy of∪ni=1[�i , �iaibi)p and the reordering, we get that�i <p

�i+1, �1 ≤p � and �gh ≤p �nanbn.
Take (I, J ) ∈ W1,�,g,h ∩Xp,q. So � /∈ IJ and �gh ∈ IJ . We now need to show that
there exists 1 ≤ k ≤ n such that �k /∈ IJ and �kakbk ∈ IJ .
Since �1 ≤p � and �gh ≤p �nanbn, �1 /∈ IJ and �nanbn ∈ IJ .
Let k be least such that �kakbk ∈ IJ . Then either k = 1 or �k−1ak−1bk−1 /∈ IJ .
If k = 1, then, since �1 /∈ IJ , (I, J ) ∈ W1,�1,a1,b1 . If �k /∈ IJ then (I, J ) ∈ W1,�k ,ak,bk .
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Suppose for a contradiction that �k ∈ IJ and k > 1. Then � <p �k ,
�k−1ak−1bk−1 <p �k and �k−1ak−1bk−1 <p �gh, since � /∈ IJ , �k ∈ IJ ,
�k−1ak−1bk−1 /∈ IJ and �gh ∈ IJ .
Thus there exists d ∈ V such that� ≤p d <p �gh and�k−1ak−1bk−1 ≤p d <p �k .

Since d <p �k , d <p �i for all i ≥ k. Since �k−1ak−1bk−1 ≤p d , �iaibi ≤p d for
all i ≤ k − 1. So d /∈ (�i , �iaibi ] for all 1 ≤ i ≤ n. But, since � ≤p d <p �gh, d ∈
[�, �gh). This contradicts our assumption. Thus, �k /∈ IJ . So (I, J ) ∈ W1,�k ,ak,bk .
Now suppose that

W1,�,g,h ∩ Xp,q ⊆
n⋃
i=1

W1,�i ,ai ,bi ∩ Xp,q.

Suppose d ∈ [�, �gh). Then � /∈ dp and �gh ∈ dp. Note that dpq = dp. The point
(dp, q) is normal (lemma 4.9), since (dp)# = p �= q. Thus, by theorem 4.7, (dp, q) ∈
W1,�,g,h ∩ Xp,q. Thus (dp, q) ∈ W1,�k,ak ,bk ∩ Xp,q for some 1 ≤ k ≤ n. So, �k /∈ dp
and �kakbk ∈ dp. Thus, �k ≤p d and d <p �kakbk . So d ∈ ∪ni=1[�i , �iaibi)p. 

Corollary4.22. LetV be an effectively given valuation domain. Suppose p, q�V

are prime ideals such that p �= q. Suppose there is an algorithm that given a ∈ V ,
answers whether a ∈ p and an algorithm that given a ∈ V , answers whether a ∈ q.
Then for any n ∈ N there is an algorithm that given �, �1, . . . , �n ∈ V \{0} and
g, h, a1, . . . , an, b1, . . . , bn ∈ m, answers whether

W1,�,g,h ∩ Xp,q ⊆
n⋃
i=1

W1,�i ,ai ,bi ∩ Xp,q.

Proof. If g /∈ p or h /∈ q, then W1,�,g,h ∩ Xp,q = ∅. So W1,�,g,h ∩ Xp,q ⊆⋃n
i=1W1,�i ,ai ,bi ∩Xp,q.
Suppose g ∈ p and h ∈ q. Then (p, �q) ∈ W1,�,g,h , since g ∈ p, � /∈ �q and

�h ∈ �q. If, for all 1 ≤ i ≤ n, either ai /∈ p or bi /∈ q, then
⋃n
i=1W1,�i ,ai ,bi ∩Xp,q = ∅.

Hence,W1,�,g,h ∩ Xp,q �
⋃n
i=1W1,�i ,ai ,bi ∩Xp,q.

Now suppose g ∈ p and h ∈ q and there exists 1 ≤ i ≤ n such that ai ∈ p and
bi ∈ q. Let J be the set of all 1 ≤ i ≤ n such that ai ∈ p and bi ∈ q. ThenW1,�,g,h ∩
Xp,q ⊆ ⋃ni=1W1,�i ,ai ,bi ∩Xp,q if and only ifW1,�,g,h ∩Xp,q ⊆ ⋃i∈J W1,�i ,ai ,bi ∩Xp,q.
By proposition 4.21, W1,�,g,h ∩ Xp,q ⊆ ⋃

i∈J W1,�i ,ai ,bi ∩ Xp,q if and only if
[�, �gh)p∩q ⊆ ⋃i∈J [�i , �iaibi)p∩q.
The existence of an algorithm which, given a ∈ V , answers whether a ∈ p ∩ q

means, since V is effectively given, there exists an algorithm which, given a, b ∈
V , answers whether a ∈ b(p ∩ q). Therefore, there is an algorithm which given
�, �1, . . . , �k ∈ V \{0} and g, h, a1, . . . , ak, b1, . . . , bk ∈ p ∩ q, answers whether
[�, �gh)p∩q ⊆ ⋃i∈J [�i , �iaibi)p∩q. 

Proposition 4.23. Suppose p � V is prime, n ∈ N, �, �1, . . . , �n ∈ V \{0} and

g, h, a1, . . . , an, b1, . . . , bn ∈ p. Then the following are equivalent:

(�, �gh)p ⊆
n⋃
i=1

(�i , �iaibi)p. (2)

W1,�,g,h ∩ Xp,p ⊆
n⋃
i=1

W1,�i ,ai ,bi ∩ Xp,p. (3)
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Proof. (1)⇒(2) Suppose (I, J ) ∈ W1,�,g,h ∩ Xp,p is normal. Suppose, for a
contradiction, that (I, J ) /∈ W1,�i ,ai ,bi for all 1 ≤ i ≤ n.
Let S := {1 ≤ i ≤ n | �i ∈ IJ}. Let T := {1 ≤ i ≤ n | �iaibi /∈ IJ}. Thus, since
(I, J ) /∈ W1,�i ,ai ,bi for all 1 ≤ i ≤ n, we have that either �i ∈ IJ or �iaibi /∈ IJ for
all 1 ≤ i ≤ n. So S ∪ T = {1, 2, . . . , n}.
First, we show that neither S nor T is empty. Suppose S is empty. Then �iaibi /∈
IJ for all 1 ≤ i ≤ n, because S ∪ T = {1, 2, . . . , n}. Since �gh ∈ IJ , by remark
4.19 (ii), �iaibi <p �gh for all 1 ≤ i ≤ n. This contradicts (1). Suppose T is empty.
Then �i ∈ IJ , for all 1 ≤ i ≤ n. Since � /∈ IJ , by remark 4.19 (ii), � <p �i for all
1 ≤ i ≤ n. This contradicts (1).
Take z1 maximal with respect to the <p order such that z1 = �iaibi for some
i ∈ T . Take z2 minimal with respect to the <p order such that z2 = �i for some
i ∈ S. Thus z1 /∈ IJ and z2 ∈ IJ . So z1 <p z2. Since � /∈ IJ , � <p z2. Since
�gh ∈ IJ , z1 < �gh.
By remark 4.19 (i), there exists d ∈ (z1, z2) ∩ (�, �gh). So, using (1), d ∈
(�i , �iaibi) for some 1 ≤ i ≤ n. But, then z1 <p d <p �iaibi and �i <p d <p z2.
Thus, �i /∈ IJ and �iaibi ∈ IJ .
Thus (2) holds when restricted to normal points. That (2) holds for abnormal
points too follows straightforwardly from remark 4.19 (iii).
(2)⇒(1) This follows directly from remark 4.19 (iii). 

Corollary 4.24. Let V be an effectively given valuation domain. Suppose p� V
is a prime ideal. Suppose there is an algorithm that given a ∈ V , answers whether
a ∈ p. Then for any n ∈ N there is an algorithm that given �, �1, . . . , �n ∈ V \{0}
and g, h, a1, . . . , an, b1, . . . , bn ∈ m, answers whether

W1,�,g,h ∩ Xp,p ⊆
n⋃
i=1

W1,�i ,ai ,bi ∩ Xp,p.

Proof. Almost exactly as in corollary 4.22. 

Lemma 4.25. Let n ∈ N. Let V be an effectively given valuation domain such that
there exists an algorithm which, given a, b ∈ V , answers whether a ∈ rad(bV ). Then
there exists an algorithm which, given a, b, αi , �i ∈ V \{0} and g, h, 
i , �i ∈ m for
each 1 ≤ i ≤ n, answers whether

Wa,b,g,h ⊆
n⋃
i=1

Wαi ,�i ,
i ,�i .

Proof. First note for any a, b ∈ V \{0} and g, h ∈ m, Wa,b,g,h = W1,ab,g,h .
Suppose n ∈ N, �, �i /∈ V \{0} and g, h, ai , bi ∈ m. Let T = {<u, v> ∈ m | u, v ∈
{1 , � , g , h , �iaibi , �i | 1 ≤ i ≤ n}}. Note that T is a finite set and there is an
algorithm which, given �, g, h and �i , ai , bi for 1 ≤ i ≤ n, computes T since the
function < , > and multiplication of ring elements are recursive.
Then in order to check whether

W1,�,g,h ⊆
n⋃
i=1

W1,�i ,ai ,bi
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by lemma 4.16 and lemma 4.17 it is enough to check

W1,�,g,h ∩ Xp,q ⊆
n⋃
i=1

W1,�i ,ai ,bi ∩ Xp,q

for p = rad(tV ) and q = rad(sV ) for each t, s ∈ T . Note that p � q if and only if
s /∈ rad(tV ).
By corollary 4.22 and corollary 4.24 there exists an algorithm determining the

truth of the above statement. 

Theorem 4.26. Let V be an effectively given valuation domain with an algorithm

which, given a, b ∈ V , answers whether a ∈ rad(bV ). Let n ∈ N. Then there is an
algorithm which, given ϕ/� a pp-pair and ϑi/
i a pp-pair for each 1 ≤ i ≤ n, answers
whether:

(ϕ/�) ⊆
n⋃
i=1

(ϑi/
i) .

Proof. By lemma 4.2, given a pp-pair ϕ/� we can effectively check whether
(ϕ/�) is non-empty.
Again using lemma 4.2, given a pp-pair ϕ/�, if (ϕ/�) is nonempty we can

effectively find aj, bj ∈ V \{0} and gj, hj ∈ m such that:

(ϕ/�) =
⋃
j

Waj ,bj ,gj ,hj

and for each i , if (ϑi/
i) is non-empty we can effectively find αi,k , �i,k ∈ V \{0} and

i,k , �i,k ∈ m such that:

(ϑi/
i) =
⋃
i,k

Wαi,k ,�i,k ,
i,k ,�i,k .

Therefore it is enough to check for each j whether:

Waj ,bj ,gj ,hj ⊆
⋃
i,k

Wαi,k ,�i,k ,
i,k ,�i,k .

By lemma 4.25, there exists an algorithmwhich determines the truth of the above
statement. 


§5. Duality. In this section, we will discuss the duality map for the Ziegler spec-
trum of valuation domains. The results in this section are used in section 6. It is
unnecessary to invoke duality in the sense that the results of this paper may be
obtained by more elementary methods. These elementary methods involve calculat-
ing the size of pp-quotients in certain uniserial modules (see [2]). Considering the
duality map means that we have to do fewer of these computations.
A duality between the lattice of right pp-n-formulae and the lattice of left

pp-n-formulae was first introduced by Prest [6, Section 8.4], and then extended
by Herzog [4] to give an isomorphism between the lattice of open sets of the left
Ziegler spectrum of a ring and the lattice of open sets of the right Ziegler spectrum
of a ring.

Definition 5.1. Let ϕ be a pp-n-formula in the language of right R-modules of
the form ∃ȳ(x̄, ȳ)H = 0, where x̄ is a tuple of n variables, ȳ is a tuple of l variables,

https://doi.org/10.1017/jsl.2014.1 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2014.1


698 LORNAGREGORY

H = (H ′ H ′′)T and H ′ (respectively H ′′) is a n × m (respectively l × m) matrix
with entries in R. Then Dϕ is the pp-n-formula in the language of left R-modules

∃z̄
(
I H ′

0H ′′

)(
x̄
z̄

)
= 0.

Similarly, let ϕ be a pp-n-formula in the language of left R-modules of the

form ∃ȳH
(
x̄
ȳ

)
= 0 where x̄ is a tuple of n variables, ȳ is a tuple of l variables,

H = (H ′ H ′′) and H ′ (respectively H ′′) is a m × n (respectively m × l) matrix
with entries in R. Then Dϕ is the pp-n-formula in the language of right R-modules

∃z̄(x̄, z̄)
(
I 0
H ′H ′′

)
= 0.

Note that the pp-formula a|x for a ∈ R is mapped by D to a formula equivalent
with respect to TR to xa = 0 and the pp-formula xa = 0 for a ∈ R is mapped by
D to a formula equivalent with respect to TR to a|x.
Theorem 5.2 ([6, Chapter 8]). The map ϕ → Dϕ induces an anti-isomorphism
between the lattice of right pp-n-formulae and the lattice of left pp-n-formulae. In
particular, if ϕ,� are pp-n-formulae, then D(ϕ + �) is equivalent to Dϕ ∧ D� and
D(ϕ ∧�) is equivalent to Dϕ +D�.
This gives rise “at the level of open sets” to a homeomorphism from the left
Ziegler spectrum of R to the right Ziegler spectrum of R. To be precise:

Theorem 5.3. [4] The map D given on basic open sets by

(ϕ/�) �→ (D�/Dϕ)
is a lattice isomorphism from the lattice of open sets of ZgR (respectively RZg) to the
lattice of open sets of RZg (respectively ZgR). Moreover,

D2 : ZgR → ZgR
is the identity map.

It is unknown whether this lattice isomorphism always comes from a homeomor-
phism or even if this map always comes from a homeomorphism between ZgR and
RZg after identifying topologically indistinguishable points in both spaces.
For a commutative ring R, we identify the left and right Ziegler spectra.
In the case of valuation domains, we are in the lucky position of having a very
canonical homeomorphism which give rise to this map.

Proposition 5.4. Let V be a valuation domain. The map t : ZgV → ZgV :
N(I, J ) �→ N(J, I ) is a welldefined homeomorphism. Moreover, t induces the lattice
isomorphism D given in theorem 5.3.

Proof. First, we note that t is welldefined, since 〈I, J 〉 ∼ 〈K,L〉 if and only if
〈J, I 〉 ∼ 〈L,K〉.
Claim: For any a, b ∈ V \{0}, g, h ∈ m and pair of ideals (I, J ), (I, J ) ∈ Wa,b,g,h
if and only if (J, I ) ∈ Wb,a,h,g .
Suppose (I, J ) ∈ Wa,b,g,h . Then there exists (K,L) such that (I, J ) ∼ (K,L) and
a /∈ K , ag ∈ K , b /∈ L and bh ∈ L. Therefore, (L,K) ∈ Wb,a,h,g and (J, I ) ∼ (L,K)
so (J, I ) ∈ Wb,a,h,g . The reverse direction is by symmetry.
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Therefore, t is a homeomorphism and

N(I, J ) ∈ (xag = 0 ∧ b|x/xa = 0+ bh|x) if and only if

N(J, I ) ∈ (xbh = 0 ∧ a|x/xb = 0 + ag|x) .
Since t is a homeomorphism, it induces an automorphism tlatt on the lattice of

open sets of ZgV . From the fact that D and t are equal on a basis of the lattice of
open sets of ZgV (by a basis of a lattice L we simply mean a subset B of L such that
every element of L can be written as a supremum of elements in B), we get that tlatt

and D are the same automorphism. 

We call a homeomorphism from ZgR to RZg, which gives rise to the lattice

isomorphism in 5.3 a duality homeomorphism for Ziegler spectra.
The following result is essentially due to Herzog [4] (although it is not explicitly

stated).

Theorem 5.5. IfD : ZgR →R Zg is a duality homeomorphism for Ziegler spectra,
ϕ/� is a pp-pair and N is a pure-injective indecomposable (right) R-module then∣∣∣∣ϕ(N)�(N)

∣∣∣∣ =
∣∣∣∣D�(DN)Dϕ(DN)

∣∣∣∣ .
Proof. If |ϕ(N)/�(N)| and |D�(DN)/Dϕ(DN)| are always either 1 or infinite

for all pp-1-formulae ϕ,� then the statement is true by definition.
Suppose |ϕ(N)/�(N)| is finite but not equal to 1 for some pp-pair ϕ/�. Then

there exists a pp-pair �/�, which is N -minimal i.e. �(N) � �(N) and for all pp-1-
formulae �, �(N) ⊇ �(N) ⊇ �(N) implies either �(N) = �(N) or �(N) = �(N).
Then N is reflexive in the sense of Herzog [4, page 51], that is, there exists a pp-pair
�/� such that for all indecomposable pure-injective modules U in the closure of N
(with respect to the Ziegler topology), �/� is either U -minimal or �(U ) = �(U ).
So, now by [4, Theorem 6.6] and the modularity of the lattice of pp-formulae,∣∣∣∣ ϕ(N)ϕ ∧ �(N)

∣∣∣∣ =
∣∣∣∣ (ϕ + �)(N)�(N)

∣∣∣∣ =
∣∣∣∣ D�(DN)
(Dϕ ∧D�)(DN)

∣∣∣∣ .



Putting this together with proposition 5.4 we get that:

Proposition 5.6. Let V be a valuation domain. For all proper ideal I, J � V and
all pp-pairs ϕ/� we have that

|ϕ(N(I, J ))/�(N(I, J ))| = |D�(N(J, I ))/Dϕ(N(J, I ))| .

§6. Finite invariants. We start by recalling some useful results from the model
theory of modules over valuation domains.
A moduleM is called uniserial if its lattice of submodules form a chain. Clearly

every submodule and quotient module of a uniserial module is also uniserial. Less
obviously, we have the following theorem due to Ziegler.

Theorem 6.1 ([9]). Every indecomposable pure-injective module over a valuation
domain is the pure-injective hull of a uniserial module and the pure-injective hull of a
uniserial module is indecomposable.
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Despite pure-injective modules over valuation domains not in general being unis-
erial, they are uniserial as modules over their endomorphism ring (see [8]), and thus
we get the following theorem and corollary:

Theorem 6.2 ([8, Corollary 11.5]). If M is an indecomposable pure-injective
module over a valuation domain, then for any two pp-formulae ϕ(x), �(x) either
ϕ(M ) ⊆ �(M ) or �(M ) ⊆ ϕ(M ).
Corollary 6.3. Let N be an indecomposable pure-injective module over a valua-
tion domainV . If ϕ :=

∑
i ϕi and � := ∧j�j , where ϕi and�j are pp-formulae then

|ϕ(N)/�(N)| = maxi,j |ϕi(N)/�j(N)|.
Bearing in mind that we have effective procedures for rewriting pp-formulae in
the form

∑n
i=1(xai = 0∧ bi |x) and

∧n
i=1(xai = 0+ bi |x) (lemma 4.1), it is enough

to consider invariant sentences of the form
∣∣∣ (xag=0)∧(b|x)(xa=0)+(bh|x)

∣∣∣ ≥ m, where a, b ∈ V \{0}
and g, h ∈ m.
If V is a valuation domain with infinite residue field then the only finite V -
module is the zero module. Since [5] already dealt with finite invariant sentences for
valuation domains with dense value groups, we won’t include results for this case.
Thus, in this section, we will focus on valuation domains with nondense value group
and finite field residue field.
Let R be a commutative ring. For every indecomposable pure-injective module
N , the set of r ∈ R whose action on N is not bijective is a prime ideal of R (see for
instance [9, Theorem 5.4]). We call this prime ideal the attached prime of N .
For a valuation domain V , the attached prime ofN(I, J ) is I # ∪J#. This follows
easily from lemma 4.3, the reformulation of the equivalence relation ∼ just after
lemma 4.3 and the definition of I # and J#.

Lemma 6.4. Let V be a valuation domain with finite residue field. Let ϕ,� be

pp-1-formulae and let I, J � V . If
∣∣∣ϕ(N (I,J ))�(N (I,J ))

∣∣∣ is finite and not equal to 1, then either
I # = m or J# = m.

Proof. Suppose
∣∣∣ϕ(N )�(N )

∣∣∣ is finite and not equal to 1. There exists a pp-1-formula
�′ such that ϕ(N) � �′(N) ⊇ �(N) and ϕ/�′ is an N -minimal pair. Since

∣∣∣ϕ(N )�(N )

∣∣∣
is finite,

∣∣∣ ϕ(N )�′(N )

∣∣∣ is finite and ∣∣∣ϕ(N )�(N )

∣∣∣ is not equal to 1 because ϕ(N) � �′(N).
SupposeN has attached prime p not equal tom. Then, for all r ∈ p and all nonzero
x ∈ N , xr has strictly greater pp-type than x by [6, Chapter 4 section 4.4]. Hence,
if x ∈ ϕ(N), then xr ∈ �′(N). Therefore, ϕ(N )

�′(N ) is an V/p-module. All r /∈ p act

as automorphisms on N . Hence, ϕ(N )
�′(N ) is a Vp/p-module (i.e. vector space), and

therefore infinite or the zero module, since V/p is of infinite size.

Therefore, if
∣∣∣ϕ(N )�(N )

∣∣∣ is finite and not equal to 1 then its attached prime is m. Thus,
I # ∪ J# = m. Therefore, either I # = m or J# = m. 

For a valuation domain V with dense value group and finite residue field the
situation is significantly simpler. If ϕ(N(I, J ))/�(N(I, J )) is nonzero and finite for
some pp-pair ϕ/�, then either I = am and J = bm for some non-zero a, b ∈ V or
I = aV and J = bV , for some nonzero a, b ∈ m (see [5, Section 7]).
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A valuation domain having nondense value group exactly means that its maximal
ideal is principal. It is easy to derive from this that I # = m if and only if I is principal.
Thus, for all I � V with I # = m, there exists a ∈ m such that (I : a) = m. Thus
we need only consider finite invariant sentences for indecomposable pure-injective
modules of the form N(I,m), N(m, J ) and N(m, xV ), where x ∈ m\{0}, I # � m
and J# � m.

Lemma 6.5. LetV be a valuation domainwith residue field consisting of q elements.
Then any finite nonzero module is of size qn for some n ∈ N.

Proof. SupposeM is a finite nonzero V -module. Let

M =Mk � · · · �M2 �M1 � 0 =M0
be a chain of submodules ofM such that each quotientMi+1/Mi is cyclic. Every
finite cyclic (nonzero) module is isomorphic to V/mw for some w ∈ N and V/mw

has qw elements. 

Note that the above lemma implies that for any pp-pair ϕ/� and any V -module

M ,
∣∣∣ ϕ(M )�(M )

∣∣∣ = qn for some n ∈ N0 or
∣∣∣ ϕ(M )�(M )

∣∣∣ is infinite.
Lemma 6.6. Let V be a valuation domain with nondense value group and finite

residue field. Let ϕ be the pp-1-formula (xag = 0 ∧ b|x) and let � be the pp-1-
formula (xa = 0 + bh|x), where a, b ∈ V \{0} and g, h ∈ m. If x ∈ m is such that
N(m, xV ) ∈ (ϕ/�), then∣∣∣∣ϕ(N(m, xV ))�(N(m, xV ))

∣∣∣∣ = min
{∣∣∣∣ VgV

∣∣∣∣ ,
∣∣∣∣ VhV

∣∣∣∣ ,
∣∣∣∣ xVabghV

∣∣∣∣ ,
∣∣∣∣abVxV

∣∣∣∣
}
.

Proof. The type p(xV,m) is realised by 1 in the module V/xV . Since V/xV is
uniserial, N(xV,m) is isomorphic to the pure-injective hull of V/xV . Thus, V/xV
and N(xV,m) are elementary equivalent. So we need only calculate the size of
ϕ(V/xV )
�(V/xV ) .
Note that, by proposition 4.11 (i) the point (xV,m) is an abnormal point since

m is principally generated, and thus xV = tm for some t ∈ V \{0} and m2 �= m.
Note that abm � xm if and only if ab /∈ xV . So, by lemma 4.10 the condition that
N(m, xV ) ∈ (ϕ/�) means that ab /∈ xV and abgh ∈ xm. Thus bV ⊇ (xV : a)
and bhV ⊆ (xV : ag).
The solution sets of the formulae xag = 0, b|x, xa = 0 and bh|x in V/xV are

(xV : ag)/xV , bV/xV , (xV : a)/xV and (bhV + xV )/xV respectively. Thus

∣∣∣∣ϕ(V/xV )�(V/xV )

∣∣∣∣ = min
{∣∣∣∣(xV : ag)(xV : a)

∣∣∣∣ ,
∣∣∣∣ (xV : ag)bhV

∣∣∣∣ ,
∣∣∣∣ bV

(xV : a)

∣∣∣∣ ,
∣∣∣∣ bVbhV

∣∣∣∣
}
.

Since V is a domain, (xV :ag)(xV :a)
∼= V/gV , (xV :ag)bhV

∼= xV/abghV , bV
(xV :a)

∼= abV/xV
and bVbhV

∼= V/hV . 

Proposition 6.7. Let V be a valuation domain with nondense value group and

finite residue field consisting of q elements. Let ϕ be the pp-formula (xag = 0 ∧ b|x)
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and let � be the pp-formula (xa = 0 + bh|x), where a, b ∈ V \{0} and g, h ∈ m.
Suppose I � V is a proper ideal such that I # � m. Then

∣∣∣∣ϕ(N(I,m))�(N(I,m))

∣∣∣∣ =
⎧⎪⎨
⎪⎩
1, if ab ∈ I or abgh /∈ I or g /∈ I #;
qv, if ab /∈ I , abgh ∈ I , g ∈ I # and hV = mv ;

∞, otherwise.

Proof. By lemma 6.5, if
∣∣∣ϕ(N (I,m))�(N (I,m))

∣∣∣ is finite, then it is either of size 1 or qv for
some v ∈ N.
From theorem 4.7 and lemma 4.9, we have that N(I,m) ∈ (ϕ/�) if and only if
ab /∈ I , abgh ∈ I and g ∈ I #. So

∣∣∣ϕ(N (I,m))�(N (I,m))

∣∣∣ = 1 if and only if ab ∈ I or abgh /∈ I
or g /∈ I #.
We now assume that ab /∈ I , abgh ∈ I and g ∈ I #.
Note that the pp-typep(I,m) is realised by 1+I in the uniserial moduleV/I . The
pure-injective hulls of uniserial modules are indecomposable (theorem 6.1) and thus
the pure-injective hull of V/I is isomorphic toN(I,m). Every module is elementary
equivalent to its pure-injective hull. Hence

|ϕ(V/I )/�(V/I )| = |ϕ(N(I,m))/�(N(I,m))| .
The pp-subgroup defined by (xa = 0 + bh|x) in V/I is

(I : a) + bhV
I

.

Note that bV � I since ab /∈ I . The pp-subgroup defined by (xag = 0 ∧ b|x) in
V/I is

(I : ag) ∩ bV
I

.

Thus the pp-quotient defined by ϕ/� in V/I is

(I : ag) ∩ bV
(I : a) + bhV

.

Since V/I is uniserial,∣∣∣∣ (I : ag) ∩ bV(I : a) + bhV

∣∣∣∣ = min
{∣∣∣∣ (I : ag)(I : a)

∣∣∣∣ ,
∣∣∣∣ (I : ag)bhV

∣∣∣∣ ,
∣∣∣∣ bV(I : a)

∣∣∣∣ ,
∣∣∣∣ bVbhV

∣∣∣∣
}
.

Thus ∣∣∣∣ (I : ag) ∩ bV(I : a) + bhV

∣∣∣∣ = min
{∣∣∣∣ IIg

∣∣∣∣ ,
∣∣∣∣ I

abghV

∣∣∣∣ ,
∣∣∣∣abVI

∣∣∣∣ ,
∣∣∣∣ VhV

∣∣∣∣
}
.

Note that any finite nonzero uniserial module is cyclic and further isomorphic
to V/mn for some n ∈ N. Thus, since I is not principally generated, the first three
quotients are infinite. Thus∣∣∣∣ (I : ag) ∩ bV(I : a) + bhV

∣∣∣∣ =
∣∣∣∣ VhV

∣∣∣∣ = qv
if and only if hV = mv . 
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Using section 7 we get the dual statement as a corollary. This statement could
alternatively be proved by elementary, but tedious calculations (see [2]). This corol-
lary will not be used later, but we include it to show explicitly how the duality
works.

Corollary 6.8. Let V be a valuation domain with nondense value group and
finite residue field consisting of q elements. Let v ∈ N, let ϕ be the pp-formula
(xag = 0 ∧ b|x) and let � be the pp-formula (xa = 0 + bh|x), where a, b ∈ V \{0}
and g, h ∈ m. Suppose J � V is a proper ideal such that J# � m. Then

∣∣∣∣ϕ(N(m, J ))�(N(m, J ))

∣∣∣∣ =
⎧⎪⎨
⎪⎩
1, if ab ∈ I or abgh /∈ I or g /∈ I #;
qv, if ab /∈ J , abgh ∈ J , h ∈ J# and gV = mv ;

∞, otherwise.
Proof. By proposition 5.6∣∣∣∣ϕ(N(m, J ))�(N(m, J ))

∣∣∣∣ =
∣∣∣∣D�(N(J,m))Dϕ(N(J,m))

∣∣∣∣ .
Note that Dϕ is (ag|x + xb = 0) and D� is a|x ∧ xbh = 0. Thus, proposition

6.7 gives the required statement. 

By a boolean combination of conditions on an ideal we mean a boolean combina-

tion Δ of conditions of the form r ∈ I and s ∈ I #, where r, s ∈ V . We will say that
an ideal J � V satisfies Δ if when we replace the symbol I by J , the statement is
true. We will write ⊥ for the condition on an ideal which is false for all ideals. In
what follows, when V is an effectively given valuation domain with nondense value
group, k will denote a fixed generator for the maximal ideal of V .

Proposition 6.9. Let V be an effectively given valuation domain with nondense
value group and finite residue field consisting of q elements.

(i) There exists an algorithmwhich, given v ∈ N andϕ,� pp-1-formulae, produces
Δ a boolean combination of conditions on an ideal, such that for all I � V , I
satisfies Δ if and only if I # � m and∣∣∣∣ϕ(N(I,m))�(N(I,m))

∣∣∣∣ ≥ qv.
(ii) There exists an algorithmwhich, given v ∈ N andϕ,� pp-1-formulae, produces
Δ a boolean combination of conditions on an ideal, such that for all J � V , J
satisfies Δ if and only if J# � m and∣∣∣∣ϕ(N(m, J ))�(N(m, J ))

∣∣∣∣ ≥ qv.
Proof. (i) We start with the special case where ϕ is xα = 0 ∧ � |x and � is

x
 = 0 + �|x, for some α, �, 
, � ∈ V .
First note that if α /∈ 
m, � /∈ �m, 
 = 0 or � = 0, then for all V -modules M ,∣∣∣ ϕ(M )�(M )

∣∣∣ = 1. We can effectively check if α /∈ 
m, � /∈ �m, 
 = 0 or � = 0. In this
situation let Δ =⊥.
Otherwise let a = 
, b = � , g = α/
 and h = �/� .
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By proposition 6.7, if I # � m, the following statements are equivalent:

(1)
∣∣∣ ϕ(N (I,m))�(N (I,m))

∣∣∣ = qv .
(2) abgh ∈ I , ab /∈ I , g ∈ I # and h = mv .

The condition hV = mv is equivalent to kv divides h and kv+1 does not divide h.
This can be effectively checked. So, if mv �= hV , let Δ =⊥. If kvV = hV , let Δ be

(abgh ∈ I ) ∧ (ab /∈ I ) ∧ (g ∈ I #) ∧ (k /∈ I #).
Now suppose that ϕ and � are arbitrary pp-1-formulae. By lemma 4.1, we can
effectively rewrite ϕ as

∑n
i=1 ϕi where ϕi is (xai = 0 ∧ bi |x) and � as

∧m
j=1 �j ,

where �j is (xcj = 0 + dj |x). Then by corollary 6.3, for any pure-injective
module N ∣∣∣∣ϕ(N)�(N)

∣∣∣∣ = maxi,j
{∣∣∣∣ ϕi(N)�j(N)

∣∣∣∣
}
.

We can now use the above special case to effectively produce an appropriate
boolean combination of conditions on an ideal.
(ii) Taking the dual of a pp-formula is clearly effective. Thus, we may now use
section 5 to get the dual statements. 

Proposition 6.10. Let V be an effectively given valuation domain with an algo-
rithm which, given a, b ∈ V , answers whether a ∈ rad(bV ). There exists an algorithm
which, given a boolean combination of conditions on an ideal Δ, answers whether there
is an ideal J � V satisfying Δ.
Proof. In order to show that we can effectively decide whether there exists an
ideal J � V satisfying a given boolean combination of conditions on an ideal, it is
enough to show that we can effectively decide whether there exists an ideal J � V
satisfying a condition of the following form:

(∗)
⎛
⎝ k∧
g=1

rg ∈ J
⎞
⎠ ∧

(
l∧
h=1

sh /∈ J
)

∧
(
m∧
i=1

ti ∈ J#
)

∧
⎛
⎝ n∧
j=1

uj /∈ J#
⎞
⎠ ,

where k, l,m, n ∈ N and rg , sh , ti , uj ∈ V for 1 ≤ g ≤ k, 1 ≤ h ≤ l , 1 ≤ i ≤ m and
1 ≤ j ≤ n.
Since V is a valuation domain, any finite set of ideals has a smallest and a largest
element. Let r ∈ {rg | 1 ≤ g ≤ k}, t ∈ {ti | 1 ≤ i ≤ m}, s ∈ {sh | 1 ≤ h ≤ l} and
u ∈ {uj | 1 ≤ j ≤ n} be such that r generates the ideal∑kg=1 rgV , t generates the
ideal

∑m
i=1 tiV , s generates ∩lh=1shV and u generates ∩nj=1ujV . The elements r, s, t

and u can be found effectively.
Note that J � V satisfies (∗) if and only if r ∈ J , s /∈ J , t ∈ J# and u /∈ J#.
Claim: For any r, s, t, u ∈ V , there exists J � V such that r ∈ J , s /∈ J , t ∈ J#
and u /∈ J# if and only if s divides r, u /∈ rad(tV ) and u /∈ rad((r/s)V ).
Suppose J � V and r ∈ J , s /∈ J , t ∈ J# and u /∈ J#. Since J# is prime and
t ∈ J#, rad(tV ) ⊆ J#. Therefore, u /∈ rad(tV ). Clearly s divides r. Let 
 = r/s .
Then s /∈ J and 
s ∈ J so 
 ∈ J#. Therefore, rad(
V ) ⊆ J# so u /∈ rad(
V ).
Suppose s divides r, u /∈ rad(tV ) and u /∈ rad((r/s)V ). Let 
 = r/s and
J = s(rad(tV ) ∪ rad(
V )). Then J# = rad(tV ) ∪ rad(
V ) so t ∈ J# and u /∈ J#.
Clearly s /∈ J and 
 ∈ rad(
V ) so r = s
 ∈ J . 
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By a boolean combination of conditions on an element we mean a boolean com-
bination Δ of conditions of the form x ∈ rV , where r ∈ V . We will say that an
element w ∈ V satisfies Δ if when we replace the symbol x by w the statement is
true. We will write⊥ for the condition on an element which is false for all elements.
Lemma 6.11. Let V be an effectively given valuation domain with nondense value

group and finite residue field consisting of q elements. There exists an algorithmwhich,
given v ∈ N and ϕ,� pp-1-formulae, producesΔ, a boolean combination of conditions
on an element, such that for all x ∈ V , x satisfies Δ if and only if x ∈ m and∣∣∣∣ϕ(N(m, xV ))�(N(m, xV ))

∣∣∣∣ ≥ qv.
Proof. Westartwith the special casewhereϕ isxα = 0∧� |x and� isx
 = 0+�|x

for some α, �, 
, � ∈ V .
As in proposition 6.9, if α /∈ 
m, � /∈ �m, 
 = 0 or � = 0, then for all V -modules

M ,
∣∣∣ϕ(M )�(M )

∣∣∣ = 1. We can effectively check if α /∈ 
m, � /∈ �m, 
 = 0 or � = 0. In this
situation let Δ =⊥.
Otherwise, let a = 
, b = � , g = α/
 and h = �/� .
For x ∈ m, N(m, xV ) is an abnormal point since m2 �= m (see proposition

4.11 (i)). Thus, N(m, xV ) ∈ (ϕ/�) is equivalent to abm � xm and abgh ∈ xm
since g, h ∈ m. Note that since m is finitely generated, abm � xm if and only if
ab /∈ xV .
By lemma 6.6, if N(m, xV ) ∈ (ϕ/�) then∣∣∣∣ϕ(N(m, xV ))�(N(m, xV ))

∣∣∣∣ ≥ qv
if and only if

|V/gV | ≥ qv , |V/hV | ≥ qv , |xV/abghV | ≥ qv , |abV/xV | ≥ qv.
Note that if c, d ∈ V with d ∈ cV , then |cV/dV | ≥ qv if and only if d ∈ cmv . If

g /∈ mv or h /∈ mv , then let Δ =⊥ (note that this can be effectively checked).
Otherwise, let r = g/kv (we can effectively calculate r). Note that the condition

x /∈ abrhkV is the same as abrh ∈ xV , which is the same as abgh ∈ xkvV .
Let Δ be

x ∈ abkvV ∧ x /∈ abrhkV.
For arbitrary pp-formulae use lemma 4.1 and corollary 6.3 as in proposition

6.9. 

Lemma 6.12. Let V be an effectively given valuation domain. There exists an

algorithm which, given Δ a boolean combination of conditions on an element, answers
whether there exists x ∈ V satisfying Δ.
Proof. In order to show that we can effectively decide whether there exists x ∈ V

satisfying a given boolean combination of conditions on an element, it is enough to
show that we can effectively decide whether there exists x ∈ V satisfying a condition
of the form:

Δ =
n∧
i=1

(x ∈ riV ) ∧
m∧
j=1

(x /∈ sjV ),
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where n,m ∈ N and ri , sj ∈ V for 1 ≤ i ≤ n and 1 ≤ j ≤ m. Since V is a valuation
domain, ∩ni=1riV is generated by one of the ris, say r. Note that we can effectively
find such an r. Again, since V is a valuation domain, we may effectively find s ∈ V
amongst the sjs which generates ∪mj=1sjV .
There exists x satisfying Δ if and only if there exists x ∈ V such that x ∈ rV
and x /∈ sV if and only if sV � rV if and only if s ∈ rm. Given any r, s ∈ V we
can effectively answer whether s ∈ rm. 


§7. Main theorem.
Theorem 7.1. Let V be an effectively given valuation domain. The following are
equivalent:

(i) The theory of V -modules, TV , is decidable.
(ii) There exists an algorithmwhich, given a, b ∈ V , answers whether a ∈ rad(bV ).
Proof. For the cases where V has infinite residue field or dense value group we
refer the reader to the proofs of Theorem 6.2 and Theorem 8.2 of [5], where the
only missing ingredient for valuation domains with nonarchimedean value groups
is an algorithm for answering whether one Ziegler basic open set is contained in a
finite union of others (we produced such an algorithm in section 4).
Let V be an effectively given valuation domain with finite residue field and
nondense value group such that there is an algorithm which, given a, b ∈ V
answers whether a ∈ rad(bV ). First note that since V is effectively given, TV is
recursively axiomatised. Hence, we have an algorithm which produces a list of all
sentences true in all V -modules. In order to show that TV is decidable, it is enough
to effectively produce a list of sentences which are true in at least oneV -module. The
Baur-Monk theorem means it is enough to show that there is an algorithm which
given a conjunction of invariant sentences and negations of invariant sentences �,
answers whether there exists a moduleM satisfying �. Suppose � is a conjunction
of the following sentences:

(1)
∣∣∣∣ϕ1i�1i

∣∣∣∣ = qvi , (2)

∣∣∣∣∣ϕ
2
j

�2j

∣∣∣∣∣ ≥ qwj , (3)
∣∣∣∣ϕ3k�3k

∣∣∣∣ = 1,
where l, m, n ∈ N and for all 1 ≤ i ≤ l , 1 ≤ j ≤ m, 1 ≤ k ≤ n, ϕ1i , �1i , ϕ2j , �2j , ϕ3k ,
�3k are pp-1-formulae and vi , wj ∈ N.
It is enough to consider sentences of this form as any finite V -module is either
the zero module or has qv elements for some v ∈ N, by lemma 6.5.
If � is a conjunction of invariant sentences like those in (1), (2) and (3), then we
call

∑l
i=1 vi the exponent of the statement.

We proceed by induction on
∑l
i=1 vi .

First consider the situation when
∑l
i=1 vi = 0, that is, (1) is empty. Suppose there

exists a moduleM satisfying �. We may assume M =
⊕
�∈MN�, for some finite

indexing setM. Therefore, for each 1 ≤ j ≤ m, there is � ∈ M such that∣∣∣∣∣ϕ
2
j (N�)

�2j(N�)

∣∣∣∣∣ > 1
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and for all � ∈ M and all 1 ≤ k ≤ n,∣∣∣∣ϕ3k(N�)�3k(N�)

∣∣∣∣ = 1.
Hence, for each 1 ≤ j ≤ m, there exists N� such that N� ∈ (

ϕ2j/�
2
j

)
and

N� /∈
(
ϕ3k/�

3
k

)
for all 1 ≤ k ≤ n. For each 1 ≤ j ≤ m, let Nj be such a module.

Then there exists t ∈ N such that
(⊕m

j=1Nj

)t
satisfies (2) and (3).

Hence, there exists a module M satisfying (2) and (3) if and only if for all
1 ≤ j ≤ m (

ϕ2j/�
2
j

)
�

n⋃
k=1

(
ϕ3k/�

3
k

)
.

Theorem 4.26 asserts that there exists an algorithm to check this, so we are done.
Now supposeL :=

∑l
i=1 vi > 0, so (1) is not empty and that for any conjunction

Θ of invariant sentences and negations of invariant sentences with exponent strictly
smaller that L, there is an algorithm which answers whether there exists a module
M satisfying Θ.
Suppose there existsM satisfying �. We may assumeM =

⊕
�∈MN� whereM

is a finite indexing set and each N� is an indecomposable pure-injective module.
Hence, there exists � ∈ M such that

q ≤
∣∣∣∣ϕ11(N�)�11(N�)

∣∣∣∣ ≤ qv1
and for all � ∈ M, for all 1 < i ≤ l and for all 1 ≤ k ≤ n∣∣∣∣ϕ1i (N�)�1i (N�)

∣∣∣∣ ≤ qvi and
∣∣∣∣ϕ3k(N�)�3k(N�)

∣∣∣∣ = 1.
Let U be the set of functions u : {1, . . . , l+m} → N0∪{∞} such that 1 ≤ u(1) ≤

v1, for all 2 ≤ i ≤ l , 0 ≤ u(i) ≤ vi and for all 1 ≤ j ≤ m, either 0 ≤ u(l + j) < wj
or u(l + j) =∞. Note that U is a finite set.
We now show that for each u ∈ U we can effectively answer whether there exists

an indecomposable pure-injective V -module satisfying the following sentences for
all 1 ≤ i ≤ l , 1 ≤ j ≤ m and 1 ≤ k ≤ n:
(i)
∣∣∣ϕ1i�1i
∣∣∣ = qu(i).

(ii) If u(j + l) �=∞,
∣∣∣∣ϕ2j�2j
∣∣∣∣ = qu(j+l). Otherwise

∣∣∣∣ϕ2j�2j
∣∣∣∣ ≥ qwj .

(iii)
∣∣∣ϕ3k�3k
∣∣∣ = 1.

Since 1 ≤ u(1), by lemma 6.4 if I, J � V are such that N(I, J ) satisfies (i), (ii)
and (iii) then either I # = m or J# = m. So, ifN(I, J ) satisfies (i), (ii) and (iii), then
we may assume either I = m and J = xV for some x ∈ m, I = m and J# � m or
J = m and I # � m.
Therefore, it is enough to showhow to answer the following 3 questions effectively:

Question 1. Does there exist x ∈ m such that N(m, xV ) satisfies (i), (ii)
and (iii)?
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By lemma 6.11, given any sentence
∣∣∣ϕ� ∣∣∣ ≥ qv, where ϕ,� are pp-1-formulae and

v ∈ N we can effectively produce Ω a boolean combination of conditions on an

element such that x ∈ V satisfies Ω if and only if x ∈ m and
∣∣∣ϕ(N (m,xV ))�(N (m,xV ))

∣∣∣ ≥ qv .
Lemma 6.11, lemma 6.5 and the fact that the statement x ∈ m is expressed by
a boolean combination of conditions on an ideal imply that given any sentence∣∣∣ϕ� ∣∣∣ = qv , where ϕ,� are pp-1-formulae and v ∈ N0 we can effectively produce Ω

a boolean combination of conditions on an element such that x ∈ V satisfies Ω if
and only if x ∈ m and

∣∣∣ϕ(N (m,xV ))�(N (m,xV ))

∣∣∣ = qv.
Hence, we can effectively produce a boolean combination of conditions Θ on an
element x ∈ V such that x satisfies Θ if and only if x ∈ m and N(m, xV ) satisfies
(i), (ii) and (iii).
By lemma 6.12, we can effectively decide whether there exists x ∈ V satisfying Θ.
Question 2. Does there exist I � V such that I # � m and N(I,m) satisfies (i),
(ii) and (iii)?

Note that I # � m can be expressed by a boolean combination of conditions
on an ideal. Use proposition 6.9(i) to produce Θ a boolean condition on an ideal
such that I � V satisfies Θ if and only if I # � m and N(I,m) satisfies (i), (ii) and
(iii). By proposition 6.10, we can effectively decide whether there exists I � V
satisfying Θ.

Question 3. Does there exist J � V such that J# � m and N(m, J ) satisfies (i),
(ii) and (iii)?

Same as question 2 replacing proposition 6.9(i) by proposition 6.9(ii).
Let U∗ be the set of u ∈ U such that an indecomposable pure-injective N exists
satisfying (i),(ii) and (iii). If U∗ is empty, then there does not exist a module M
satisfying (1), (2) and (3).
For each u ∈ U∗, we effectively produce a new list of sentences (1)u , (2)u and
(3)u . For each u start with (1)u and (2)u empty, and (3)u containing all sentences
in (3).

For each 1 ≤ i ≤ l , if u(i) < vi , add the sentence
∣∣∣ϕ1i�1i
∣∣∣ = qvi−u(i) to (1)u. If

u(i) = vi , add the sentence
∣∣∣ϕ1i�1i
∣∣∣ = 1 to (3)u. For each 1 ≤ j ≤ m, if u(l + j) < wj ,

add the sentence

∣∣∣∣ϕ2j�2j
∣∣∣∣ ≥ qwj−u(l+j) to (2)u .

Now there exists a moduleM satisfying (1), (2) and (3) if and only if there exists
a moduleM ′ satisfying (1)u , (2)u and (3)u for some u ∈ U∗.
Note that for each u ∈ U∗ the exponent of the conjunction of conditions in (1)u

is strictly smaller than L =
∑l
i=1 vi . Hence by the induction hypothesis, for each

u ∈ U∗ there is an algorithmwhich answers whether there exists a module satisfying
(1)u , (2)u and (3)u .
The other direction is lemma 3.2. 


§8. An effectively given valuation domain with undecidable theory of modules. In
this section, we sketch how to construct a valuation domain with infinite Krull
dimension which has decidable theory of modules with respect to one effective
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presentation and undecidable theory of modules with respect to another. We do
this by constructing a recursively presented totally ordered abelian group Γ (which
is classically isomorphic to ⊕�Z) such that the relation � on Γ, given by a � b
if and only if n|a| < |b| for all n ∈ N, codes up a recursively enumerable, but not
necessarily recursive set. We then construct an effectively given valuation domain
V out of fractions of polynomials with exponents in Γ such that the� relation on
Γ becomes the radical relation on V .
In contrast, we show that valuation domains with finite Krull dimension have

decidable theory of modules with respect to any effective presentation.

Group construction: Let f : N → N be an injective recursive function. Let Γ be
the free abelian group generated by the set {Ni |i ∈ N}∪{�i |i ∈ N}with the relation
�i = nNi holding for n ∈ N if and only if f(n) = i . Note that for ni ,mi ∈ Z

t∑
i=1

niNi +
t∑
i=1

mi�i = 0

if and only if
niNi +mi�i = 0

for all 1 ≤ i ≤ t. Now, for i ∈ N,

niNi +mi�i = 0

if and only if ni = mi = 0, or, mi �= 0, −ni/mi ∈ N and

−ni/miNi = �i
if and only if ni = mi = 0, or, mi �= 0, −ni/mi ∈ N and f(−ni/mi) = i . So we can
compute equality of elements in our group.
We now put an order on Γ. Set 0 < nNi < Nj for all n ∈ N and i < j. Set

n�i < Nj for all n ∈ N and all i < j. Set nNi < �i if i /∈ {f(1), . . . , f(n)}. Note
that

t∑
i=1

niNi +
t∑
i=1

mi�i > 0

if and only if there exists a 1 ≤ j ≤ t such that for all i > j
niNi +mi�i = 0 and njNj +mj�j > 0.

Thus there is a recursive presentation of Γ as a totally ordered abelian group
such that the sets {Ni | i ∈ N} and {�i | i ∈ N} are recursive. Let this recursive
presentation be given by a bijective map �f : N → Γ. Now i /∈ imf if and only if
Ni � �i . So if the image of f is recursive, then the relation � is recursive and if
the image of f is not recursive, then the� relation is not. Note that this group is
classically isomorphic to ⊕�Z lexicographically ordered.
Valuation domain construction: Let F be any recursive field. Let �0 : N → FΓ be a

recursive presentation of the group ring FΓ such that the map v0 : FΓ→ Γ ∪ {∞}
given by ∑

g∈Γ
agt

g �→
{
min{g | ag �= 0}, if

∑
g∈Γ agt

g �= 0;
∞, if

∑
g∈Γ agt

g = 0
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induces a recursive function via �0 and �f . The field of fractions F (Γ) of the group
ring FΓmay be coded up by pairs in FΓ (since we can decide whether two pairs are
equal we may take representatives in order to get a bijection). Let � : N → F (Γ) be
such a presentation. The map v : F (Γ)→ Γ∪{∞} given by v(a, b) = v0(a)−v0(b)
now induces a recursive function from N to N via � and �f .
Note that v defines a valuation on the field F (Γ) and is recursive. Thus v defines
a valuation domain V as a recursive subset (via �) of F (Γ). Therefore, we may now
define a recursive presentation � of V so that v restricted to V is recursive via �
and �f . There is a function � from Γ≥0 to V such that v�(g) = g for all g ∈ Γ≥0
which is recursive via � and �f (simply define �(g) to be r ∈ V such that �−1(r) is
least such that v(r) = g).
Suppose g, h ∈ Γ≥0. Then ng < h for all n ∈ N if and only if �(g)n /∈ �(h)V for
all n ∈ N, which is if and only if �(g) /∈ rad(�(h)V ). Thus, the radical relation on
V is recursive if and only if the� relation on Γ is recursive. So, if we take f in our
group construction to have recursive image, thenV has decidable theory of modules
with respect to �. On the other hand, if we take f with nonrecursive image, then
V has undecidable theory of modules with respect to �.
The same construction would still work if we replace ⊕�Z lexicographically
ordered by ⊕�Q lexicographically ordered. Thus, nondensity of the value group is
not important.
The following proposition shows that the phenomenon described above cannot
happen when the Krull dimension of V is finite.

Proposition 8.1. Let V be an effectively given valuation domain with finite Krull
dimension. Then the theory of V -modules is decidable.

Proof. Suppose V has prime ideals

pm := m � · · · � p2 � p1 � p0 := 0.

For 0 ≤ i ≤ m fix bi such that rad(biV ) = pi and let bm+1 = 1. We describe
an algorithm which given a ∈ V outputs 0 ≤ i ≤ m + 1, such that rad(aV ) =
rad(biV ). If a = 0, then output 0. Now assume that a ∈ m is nonzero and find
0 ≤ i ≤ m+1 such that a ∈ bi+1V and a /∈ biV . Such an i exists, since a is nonzero
andwe can do this effectively, sinceV is effectively given. Thus rad(aV ) = rad(biV )
or rad(aV ) = rad(bi+1V ). Now a ∈ rad(biV ) if and only if there exists an n ∈ N
such that an ∈ biV and bi+1 ∈ rad(aV ) if and only if there exists an n ∈ N such
that bni+1 ∈ aV . Exactly one of these two possibilities must occur. Thus, in order
to check whether rad(aV ) = rad(biV ) or rad(aV ) = rad(bi+1V ) we must for each
n ∈ N ask whether bni+1 ∈ aV or an ∈ biV .
Now if we are given a, c ∈ V we may effectively find 0 ≤ i, j ≤ m such
that rad(aV ) = rad(biV ) and rad(cV ) = rad(bjV ). So i ≤ j if and only if
a ∈ rad(cV ). 
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